EP3362732B1 - Abgedichteter und wärmeisolierender tank - Google Patents

Abgedichteter und wärmeisolierender tank Download PDF

Info

Publication number
EP3362732B1
EP3362732B1 EP16791660.0A EP16791660A EP3362732B1 EP 3362732 B1 EP3362732 B1 EP 3362732B1 EP 16791660 A EP16791660 A EP 16791660A EP 3362732 B1 EP3362732 B1 EP 3362732B1
Authority
EP
European Patent Office
Prior art keywords
corrugations
tank
parallel
insulating
cover panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16791660.0A
Other languages
English (en)
French (fr)
Other versions
EP3362732A1 (de
Inventor
Sébastien DELANOE
Anthony DE FARIA
Vincent Berger
François Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Priority to PL16791660T priority Critical patent/PL3362732T3/pl
Publication of EP3362732A1 publication Critical patent/EP3362732A1/de
Application granted granted Critical
Publication of EP3362732B1 publication Critical patent/EP3362732B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/238Filling of insulants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquid at low temperature, such as tanks for the transport of liquefied petroleum gas (also called LPG) having, for example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at about -162 ° C at atmospheric pressure.
  • LPG liquefied petroleum gas
  • LNG Liquefied Natural Gas
  • the patent application FR-A-2781557 discloses a sealed and thermally insulating tank with a double waterproof membrane integrated in a supporting structure, in particular a ship.
  • the two watertight membranes are separated from each other and from the supporting structure by two thermally insulating barriers.
  • the secondary membrane is made by the juxtaposition of adjacent panels whose sealing is provided by flexible strips gas-tight and liquid and may comprise at least one thin deformable continuous metal sheet.
  • the band which covers the junction zone between the two elements of the secondary membrane is free to deform elastically and / or to extend relative to the insulating blocks held on the walls of the bearing structure with a limited freedom of movement .
  • a wall structure for producing the flat wall of a sealed double-diaphragm tank undergoes significant constraints in service, related to the different loadings of the tank, thermal contraction, movements of cargo, deformation of the carrier structure to the swell. These constraints are in particular transmitted by the thermally insulating barrier on which the secondary waterproof membrane is anchored. Because the thermally insulating barrier consists of discrete insulating panels of large dimensions, the stresses and displacements that are transmitted to the secondary waterproof membrane are not uniformly distributed, so that the corrugations of the secondary waterproof membrane are solicited in different ways. depending on whether they are near the edges of the panels or near the center. In addition, the flexibility of certain undulations is limited by anchoring the edges of the metal plates on the panels. This results in stress concentrations that can accelerate the aging of the sealed membrane. These problems would also exist if the primary membrane was removed.
  • bridging elements disposed between the secondary insulating panels serve to improve the distribution of displacements by limiting the spacing movements of the edges of the panels. These bridging elements may respond to some extent to panel edge spreading movements but are limited, complex to install and have a relatively high installation cost.
  • One idea underlying the invention is to provide a membrane wall structure that solves at least some of these disadvantages.
  • the invention provides a sealed and thermally insulating tank integrated in a supporting structure, said tank having one or more tank walls carried by one or more load-bearing walls of the supporting structure, the or each tank wall comprising a thermally insulating barrier fixed to a respective supporting wall of the carrier structure and a waterproof membrane carried by said thermally insulating barrier, as defined by claim 1.
  • the thermally insulating barrier comprises a plurality of rectangular parallelepiped insulating blocks juxtaposed in a regular rectangular mesh, each insulating block having a heat insulating lining and a cover panel facing towards the inside of the tank, an upper face of the cover panel opposite to the insulation with a piece or metal anchor.
  • the waterproof membrane consists of a corrugated metal membrane having a first series of parallel corrugations and flat portions located between the parallel corrugations and resting on the upper face of the cover panels, the parallel corrugations being arranged parallel to a first direction of the parallelepiped insulating blocks and spaced a first wave pitch, the sealed membrane comprising for example a plurality of corrugated metal plates each welded to at least one piece or anchor strip of the thermally insulating barrier.
  • the pitch of the rectangular grid in a second direction perpendicular to the first direction is equal to twice the first wave pitch, so that the first series of corrugations comprises two undulations located at the right of each of the insulating blocks, and a portion plane of the waterproof membrane located between the two corrugations is arranged in line with an internal zone of the cover panel located at a distance from the edges of the cover panel parallel to the first direction, so that the two corrugations of the first series of corrugations are situated at the right a marginal area of the cover panel located between the inner area and the edges of the cover panel parallel to the first direction.
  • the pitch of the rectangular mesh in each direction is substantially equal to one dimension of the insulating blocks in this direction, increased by a possible gap width between insulating blocks.
  • This gap width may be substantially zero and remains in any case very small compared to the insulating block.
  • each insulating block is arranged at least in the internal zone of the cover panel, the sealed membrane being fixed to the thermally insulating barrier by fixing said flat portions of the waterproof membrane to said anchoring pieces of a plurality of insulating blocks, only in the inner area of the cover panels.
  • the waterproof membrane is thus attached to some or each of the insulating blocks by the anchors, but only in the inner area of the cover panels.
  • each undulation of the first series is in a similar situation as to its freedom of deformation, since a first flat portion bordering the undulation is located on the side of the inner zone of the insulating block and fixed to the anchoring piece, while the second flat portion bordering the corrugation on the other side is located astride the marginal zone of the insulating block, on the marginal zone of the neighboring insulating block and the interface between the two insulating blocks, without being attached to any of the two insulating blocks.
  • the planar portions of the sealed membrane are located alternately on the inner area of the cover panels and on the interfaces between insulating blocks and the adjacent marginal areas.
  • any corrugation of the first series has a side fixed to the insulating barrier and a non-fixed side to the insulating barrier, but in sliding contact on the insulating barrier.
  • This non-fixed side to the insulating barrier increases the freedom of deformation of the corrugations under the effect of thermal stresses and deformations of the carrier structure, in particular from the hull of a ship to the swell.
  • the distribution of stresses and strains in the corrugated metal membrane is more balanced in service and the service life of the corrugated metal membrane is thus improved.
  • such a tank may comprise one or more of the following characteristics.
  • the extent of the anchor may be larger or smaller, as long as the waterproof membrane is attached only to the inner area of the cover panel.
  • the anchor piece is interrupted away from the edges of the cover panel and confined to the inner area of the cover panel, and the two corrugations of the first series of corrugations are located on the side and another of the anchoring piece of each of the insulating blocks.
  • the marginal area of the cover panels is here between the anchor and the edges of the cover panel.
  • an offset equal to substantially half of the first wave pitch is present between the corrugations parallel to the first direction and the edges of the insulating blocks parallel to the first direction. Thanks to these characteristics, the corrugations parallel to the first direction are arranged equidistantly interfaces, which better balance the forces on these corrugations, especially when these efforts result from a relative displacement of the underlying insulating blocks.
  • the inner area of the cover panel designates an area that is remote from the edges of the cover panel, and which may be centered or off-center with respect to these edges.
  • the anchor is arranged at the center of the cover panel and the two corrugations of the first set of corrugations are equidistant from the center of the cover panel.
  • the corrugated metallic membrane can be made in one or more pieces, depending on the dimensions of the wall and the logistical constraints that result.
  • the corrugated metal membrane comprises a plurality of corrugated metal plates of rectangular shape, each corrugated metal plate having two edges parallel to the first direction and two edges parallel to the second direction, the dimension of a corrugated metal plate in the second direction being equal to an even integer multiple of the first wave pitch, and the two edges of the corrugated metal plate parallel to the first direction are substantially located in the planar portions of the corrugated metal plate between the corrugations parallel to the first direction and pass over the anchoring pieces of the insulating blocks in the inner area of the cover panels.
  • each rectangular corrugated metal plate has a lap welded edge region with the edge region of the adjacent corrugated metal plates, the edge region of a corrugated metal plate located above each being welded to the edge region of an adjacent corrugated metal plate underneath, and, along the edges of the corrugated metal plate parallel to the first direction, the edge region of the corrugated metal plate underneath is welded to the anchoring pieces of the insulating blocks in the inner area of the cover panels.
  • the dimension of a corrugated metal plate in the second direction is twice the first wave pitch.
  • the metal anchor can have different geometries.
  • the anchor comprises a metal strip extending parallel to the first direction or the second direction. Thanks to these characteristics, the geometry of the anchor piece is well adapted to provide a relatively large bonding surface with the edge of a corrugated metal plate.
  • the metal part or strip is interrupted at a distance from the edges of the cover panel and confined to the internal zone of the cover panel, two thermal protection strips being arranged on the cover panel in the extension of the part. or metal strip in the marginal area of the cover panel between the metal part or strip and the edges of the cover panel. Thanks to these features, the edge-to-edge weld of the corrugated metal plates can be entirely made to the right of the metal parts or strips and thermal protection strips, without subjecting the cover panel to excessive heating, which makes it possible to realize the panel of wooden cover or other material with low heat resistance.
  • the metal part or strip may extend over the entire length of the cover panel, including in the marginal areas of the cover panel, as long as the waterproof membrane is attached to the metal part or strip only in the internal area of the lid panel.
  • the ends of the metal part or strip located in the marginal areas are only another form of thermal protection of the cover panel.
  • the anchor comprises a metal strip parallel to the first direction and a metal strip parallel to the second direction which form a cross in the inner area of the cover panel.
  • first series of parallel corrugations can also be implemented, in the same way, with reference to a second series of parallel corrugations extending perpendicular to the first series of corrugations, to balance the forces and deformations in both directions of the plane.
  • each parallelepipedic insulating block comprises a box in which is housed the heat insulating lining, said box having a bottom panel and side panels developing between said bottom panel and the cover panel.
  • each parallelepipedic insulating block comprises a bottom panel and a cover panel with an interposed foam block forming said heat insulating lining.
  • the undulations of the waterproof membrane can be formed in different ways.
  • the corrugations project towards the interior of the vessel with respect to the flat portions, or the corrugations project towards the outside of the vessel with respect to the flat portions and are housed in grooves in the cover panels of the insulating blocks.
  • the thermally insulating barrier of the first or second vessel wall comprises parallelepipedic insulating blocks running opposite a longitudinal face of edge blocks opposite the edge of the vessel, one face upper cover panel of each of the common parallelepiped insulating blocks having a recess vis-à-vis a recess of the upper face of the lid panel of the corresponding edge block, a connecting plate housed jointly in said recesses flush with the face level upper of said cover panels to form a continuous planar support surface for the sealed membrane of the first or second vessel wall.
  • the spaces between each edge block of the first and / or second row and the adjacent parallelepiped insulating blocks and spaces between said edge blocks and the first support wall comprise an insulating heat-seal.
  • the corrugated metal plates have a rectangular shape, each parallelepipedal insulating block comprising two secant anchoring strips, each anchoring strip developing parallel to a respective side of the corrugated metal plates fixed on said anchoring strips.
  • the thermally insulating barrier is a secondary thermally insulating barrier and the waterproof membrane is a secondary waterproof membrane, the vessel wall further comprising a primary heat-insulating barrier disposed on the secondary waterproof membrane and a primary waterproof membrane carried by said primary heat-insulating barrier.
  • the metal anchoring parts of the insulating blocks of the secondary thermally insulating barrier carry primary retaining members, for example studs or threaded bushings, and the primary thermally insulating barrier comprises a plurality of rectangular parallelepiped insulating blocks juxtaposed anchored to the primary retainers.
  • the secondary waterproof membrane has cutouts to project the primary retaining members above the secondary waterproof membrane, and edges of the cutouts of the secondary waterproof membrane are sealed welded to the parts of anchoring the insulating blocks of the secondary thermally insulating barrier around the primary retaining members.
  • these cuts are made on the edges of the rectangular plates, but they can also be made in a flat portion located within a rectangular plate.
  • Such a tank can be part of an onshore storage facility, for example to store liquefied gas or be installed in a floating structure, coastal or deep water, including a LNG tanker, a LPG transport vessel, a floating unit storage and regasification (FSRU), a floating production and remote storage unit (FPSO) and others.
  • a LNG tanker for example to store liquefied gas
  • LPG transport vessel for example to transport LNG
  • FSRU floating unit storage and regasification
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a shell and a said tank disposed in the hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • Such a carrier structure has a polyhedral geometry, for example of prismatic shape.
  • longitudinal walls 1 of the supporting structure extend parallel to the longitudinal direction of the ship and form a polygonal section in a plane perpendicular to the longitudinal direction of the ship.
  • the longitudinal walls 1 meet in longitudinal edges 2, which form for example angles of the order of 135 ° in an octagonal geometry.
  • the general structure of such polyhedral vats is for example described with regard to the figure 1 of the document FR-A-3008765 .
  • the longitudinal walls 1 are interrupted in the longitudinal direction of the ship by transverse bearing walls 3 which are perpendicular to the longitudinal direction of the ship.
  • the longitudinal walls 1 and the transverse walls 3 meet at the edges 4 front and rear.
  • each wall 1, 3 of the supporting structure carries a respective tank wall.
  • each of the tank walls is composed of a single thermally insulating barrier carrying a single membrane that is tight in contact with a fluid stored in the tank, such as liquefied petroleum gas comprising butane and propane. propene or the like and having an equilibrium temperature between -50 ° C and 0 ° C.
  • the adjective “upper” applied to an element of the vessel designates the portion of this element oriented towards the interior of the vessel and the adjective “inferior” designates the portion of this element oriented towards the outside of the vessel. regardless of the orientation of the vessel wall with respect to the earth's gravity field.
  • the term “above” means a position closer to the inside of the tank and the term “below” a position closer to the supporting structure, regardless of the orientation of the wall of the tank. tank relative to the earth's gravity field.
  • the figure 1 illustrates a tank angle at the front or rear edge 4 between one of the longitudinal walls 1 and one of the transverse walls 3 of the bearing structure respectively carrying a longitudinal vessel wall 5 and a transverse vessel wall 6
  • the longitudinal vessel wall 5 and the vessel wall transverse 6 meet at an angle 7 of the vessel forming an angle of the order of 90 °. Since the longitudinal vessel wall 5 and the transverse vessel wall 6 have a similar structure, only the longitudinal vessel wall 5 is described hereinafter. The description of the longitudinal vessel wall 5 is correspondingly applied to the transverse vessel wall 6.
  • the thermally insulating barrier of the longitudinal vessel wall 5 is constituted by a plurality of heat-insulating elements anchored on the entire longitudinal carrying wall 1. These heat-insulating elements together form a flat surface on which is anchored the sealed membrane of the tank wall. These heat-insulating elements more particularly comprise a plurality of heat-insulating elements 8 juxtaposed in a regular rectangular mesh.
  • the thermally insulating barrier of the longitudinal vessel wall 5 also comprises a row of boundary heat-insulating elements 9 described below with respect to the figure 2 , along the edge 4.
  • the heat-insulating elements 8, 9 are anchored to the supporting structure by any suitable means, for example by means of anchoring members 10 as described with reference to FIG. figure 3 .
  • the heat-insulating elements 8, 9 rest on the longitudinal bearing wall by means of mastic cords (not shown) forming rectilinear or wavy parallel lines.
  • An intermediate space 11 separates the heat insulating edge elements vis-à-vis the row of heat-insulating elements of the edge 9.
  • the interspace 11 of two tank walls 5 and 6 forming an edge of the tank are aligned.
  • the sealed membrane of the longitudinal vessel wall 5 consists of a plurality of metal plates 12 juxtaposed to each other with overlap. These metal plates 12 are preferably of rectangular shape. The metal plates 12 are welded together to seal the sealed membrane. Preferably, the metal plates 12 are made of stainless steel, for example with a thickness of 1.2 mm.
  • the metal plates 12 comprise a plurality of wavy-shaped waves 13. the inside of the tank. More particularly, the sealed membrane of the longitudinal vessel wall 5 comprises a first series of corrugations 13 and a second series of corrugations 13 forming a regular rectangular pattern. As illustrated on the figure 1 , the first series of corrugations 13 is parallel to the edge 4 and the second series of corrugations 13 is perpendicular to the edge 4. Preferably, the corrugations 13 develop parallel to the edges of the rectangular metal plates. The distance between two successive corrugations 13 of a series of corrugations is for example of the order of 600 mm.
  • angle metal plates 15 are welded disposed on the perpendicular edge heat insulating elements 9. These angle metal plates 15 comprise two flat portions 16 located in the planes of the sealed membrane of each tank wall 5 and 6 respectively.
  • the figure 2 represents an exploded perspective view of a heat insulating element of border 9 of the figure 1 .
  • the thermal insulating element 9 comprises a bottom panel 17, side panels 18 and a cover panel 19. All these panels 17, 18, 19 are of rectangular shape and delimit an internal space of the thermal insulating element. 9.
  • the bottom panel 17 and the cover panel 19 develop parallel to each other and, as illustrated in FIG. figure 1 , parallel to the supporting wall.
  • the side panels 18 develop perpendicularly to the bottom panel 17.
  • the side panels 18 connect the bottom panel 17 and the cover panel 19 over the entire periphery of the edge insulating member 9.
  • Carrying struts 20 are arranged between the bottom panel 17 and the cover panel 19 in the inner space of the boundary insulating member 9. These carrier struts 20 develop parallel to longitudinal side panels 21.
  • Transverse side panels 22 extending perpendicularly longitudinal side panels 21 have orifices 23.
  • These through holes 23 are intended to allow the circulation of inert gas in the thermally insulating barrier.
  • the panels and the supporting spacers are attached by any suitable means, for example screws, staples or points, and together form a box in which is disposed a heat-insulating lining 24.
  • This heat-insulating lining 24 is preferably non-structural, for example pearlite. or glass wool.
  • the bottom panel 17 has longitudinal flanges 25 protruding from the longitudinal side panels 21.
  • the bottom panel 17 also has a transverse flange 26 protruding from one of the transverse side panels 22.
  • Cleats 27 are carried flanges 25, 26 of the bottom panel 17.
  • each end of the longitudinal flanges 25 carries a respective cleat 27 and a central portion of the transverse flange 26 carries a cleat 27.
  • the cleat 27 carried by the transverse flange 26 develops over the entire width of the insulating edge element 9.
  • the cover panel 19 has on an upper face opposite to the heat-insulating lining 24 a transverse recess 28.
  • This transverse recess 28 is situated in line with the transverse side panel 22 from which the transverse flange 26 of the bottom panel 17 projects.
  • transverse recess 28 has a notch 65 located at the right of the batten 27 carried by the transverse flange 26.
  • Many methods can be used to make the cover panel 19. In the embodiment illustrated in FIG. figure 2 two plywood plates having different dimensions are superimposed to form the cover panel 19 having the transverse recess 28.
  • the cover panel is formed by a plywood plate in which a counterbore is made to form the transverse step.
  • the upper face of the cover panel 19 further includes a transverse counterbore 29 and a longitudinal counterbore 30.
  • the transverse counterbore 29 develops in a direction parallel to the width of the cover panel 19 over the entire width of the cover panel 19.
  • the transverse counterbore 29 is located near the transverse side of the cover panel 17 opposite the transverse flange 26.
  • the longitudinal counterbore 30 develops in a direction parallel to the length of the cover panel 19 over the entire length of the cover panel 19.
  • this longitudinal counterbore 30 is centered on the width of the cover panel 19.In the embodiment illustrated in FIG. figure 2 , the longitudinal counterbore 30 is located in the extension of the notch 65.
  • a longitudinal anchoring strip 31 is housed in the longitudinal counterbore 30.
  • This longitudinal anchoring strip 31 has a length less than the length of the cover panel 19.
  • a thermal protection 54 (illustrated on the figure 3 ) is housed in the portion of the longitudinal counterbore 30 not comprising the longitudinal anchoring strip 31.
  • transverse anchoring strip 32 is housed in the transverse counterbore 29 of the cover panel 19. However, this transverse anchoring strip 32 develops over the entire width of the cover panel 19. Each end of the cover strip 32 transverse anchor 32 has a tab 33. This tab 33 projects from a respective longitudinal side of the cover panel 19.
  • each current insulating element 8 comprises on an upper face two perpendicular anchor strips 14 housed in respective countersinks and screwed or riveted to the cover panels.
  • the anchor strips 14 are preferably arranged parallel to the corrugations 13.
  • the anchor strips 14 develop on a central portion of the counterbores in which they are housed.
  • Thermal protections 54 are housed in the ends of the countersinks.
  • the metal plates 12, 15 of the sealed membrane are welded to the anchor strips 14, 31, 32 on which they rest.
  • the thermal protections 54 prevent the degradation of the heat-insulating elements 8, 9 during the welding of the metal plates 12, 15 to each other along their edges.
  • the thermal protections 54 are made of a heat-resistant material, for example a composite material based on glass fibers.
  • the tab 33 has a spacing portion 34 extending from the cover panel 19 in the extension of the transverse counterbore 29.
  • This tab further comprises a coupling portion 35 developing from an end of the spacer portion 34 opposite the cover panel 19.
  • the coupling portion 35 develops towards the bottom panel 17.
  • the coupling portion 35 has a slot 52 facing the transverse side of the cover panel 19 having the recess 65.
  • the anchor strips 31, 32 are fixed on the cover panel 19 by any suitable means, for example by riveting.
  • the attachment of the transverse anchoring strip 32 is made so as to have a play in a longitudinal direction of the cover panel 19, for example of the order of one to a few tenths of a millimeter.
  • the orifices (not shown) of the cover panel 19 traversed by the fastening rivets of the transverse anchoring strip 32 have a longitudinal dimension greater than the thickness of the rivet.
  • the transverse anchoring strip 32 is housed in the transverse counterbore 29 with a clearance. Such clearances allow the transmission of tensile forces generated in the longitudinal direction of the cover panel 19 by the sealed membrane welded onto the strips. anchoring 31, 32, without these efforts being substantially transmitted to the cover panel 19.
  • the figure 3 is a detail view illustrating a longitudinal edge heat-insulating element 36 and a transverse edge heat-insulating member 37 belonging to the longitudinal vessel wall 5 and the transverse vessel wall 6.
  • the longitudinal edge heat-insulating element 36 and the heat insulating element transverse edge 37 together form the angle structure 7.
  • the transverse edge of the longitudinal edge heat-insulating element 36 does not have the recess 65 and the transverse edge of the transverse edge heat-insulating element 37 does not have the recess 65 are contiguous.
  • the longitudinal edge heat-insulating element 36 having a structure similar to the structure of the transverse edge heat-insulating element 37, only the longitudinal edge element 36 illustrated in FIG. figure 3 is described below. The description of this longitudinal edge heat insulating element 36 applies by analogy to the transverse edge heat-insulating element 37.
  • the anchoring members 10 illustrated on the figure 3 each comprise a stud 38 welded to the longitudinal bearing wall 1.
  • Each stud 38 is developed perpendicularly to the longitudinal bearing wall 1.
  • One end of the studs opposite to the longitudinal bearing wall 1 comprises a thread.
  • a square support plate 39 has a central orifice (not illustrated) through which the stud 38 passes.
  • a nut 40 is mounted on the threaded end of the stud 38.
  • the support plate 39 of each stud 38 is thus maintained. supported by said nut 40 against an upper face of a respective cleat 27 carried by a flange 25, 26 Corresponding bottom panel 17.
  • the support plate rests directly on the edge of the bottom panel of the heat insulating element.
  • each current heat-insulating element 8 is also arranged at the corners of each current heat-insulating element 8.
  • the side walls of each current heat-insulating element 8 comprise a flange.
  • a batten 27 is disposed on each end of said flange.
  • Each batten 27 of the heat insulating elements 8 cooperates with a respective anchoring member 10, the same bearing member 10 cooperating with the cleats 27 of a plurality of adjacent heat insulating elements 8.
  • the angles of the adjacent heat insulating elements 8 comprise a clearance jointly forming a chimney in line with a corresponding fixing member 10.
  • This chimney makes it possible to screw the nut 40 onto the bolt of the fastening member 10.
  • This chimney is filled with a heat-insulating lining 41 and covered with a shutter plate 42 so as to form a flat surface with the panels of lids of the heat-insulating elements.
  • each current insulating element 8 has a width, taken parallel to the edge 4, twice the width of the heat-insulating edge elements 9.
  • the current heat-insulating elements 8 and the heat-insulating elements of the edges 9 are arranged so that the corners two adjacent heat insulating elements 8 are located at the mid-width of a thermal insulating element 9, at the right of the transverse flange 26 of a respective insulating element 9 edge.
  • the anchoring member 10 associated with said corners of the current heat-insulating elements 8 thus co-operates with both the cleats 27 of said current heat-insulating elements 8 and with the cleat 27 carried by the transverse flange 26.
  • the notch 65 of the heat-insulating element edge 9 allows the passage of the tooling required to screw the nut of said anchor member 10.
  • the current heat insulating elements and the heat insulating elements of borders have the same width but are offset with respect to each other along a direction parallel to the edge.
  • the corners of two adjacent heat insulating elements are located mid-width of a heat insulating edge element and the right of the transverse edge of said insulating edge element.
  • the current heat insulating elements 8 situated opposite the edge insulating elements 9 comprise a recess similar to the recess 28 of said insulating edge element 9 opposite said step 28 of the edge insulating element.
  • Cover strips 53 are housed jointly in the recesses of the current heat-insulating elements 8 and the heat-insulating edge elements 9 facing each other in order to cover a space between said heat-insulating elements 8 and 9. This space is filled with gasket insulation such as glass wool.
  • Such cover strips are flush with the top face of the cover panels of the heat insulating elements 8 and 9 to provide a continuous flat surface to the waterproof membrane.
  • cover strips 53 make it possible to catch up with constructional games that may appear during construction of the tank.
  • the spaces 55 located between the heat insulating elements 9 and the supporting walls 1 and 3 vis-à-vis are advantageously filled with heat insulating material such as glass wool.
  • the figure 4 is a schematic top view of a vessel wall at an edge according to an alternative embodiment.
  • the same reference numbers are used for elements with the same structure and / or function.
  • the heat-insulating elements of edge 9 have a width close to the width of the current heat-insulating elements 8.
  • the width of the current heat-insulating elements 8 is, for example, about 1200 mm and the width of the heat-insulating elements of edge 9 of the order of 1160 mm.
  • the corrugations (not shown) of the metal plates (not shown) are not placed in line with the spacer spaces 111 but on the cover panels 19 of the heat-insulating elements of the edge 9.
  • the metal plates (not illustrated ) are welded on the anchoring strips 32 in a discontinuous manner and only at a central portion 56 of the anchoring strip 32.
  • the heat-insulating elements of edge 9 are centered on the current heat-insulating elements 8.
  • the anchor strips 14 and 31 are arranged coaxially in a direction perpendicular to the edge.
  • the figure 5 represents a tank ridge between two walls of longitudinal tanks 5 forming an angle of the order of 135 °.
  • Such a tank ridge has a structure similar to the tubular angle structure 7 forming an angle of 90 ° as described with reference to FIGS. Figures 1 to 3 .
  • the same reference numbers are used for elements with the same structure and / or function.
  • the plane wall is made in a periodic pattern in both directions of the plane, which pattern can be repeated over more or less large areas depending on the dimensions of the surfaces to be covered. Therefore, the number of heat insulating elements 8 shown in the figures is not limiting can be modified in one direction or the other depending on the needs arising from the geometry of the carrier structure. In addition, on a large flat wall, there may exist locally or singular areas where the mesh must be modified to bypass an obstacle or accommodate a particular equipment.
  • the thermally insulating barrier consists essentially of the current heat-insulating elements 8 juxtaposed according to the regular rectangular grid.
  • a sample of this mesh comprising two rows of four current heat insulating elements 8 each is shown on the figure 6 for illustrative purposes.
  • the edges of the current heat-insulating elements 8 as well as the edges of the metal plates 12 are parallel to the two directions defined by the corrugations 13. Because the wave pitch of the sealed membrane is the same in the two directions defined by the corrugations 13 the current heat-insulating elements 8 have a square contour shape. Indeed, the size of the current heat insulating elements 8 is equal to twice the wave pitch in each of the two directions. The outline would be rectangular if the wave steps were different in both directions.
  • each current insulating element 8 At the center of the cover panel of each current insulating element 8 are the two anchoring strips 14 arranged in the form of a cross and whose branches are also parallel to the two directions defined by the corrugations 13, so as to correspond to the edges of the metal plates. 12.
  • each corrugation 13 is disposed between a flat portion 101 which is not fixed to the thermally insulating barrier and which spans an interface 103 between the current heat insulating elements 8 and at most a portion plane 102 which is attached to the thermally insulating barrier by welding on the anchor strips 14.
  • each of the corrugations 13 is disposed between, on one side, planar portions which are attached to the thermally insulating barrier at a ratio of one wave at two (ie the portions 102) and, on the other side, flat portions 101 which are free to slide on the current heat insulating elements 8.
  • This property can be maintained on a portion of or the entire length of the tank wall and / or a portion of or the entire width of the tank wall. repeating the pattern. This results in a balancing of the deformations transmitted to the various undulations 13.
  • the figure 8 shows that the general structure of the current insulating element 8 is, apart from the dimensional differences and the anchoring strips 14, very similar to that of the thermal insulating element 9.
  • the current insulating element 8 thus comprises a panel of bottom 117, two longitudinal side panels 121, two transverse side panels 122 and a cover panel 119. All these panels are rectangular in shape and delimit an internal space of the heat insulating element.
  • the bottom panel 117 and the cover panel 119 develop parallel to one another and parallel to the supporting wall.
  • the side panels 121, 122 extend perpendicular to the bottom panel 117 and connect the bottom panel 17 and the cover panel 119 over the entire periphery of the heat insulating member.
  • Carrier spacers not shown are disposed between the bottom panel 117 and the cover panel 119 in the inner space of the heat insulating element, parallel to the longitudinal side panels 121.
  • the transverse side panels 122 developing perpendicularly to the panels of FIG. longitudinal side 121 have orifices through 123. These through holes 23 are intended to allow the circulation of inert gas in the thermally insulating barrier.
  • the panels and load-bearing spacers are attached by any suitable means, for example screws, staples or points, and together form a box in which is disposed a not shown heat seal.
  • This heat-insulating lining is preferably non-structural, for example pearlite or glass wool or low-density polymer foam, for example of the order of 10 to 30 kg / m -3 .
  • the bottom panel 117 has longitudinal flanges 125 protruding from the longitudinal side panels 121 and transverse flanges 126 projecting from the transverse side panels 122. Cleats 127 are carried by the longitudinal flanges 125 at the corners of the wall. current heat-insulating element 8 to cooperate with the anchoring members 10.
  • the figure 8 also shows the cords of mastic 60 on which a heat insulating element 8.
  • These mastic cords 60 are preferably non-adhesive in order to allow a sliding play of the current heat-insulating element 8 with respect to the load-bearing wall.
  • the anchoring of the current heat-insulating elements 8 to the load-bearing wall is carried out each time by means of four anchoring members 10 arranged at the four corners, in which an anchoring member 10 cooperates each time with four common heat-insulating elements. 8 adjacent.
  • the dimensions of the current insulating element 8 are: thickness 220mm, width 1200mm, length 1200mm, for a wave pitch of 600mm in both directions.
  • the width of the gap between the current heat insulating elements 8 is here negligible.
  • the wave pitch is here defined as the distance between the vertex edges of two parallel and adjacent corrugations 13.
  • the thickness can be varied according to the requirement in terms of thermal performance of the tank.
  • the wave pitch can be modified according to the requirement in terms of flexibility of the sealed membrane, which involves modifying the size of the current heat insulating element 8 correspondingly.
  • the single metal plate 12 shown has dimensions of two waves per six wave steps.
  • the metal plates 12 forming the sealed membrane may, however, be dimensioned in different ways, provided that they correspond to an even integer number of the wave pitch in each of the two directions of the plane.
  • the corners of the plates and the edges of the metal plates 12 are all located at the right of the strips anchoring 14 common heat-insulating elements 8 which support the metal plate 12.
  • the dimension of the metal plate 12 is equal to two wave steps in at least one direction of the plane, so that it suffices to realize welds on the anchor strips 14 located along the contour of the metal plate 12 to obtain the desired anchoring, ensuring that one and only one edge of each corrugation is attached to the insulating barrier.
  • the waterproof membrane with metal plates 12 larger than two wave steps in the two directions of the plane, provided that additional welds of the flat portions located at a distance from the edges of the metal plate are made on the anchoring strips 14 underlying,
  • the figure 9 shows an alternative embodiment of the anchoring member 10.
  • the threaded stud 38 is not directly welded to the carrier wall. It is instead screwed into a split nut 61 housed in a hollow base 62.
  • the hollow base 62 containing the split nut 61 has been previously welded to the carrier wall.
  • the figure 9 also shows a stack of Belleville washers inserted between the support plate 39 and the nut 40.
  • a shim 63 is placed on the carrier wall around the hollow base 62 to receive the corners of the four adjacent heat insulating elements 8 which will rest thereon. Thickness shims 63 and caulk beads 60 serve to make up for the flatness defects of the load-bearing wall and thus to provide a planar upper surface for resting the current heat-insulating elements 8.
  • a positioning shim 64 projecting above the shim 63 is mounted in the central opening of the shim 63, around the hollow base 62.
  • the positioning shims 64 serve as the stopper for positioning the corners of the current heat insulating elements 8.
  • the longitudinal flange 125 is exactly the length of the longitudinal side panel 121 and the transverse flange 126 is exactly the length of the transverse side panel 122, so that the surfaces of vertical end of the longitudinal flange 125 and the transverse flange 126 at the corner form two orthogonal surfaces that can come into contact with two corresponding faces of the positioning wedge 64, the periphery of which is octagonal.
  • each corrugated metal plate 12 has a thickness offset in a raised edge area 66 along two out of four edges, the other two edges being flat.
  • the raised edging area 66 serves to cover the flat edging area of an adjacent metal plate 12 and will eventually be welded thereto continuously to provide a tight connection between the two metal plates 12.
  • the raised edging area 66 is obtained by a folding operation also called joglinage.
  • the technique described above for producing a tank with a single sealed membrane can also be used in different types of tanks, for example to form a double membrane tank for liquefied natural gas (LNG) in a land installation or in a floating structure like a LNG carrier or other.
  • LNG liquefied natural gas
  • the waterproof membrane illustrated in the previous figures is a secondary waterproof membrane, and a primary insulating barrier and a primary waterproof membrane, not shown, must be added to this secondary waterproof membrane. In this way, this technique can also be applied to tanks having a plurality of thermally insulating barrier and superimposed waterproof membranes.
  • a second embodiment of the flat wall of the tank, more particularly adapted to a double-diaphragm tank, will now be described with reference to the Figures 10 to 12 .
  • Each wall of the tank comprises, from the outside towards the inside of the tank, a secondary thermal insulation barrier 201 comprising insulating blocks 202 juxtaposed and fixed to the supporting structure 203, a secondary waterproof membrane 204 carried by the blocks insulators 202 of the secondary thermal insulation barrier 201, a primary thermal insulation barrier 205 comprising insulating blocks 206 juxtaposed and anchored to the insulating blocks 202 of the secondary thermal insulation barrier 201 by primary retaining members and a membrane primary watertight 207, carried by the insulation blocks 206 of the barrier primary thermal insulation 205 and intended to be in contact with the cryogenic fluid contained in the tank.
  • the supporting structure 203 may in particular be a self-supporting metal sheet or, more generally, any type of rigid partition having suitable mechanical properties.
  • the support structure 203 may in particular be formed by the hull or the double hull of a ship.
  • the supporting structure 203 has a plurality of walls defining the general shape of the vessel, usually a polyhedral shape.
  • the secondary thermal insulation barrier 201 comprises a plurality of insulating blocks 202 bonded to the carrier structure 203 by means of adhesive resin cords, not shown.
  • the resin beads must be sufficiently adhesive to insure alone the anchoring of the insulating blocks 202.
  • the insulating blocks 202 may be anchored by means of the aforementioned anchoring members 10 or similar mechanical devices.
  • the insulating blocks 2 have substantially a rectangular parallelepiped shape.
  • the insulating blocks 202 each comprise an insulating polymeric foam layer 209 sandwiched between an inner rigid plate 210, which constitutes a cover panel and an outer rigid plate 211, which constitutes a bottom panel.
  • the rigid plates, internal 210 and external 211 are, for example, plywood plates bonded to said layer of insulating polymer foam 209.
  • the insulating polymer foam may in particular be a polyurethane-based foam.
  • the polymeric foam is advantageously reinforced by glass fibers contributing to reducing its thermal contraction.
  • the insulating blocks 202 are juxtaposed in parallel rows and separated from each other by interstices 212 guaranteeing a functional assembly game.
  • the interstices 212 are filled with a heat-insulating lining, not shown, such as glass wool, rock wool or flexible synthetic foam with open cells for example.
  • the heat-insulating liner is advantageously made of a porous material so as to provide gas flow spaces in the interstices 212 between the insulating blocks 202. Such gas flow spaces are advantageously used in order to allow a circulation of inert gas.
  • the interstices 212 have, for example, a width of the order of 30 mm.
  • the inner plate 210 has two series of two grooves 214 and 215, perpendicular to each other, so as to form a network of grooves.
  • Each of the series of grooves 214 and 215 is parallel to two opposite sides of the insulating blocks 202.
  • the grooves 214 and 215 are intended for the reception of corrugations, projecting towards the outside of the tank, formed on the metal sheets of the secondary sealing barrier 204.
  • the inner plate 210 has two grooves 214 extending in one direction of the insulating block 202 and two grooves 215 extending in the other direction of the insulating block 202, the dimensions of which are, as in the first embodiment, equal to two wave steps by two wave steps.
  • the grooves 214 and 215 completely traverse the thickness of the inner plate 210 and thus open at the level of the insulating polymer foam layer 209.
  • the insulating blocks 202 comprise in the zones of intersection between the grooves 214 and 215, clearance openings 216 formed in the layer of insulating polymer foam 209.
  • the clearance orifices 216 allow the housing of the node zones formed at the intersections between the corrugations of the metal sheets of the secondary sealing barrier 204. These node zones present a top protruding outwardly of the vessel.
  • the inner plate 210 is equipped with metal plates 217 and 218 for anchoring the edge of the corrugated metal sheets of the secondary waterproof membrane 204 on the insulating blocks 202.
  • the metal plates 217 and 218 are located in the central square zone of the internal plate 210 defined between the grooves 214 and 215 formed in the inner plate 210.
  • the central metal plate 217 has a square shape and is located in the center of the inner plate 210, while the two or four elongated plates 218 are disposed around the central metal platen 217 in the form of one or two fully traversing strips the central square zone of the inner plate 210.
  • thermal protection strips 54 are arranged in the extension of the elongated plates 218 The structure and function of the thermal protection strips 54 have been described above.
  • the figure 10 thus shows two types of insulating blocks 202.
  • all the insulating blocks 202 could carry the four elongate plates 218, as a standard manufacturing measure.
  • the metal plates 217 and 218 are fixed on the inner plate 210 of the insulating block 202, by screws, rivets, staples, by gluing or combination of several of these means, for example.
  • the metal plates 217 and 218 are placed in recesses formed in the inner plate 210 so that the inner surface of the metal plates 217 and 218 is flush with the inner surface of the inner plate 210.
  • the inner plate 210 is also equipped with threaded metal studs 219 projecting towards the inside of the tank, and intended to ensure the fixing of the primary thermal insulation barrier 205 on the insulating blocks 202 of the secondary thermal insulation barrier 201.
  • the studs 219 pass through orifices formed in the metal plates 17.
  • the secondary sealing barrier comprises a plurality of corrugated metal plates 224 each having a substantially rectangular shape.
  • the corrugated metal plates 224 are arranged offset from the insulating panels 202 of the secondary thermal insulation barrier 201 such that each of said corrugated metal plates 224 extends together over at least four adjacent insulating panels 202.
  • Each corrugated metal plate 224 has a first series of parallel corrugations 13 extending in a first direction and a second series of parallel corrugations 13 extending in a second direction.
  • the directions of the series of corrugations 13 are perpendicular.
  • Each of the series of corrugations 13 is parallel to two opposite edges of the corrugated metal plate 224.
  • the corrugations 13 here protrude towards the outside of the vessel, that is to say in the direction of the supporting structure 203.
  • the Corrugated metal plate 224 has between the corrugations 13 a plurality of planar portions.
  • the metal sheet has a node area 227.
  • the node area 227 has a central portion having an apex projecting outwardly of the vessel.
  • the corrugations 13 of the first series and the second series have identical heights. As in the first embodiment, it is however possible to provide that the corrugations 13 of the first series have a height greater than the corrugations 13 of the second series or vice versa.
  • the undulations 13 of the corrugated metal plates 224 are housed in the grooves 214 and 215 formed in the inner plate 210 of the insulating panels 202.
  • the adjacent corrugated metal plates 224 are welded together, with a covering at the level of the raised edge zone. 66 previously described.
  • the anchoring of the corrugated metal plates 224 on the metal plates 217 and 218 is achieved by pointing welds.
  • the corrugated metal plates 224 comprise, along their longitudinal edges and at their four corners, cutouts 228 allowing the passage of the studs 219 intended to ensure the fixing of the primary thermal insulation barrier 205 on the secondary thermal insulation barrier. 201.
  • the corrugated metal plates 224 are, for example, made of Invar®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2 ⁇ 10 -6 and 2 ⁇ 10 -6 K -1. , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 -6 K -1 .
  • the corrugated metal plates 224 can also be made of stainless steel or aluminum.
  • the lengths and widths of the corrugated metal plates 224 are sized like the metal plates 12 of the first embodiment for the same reasons.
  • the single metal plate 224 shown has dimensions of two waves per six wave steps.
  • the metal plate 224 thus has an alternation of flat portions 101 not fixed and flat portions 102 fixed, as described above.
  • the sealed membrane 204 is made with metal plates 224 larger than two wave steps in the two directions of the plane, it is necessary to make additional openings in the flat portions situated at a distance from the edges of the metal plate 224 to allow the passage of the studs 219, and to achieve sealed welds of the edges of these openings on the underlying metal plates 217.
  • the dimensions of the insulating block 202 are: width 990mm, length 990mm, for a wave pitch of 510mm in both directions and a gap of 30mm between the insulating blocks.
  • the wave pitch can be modified according to the requirement in terms of flexibility of the sealed membrane, which involves modifying the size of the insulating block 202 correspondingly.
  • the primary thermal insulation barrier 205 here comprises a plurality of insulating panels 206 of substantially rectangular parallelepiped shape.
  • the insulating panels 206 are offset with respect to the insulating blocks 202 of the secondary thermal insulation barrier 201 so that each insulating panel 206 extends over here eight insulating blocks 202 of the secondary thermal insulation barrier 201.
  • details on the realization of the primary thermal insulation barrier 205 and the primary waterproof membrane 207 can be found in the publication WO-2016046487 .
  • one of the two series of corrugations of the sealed membrane can be omitted, for example for applications where the flexibility of the membrane is desired only in one direction of the plane.
  • the dimensional symmetries of the vessel wall described above are only needed in one direction of the plane and the sizing that referred to the wave pitch of the corrugation series that has now been removed becomes sure superfluous, or at least optional.
  • a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the liquefied gas contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • the vessel comprises a single hull.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal for transferring a cargo of liquefied gas from or to the tank 71.
  • the figure 13 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is an off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges LNG carriers.
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the installation on land 77 over a large distance, for example 5 km, which keeps the LNG tanker 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (24)

  1. In einer Haltestruktur integriertes dichtes und wärmeisolierendes Gefäß, wobei das Gefäß eine Gefäßwand umfasst, welche auf einer tragenden Wand (1, 3, 203) der Haltestruktur angebracht ist, wobei die Gefäßwand umfasst:
    eine wärmeisolierende Sperre, welche auf der tragenden Wand angebracht ist und eine dichte, von der wärmeisolierenden Sperre getragene, Membran (12, 204),
    wobei die wärmeisolierende Sperre eine Vielzahl von quaderförmigen Isolierblöcken (8, 202), welche nebeneinander entsprechend einem regelmäßigen rechteckigen Raster angeordnet sind, umfasst, wobei jeder Isolierblock eine wärmeisolierende Füllung und eine Abdeckplatte (119, 210), welche zum Inneren des Gefäßes gerichtet ist, umfasst, wobei die Oberseite der Abdeckplatte, welche der wärmeisolierenden Sperre gegenüberliegt, ein Verankerungsmittel (14, 217, 218) aufweist,
    wobei die dichte Membran (12, 204) aus einer gewellten Metallmembran besteht, welche eine erste Serie von parallelen Wellen (13) und plane Abschnitte, welche zwischen den parallelen Wellen angeordnet sind und auf der Oberseite der Abdeckplatte aufliegen, umfasst,
    wobei die parallelen Wellen (13) parallel zu einer ersten Richtung der quaderförmigen Isolierblöcke angeordnet sind und voneinander durch eine ersten Wellenabstand beabstandet sind,
    dadurch gekennzeichnet, dass der Abstand des regelmäßigen rechteckigen Rasters der Vielzahl der Isolierblöcke (8, 202) entsprechend einer zweiten Richtung, welche senkrecht zur ersten Richtung verläuft, und welche im Wesentlichen den Maßen der Isolierblöcke (8, 202) entsprechend der zweiten Richtung entspricht, dem zweifachen des ersten Wellenabstandes entspricht, sodass die erste Serie der Wellen zwei Wellen (13) umfasst, welche an jedem der Isolierblöcke (8, 202) angeordnet sind,
    und dadurch, dass der plane Abschnitt (102) der dichten Membran, welcher zwischen zwei Wellen (13) angeordnet ist, an einem inneren Bereich der Abdeckplatte, welcher sich beabstandet von den parallel zur ersten Richtung verlaufenden Kanten der Abdeckplatte befindet, angeordnet ist, sodass die zwei Wellen (13) der ersten Serie der Wellen an einem Randbereich der Abdeckplatte, welcher sich zwischen dem inneren Bereich und den parallel zur ersten Richtung verlaufenden Kanten der Abdeckplatte (119,210) befindet, angeordnet sind, und dadurch, dass das metallische Verankerungsmittel (14, 217, 218) eines jeden Isolierblocks zumindest im inneren Bereich der Abdeckplatte angeordnet ist, wobei die dichte Membran an der wärmeisolierenden Sperre durch Befestigung der planen Abschnitte (102) der dichten Membran an den Befestigungsmitteln (14, 217, 218) einer Vielzahl von Isolierblöcken nur im inneren Bereich der Abdeckplatten (119,210) befestigt ist, sodass die dichte Membran nicht an der wärmeisolierendes Sperre im Randbereich der Abdeckplatten befestigt ist.
  2. Gefäß gemäß Anspruch 1, wobei das metallische Befestigungsmittel (14, 217, 218) beabstandet von den parallel zur ersten Richtung verlaufenden Kanten der Abdeckplatte (119, 210) unterbrochen ist und von dem inneren Bereich der Abdeckplatte eingegrenzt ist, wobei zwei thermische Schutzbänder (54) auf der Abdeckplatte in Verlängerung des metallischen Verankerungsmittels (14, 217, 218) im Randbereich der Abdeckplatte zwischen dem metallischen Verankerungsmittel und den parallel zur ersten Richtung verlaufenden Kanten der Abdeckplatte angeordnet sind,
    und wobei die zwei Wellen (13) der der ersten Serie der Wellen beidseitig vom Verankerungsmittel (14, 217, 218) eines jeden Isolierblock angeordnet sind.
  3. Gefäß gemäß Anspruch 1, wobei das metallische Verankerungsmittel (14, 217, 218) sich entlang der gesamten Länge der Abdeckplatte (119, 210), einschließlich des Randbereiches der Abdeckplatte, welcher sich zwischen dem inneren Bereich und den parallel zur ersten Richtung verlaufenden Kanten der Abdeckplatte (119, 210) befindet, entsprechend einer zweiten Richtung erstreckt, wobei die dichte Membran im inneren Bereich der Abdeckplatte und nicht im Randbereich der Abdeckplatte mit dem metallischen Verankerungsmittel verbunden ist.
  4. Gefäß gemäß einem der Ansprüche 1 bis 3, wobei ein Versatz, welcher im Wesentlichen der Hälfte des ersten Wellenabstandes entspricht, zwischen den parallel zur ersten Richtung verlaufenden Wellen (13) und den parallel zur ersten Richtung verlaufenden Kanten der Isolierblöcke (8, 202) besteht.
  5. Gefäß gemäß einem der Ansprüche 1 bis 4, wobei das Verankerungsmittel (14, 217, 218) im Mittelpunkt der Abdeckplatte angeordnet ist und die zwei Wellen der ersten Serie der Wellen in gleichem Abstand vom Mittelpunkt der Abdeckplatte angeordnet sind.
  6. Gefäß gemäß einem der Ansprüche 1 bis 5, wobei die gewellte Metallmembran eine Vielzahl von rechteckigen gewellten Metallplatten (12, 224) umfasst, wobei jede gewellte Metallplatte zwei parallel zur ersten Richtung verlaufende Kanten und zwei parallel zur zweiten Richtung verlaufende Kanten umfasst,
    wobei das Maß der gewellten Metallplatte (12, 224) in der zweiten Richtung einem gradzahligen Vielfachen des ersten Wellenabstandes entspricht,
    und wobei die beiden parallel zur ersten Richtung verlaufenden Kanten der Metallplatte im Wesentlichen in den planen Abschnitten der gewellten Metallplatte zwischen den parallel zur ersten Richtung verlaufenden Wellen angeordnet sind und auf die Verankerungsmittel (14, 217, 218) der Isolierblöcke (8, 202) im inneren Bereich der Abdeckplatte übergehen.
  7. Gefäß gemäß Anspruch 6, wobei jede rechteckige gewellte Metallplatte (12, 224) einen Randbereich aufweist, welcher mit dem Randbereich der angrenzenden gewellten Metallplatten überlappend verschweißt ist, wobei der Randbereich (66) einer oberhalb liegenden gewellten Metallplatte jeweils auf den Randbereich einer unterhalb liegenden angrenzenden gewellten Metallplatte geschweißt ist,
    und wobei, entlang der parallel zur ersten Richtung verlaufenden Kanten der gewellten Metallplatte der Randbereich der unterhalb liegenden gewellten Metallplatte auf die Verankerungsmittel (14, 217, 218) der Isolierblöcke im inneren Bereich der Abdeckplatte geschweißt ist.
  8. Gefäß gemäß Anspruch 6 oder 7, wobei das Maß einer gewellten Metallplatte (12, 224) in der ersten Richtung und/oder in der zweiten Richtung dem zweifachen des ersten Wellenabstandes entspricht.
  9. Gefäß gemäß einem der Ansprüche 6 bis 8, wobei das Verankerungsmittel (14, 218) eine Metallband umfasst, welches sich parallel zur zweiten Richtung erstreckt.
  10. Gefäß gemäß Anspruch 9, wobei das Verbindungsmittel ein Metallband (14, 218) umfasst, welches parallel zur ersten Richtung verläuft, und ein Metallband (14, 218), welches parallel zur zweiten Richtung verläuft, und welche zusammen im inneren Bereich der Abdeckplatte ein Kreuz bilden.
  11. Gefäß gemäß einem der Ansprüche 1 bis 10, wobei die dichte Membran weiterhin eine zweite Serie von parallelen Wellen (13) umfasst, welche parallel zur zweiten Richtung der quaderförmigen Isolierblöcke (8, 202) angeordnet sind und voneinander durch einen zweiten Wellenabstand beabstandet sind, wobei die planen Abschnitte (101, 102) der zweiten dichten Membran weiterhin zwischen den parallel zur zweiten Richtung verlaufenden Wellen (13) angeordnet sind,
    und wobei der Abstand des rechteckigen Rasters der ersten Richtung, welche im Wesentlichen dem Maß des Isolierblocks (8, 202) entsprechend der ersten Richtung entspricht, dem zweifachen des zweiten Wellenabstandes entspricht, sodass die zweite Serie der Wellen zwei Wellen (13) umfasst, welche jeweils an jedem der Isolierblöcke (8, 202) angeordnet sind,
    wobei die zwei Wellen der zweiten Serie der Wellen am Randbereich der Abdeckplatte (119, 210), welcher sich zwischen dem inneren Bereich und den parallel zur zweiten Richtung verlaufenden Kanten der Abdeckplatte befindet, angeordnet sind.
  12. Gefäß gemäß Anspruch 11, wobei das Verankerungsmittel (14, 217, 218) beabstandet von den Kanten der Abdeckplatte unterbrochen ist und von dem inneren Bereich der Abdeckplatte eingegrenzt ist,
    und wobei die zwei Wellen (13) der zweiten Serie der Wellen beidseitig vom Verankerungsmittel eines jeden Isolierblock angeordnet sind.
  13. Gefäß gemäß Anspruch 11 oder 12, wobei ein Versatz, welchen im Wesentlichen der Hälfte des zweiten Wellenabstandes entspricht, zwischen den parallel zur zweiten Richtung verlaufenden Wellen (13) und den parallel zur zweiten Richtung verlaufenden Kanten des Isolierblocks (8,202) besteht.
  14. Gefäß gemäß einem der Ansprüche 11 bis 13, wobei die gewellte Metallmembran eine Vielzahl von rechteckigen gewellten Metallplatten (12,224) umfasst, wobei jede gewellte Metallplatte zwei parallel zur ersten Richtung verlaufende Kanten und zwei parallel zur zweiten Richtung verlaufende Kanten umfasst,
    wobei das Maß einer gewellten Metallplatte in der ersten Richtung einem gradzahligen Vielfachen des zweiten Wellenabstandes entspricht,
    und wobei die parallel zur zweiten Richtung verlaufenden Kanten der gewellten Metallplatte im Wesentlichen in den planen Abschnitten der gewellten Metallplatte zwischen den parallel zur zweiten Richtung verlaufenden Wellen angeordnet sind und auf die Verankerungsmittel (14, 217, 218) der Isolierblöcke im inneren Bereich der Abdeckplatte übergehen.
  15. Gefäß gemäß einem der Ansprüche 11 bis 14, wobei des erste Wellenabstandes gleich des zweiten Wellenabstandes ist und die Isolierblöcke (8, 202) eine quadratische Umrandung bilden.
  16. Gefäß gemäß einem der Ansprüche 1 bis 15, wobei jeder quaderförmige Isolierblock (202) eine Bodenplatte (211) und einen Schaumstoffblock (209), welcher zwischen der Bodenplatte und der Abdeckplatte (210) eingebracht ist und so die wärmeisolierende Füllung bildet, umfasst.
  17. Gefäß gemäß einem der Ansprüche 1 bis 15, wobei jeder quaderförmige Isolierblock (8) ein Gehäuse umfasst, in welchem die wärmeisolierende Füllung eingebracht ist, wobei das Gehäuse eine Bodenplatte (117) und Seitenwände (121,122), welche sich zwischen der Bodenplatte und der Abdeckplatte (119) erstrecken, umfasst.
  18. Gefäß gemäß einem der Ansprüche 1 bis 17, wobei die Wellen (13) im Verhältnis zu den planen Abschnitten in Richtung des Inneren des Gefäßes hervorstehen.
  19. Gefäß gemäß einem der Ansprüche 1 bis 16, wobei die Wellen im Verhältnis zu den planen Abschnitten in Richtung des Äußeren des Gefäßes hervorstehen und in Vertiefungen (214, 215), welche in der Abdeckplatte (210) der Isolierblöcke (202) angeordnet sind, eingebracht sind.
  20. Gefäß gemäß einem der Ansprüche 1 bis 19, wobei die wärmeisolierende Sperre eine sekundäre wärmeisolierende Sperre (201) ist und die dichte Membran eine sekundäre dichte Membran (204) ist,
    wobei die Gefäßwand weiterhin umfasst eine primäre wärmeisolierende Sperre (205), welche auf der sekundären dichten Membran angeordnet ist, und eine primäre dichte Membran (207), getragen von der primären wärmeisolierende Sperre,
    und wobei die metallischen Verankerungsmittel (217) der Isolierblöcke der sekundären wärmeisolierenden Sperre primäre Rückhaltemittel (219) umfassen, wobei die primäre wärmeisolierende Sperre eine Vielzahl von nebeneinanderliegenden quaderförmigen Isolierblöcken (206) umfasst, welche mit den primären Rückhaltemitteln (219) verbunden sind.
  21. Gefäß gemäß Anspruch 20, wobei die sekundäre dichte Membran (204) Aussparungen (228) umfasst, damit die primären Rückhaltemittel (219) aus der sekundären dichten Membran hervorstehen können, und wobei die Kanten der Aussparungen (218) der sekundären dichten Membran in dichter Weise auf die metallischen Verankerungsmittel (217) der Isolierblöcke der sekundären wärmeisolierenden Sperre rund um die primären Rückhaltemittel (219) geschweißt sind.
  22. Schiff (70) zum Transport einer kalten Flüssigkeit, wobei das Schiff eine Hülle und ein in der Hülle angeordnetes Gefäß gemäß den Ansprüchen 1 bis 21 umfasst.
  23. Verfahren zur Be- und Entladung eines Schiffes (70) gemäß Anspruch 22, wobei eine kalte Flüssigkeit von oder zu einer schwimmenden oder erdverbundenen Speicheranlage (77) zu oder von dem Gefäß (71) des Schiffes durch isolierte Rohrleitung (73, 79, 76, 81,) geleitet wird.
  24. Transfersystem für eine kalte Flüssigkeit, wobei das System ein Schiff (70) gemäß Anspruch 22, isolierte Rohrleitungen (73,79, 76,81) welche so angeordnet sind, dass sie das in der Schutzhülle angeordnete Gefäß (71) mit einer schwimmenden oder erdverbundenen Speicheranlage (77) verbinden und eine Pumpe umfasst, um eine kalte Flüssigkeit durch isolierte Rohrleitungen zu der schwimmenden oder erdverbundenen Speicheranlage zu oder von dem Gefäß des Schiffs zuleiten.
EP16791660.0A 2015-10-13 2016-10-13 Abgedichteter und wärmeisolierender tank Active EP3362732B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16791660T PL3362732T3 (pl) 2015-10-13 2016-10-13 Szczelny i izolujący termicznie zbiornik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559744A FR3042253B1 (fr) 2015-10-13 2015-10-13 Cuve etanche et thermiquement isolante
PCT/FR2016/052648 WO2017064426A1 (fr) 2015-10-13 2016-10-13 Cuve étanche et thermiquement isolante

Publications (2)

Publication Number Publication Date
EP3362732A1 EP3362732A1 (de) 2018-08-22
EP3362732B1 true EP3362732B1 (de) 2019-11-06

Family

ID=55072901

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16791660.0A Active EP3362732B1 (de) 2015-10-13 2016-10-13 Abgedichteter und wärmeisolierender tank
EP22190092.1A Pending EP4108976A1 (de) 2015-10-13 2017-04-03 Dichter und wärmeisolierter tank

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP22190092.1A Pending EP4108976A1 (de) 2015-10-13 2017-04-03 Dichter und wärmeisolierter tank

Country Status (14)

Country Link
US (1) US10578248B2 (de)
EP (2) EP3362732B1 (de)
JP (4) JP6564926B2 (de)
KR (4) KR102101324B1 (de)
CN (4) CN107835915B (de)
DK (1) DK3526512T3 (de)
ES (2) ES2768991T3 (de)
FR (1) FR3042253B1 (de)
PH (2) PH12018500091A1 (de)
PL (1) PL3362732T3 (de)
PT (1) PT3526512T (de)
RU (2) RU2021117782A (de)
SG (2) SG11201800151VA (de)
WO (3) WO2017064413A1 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3035175B1 (fr) * 2015-04-20 2017-04-28 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante equipee d'un element traversant
FR3049678B1 (fr) * 2016-04-01 2018-04-13 Gaztransport Et Technigaz Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve
FR3068763B1 (fr) 2017-07-04 2020-10-02 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant une corniere.
FR3068762B1 (fr) * 2017-07-04 2019-08-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3072759B1 (fr) 2017-10-20 2021-04-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3072758B1 (fr) * 2017-10-20 2019-11-01 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a plusieurs zones
FR3073271B1 (fr) * 2017-11-06 2019-11-01 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
CN111386422A (zh) * 2017-11-28 2020-07-07 陶氏环球技术有限责任公司 隔热箱
FR3086031B1 (fr) * 2018-09-18 2020-09-11 Gaztransport Et Technigaz Installation de stockage pour gaz liquefie
FR3087873B1 (fr) * 2018-10-25 2020-10-02 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
KR102543440B1 (ko) * 2018-11-14 2023-06-15 한화오션 주식회사 멤브레인형 저장탱크의 단열구조
KR102158648B1 (ko) * 2018-12-20 2020-09-23 대우조선해양 주식회사 액화천연가스 저장탱크의 단열벽 고정장치
FR3093159B1 (fr) 2019-02-21 2021-01-29 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
WO2020193653A1 (fr) * 2019-03-26 2020-10-01 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3094452B1 (fr) * 2019-03-26 2021-06-25 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
FR3096432B1 (fr) 2019-05-24 2022-12-23 Gaztransport Et Technigaz Membrane étanche pour Cuve de Stockage
KR102213093B1 (ko) * 2019-07-03 2021-02-08 (주)동성화인텍 초저온 저장탱크의 단열구조
FR3099077B1 (fr) * 2019-07-23 2022-06-10 Gaztransport Et Technigaz Procédé de fabrication d'une paroi pour une cuve étanche et thermiquement isolante
FR3099946B1 (fr) * 2019-08-12 2021-07-09 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3100306B1 (fr) 2019-08-28 2022-08-19 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante à joints isolants anti-convectifs
FR3102228B1 (fr) * 2019-10-18 2021-09-10 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
CN110985879A (zh) * 2019-12-31 2020-04-10 浙江振申绝热科技股份有限公司 一种低温存储装置用锚固板
CN110902178A (zh) * 2019-12-31 2020-03-24 浙江振申绝热科技股份有限公司 一种低温存储装置及其安装方法
CN113494677B (zh) * 2020-03-18 2023-03-24 大宇造船海洋株式会社 液化天然气储罐的隔热结构
FR3108383B1 (fr) * 2020-03-20 2023-10-27 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3109979B1 (fr) * 2020-05-05 2022-04-08 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comprenant des éléments de remplissage anti-convectif
FR3110951B1 (fr) 2020-05-26 2022-05-06 Gaztransport Et Technigaz Dispositif d’ancrage destine a retenir des blocs isolants
FR3111178B1 (fr) * 2020-06-03 2022-05-06 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
KR102335580B1 (ko) * 2020-06-18 2021-12-03 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
KR102335578B1 (ko) * 2020-06-18 2021-12-03 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
KR102459477B1 (ko) * 2020-09-25 2022-10-27 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
FR3121730B1 (fr) 2021-04-09 2023-12-01 Gaztransport Et Technigaz Dispositif d’ancrage destiné à retenir des blocs isolants
FR3128003B1 (fr) 2021-10-08 2023-09-22 Gaztransport Et Technigaz Dispositif d’ancrage destiné à retenir des blocs isolants
FR3128272B1 (fr) 2021-10-19 2023-11-24 Gaztransport Et Technigaz Cuve étanche et isolante pour le stockage et/ou le transport d’un gaz liquéfié
FR3143098A1 (fr) 2022-12-09 2024-06-14 Gaztransport Et Technigaz Dispositif d’ancrage destiné à retenir des blocs isolants, et cuve étanche et thermiquement isolante comprenant ce dispositif d’ancrage
FR3143096A1 (fr) 2022-12-09 2024-06-14 Gaztransport Et Technigaz Dispositif d’ancrage pour un bloc thermiquement isolant
CN115817725A (zh) * 2022-12-12 2023-03-21 中太海事技术(上海)有限公司 一种波纹膜的布置形式
CN117068325B (zh) * 2023-10-13 2024-02-09 沪东中华造船(集团)有限公司 一种薄膜型围护系统绝缘模块受冷变形自适应调整方法
CN117818844B (zh) * 2024-03-06 2024-06-11 沪东中华造船(集团)有限公司 一种低温液货存储运输用薄膜型围护系统的安装方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021982A (en) * 1974-01-24 1977-05-10 Technigaz Heat insulating wall structure for a fluid-tight tank and the method of making same
FR2361601A1 (fr) * 1976-08-10 1978-03-10 Technigaz Structure de paroi composite thermiquement isolante et procede de montage dans un reservoir de transport et/ou de stockage de gaz liquefies
US4207827A (en) * 1976-08-20 1980-06-17 Michel Gondouin System, tooling and method of construction of cryogenic tanks for LNG tankers and for LNG storage
JPH0414717Y2 (de) * 1985-04-18 1992-04-02
CN85105351B (zh) * 1985-07-13 1988-04-13 日本钢管株式会社 液化气储运罐的绝热方法和系统
FR2599468B1 (fr) * 1986-06-03 1988-08-05 Technigaz Structure de paroi thermiquement isolante de reservoir etanche
FR2683786B1 (fr) * 1991-11-20 1994-02-18 Gaz Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire.
JPH06300191A (ja) * 1993-04-12 1994-10-28 Ishikawajima Harima Heavy Ind Co Ltd 低温タンクの保冷パネル敷設方法
JPH0979493A (ja) * 1995-09-19 1997-03-25 Nippon Reinetsu:Kk 低温貨物用タンクのパネル式防熱材の施工方法及びこれに使用する取付具
FR2781557B1 (fr) 1998-07-24 2000-09-15 Gaz Transport & Technigaz Perfectionnement pour une cuve etanche et thermiquement isolante a panneaux prefabriques
FR2798358B1 (fr) * 1999-09-14 2001-11-02 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2813111B1 (fr) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
US20070194051A1 (en) * 2004-06-25 2007-08-23 Kare Bakken Cellular tanks for storage of fluid at low temperatures
FR2877639B1 (fr) * 2004-11-10 2006-12-15 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee integree a la stucture porteuse d'un navire
FR2887010B1 (fr) 2005-06-10 2007-08-10 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee
WO2008007837A1 (en) * 2006-07-11 2008-01-17 Hyundai Heavy Industries Co., Ltd. Seam butt type insulation system having weldable secondary barrier for lng tanks
CN101688640B (zh) 2007-05-29 2011-06-08 现代重工业株式会社 具有焊接的次防壁的液化天然气储存箱绝热系统及其构造方法
KR100782737B1 (ko) * 2007-05-29 2007-12-05 현대중공업 주식회사 용접형 2차 방벽을 구비하는 액화천연가스 저장용기용단열시스템과 그 시공방법
JP5166603B2 (ja) * 2008-05-02 2013-03-21 サムスン ヘヴィ インダストリーズ カンパニー リミテッド 貨物倉インシュレーションパネルの固定装置及びこれを用いたインシュレーションパネル
KR101215629B1 (ko) * 2008-06-20 2012-12-26 삼성중공업 주식회사 액화천연가스 화물창의 코너 패널
AU2012201046B2 (en) * 2008-10-08 2012-09-06 Gaztransport Et Technigaz Vessel with a reinforced corrugated membrane
KR101088464B1 (ko) 2010-05-25 2011-12-01 한국과학기술원 단열 구조체 및 이를 갖는 극저온 액체저장탱크
JP5174856B2 (ja) * 2010-06-16 2013-04-03 鹿島建設株式会社 防液堤一体型低温タンクの冷熱抵抗緩和材の設置方法
FR2972242B1 (fr) * 2011-03-01 2014-10-17 Gaztransp Et Technigaz Fixation de panneaux isolants sur une paroi porteuse selon un motif repete
FR2972719B1 (fr) * 2011-03-15 2013-04-12 Gaztransp Et Technigaz Bloc isolant pour la fabrication d'une paroi de cuve etanche
FR2973098B1 (fr) 2011-03-22 2014-05-02 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante
FR2973097B1 (fr) * 2011-03-23 2013-04-12 Gaztransp Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
FR2977575B1 (fr) 2011-07-06 2014-06-27 Gaztransp Et Technigaz Coupleur pour maintenir un element par rapport a une structure de retenue
FR2984992B1 (fr) 2011-12-21 2015-03-27 Gaztransp Et Technigaz Cuve etanche et isolante munie d'un dispositif de retenue
KR101444370B1 (ko) * 2012-09-07 2014-09-26 삼성중공업 주식회사 액화천연가스 운반선 화물창의 단열구조
FR2996520B1 (fr) * 2012-10-09 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une membrane metalique ondulee selon des plis orthogonaux
FR2998256B1 (fr) * 2012-11-16 2019-12-20 Gaztransport Et Technigaz Procede de fabrication d'une paroi de cuve etanche et thermiquement isolee
FR3001945B1 (fr) * 2013-02-14 2017-04-28 Gaztransport Et Technigaz Paroi etanche et thermiquement isolante pour cuve de stockage de fluide
FR3002515B1 (fr) 2013-02-22 2016-10-21 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
FR3004508B1 (fr) * 2013-04-11 2016-10-21 Gaztransport Et Technigaz Bloc isolant pour la fabrication d'une paroi de cuve etanche et isolante
FR3004511B1 (fr) * 2013-04-15 2016-12-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
SG11201700049UA (en) 2014-07-04 2017-02-27 Daewoo Shipbuilding & Marine Liquefied natural gas storage tank and insulating wall for liquefied natural gas storage tank
KR101652220B1 (ko) * 2014-09-19 2016-08-31 삼성중공업 주식회사 액화가스 화물창
KR102297860B1 (ko) 2014-09-22 2021-09-03 대우조선해양 주식회사 액화천연가스 화물창 단열 시스템
FR3026459B1 (fr) 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2018534488A (ja) 2018-11-22
JP7042855B2 (ja) 2022-03-28
RU2750589C2 (ru) 2021-06-29
KR20180016558A (ko) 2018-02-14
KR20190072492A (ko) 2019-06-25
CN108603634A (zh) 2018-09-28
WO2017064426A1 (fr) 2017-04-20
WO2018069585A1 (fr) 2018-04-19
CN108368970B (zh) 2020-07-17
KR102101324B1 (ko) 2020-04-16
ES2927743T3 (es) 2022-11-10
CN108603634B (zh) 2021-07-06
DK3526512T3 (da) 2022-11-07
RU2021117782A (ru) 2021-07-22
RU2019110839A3 (de) 2020-11-13
EP4108976A1 (de) 2022-12-28
JP6650050B2 (ja) 2020-02-19
KR102432640B1 (ko) 2022-08-16
WO2017064413A1 (fr) 2017-04-20
JP2020079080A (ja) 2020-05-28
RU2019110839A (ru) 2020-11-13
US10578248B2 (en) 2020-03-03
SG11201903279PA (en) 2019-05-30
JP6564926B2 (ja) 2019-08-21
PH12019500814A1 (en) 2020-01-20
CN108368970A (zh) 2018-08-03
US20180216782A1 (en) 2018-08-02
KR102558859B1 (ko) 2023-07-25
CN113432031A (zh) 2021-09-24
PL3362732T3 (pl) 2020-07-27
KR20210148430A (ko) 2021-12-07
FR3042253A1 (fr) 2017-04-14
JP2019523368A (ja) 2019-08-22
PT3526512T (pt) 2022-09-06
KR20180069780A (ko) 2018-06-25
CN107835915A (zh) 2018-03-23
PH12018500091A1 (en) 2018-07-09
ES2768991T3 (es) 2020-06-24
JP6742407B2 (ja) 2020-08-19
CN113432031B (zh) 2022-11-29
KR102335746B1 (ko) 2021-12-07
FR3042253B1 (fr) 2018-05-18
EP3362732A1 (de) 2018-08-22
CN107835915B (zh) 2019-11-15
SG11201800151VA (en) 2018-02-27
JP2018533701A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
EP3362732B1 (de) Abgedichteter und wärmeisolierender tank
EP3198186B1 (de) Abgedichtetes und isoliertes gefäss mit einem überbrückungselement zwischen den platten der sekundären isolierbarriere
EP2984383B1 (de) Abgedichtete und wärmeisolierender behälter zum speichern eines fluids
EP3320256B1 (de) Abgedichteter und wärmeisolierter tank mit sekundärdichtungsmembran mit einer eckanordnung mit wellblechen
WO2019234360A2 (fr) Cuve etanche et thermiquement isolante
WO2014096600A1 (fr) Cuve etanche et thermiquement isolante
EP3425261B1 (de) Dichter und wärmeisolierter tank
FR3049678A1 (fr) Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve
EP3473915B1 (de) Dichter und wärmeisolierter tank
WO2017207938A1 (fr) Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP2880356B1 (de) Abgedichtete und wärmeisolierende behälterwand mit beabstandeten stützelementen
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
EP3425260A1 (de) Dichter und wärmeisolierter tank mit einem winkelprofil
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3102228A1 (fr) Cuve étanche et thermiquement isolante
FR2991660A1 (fr) Element calorifuge de cuve etanche et thermiquement isolee comportant un panneau de couvercle renforce
WO2020115406A1 (fr) Cuve etanche et thermiquement isolante
EP3526512B1 (de) Wärmeisolierender abgedichteter tank
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
EP3948055B1 (de) Lagereinrichtung für flüssiggas
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
FR3115092A1 (fr) Cuve étanche et thermiquement isolante
FR3094452A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DELANOE, SEBASTIEN

Inventor name: DE FARIA, ANTHONY

Inventor name: DURAND, FRANCOIS

Inventor name: BERGER, VINCENT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199201

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016023953

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2768991

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016023953

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1199201

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016023953

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201013

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230926

Year of fee payment: 8

Ref country code: NL

Payment date: 20230926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231002

Year of fee payment: 8

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231011

Year of fee payment: 8