EP3413133B1 - Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents

Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDF

Info

Publication number
EP3413133B1
EP3413133B1 EP18175937.4A EP18175937A EP3413133B1 EP 3413133 B1 EP3413133 B1 EP 3413133B1 EP 18175937 A EP18175937 A EP 18175937A EP 3413133 B1 EP3413133 B1 EP 3413133B1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
conductive layer
photosensitive member
electrophotographic photosensitive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18175937.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3413133A1 (en
Inventor
Taichi Sato
Jumpei Kuno
Kenichi Kaku
Takashi Anezaki
Atsushi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of EP3413133A1 publication Critical patent/EP3413133A1/en
Application granted granted Critical
Publication of EP3413133B1 publication Critical patent/EP3413133B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/18Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a charge pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material

Definitions

  • Japanese Patent Application Laid-Open No. 2002-311629 discloses an electrophotographic photosensitive member containing CB in an electrically conductive layer.
  • the present invention relates to an electrophotographic apparatus including the electrophotographic photosensitive member; a charging unit, an exposing unit, a developing unit, and a transfer unit.
  • an electrophotographic photosensitive member disclosed in Japanese Patent Application Laid-Open No. 2002-311629 is superior in suppressing variations in dark part potential and bright part potential due to repeated use, but has a problem of leak in which an insulation breakdown of a photosensitive layer is caused with respect to thinning of a photosensitive layer or high Vd potential.
  • An aspect of the present invention is to provide an electrophotographic photosensitive member capable of achieving both high leak resistance and reduction in variations in dark part potential and bright part potential due to repeated use.
  • the leak resistance time is defined as a time until reaching a leak after a voltage is applied.
  • a number average primary particle diameter of the carbon black (CB) is 200 nm or more and 500 nm or less
  • an average inter-particle distance of the CB in an electrically conductive layer is 200 nm or more and 600 nm or less
  • a coefficient of variation of an inter-particle distance of the CB is 1.2 or less
  • SF-1 of the carbon black is 150 or less.
  • L in the Equation (1) is a maximum length of a CB cross section.
  • SF-1 represents a ratio of a circle area having a maximum length L of the CB cross section as a diameter to a CB cross-sectional area as a percentage, and is a shape factor indicating circularity.
  • a value of SF-1 is closer to 100 as a shape is closer to a perfect circle, and is larger as the shape is thinner and longer, and thus, in other words, the value of SF-1 represents a difference (variation) between a long diameter / short diameter of the CB.
  • the value of SF-1 is 150 or less, it means that the shape of the CB in the cross section of the electrically conductive layer is a substantially spherical shape close to a circle.
  • the electrically conductive layer of the electrophotographic photosensitive member secures electrical conductivity by dispersing conductive particles in an insulating resin, and exhibits electrical conductivity by an electronic conductive mechanism.
  • the electronic conductive mechanism is a mechanism in which conductive particles dispersed in the insulating resin form a conductive path to flow electricity, as generally explained in a percolation model.
  • the CB according to an embodiment of the present invention is characterized in that SF-1 is 150 or less as described above. SF-1 is determined in the cross section of the electrically conductive layer and there is no point that the electric field is concentrated in the CB itself having a low volume resistance value by the shape in which the SF-1 is in the above-described range, that is, close to the circular shape, and thus the electric field intensity does not locally increase well.
  • CB having a low volume resistance value is agglomerated, it can be regarded as one conductor. Therefore, when determining SF-1, it is not determined by using primary particles of CB, but it is necessary to determine the SF-1 by using an aggregate as one conductor.
  • the CB according to an embodiment of the present invention is characterized in that an inter-particle distance is 200 nm or more and 600 nm or less and a coefficient of variation thereof is 1.2 or less. Since the inter-particle distance of the CB is in the above-described range, the optimum volume resistance as the electrically conductive layer can be maintained, and a conductive path having extremely low resistance or an insulating region in which electricity hardly flows is not formed by the small coefficient of variation. Thus, electricity does not flow locally but can flow entirely.
  • the conductive path by the conductive particles in the insulating resin that is, a general percolation hardly occurs, in which a conductive part and a non-conductive part are formed microscopically and electrical conductivity exhibits macroscopically.
  • the volume resistance value of the electrically conductive layer is decreased by increasing a ratio of the electrically conductive agent while filling conductive particles in the resin so as not to form the conductive path as much as possible. That is, it is considered that local electric field concentration that can deteriorate the photosensitive layer does not occur well, and the leak resistance is improved.
  • the electrically conductive layer generally has a thickness of about several micrometers to about several tens of micrometers. If the number average primary particle diameter of the CB relative to the thickness of the electrically conductive layer is excessively large, resistance unevenness of the electrically conductive layer becomes large, and the electric field concentration easily occurs. That is, it is difficult to precisely arrange conductive particles over the entire region of the electrically conductive layer, and therefore, agglomeration of the conductive particles necessarily occurs. When the number average primary particle diameter of the CB is large, since a size of the agglomerate mass is about the same as the thickness of the electrically conductive layer, the electric field is concentrated at that portion.
  • An electrophotographic photosensitive member includes: a support; an electrically conductive layer; and a photosensitive layer.
  • Examples of the metal can include aluminum, iron, nickel, copper, gold, stainless steel, an alloy thereof, or the like. Among them, an aluminum support obtained by using aluminum is preferable.
  • electrical conductivity may be imparted to the resin or glass by treatment such as mixing or coating, or the like, of an electrically conductive material.
  • FIG. 3 is a top view for explaining a method of measuring a volume resistivity of the electrically conductive layer
  • FIG. 4 is a cross-sectional view for explaining the method of measuring the volume resistivity of the electrically conductive layer.
  • an undercoat layer may be provided on the electrically conductive layer.
  • an adhesion function between layers can be enhanced to provide a charge injection blocking function.
  • an electrophotographic photosensitive member 1 in which the charge transport layer was a surface layer was produced.
  • the volume resistivity of the electrically conductive layer of the obtained electrophotographic photosensitive member 1 was measured by the above-described method.
  • each of the four sample pieces 100 CB particles included in each sample were arbitrarily selected, and the volume of the CB particle was measured from an FIB-SEM image in which the content of the CB particle was determined.
  • An average primary particle diameter of the CB particle of the sample piece was obtained by defining a radius of a sphere having the same volume as the volume of each CB particle as a particle diameter of the CB particle and calculating an average thereof.
  • the average value of the average primary particle diameter of the CB particle in the four sample pieces was defined as a number average primary particle diameter (D 1 ) of the CB particle in the electrically conductive layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Photoreceptors In Electrophotography (AREA)
EP18175937.4A 2017-06-06 2018-06-05 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Active EP3413133B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111664A JP6850205B2 (ja) 2017-06-06 2017-06-06 電子写真感光体、プロセスカートリッジおよび電子写真装置

Publications (2)

Publication Number Publication Date
EP3413133A1 EP3413133A1 (en) 2018-12-12
EP3413133B1 true EP3413133B1 (en) 2021-12-01

Family

ID=62567304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18175937.4A Active EP3413133B1 (en) 2017-06-06 2018-06-05 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Country Status (4)

Country Link
US (1) US10303085B2 (zh)
EP (1) EP3413133B1 (zh)
JP (1) JP6850205B2 (zh)
CN (1) CN109001962B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150485B2 (ja) 2018-05-31 2022-10-11 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP7059112B2 (ja) 2018-05-31 2022-04-25 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真画像形成装置
JP7054366B2 (ja) 2018-05-31 2022-04-13 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP7129225B2 (ja) 2018-05-31 2022-09-01 キヤノン株式会社 電子写真感光体および電子写真感光体の製造方法
JP2020086308A (ja) 2018-11-29 2020-06-04 キヤノン株式会社 電子写真感光体、電子写真装置、およびプロセスカートリッジ
JP7413054B2 (ja) 2019-02-14 2024-01-15 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP7301613B2 (ja) 2019-06-14 2023-07-03 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP7337652B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジ及びそれを用いた電子写真装置
JP7337649B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
JP2023131675A (ja) 2022-03-09 2023-09-22 キヤノン株式会社 電子写真装置

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338587A (en) * 1993-04-30 1994-08-16 Xerox Corporation Electrographic methods
JPH11119456A (ja) 1997-10-17 1999-04-30 Fuji Electric Co Ltd 電子写真用有機感光体
JP3283501B2 (ja) * 2000-06-28 2002-05-20 キヤノン株式会社 プロセスカートリッジの再生産方法
EP1178364B1 (en) * 2000-08-02 2006-12-13 Canon Kasei Kabushiki Kaisha Conductive member, process cartridge and electrophotographic apparatus
JP2002296819A (ja) 2001-03-30 2002-10-09 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置
JP2002311629A (ja) * 2001-04-17 2002-10-23 Nippon Shokubai Co Ltd 電子写真用感光体
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7029811B2 (en) * 2002-01-16 2006-04-18 Kyocera Mita Corporation Electrophotographic photoreceptor
JP3840161B2 (ja) 2002-08-29 2006-11-01 キヤノン株式会社 電子写真感光体、電子写真感光体を有するプロセスカートリッジ及び電子写真装置、並びに、電子写真感光体の製造方法
JP3913148B2 (ja) 2002-08-30 2007-05-09 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4174391B2 (ja) 2002-08-30 2008-10-29 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2004125819A (ja) * 2002-09-30 2004-04-22 Konica Minolta Holdings Inc 画像形成方法及び画像形成装置
KR100462626B1 (ko) * 2002-11-18 2004-12-23 삼성전자주식회사 스틸벤퀴논 구조를 가지는 고분자 및 이를 포함하는 전자사진감광체
US7245851B2 (en) 2003-11-26 2007-07-17 Canon Kabushiki Kaisha Electrophotographic apparatus
US7276318B2 (en) 2003-11-26 2007-10-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and electrophotographic apparatus and process cartridge which make use of the same
CN100507726C (zh) 2004-09-10 2009-07-01 佳能株式会社 电子照相感光构件、处理盒和电子照相设备
WO2006109843A1 (ja) 2005-04-08 2006-10-19 Canon Kabushiki Kaisha 電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置
KR101017442B1 (ko) 2005-12-07 2011-02-25 캐논 가부시끼가이샤 폴리비닐아세탈 수지, 전자 사진 감광체, 공정 카트리지 및전자 사진 장치
JP4101279B2 (ja) 2006-01-31 2008-06-18 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
CN101379436B (zh) * 2006-01-31 2012-01-18 佳能株式会社 电子照相感光构件、处理盒及电子照相设备
TW200813666A (en) * 2006-05-18 2008-03-16 Mitsubishi Chem Corp Electrophotographic photosensitive body, image forming device and electrophotographic cartridge
KR101243483B1 (ko) 2007-12-04 2013-03-13 캐논 가부시끼가이샤 전자 사진 감광체, 전자 사진 감광체의 제조 방법, 프로세스 카트리지 및 전자 사진 장치
JP5451253B2 (ja) 2008-09-09 2014-03-26 キヤノン株式会社 電子写真感光体の製造装置および電子写真感光体の製造方法
WO2010050616A1 (ja) * 2008-10-31 2010-05-06 キヤノン株式会社 帯電ローラ、プロセスカートリッジ及び電子写真装置
JP4743921B1 (ja) 2009-09-04 2011-08-10 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4956654B2 (ja) 2009-09-04 2012-06-20 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置および電子写真感光体の製造方法
JP5875264B2 (ja) 2010-07-13 2016-03-02 キヤノン株式会社 帯電部材の製造方法
WO2012023237A1 (ja) 2010-08-20 2012-02-23 キヤノン株式会社 帯電部材
US8753789B2 (en) 2010-09-14 2014-06-17 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member
JP4948670B2 (ja) 2010-10-14 2012-06-06 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置および電子写真感光体の製造方法
JP4959022B2 (ja) 2010-10-29 2012-06-20 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP4959024B1 (ja) 2010-12-02 2012-06-20 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置、および電子写真感光体の製造方法
JP5755162B2 (ja) 2011-03-03 2015-07-29 キヤノン株式会社 電子写真感光体の製造方法
JP5079153B1 (ja) 2011-03-03 2012-11-21 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、電子写真感光体の製造方法
JP5054238B1 (ja) 2011-03-03 2012-10-24 キヤノン株式会社 電子写真感光体の製造方法
JP5089816B2 (ja) 2011-04-12 2012-12-05 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置、および電子写真感光体の製造方法
JP5089815B2 (ja) 2011-04-12 2012-12-05 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置、および電子写真感光体の製造方法
JP5868146B2 (ja) * 2011-11-30 2016-02-24 キヤノン株式会社 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジ及び電子写真装置
US9029054B2 (en) 2012-06-29 2015-05-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6049329B2 (ja) 2012-06-29 2016-12-21 キヤノン株式会社 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
JP6108842B2 (ja) 2012-06-29 2017-04-05 キヤノン株式会社 電子写真感光体の製造方法
CN103529663B (zh) 2012-06-29 2016-04-20 佳能株式会社 电子照相感光构件、处理盒以及电子照相设备
US9069267B2 (en) 2012-06-29 2015-06-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6061761B2 (ja) 2012-08-30 2017-01-18 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6218502B2 (ja) 2012-08-30 2017-10-25 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6074295B2 (ja) 2012-08-30 2017-02-01 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置、ならびに、電子写真感光体の製造方法
JP5936595B2 (ja) 2012-12-12 2016-06-22 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP6161297B2 (ja) 2013-01-18 2017-07-12 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
CN104956266B (zh) 2013-01-29 2017-08-25 佳能株式会社 充电构件、处理盒和电子照相设备
JP5777665B2 (ja) 2013-01-29 2015-09-09 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
US9098006B2 (en) 2013-04-03 2015-08-04 Canon Kabushiki Kaisha Roller member for electrophotography, process cartridge and electrophotographic apparatus
EP3048489B1 (en) 2013-09-20 2020-12-16 Canon Kabushiki Kaisha Charging member, method for manufacturing same, process cartridge, and electrophotographic device
JP2015143831A (ja) 2013-12-26 2015-08-06 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP6429636B2 (ja) 2014-02-24 2018-11-28 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
US9274442B2 (en) 2014-03-27 2016-03-01 Canon Kabushiki Kaisha Electrophotographic image forming apparatus having charge transport layer with matrix-domain structure and charging member having concavity and protrusion
US9256153B2 (en) 2014-04-18 2016-02-09 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic apparatus
US20150346617A1 (en) 2014-06-03 2015-12-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal
US20150346616A1 (en) 2014-06-03 2015-12-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and phthalocyanine crystal and manufacturing method of phthalocyanine crystal
US20150362847A1 (en) 2014-06-13 2015-12-17 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US9563139B2 (en) 2014-11-05 2017-02-07 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US9645516B2 (en) 2014-11-19 2017-05-09 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US9599917B2 (en) 2014-12-26 2017-03-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP6508948B2 (ja) 2015-01-26 2019-05-08 キヤノン株式会社 電子写真感光体、電子写真感光体の製造方法、プロセスカートリッジおよび電子写真装置
CN105867080B (zh) * 2015-02-09 2019-10-11 佳能株式会社 电子照相感光构件、处理盒和电子照相设备
US9599914B2 (en) 2015-04-03 2017-03-21 Canon Kabushiki Kaisha Electrophotographic member having bow-shaped resin particles defining concavity and protrusion at surface thereof
EP3281064B1 (en) 2015-04-03 2019-09-25 C/o Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic apparatus
JP6639256B2 (ja) 2016-02-10 2020-02-05 キヤノン株式会社 電子写真装置、およびプロセスカートリッジ

Also Published As

Publication number Publication date
CN109001962A (zh) 2018-12-14
US10303085B2 (en) 2019-05-28
US20180348665A1 (en) 2018-12-06
JP2018205566A (ja) 2018-12-27
EP3413133A1 (en) 2018-12-12
JP6850205B2 (ja) 2021-03-31
CN109001962B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
EP3413133B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP7009258B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP6971883B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP7046645B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
US10353340B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN103309180A (zh) 图像形成设备和处理盒
JP4403965B2 (ja) 電子写真感光体およびその製造方法、プロセスカートリッジ並びに電子写真装置
JP7114403B2 (ja) 電子写真感光体の製造方法
US20210364937A1 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
CN115963711A (zh) 电子照相感光构件、处理盒和电子照相设备
JP6995588B2 (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
US20220276577A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2021182083A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2021167928A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2021067915A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G03G 5/14 20060101AFI20210419BHEP

Ipc: G03G 5/10 20060101ALI20210419BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210611

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1452350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018027358

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1452350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018027358

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

26N No opposition filed

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201