WO2020193653A1 - Installation de stockage pour gaz liquéfié - Google Patents

Installation de stockage pour gaz liquéfié Download PDF

Info

Publication number
WO2020193653A1
WO2020193653A1 PCT/EP2020/058416 EP2020058416W WO2020193653A1 WO 2020193653 A1 WO2020193653 A1 WO 2020193653A1 EP 2020058416 W EP2020058416 W EP 2020058416W WO 2020193653 A1 WO2020193653 A1 WO 2020193653A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
insulating
edge
shear
fixing beam
Prior art date
Application number
PCT/EP2020/058416
Other languages
English (en)
Inventor
Antoine PHILIPPE
Sébastien DELANOE
Karim Chapot
Johan Bougault
Pierre Montfort
Guillaume SALMON LEGAGNEUR
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1903164A external-priority patent/FR3094452B1/fr
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to EP20713893.4A priority Critical patent/EP3948055B1/fr
Priority to JP2021557191A priority patent/JP2022536572A/ja
Priority to CN202080024753.XA priority patent/CN114761727A/zh
Priority to SG11202109963V priority patent/SG11202109963VA/en
Priority to KR1020217030836A priority patent/KR20210141526A/ko
Publication of WO2020193653A1 publication Critical patent/WO2020193653A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • Document FR2549575 describes a sealed and thermally insulating tank integrated into the supporting structure of a ship, comprising a secondary thermally insulating barrier, a secondary waterproofing membrane, a primary thermally insulating barrier and a primary waterproofing membrane.
  • the waterproofing membranes are formed by a plurality of metal plates welded together.
  • the waterproofing membranes are attached to the supporting structure in the corners of the tank using connection rings. Each connection ring is therefore fixed on the one hand to the supporting structure and on the other hand to the waterproofing membranes in order to allow the transfer of forces between the membranes and the hull of the vessel, thus solidifying the overall structure of the vessel.
  • the change in temperature as well as the state of filling of the tanks place great stress on the membranes of the tank.
  • the movement of the vessel exerts significant forces on the barriers of the tank.
  • at least the secondary sealing membrane is anchored to the supporting structure using a connecting structure at the angles.
  • connection ring makes it possible in particular to take up the tensile forces resulting from the thermal contraction of the metal plates forming the sealing membranes, the deformation of the shell, and the state of filling of the tanks.
  • the connecting ring is formed from a plurality of metal sheets assembled together so that one part of the metal sheets are connected to a sealing membrane of a first tank wall and another part of the metal sheets are connected to a sealing membrane of a second tank wall.
  • the connection ring of document FR2549575 therefore makes it possible to connect in the plane formed by the waterproofing membrane, the waterproofing membrane to the supporting structure using metal sheets.
  • the secondary thermally insulating barrier is therefore crossed by metal sheets of the connecting ring, which induces a thermal bridge phenomenon between the waterproofing membrane and the supporting structure.
  • Document FR2798358 also describes a sealed and thermally insulating tank integrated into the supporting structure of a ship which is provided with a connecting ring.
  • the connection ring is composed of a plurality of metal couplers for fixing the waterproofing membrane to the supporting structure.
  • the couplers of document FR2798358 make it possible to connect in the plane formed by the sealing membrane, the sealing membrane to the supporting structure.
  • the couplers also pass through the thermally insulating barrier.
  • the connection ring induces a thermal bridge phenomenon between the waterproofing membrane and the supporting structure.
  • the assembly of the couplers is quite complex to achieve.
  • the invention aims to remedy the problems encountered in the systems of the prior art.
  • An idea underlying the invention is to modify the attachment of the waterproofing membrane to the supporting structure in order to improve the insulation of the thermally insulating barrier.
  • Another idea underlying the invention is to simplify the attachment of the waterproofing membrane to the supporting structure.
  • the invention provides a storage installation for a liquefied gas comprising a supporting structure and a sealed and thermally insulating tank arranged in the supporting structure, the tank comprising at least a first tank wall fixed to a first wall supporting the supporting structure and a second tank wall fixed to a second supporting wall of the supporting structure, each tank wall comprising at least one waterproofing membrane and at least one thermally insulating barrier, the thermally insulating barrier being placed between the waterproofing membrane and the supporting structure, the first supporting wall forming an angle with the second supporting wall along an edge, the waterproofing membrane of the first tank wall comprising a plurality of metal plates, wherein the thermally insulating barrier of the first vessel wall comprises an insulating fixing beam anchored to the first bearing wall and comprising an upper face maintained at a distance from the first bearing wall by a plurality of shear webs, the shear webs being located between the upper face and the first load-bearing wall and oriented perpendicular to the edge, the insulating fixing beam comprising an
  • the sealing membrane of the tank is fixed directly on the insulating beam for fixing the thermally insulating barrier using the metal covering element so that unlike the prior art no metal element does not directly connect the waterproofing membrane to the supporting structure.
  • Fixing the waterproofing membrane to the load-bearing structure using the insulating fixing beam is therefore a simple way to improve the insulation of the thermally insulating barrier by preventing metallic elements from crossing the thermally insulating barrier.
  • the shear sails allow the insulating fixing beam to be more resistant in particular to the shear forces due to the contraction / expansion of the waterproofing membrane and to the elongation of the ship's beam corresponding to the movements of the hull of the ship in response to the swell at sea. These shear forces are transmitted to the fixing insulating beam using the metal covering element and the first stop device.
  • the upper face ensures the carrying of the waterproofing membrane.
  • such a storage installation may include one or more of the following characteristics.
  • the tank comprises a metal seal comprising a first side and a second side forming an angle with the first side, the first side being sealed to the sealing membrane of the first wall of the tank.
  • vessel and the second side being sealingly welded to the waterproofing membrane of the second vessel wall, the corrugated seal being configured to sealingly connect the waterproofing membrane of the first vessel wall and the membrane sealing of the second tank wall, the first panel being supported by the metal covering element of the insulating fixing beam.
  • the metal covering element comprises a flat metal plate having a support portion projecting from the shear webs in the direction of the waterproofing membrane and in a direction opposite to the ridge so that one end of the support portion rests on an insulating panel of the thermally insulating barrier adjacent to the insulating fixing beam.
  • the flat metal plate has a dimension in the direction of the ridge equal to the spacing between two adjacent shear webs and is arranged so as to extend between the two adjacent shear webs.
  • the shear webs are made of a composite material comprising a polymer resin and fibers.
  • the fibers are oriented at least partially at an angle of +/- 45 ° relative to a thickness direction of the vessel wall.
  • Such a characteristic makes it possible to combine good shear strength and, for example, good tensile strength in a direction of thickness of the vessel wall with fibers oriented in the same direction.
  • the insulating fixing beam comprises a fixing angle comprising a first angle wing and a second angle wing connected to the first angle wing, the second angle wing being attached to one of the wall sails. shear, and the first angle flange being welded to the metal roofing member.
  • the insulating fixing beam comprises a fixing angle comprising a first angle wing and a second angle wing connected to the first angle wing, the second angle wing being attached to one of the wall sails. shear, and the first angle flange comprising at least one fixing hole coinciding with a fixing hole of the metal roofing member so as to fix the first angle flange with the flat metal plate by means of a fixing device passing through the fixing hole of the metal covering element and the fixing hole of the first angle flange.
  • the second angle flange is glued to one of the shear webs.
  • the second corner flange comprises at an end remote from the first corner flange a bevelled portion to limit the stresses in the bonding.
  • the insulating fixing beam comprises a cleat fixed to one face of the shear web perpendicular to the edge and extending parallel to the metal covering element, the cleat comprising a main portion, an upper extension and a lower extension on either side of the main portion, the main portion, the upper extension and the lower extension being fixed to the shear web, the upper extension and the lower extension allowing the surface to be increased for fixing the cleat, and in which the cleat is fixed to the supporting structure using anchoring studs distributed over a length of the cleat, the anchoring studs exerting a clamping force against an upper face of the main portion of the cleat.
  • the upper extension and the lower extension are glued to the shear web, the upper extension and the lower extension allowing to increase the gluing surface of the cleat.
  • the upper extension is bevelled so as to have a decreasing thickness away from the main portion in order to limit the stresses in the fixing or in the gluing.
  • the shear webs are regularly distributed along the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam.
  • the distance between a first shear web of said shear webs and a second shear web directly adjacent to the first shear web is less than 340mm.
  • the thickness of the shear webs is between 5 and 25 mm.
  • the shear webs are made of a material such as plywood, wood, a composite material, or any other material having sufficient stiffness and a limited thermal conductivity to stiffness ratio.
  • the insulating fixing beam is a first insulating fixing beam
  • the stop device is a first stop device
  • the sealing membrane of the first tank wall comprising a plurality of metal plates or a plurality. strakes parallel to a longitudinal direction perpendicular or oblique to said ridge, each strake comprising a flat central portion resting on an upper surface of the thermally insulating barrier and two raised edges projecting towards the interior of the tank relative to the central portion , the strakes being juxtaposed in a repeated pattern and welded together in a sealed manner at the level of the raised edges
  • the thermally insulating barrier of the second tank wall comprises a second insulating fixing beam comprising an upper face maintained at a distance from the second wall load-bearing by a plurality of shear walls, the shear walls being situated between the upper face and the second bearing wall and oriented perpendicular to the edge, the second insulating beam comprising an insulating lining arranged between the shear walls, and the second insulating
  • the metal covering element of the insulating fixing beam and / or of the first insulating fixing beam and / or of the second insulating fixing beam comprises a first lateral flange extending perpendicularly to the walls of shear and in the direction of the first bearing wall or the second bearing wall respectively, the first side wing sandwiching the shear webs with the stop device or the first stop device and / or the second stop device respectively in order to take up the shear forces exerted by the waterproofing membrane
  • the first lateral wing makes it possible to improve the transmission of the forces coming from the waterproofing membrane, in particular its tension during a thermal contraction due for example to a cooling during the loading of the LNG or an elongation of the ship's beam. , towards the insulating fixing beam.
  • the metal covering element of the insulating fixing beam comprises a third flat wing in the extension of the flat portion of the metal covering element of the insulating fixing beam and extending in the direction of the ridge so that the metal cover elements of the insulating fixing beams of the two walls forming the ridge almost meet.
  • the metal cover elements of the insulating fixing beams of the two walls ensure the porting of the waterproofing membrane in the corner.
  • the metal covering element of the insulating fixing beam and / or of the first insulating fixing beam and / or of the second insulating fixing beam comprises a second lateral flange extending perpendicularly to the walls of shear and in the direction of the first load-bearing wall or the second load-bearing wall respectively, so that the first side wing and the second side wing frame the shear webs, the first side wing being located closer to the ridge than the second side wing.
  • the second side wing like the first side wing, improves the transmission of forces from the waterproofing membrane to the insulating fixing beam.
  • the side wings framing the shear walls make it possible to avoid the rotation of the metal covering element around the shear walls which could hinder the recovery of forces.
  • the first lateral wing and / or the second lateral wing are connected to the flat portion of the metal covering element, preferably the first lateral wing and the second lateral wing are connected to the flat portion at the level. from two opposite ends.
  • the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam comprises an external anti-dumping portion extending the shear webs in the direction of the edge and s' extending over a portion of the dimension separating the first bearing wall or the second bearing wall respectively from the metal covering element, the external anti-spill portion being fixed by means of attachment to the first bearing wall and / or to the second load-bearing wall respectively.
  • the supporting structure comprises an additional stop device or a first additional stop device projecting from the first carrying wall towards the interior of the tank, the additional stop device or the first stop device additional stopper having a length extending parallel to the ridge, the additional stopper device or the first additional stopper device being placed along an edge of the insulating fixing beam or the first insulating fixing beam adjacent to the 'ridge and being configured to form a stopper limiting movement of the insulating fixing beam or the first insulating fixing beam in a direction opposite to the direction of the stopper device or the first stopper device.
  • the supporting structure comprises a second additional stop device projecting from the second supporting wall towards the interior of the tank, the second additional stop device having a length extending parallel to the edge. , the second additional stopper device being placed along an edge of the second insulating fixing beam adjacent to the ridge and being configured to form a stop limiting the movement of the second insulating fixing beam in a direction opposite to the ridge. direction of the second stop bar.
  • the tank comprises a corrugated or non-corrugated seal comprising a first panel and a second panel forming an angle with the first panel, the first panel being sealed to the waterproofing membrane of the first panel.
  • vessel wall and the second side being sealingly welded to the sealing membrane of the second vessel wall, the corrugated seal being configured to sealingly connect the sealing membrane of the first vessel wall and the sealing membrane of the second vessel wall to form a continuous sealing membrane at a corner of the vessel.
  • the waterproofing membrane comprises a metal anchoring strip welded to the metal covering element, one of the metal plates being sealed to a portion of the metal anchoring strip and the gasket. metal being welded in a sealed manner to another portion of the metal anchoring strip.
  • the secondary insulating panel adjacent to the insulating fixing beam comprises an upper plate provided with a counterbore extending in the direction of the edge and located on the end closest to the edge of the top plate, one end of the metal covering element being placed in the counterbore in order to obtain a flat surface supporting the waterproofing membrane.
  • the vessel comprises a corner insulating block located in the extension of the thermally insulating barrier of the first vessel wall and of the thermally insulating barrier of the second vessel wall at the level of the edge.
  • the corner insulation block being configured to ensure continuity of the thermally insulating barrier of the first tank wall and of the thermally insulating barrier of the second tank wall at the level of the edge of the supporting structure.
  • the corner insulation block comprises a first face situated against the first bearing wall, a second face situated against the second bearing wall, a third face configured to provide a bearing surface on the first side of the corrugated seal and a fourth face configured to provide a bearing surface for the second side of the corrugated seal.
  • the corrugated seal is a corrugated metal seal.
  • At least one or each corrugation of the corrugated seal extends parallel to the ridge.
  • the first insulating fixing beam and / or the second insulating fixing beam is juxtaposed with the corner isolation block.
  • the stop device or the first stop device and / or the second stop device comprises a stop bar or a first stop bar and / or a second stop bar respectively, the stop bar or the first stopper bar and / or the second stopper bar extending continuously parallel to the edge along the edge opposite the edge of the insulating fixing beam or the first insulating fixing and / or the second insulating fixing beam respectively.
  • the additional stop device or the first additional stop device and / or the second additional stop device comprises an additional stop bar or a first additional stop bar and / or a second additional stop bar respectively , the additional stop bar or the first additional stop bar and the second additional stop bar extending continuously parallel to the ridge along the edge adjacent to the ridge of the fastening insulating beam or the first insulating fixing beam and / or the second insulating fixing beam respectively.
  • the stop device or the first stop device and / or the second stop device comprises a plurality of stop tabs or a plurality of first stop tabs and / or a plurality of second stop tabs respectively , the stop lugs or the first stop lugs and / or the second stop lugs being evenly spaced along the edge opposite the edge of the fixing insulating beam or the first fixing insulating beam and / or of the second insulating fixing beam respectively.
  • the additional stop device or the first additional stop device and / or the second additional stop device comprises a plurality of additional stop tabs or a plurality of additional first stop tabs and / or a plurality of additional stop tabs.
  • additional second stop legs respectively, the additional stop legs or the first additional stop legs and / or the additional second stop legs being evenly spaced along the edge adjacent to the edge of the insulating fixing beam or the first insulating beam and / or the second insulating beam respectively.
  • the additional anchoring device or the first additional stop device and / or the second additional stop device comprises a device forming a hook configured to fix the external anti-spill portion to the first supporting wall, the device forming a hook constituting said fixing means.
  • one of the stop tab (s), or one of the additional stop tab (s) is in the form of a hook so as to form the hook device.
  • one or more stop bars, or one or more additional stop bars are in the form of a hook so as to form the hook device.
  • the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam comprises an internal anti-dumping portion extending the shear walls in a direction opposite to the edge and extending over a portion of the dimension separating the first bearing wall or the second bearing wall respectively from the metal covering element, the internal anti-spill portion being fixed by means of attachment to the first bearing wall and / or to the second bearing wall respectively, and the stop device or the first stop device comprises a hook device or a first hook device configured to secure the internal anti-spill portion to the first support wall.
  • the internal anti-spill portion makes it possible to avoid deformation or even tilting of the insulating fixing beam when the waterproofing membrane exerts a significant force on it in an opposite direction with respect to the external anti-spill portion.
  • the fixing means comprises a stud fixing the external anti-dumping portion or the internal anti-dumping portion to the supporting structure, so that a first end of the stud is anchored to the supporting structure and a second end of the stud opposite the first end is equipped with a nut bearing, directly or indirectly, on the external anti-dumping portion or the internal anti-dumping portion.
  • the stud may pass right through or be placed next to the outer anti-dumping portion or the internal anti-dumping portion.
  • the fixing means comprises a reinforcing plate being placed between the nut and the external anti-dumping portion or the internal anti-dumping portion so as to propagate the tightening force of the nut over a surface corresponding to the surface of the reinforcement plate.
  • At least one of the external anti-dumping portion and the internal anti-dumping portion is formed by extension portions of the shear webs.
  • the outer anti-dumping portion comprises a first side bar extending parallel to the ridge, the first side bar having a wall pressed against a side surface of the shear webs.
  • the internal anti-dumping portion comprises a second lateral bar extending parallel to the ridge, the second lateral bar comprising a wall pressed against another lateral surface of the shear webs, the first lateral bar and the second sidebar framing the shear sails.
  • At least one or the first stop lugs and / or at least one or the second stop lugs comprise a first leg portion extending in a plane parallel to the lower face of the first beam fixing insulator and / or the second insulating fixing beam respectively, the first leg portion overlapping on the internal anti-spill portion.
  • At least one or the first stop legs and / or at least one or the second stop legs comprise a second leg portion extending in a plane orthogonal to the first leg portion and orthogonal to shear sails.
  • At least one or more first additional stop tabs and / or at least one or more second additional stop tabs comprise a first leg portion extending in a plane parallel to the underside of the first insulating fixing beam and / or the second insulating fixing beam respectively, the first leg portion overlapping on the external anti-dumping portion.
  • At least one or more first additional stop tabs and / or at least one or more second additional stop tabs comprise a second leg portion extending in a plane orthogonal to the first leg portion and orthogonal to the shear walls.
  • the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam comprises an upper plate located under the metal covering element and extending along the beam.
  • insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam respectively and in which each shear web comprises on an upper edge two upper tenons separated from each other so as to form an upper notch, the upper plate comprising a plurality of grooves extending parallel to the shear webs and having a shape complementary to the upper tenons so that the upper tenons fit in the grooves of the upper plate, to form a tenon-mortise connection between the shear walls and the upper plate.
  • the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam comprises N shear webs, N being a natural number, preferably N being greater than or equal to 3 , preferably N being greater than or equal to 5.
  • the insulating fixing beam and / or the first insulating fixing beam and / or the second insulating fixing beam comprises a lower plate located on the first bearing wall and extending along the insulating beam of fixing and / or of the first insulating fixing beam and / or of the second insulating fixing beam respectively, and in which each shear web comprises on a lower edge two lower tenons separated from each other so as to form a lower notch, the lower plate comprising a plurality of grooves extending parallel to the shear webs and having a shape complementary to the lower tenons so that the lower tenons fit in the grooves of the lower plate, so as to form a tenon-mortise connection between the shear walls and the lower plate.
  • the upper plate and / or the lower plate comprises 2N grooves so each upper tenon and / or each lower tenon of the insulating fixing beam and / or the first insulating fixing beam and / or the second beam fixing insulation is housed in one of the grooves of the upper and / or lower plate respectively.
  • the thermally insulating barrier of the first tank wall and / or the thermally insulating barrier of the second tank wall comprises a plurality of insulating panels comprising a lower wall located near the first load-bearing wall and / or of the second bearing wall respectively, an upper wall, and a structural insulating lining keeping the upper wall at a distance from the lower wall, the insulating lining preferably being composed of fiber-reinforced polymer foam.
  • the thermally insulating barrier is a secondary thermally insulating barrier and the sealing membrane is a secondary sealing membrane, and in which the first vessel wall and the second vessel wall further comprise, in a direction of thickness from the outside to the inside of the tank, a primary thermally insulating barrier carried by the secondary waterproofing membrane and a primary waterproofing membrane carried by the primary thermally insulating barrier.
  • the primary waterproofing membrane comprises a plurality of corrugated metal sheets, the corrugated metal sheets being juxtaposed in a repeated pattern and welded together in a sealed manner.
  • the waterproofing membrane or the secondary waterproofing membrane is formed from an alloy of iron and nickel having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the primary waterproofing membrane is formed from stainless steel.
  • the metallic cover member is formed from stainless steel or an iron-based, high-manganese alloy.
  • the corrugated seal is formed from the same material as the secondary waterproofing membrane, preferably from an iron and nickel alloy having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the insulating lining of the insulating fixing beam and / or of the first insulating fixing beam and / or of the second insulating fixing beam is formed of perlite, glass wool, foam or any other thermally suitable insulating material.
  • the primary thermally insulating barrier comprises at least one primary insulating corner panel, the primary insulating corner panel being fixed to at least one of the first insulating fixing beam and of the second insulating beam. fastening with a coupler.
  • the first tank wall and / or the second tank wall comprises strips of mastic arranged between the insulating fixing beam and the first supporting wall or between the first insulating fixing beam and the first supporting wall and / or between the second insulating fixing beam and the second bearing wall.
  • the strips of mastic are glued to the supporting structure.
  • the waterproofing membrane comprises a plurality of strakes parallel to a longitudinal direction perpendicular or oblique to said edge, each strake comprising a flat central portion resting on an upper surface of the thermally insulating barrier and two raised edges forming projecting towards the interior of the tank relative to the central portion, the strakes being juxtaposed in a repeated pattern and welded together in a sealed manner at the level of the raised edges.
  • the insulating fixing beam has a lower face, that is to say a surface facing the first load-bearing wall, which can be produced continuously, for example in the form of a bottom wall. , or discontinuous, for example by lower edge surfaces or lower flanges of the shear webs.
  • the shear webs comprise a central portion oriented perpendicular to the edge and two peripheral portions extending perpendicularly to the central portion, the peripheral portions being parallel to one another and framing the central portion. .
  • the peripheral portions comprise a lower flange and an upper flange extending parallel to the first bearing wall, the lower flanges of the set of shear webs forming a continuous or discontinuous bottom wall, the upper flanges of all the shear webs forming a continuous or discontinuous cover wall.
  • the peripheral portions comprise a front flange and a rear flange extending perpendicularly to the first bearing wall, the front flanges of all of the shear webs forming a continuous or discontinuous front wall facing the opposite way. of the ridge, the rear flanges of all the shear webs forming a continuous or discontinuous rear wall facing the ridge.
  • the insulating fixing beam comprises a bottom element comprising a flat portion resting on the first bearing wall and two lateral wings surrounding the shear webs and extending parallel to the shear webs in the direction of the element. of metal roofing, the side wings being fixed by a fastening means on the central portion of end shear walls, the end shear walls being two shear walls formed at the ends of the insulating beam fixing in the direction of the ridge.
  • the bottom element comprises at least one support element fixed to one of the lateral wings, the support element projecting from one of the end shear webs, the means anchor comprising a hook device located on the support member and configured to secure the insulating fixing beam to the first load-bearing wall.
  • the support member is attached to one end of a side wing of the bottom member.
  • the support member is attached to one of the side wings so as to sandwich an end shear web.
  • the bottom element is made of a metallic material or of a composite material.
  • the metal covering element comprises two internal wings extending at the ends of the flat portion and parallel to the first lateral wing and to the second lateral wing, the internal wings being situated between the peripheral portions of the wings.
  • side wing, the first side wing and the second side wing flanking the peripheral portions of the shear webs, the first side wing being fixed by attachment means to one of the inner wings and the second side wing being attached by means of attachment to the other of the internal wings.
  • an internal wing comprises a plurality of wing portions spaced apart from each other in the direction of the edge, a shear web or the main portion of a shear web being interposed between two portions of the ridge. 'adjacent wings.
  • Such a storage installation can be an onshore storage installation, for example for storing LNG or be a floating, coastal or deep water storage installation, in particular on an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and storage unit
  • Such a storage installation can also serve as a fuel tank in any type of vessel.
  • a ship for transporting a cold liquid product comprises a double hull and a above-mentioned storage installation, part of the double hull forming the supporting structure of the storage installation.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel tank.
  • FIG. 1 shows a sectional view of a tank at the level of an angle formed by two tank walls according to a first embodiment.
  • FIG. 2 represents a sectional view of a tank at the level of an angle formed by two tank walls according to a second embodiment.
  • FIG. 3 represents a partial sectional view of a tank at the level of an angle formed by two tank walls according to a third embodiment.
  • FIG. 4 is a perspective view of an angle formed by two vessel walls where only the first insulating fixing beam and the second insulating fixing beam are shown according to the first embodiment.
  • FIG. 5 represents a schematic front view of an insulating fixing beam with a stop device, according to a fourth embodiment.
  • FIG. 6 represents a schematic perspective view of an insulating fixing beam according to the fourth embodiment.
  • FIG. 7 shows a schematic perspective view of an angle formed by two tank walls where only the first insulating fixing beam and the second insulating fixing beam are shown according to a fifth embodiment.
  • FIG. 8 represents an exploded view of an insulating fixing beam according to a sixth embodiment.
  • FIG. 9 represents a schematic perspective view of an insulating fixing beam according to a seventh embodiment.
  • FIG. 10 represents a perspective view of an insulating fixing beam according to an eighth embodiment, the metal covering element being presented at a distance from the shear walls.
  • FIG. 11 represents a perspective view of an insulating fixing beam according to a ninth embodiment, the metal covering element being presented at a distance from the shear walls.
  • FIG. 12 represents an exploded view of an insulating fixing beam according to a tenth embodiment.
  • Fig. 13 shows a perspective view of the fixing insulating beam according to the tenth embodiment.
  • FIG. 14 shows an exploded view of an insulating fixing beam according to an eleventh embodiment.
  • Fig. 15 shows a perspective view of the fixing insulating beam according to the eleventh embodiment.
  • Fig. 16 shows an exploded view of the insulating fixing beam according to the fifth embodiment.
  • Fig. 17 shows a perspective view of the fixing insulating beam according to the fifth embodiment.
  • FIG. 18 represents a schematic perspective view of an angle formed by two vessel walls illustrating in particular the first insulating fixing beam and the second insulating fixing beam according to a twelfth embodiment.
  • FIG. 19 represents a detail view XIX of FIG. 18 illustrating in particular the fixing of the secondary waterproofing membrane to the insulating fixing beam.
  • Fig. 20 shows a perspective view of the fixing insulating beam according to the twelfth embodiment.
  • Fig. 21 shows a front view of the fixing insulating beam according to the twelfth embodiment.
  • FIG. 22 is a cut-away schematic representation of an LNG carrier comprising a storage installation for a liquefied gas, and of a loading / unloading terminal for this installation.
  • FIG. 1 shows the multilayer structure of two tank walls 1 and 101 of a sealed and thermally insulating tank for the storage of a liquefied gas, such as liquefied natural gas (LNG).
  • Each tank wall 1, 101 successively comprises, in the direction of the thickness, from the outside towards the inside of the tank, a secondary thermally insulating barrier 2, 102 retained at a supporting wall 3, 103, a membrane d 'secondary sealing 4, 104 resting against the secondary thermally insulating barrier 2, 102, a primary thermally insulating barrier 5, 105 resting against the secondary waterproofing membrane 4, 104 and a primary waterproofing membrane 6, 106 intended to be in contact with liquefied natural gas contained in the tank.
  • LNG liquefied natural gas
  • the supporting structure can in particular be formed by the hull or the double hull of a ship.
  • the supporting structure comprises a plurality of supporting walls 3, 103 defining the general shape of the tank, usually a polyhedral shape.
  • the two supporting walls 3 and 103 meet at an edge 100, forming a dihedral angle which could have different values.
  • an angle of 90 ° is shown.
  • the secondary thermally insulating barrier 2, 102 comprises a plurality of secondary insulating panels 7, 107 which are anchored to the supporting wall 3, 103 by means of retainers (not shown) known elsewhere.
  • a secondary insulating panel 7, 107 comprises a base plate, a cover plate and optionally an intermediate plate, for example made of plywood.
  • the secondary insulating panel 7, 107 also comprises one or more layers of insulating polymer foam sandwiched between the bottom plate, the cover plate and the possible intermediate plate and glued to them.
  • the insulating polymer foam can in particular be a polyurethane-based foam, optionally reinforced with fibers.
  • the secondary waterproofing membrane 4, 104 comprises a continuous sheet of metal strakes, with raised edges.
  • the strakes are welded by their raised edges on parallel welding supports which are fixed in grooves made on the cover plates of the secondary insulating panels 7, 107.
  • the strakes are, for example, made of Invar ®: that is, that is to say an alloy of iron and nickel, the coefficient of expansion of which is typically between 1.2.10 -6 and 2.10 -6 K -1 . It is also possible to use alloys of iron and manganese, the coefficient of expansion of which is typically of the order of 7 to 9.10 -6 K -1 .
  • the primary thermally insulating barrier 5, 105 comprises a plurality of primary insulating panels 8, 108 which can be made according to different structures known elsewhere.
  • the primary waterproofing membrane 6, 106 can be made in various ways. In Figure 1, it comprises a continuous sheet of sheet metal which has two series of mutually perpendicular corrugations.
  • the first series of corrugations 9, 109 extend perpendicular to the ridge 100.
  • the second series of corrugations 10, 110 extend parallel to the ridge 100.
  • the two series of corrugations may have regular spacing or periodic irregular spacing
  • the secondary sealing membrane 4 of the first tank wall 1 and the secondary sealing membrane 104 of the second tank wall 101 are anchored to the supporting structure by means of a first insulating fixing beam 11 and d 'a second insulating fixing beam 111 respectively, at a corner of the tank, that is to say near the edge 100 where the two bearing walls 3 and 103 meet.
  • the secondary thermally insulating barrier 2 of the first tank wall 1 and the secondary thermally insulating barrier 102 of the second tank wall 101 include, near the edge 100, a first insulating fixing beam 11 and a second insulating beam fixing 111 respectively, the first insulating fixing beam 11 and the second insulating fixing beam 111 being in the continuity of the secondary insulating panels 7, 107.
  • the first insulating fixing beam 11 and the second insulating fixing beam 111 are anchored to the first supporting wall 3 and the second supporting wall 103 respectively and have a length extending parallel to the edge 100.
  • Each insulating fixing beam 11 , 111 comprises a lower face 12 located against the supporting wall 3, 103 and an upper face 3 maintained at a distance from the lower face 12 by a plurality of shear webs 14.
  • the shear webs 14 are flat walls situated between the upper face and the lower face and oriented perpendicular to the edge 100.
  • Each insulating fixing beam 11, 111 comprises a thermally insulating lining, such as glass wool or perlite. or a block of foam, between the shear webs 14.
  • the shear webs 14 are evenly distributed along the insulating fixing beams 11, 111, as visible in Figures 4 and 6.
  • Each insulating fixing beam 11, 111 also comprises an upper plate 40 at the level of the upper face 13 making it possible to fix the shear webs 14 to each other in an upper portion. Likewise, each insulating fixing beam 11, 111 comprises a lower plate 41 at the level of the lower face 12 making it possible to fix the shear webs 14 to each other in a lower portion.
  • the insulating fixing beams 11, 111 comprise a metal covering element 15 comprising a flat portion 16 located against the upper face 13, a first lateral wing 17 extending perpendicularly to the walls shear 14 against an edge of the webs 14 adjacent to the ridge 100 and toward the underside 12, and a second side flange 18 extending perpendicular to the shear webs 14 against an edge of the webs 14 opposite the ridge 100 and towards the underside 12.
  • An end edge of the secondary waterproofing membrane 4, 104 is welded to the planar portion 16 of the metal roofing element 15.
  • the first lateral wing 17 and the second lateral wing 18 are connected to the flat portion 16 at its two opposite ends.
  • the metal covering element 15 is placed against three faces of the insulating fixing beams 11, 111 in order to transmit the tensile / compressive forces of the secondary waterproofing membrane 4, 104 to the insulating fixing beam 11, 111 .
  • the supporting structure comprises a first stop device 19 projecting from the first supporting wall 3 towards the interior of the tank, the first stop device 19 having a length extending parallel to the edge 100.
  • the first device stop 19 is placed along an edge of the first insulating fixing beam 11 opposite to the edge 100 and is configured to form a stop limiting the movement of the first insulating fixing beam 11 in the longitudinal direction of the strakes of the secondary sealing membrane 4 of the first tank wall 1.
  • the supporting structure also comprises a first additional stop device 20 projecting from the first supporting wall 3 towards the interior of the tank, the first stop device 20 having a length extending parallel to the ridge 100.
  • the first additional stop device is placed along an edge of the first insulating fixing beam 11 ad adjacent to the ridge 100 and is configured to form a stopper limiting the movement of the first insulating fixing beam 11 in a direction opposite to the direction of the first stopper device 19.
  • the first stopper device 19 and the stopper device additional stop 20 block the translation of the first insulating fixing beam 11 in the longitudinal direction of the strakes of the secondary waterproofing membrane 4.
  • the supporting structure comprises a second stop device 119 and a second additional stop device 120 which protrude from the second carrying wall 103 and which block the translation of the second insulating fixing beam 111 in the longitudinal direction of the strakes. of the secondary waterproofing membrane 104.
  • the first stop device 19 comprises a first stop bar 30 extending continuously parallel to the edge 100 le along the edge opposite to the edge 100 of the first insulating fixing beam 11 and the first additional stop device 20 has an additional first stop bar 31 extending continuously parallel to the edge 100 along the adjacent edge at the edge 100 of the first insulating fixing beam 11.
  • the second stop device 119 comprises a second stop bar 130 and the second stop device 120 comprises a second additional stop bar 131.
  • the insulating fixing beams 11, 111 each comprise an external anti-dumping portion 21 extending the lower face 12 in the direction of the edge 100 and extending on a portion of the dimension separating the lower face 12 from the upper face 13.
  • the external anti-dumping portion is fixed by a fixing means 47 to the supporting structure.
  • the external anti-dumping portion 21 is formed by extension portions 43 of the shear webs 14, that is to say portions webs 14 which extend beyond the main portion located under the metal covering element 15.
  • the lower plate 41 can be extended in the same direction as the extension portions 43 in order to be placed in below those.
  • the fixing means 47 is formed by a stud passing through the external anti-dumping portion 21 right through so that a first end of the stud is anchored to the supporting structure and a second end of the stud. stud opposite the first end is equipped with a nut.
  • the fixing means 47 also comprises a reinforcing plate placed between the nut and the external anti-dumping portion 21 so that the tightening force of the nut is exerted over the entire surface of the reinforcing plate in order to fix the insulating fixing beams 11, 111 to the supporting structure.
  • the insulating fixing beams 11, 111 may include an internal anti-dumping portion 22 formed by the extension portions 43, the internal anti-dumping portion 22 extending the lower face 12 in a direction opposite to the external anti-spill portion 21 and extending over a portion of the dimension separating the lower face 12 from the upper face 13.
  • a metal seal 23 comprising a first side and a second side forming an angle with the first equal. at the angle of the dihedron.
  • the first panel is sealed to the secondary sealing membrane 4 of the first tank wall 1 and the second panel is sealed to the secondary sealing membrane 104 of the second tank wall 101 to form a continuous waterproofing membrane at the corner of the tank.
  • the fixing means 47 of the first tank wall 1 is laterally offset from the edge 100 so as not to be in alignment with the secondary sealing membrane 104 and the secondary thermally insulating barrier 102 of the second tank wall 101 so as to facilitate the attachment of the external anti-spill portion 21 to the supporting structure during the assembly of the tank.
  • This offset for the fixing of the first anti-spill portions 21 induces an offset of the insulating fixing beams 11, 111 thus increasing the size of the joint 23 between the secondary sealing membranes 4, 104.
  • the vessel therefore comprises a corner insulating block 25 located in the extension of the secondary thermally insulating barrier 2 of the first wall of vessel 1 and of the secondary thermally insulating barrier 102 of the second wall. tank 101 at the level of the ridge 100.
  • the corner insulating block 25 comprises a first face 26 situated against the first bearing wall 3, a second face 27 situated against the second bearing wall 103, a third face 28 configured to form a bearing surface on the first side of the metal seal 23 and a fourth side 29 configured to form a bearing surface on the second side of the metal seal 23.
  • the corner insulating block 25 therefore serves as a support for the seal metal 23 to prevent the latter, in view of its large size due to the lateral offset, from being unsupported.
  • the metal seal 23 in the first embodiment is made with an outgoing corrugation 24 located on its first side and an outgoing corrugation 24 located on its second side, the corrugations 24 being located at the space separating the block d. corner insulation 25 and the insulating fixing beams 11, 111, so as to form a corrugated metal seal 23.
  • the corrugations 24 make it possible in particular to absorb the tensile force of the secondary waterproofing membrane 4, 104.
  • FIG. 5 shows a third embodiment which differs from the first embodiment of FIG. 1 by the shape of the metal seal 23.
  • the metal seal 23 comprises corrugations 24 re-entrant on its first side. and on its second side, so as to form a corrugated metal seal 23.
  • Figure 1 also shows the junction between the primary thermally insulating barrier 5 of the first tank wall 1 and the primary thermally insulating barrier 105 of the second tank wall 101 at the angle of the dihedral.
  • the vessel comprises a primary corner insulation block 50 which is fixed by a coupler 46 to the first insulating fixing beam 11 and by a coupler 46 to the second insulating fixing beam 111.
  • the second embodiment illustrated in FIG. 2 differs in particular from the first embodiment in that the fixing means 47 are not offset laterally with respect to the edge 100.
  • the means of fixing 47 of the external anti-spill portion 21 of the first insulating fixing beam 11 is in alignment with the secondary waterproofing membrane 104 of the second tank wall 101.
  • the metal seal 23 of the second embodiment is sufficiently supported by the metal cover elements 15 of the insulating fixing beams 11, 111.
  • the second embodiment therefore does not include a corner block to the junction of the secondary thermally insulating barriers 2, 102.
  • only an insulating lining 48 is placed between the insulating fixing beams 11, 111 at the level of the edge 100 in this embodiment.
  • Figures 5 and 6 show a fourth embodiment of the insulating fixing beams 11, 111 and the stop devices 19, 20, 119, 120.
  • each insulating fixing beam 11, 111 comprises an external anti-dumping portion 21 and an internal anti-dumping portion 22.
  • the external anti-dumping portion 21 here comprises a first lateral bar 44 extending parallel to the ridge and having a wall fixed against a lateral surface of the shear webs 14.
  • the internal anti-dumping portion 22 comprises a second lateral bar 45 of so that the first sidebar 44 and the second sidebar 45 frame the shear sails 14.
  • the stopper devices 19, 119 include a plurality of stopper legs 32, 132 evenly spaced along the edge opposite the edge 100 of the insulating fixing beams 11, 111 respectively.
  • the additional stopper devices 20, 120 include a plurality of additional stopper legs 33, 133 evenly spaced along the edge adjacent to the edge 100 of the insulating fixing beams 11, 111 respectively.
  • the stop tabs 32, 132 include a first tab portion 34 extending in a plane parallel to the underside 12 of the insulating fixing beams 11, 111 where the first tab portion 34 comes in. overlap on the internal anti-spill portion 22.
  • the additional stop legs 33, 133 include a first leg portion 34 extending in a plane parallel to the underside 12 of the insulating fixing beams 11, 111 where the first leg portion 34 overlaps the outer anti-spill portion 21.
  • the stop tabs 32, 132 as well as the additional stop tabs include a second tab portion 35 extending in a plane orthogonal to the first leg portion. tab 34 and being orthogonal to the shear webs 14. The second leg portion 35 is fixed to the supporting walls 3, 103.
  • the stop tabs form an anchoring device forming a hook allowing to fix the insulating fixing beam 11, 111 to the supporting structure.
  • Figure 6 illustrates the assembly in the fourth embodiment between the upper 40 and lower 41 plates, and the shear webs 14.
  • the shear webs 14 comprise on their upper edge two upper tenons 36 separated from one another so as to form an upper notch 37.
  • the upper plate 40 comprises as to it a plurality of grooves 42 extending parallel to the shear webs 14 and having a shape complementary to the upper tenons 36 so that the upper tenons 36 are housed in the grooves 42 of the upper plate 40, in order to form an assembly tenon-mortise between the shear webs 14 and the upper plate 40.
  • the upper plate 40 thus extends through the shear webs 14 in the upper notches 37.
  • the shear webs 14 comprise on their lower edge two lower tenons 38 separated from one another so as to form a lower notch 39.
  • the lower plate 41 for its part comprises a plurality of grooves 42 s' extending parallel to the shear webs 14 and having a complementary shape to the lower tenons 38 so that the lower tenons 38 fit into the grooves 42 of the lower plate 41, to form a tenon-mortise joint between the shear webs 14 and the lower plate 41.
  • the lower plate 41 thus extends through the shear webs 14 in the lower notches 39.
  • This assembly between the upper plate 40, the lower plate 41 and the shear webs 14 improves the transmission of shear forces in the insulating fixing beam 11, 111.
  • the fifth embodiment illustrated in FIG. 7 differs in particular from the first embodiment by the very structure of the insulating fixing beam 11, 111. Indeed, in this embodiment, the shear webs are fixed differently to the metal cover element. In addition, in this embodiment, the insulating fixing beam 11, 111 comprises a bottom element 53. This embodiment will be explained below in more detail with regard to FIGS. 16 and 17.
  • the metal covering element 15 may comprise an additional flat wing formed in the extension of the flat portion 16 of the metal covering element 15 and extending in the direction of the edge 100.
  • the additional flat wing of the first insulating fixing beam 11 can extend so as to have one of its ends located in the extension or near the extension of the waterproofing membrane 104 of the second wall. tank 101.
  • the additional flat flange of the second insulating fixing beam 111 may extend so as to have one of its ends located in the extension or near the extension of the membrane of sealing 4 of the first wall of tank 1.
  • the additional wing thus has the particular function of carrying surface of the sealing membrane in the level of the edge of the tank, and in particular of carrying the sealing gasket 23 .
  • end shear webs 56 The two shear webs 14 formed at the ends of the insulating fixing beam 11, 111 in the direction of the edge will hereinafter be called end shear webs 56.
  • FIG. 8 shows a sixth embodiment of the insulating fixing beam 11, 111.
  • the metal covering element 15 is similar to the first embodiment in that it comprises a flat portion 16 , a first lateral wing 17 arranged at a first end of the flat portion 16 and a second lateral wing 18 arranged at a second end of the flat portion 16, the metal covering element 15 here being formed in one piece.
  • the shear webs 14, 56 have a central portion 51 oriented perpendicular to the edge as is already the case in the first embodiment.
  • the shear webs 14, 56 also include two flanges 52 extending perpendicular to the central portion 51.
  • the lower and upper flanges 252 are parallel to each other and frame the central portion. 51.
  • the central portion 51 of the end shear webs 56 comprises in a lower part a step 61 projecting outwardly from the insulating fixing beam 11, 111. This step 61 allows with the aid of a device anchor forming hook to come and fix by covering the step 61 the insulating fixing beam 11, 111 to the supporting structure.
  • the soles 52 extend parallel to the first bearing wall 3 so as to form lower and upper soles 252.
  • shear webs 14, 56 form a continuous bottom wall parallel to the metal covering element 15. In an embodiment not shown, this surface could be discontinuous.
  • the top flanges 252 placed end to end form a continuous cover wall.
  • Fig. 9 shows a seventh embodiment of the insulating fixing beam 11, 111.
  • the insulating fixing beam 11, 111 comprises shear webs 14, 56 formed two by two in one piece so that the shear webs form shear tubes extending in the direction of the webs. shear 14, 56.
  • the shear tubes are attached to each other so as to form the fixing insulating beam 11, 111.
  • FIG. 10 represents an eighth embodiment of the insulating fixing beam 11, 111.
  • the structure of this insulating fixing beam 11, 111 is close to that of the sixth embodiment.
  • only the orientation of the soles 52 differs.
  • the soles 52 extend perpendicularly to the first supporting wall 3, so as to form front and rear soles 152.
  • the front soles 152 put. butt on an opposite side of the shear webs 14, 56 to the edge 100 form a continuous front wall perpendicular to the metal cover member 15.
  • the rear flanges 152 form a continuous rear wall. In an embodiment not shown, these walls could be discontinuous.
  • Figure 11 shows a ninth embodiment of the insulating fixing beam 11, 111.
  • This embodiment differs from the eighth embodiment by the number of shear webs 14, 56.
  • the Insulating fixing beam 11, 111 comprises only two end shear webs 56 so as to form an insulating fixing beam 11, 111 in the form of a box.
  • Figs. 12 and 13 show a tenth embodiment of the fixing insulating beam 11, 111.
  • the shear webs 14, 56 are formed in the same manner as in the eighth embodiment.
  • the tenth embodiment differs from the previous embodiments by the presence of a bottom member 53 and a metal cover member 15 having a different structure.
  • the metal covering element 15 comprises two internal wings 58 extending at the ends of the flat portion 16 and parallel to the first lateral wing 17 and to the second lateral wing 18.
  • the internal wings 58 are located between the soles. front and rear 152 of the shear webs 14 so that an inner flange 58 is located against an inner face of a sole 52.
  • the inner wings 58 have a plurality of wing portions 59 spaced apart from each other in the direction of the ridge 100 so that a shear web 14, 56 is interposed between two adjacent wing portions 59.
  • the first lateral wing 17 and the second lateral wing 18 are formed of a plate fixed to an internal wing 58 passing through the front and rear flanges 52 by fixing means 60, for example of the screw type. nut.
  • the plate forming one of the side wings 17, 18 is attached to each of the wing portions 59 of an inner wing 58 at the join between two adjacent flanges 52.
  • the bottom element 53 is a metal bottom element 53 comprising a planar portion 54 forming the lower face 12 of the insulating fixing beam 11, 111.
  • the bottom element 53 also comprises two side wings 55 extending parallel to the shear webs 14, 56 and in the direction of the metal covering element 15.
  • the side wings 55 are here located against an internal face of the central portion 51 of the shear webs. end 56.
  • the side wings 55 are fixed by a plurality of fixing means 60, for example of the screw / nut type, on the central portion 51 of the end shear webs 56.
  • Each side wing 55 is here formed by two portions of lateral wings 55 spaced from one another.
  • the bottom element 53 also comprises support elements 57 fixed to the side wings 55 and projecting from one of the main portions 51 of the end shear webs 56 towards the outside of the insulating fixing beam 11, 111.
  • the bearing elements 57 have an upper bearing surface allowing the aid of an anchoring device forming a hook to come and fix, by covering the upper bearing surface, the insulating fixing beam 11, 111 to the supporting structure.
  • the support elements 57 are thick hollowed out plates 57 traversed by one of the fixing means 60 serving to fix one of the side wings 55.
  • the thick plates 57 are fixed to an external face of the central portion 51 of the end shear webs 56.
  • Figures 14 and 15 show an eleventh embodiment of the insulating fixing beam 11, 111.
  • This embodiment is very similar to the tenth embodiment and differs from it only in certain characteristics of the bottom element 53.
  • the bottom element 53 is made of a composite material.
  • Each side wing 55 is located at one end of the flat portion 54 and extends over the entire dimension of the bottom element 53 in the direction of the shear webs 14, 56.
  • the side wings 55 are here located against a face. of the central portion 51 of the end shear webs 56.
  • the bearing member 57 is in this embodiment a side wing extension extending orthogonally to the side wing 55 so as to protrude towards the exterior of the insulating fixing beam 11, 111.
  • the support element comprises an upper bearing surface making it possible to anchor the insulating fixing beam 11, 111 to the supporting structure.
  • the front and rear flanges 152 of the end shear webs 56 do not project outwardly from the insulating fixing beam 11, 111 with respect to the central portion 51. Indeed, the flanges 52 of the end shear webs 56 extend only from the central portion 51 towards the adjacent shear web 14.
  • Figures 16 and 17 show in more detail the fifth embodiment of the fixing insulating beam 11, 111 shown in Figure 7.
  • the fifth embodiment is similar to the eleventh embodiment of Figures 14 and 15 and does not differ from this only by the front and rear flanges 152 of the end shear webs 56.
  • the flanges 52 of the end shear webs 56 extend on either side and the other of the central portion 51 in the direction of the edge 100.
  • the support elements 57 protrude well from the central portion 51 of the end shear webs 56 but remain set back of the flanges 52 of the end shear webs 56. This removal makes it easier to accommodate an anchoring device.
  • strips of mastic 49 are placed between the supporting structure and the insulating fixing beams 11, 111 in order to take up the irregularities in the flatness of the supporting structure.
  • strips of mastic 49 can also be arranged between the stop devices 19, 119 and the insulating fixing beams 11, 111, and between the additional stop devices 20, 120 and the insulating fixing beams 11, 111 in order to fill any assembly clearances.
  • Figures 18 to 21 show a twelfth embodiment of the insulating fixing beam 11, 111.
  • the twelfth embodiment differs in particular from the fifth embodiment illustrated in Figure 7 by the very structure of the insulating fixing beam 11, 111.
  • the shear webs 14 are fixed differently to the metallic cover element 15.
  • the metallic cover element 15 and the elements allowing attachment to the supporting structure are designed in a different way.
  • Figure 18 particularly shows the assembly of the insulating fixing beam 11, 111 to the other elements of the storage facility.
  • each insulating fixing beam 11, 111 therefore includes a plurality of shear webs 14, thermally insulating linings 62 located between the shear webs 14, a lower plate 41 at the level of the lower face 12 between two adjacent shear walls 14 and metal covering elements 15 connecting two adjacent shear walls 14 at an upper face of the shear walls 14.
  • the metal roofing elements 15 comprise a flat metal plate 63 provided with fixing holes 64 passing right through it.
  • the fixing holes 64 are configured to allow the passage of a fixing device 47, for example of the screw / nut type, which fixes the metal covering element 15 to one of the shear webs 14.
  • the flat metal plate 63 has a dimension in the direction of the edge 100 equal to the spacing between two adjacent shear webs 14 so as to be located and fixed in line with these two adjacent shear webs 14.
  • the flat metal plate 63 has a support portion 65 protruding from the shear webs 14 in the direction of the secondary sealing membrane 4 and in a direction opposite to the ridge 100, as shown in Figures 19 and 21, so that the end of the support portion 65 rests on the adjacent secondary insulating panel 7.
  • the support portion 65 supports the secondary waterproofing membrane 4 between the insulating fixing beam 11, 111 and the secondary insulating panel 7 adjacent to the insulating fixing beam 11, 111.
  • the end of the support portion 65 also comprises fixing holes 64 configured to allow the passage of a fixing device 47, for example of the screw / nut type, making it possible to fix the metal covering element 15 to the adjacent secondary insulating panel 7.
  • a fixing device 47 for example of the screw / nut type
  • the metal cover member 15 may include a flange 66 connected to the planar metal plate 63 and extending against a face of the shear webs 14 near the edge 100 and extending towards the supporting structure. , as shown in figure 18.
  • the shear webs 14 are made of a composite material reinforced with fibers, the fibers 99 being oriented at +/- 45 ° as shown diagrammatically in FIG. 20.
  • the insulating fixing beam 11, 111 comprises angles of fixing 67 comprising a first angle iron wing 68 and a second angle iron wing 69 connected to the first angle iron wing 68 so as to form an angle iron at right angles.
  • the second angle flange 69 is glued to one of the shear webs 14 on an upper part thereof.
  • the first corner flange 68 is for its part provided with fixing holes 64 coinciding with the holes 64 of the metal covering element 15 so as to fix the first corner flange 68 with the flat metal plate 63 by means of the devices fixing 47.
  • two adjacent shear webs 14, the metal covering element 15 and the lower plate 41 form a parallelepipedal box where the angles 67 are located at two upper corners inside said box.
  • the second corner flange 69 comprises at its end remote from the first corner flange 68 a bevelled portion 82 to limit the stresses in the bonding, as visible in FIG. 21.
  • the metallic planar plate 63 is secured to the first angle iron flange 68 by welding so that the metallic planar plate 63 and the first angle iron flange 68 do not need to include brackets. fixing holes 64 for fixing them to one another.
  • the flat metal plate 63 and the first angle flange 68 still include fixing holes 64 to allow fixing in addition to welding.
  • the insulating fixing beam 11, 111 comprises on one face of each shear web 14 opposite the position of the fixing angles 67, a cleat 83 extending in a direction from the stop device 19, 119 to the additional stop device 20 , 120.
  • the cleat 83 comprises a main portion 84, an upper extension 85 and a lower extension 86 on either side of the main portion 84.
  • the main portion 84, the upper extension 85 and the lower extension 86 are glued to the shear web 14, the upper extension 85 and the lower extension 86 making it possible to increase the gluing surface of the cleat 83.
  • the upper extension 85 is bevelled so as to have a decreasing thickness as it moves away from the main portion 84 in order to limit the stresses in the bonding.
  • the cleat 83 makes it possible to fix the insulating fixing beam 11, 111 to the supporting structure using anchoring studs 92 distributed over the length of the cleat 83, for example two in number as illustrated in FIG. 18.
  • the stud Anchoring 92 is for example provided with a clamping plate coming against an upper face of the main portion 84 of the cleat 83 in order to hold the cleat 83 and therefore the shear web 14 in position to the supporting structure.
  • the insulating fixing beam 11, 111 is placed between the stop device 19, 119 and the additional stop device 20, 120 in order to limit the movement of the insulating fixing beam 11, 111 in the longitudinal direction of the strakes of the membrane secondary seal 4.
  • Each stopper device 19, 119 has a stopper bar 30, 130 extending continuously parallel to the edge 100 along the edge opposite the edge 100 of the insulating fixing beam 11. , 111.
  • Each additional stop device 20, 120 comprises an additional stop bar 31, 131 extending continuously parallel to the edge 100 along the edge opposite the edge 100 of the insulating fixing beam 11, 111.
  • the stopper device 19, 119 includes a U-shaped stopper element comprising a central portion extending parallel to the ridge 100 along the edge opposite the ridge 100 of the insulating fixing beam 11, 111, a first branch connected to the central part and extending perpendicularly to the ridge 100 in the direction of the latter so as to be fixed to one of the anchoring studs 92, and a second branch connected to the central part opposite the first branch and extending perpendicularly to the edge 100 in the direction of the latter so as to come to be fixed to one of the anchoring studs 92.
  • the stop element comes to frame on either side in the direction of the edge 100 the insulating fixing beam 11, 111 by coming to be fixed to the anchoring studs 92.
  • a metal seal 23 comprising a first section and a second section forming an angle with the first equal to the angle of the dihedron.
  • the metal seal 23 comprises re-entrant corrugations 24 on its first side and on its second side, so as to form a corrugated metal seal 23.
  • These corrugations 24 are located on a part of the metal seal 23 which is not supported. by the insulating fixing beams 11, 111, the metal seal 23 being supported on this part by a corner insulating block 25 having a surface of complementary shape to the metal seal 23, as illustrated in figure 18.
  • the metal seal 23 is not connected directly to a metal end band 87 of the secondary sealing membrane 4, 104.
  • the membrane secondary sealing 4, 104 comprises a metal anchoring strip 88 welded to the support portion 65 of the metal covering element 15. The end metal strake 87 is then sealed to a portion of the metal strip. anchoring 88 and the metal seal 23 is welded in a sealed manner to another portion of the metal anchoring strip 88.
  • the seal may also have an offset portion 89 so as to partially cover the strip 88.
  • the metal seal 23 is sealed directly to the metal cover element 15 while the end metal strake 87 is sealed to a portion of the metal anchor strip. 88. It is therefore not necessary in this embodiment to provide a remote portion 89 on the metal seal 23.
  • the metal seal 23 and the end metal strake 87 are welded in a sealed manner. directly to the metal roofing element 15 so that a portion of the metal roofing element 15 serves as an extension of the secondary waterproofing membrane 4. It is therefore not necessary in this mode to provide a metal strip anchor 88.
  • the secondary insulating panel 7 adjacent to the insulating fixing beam 11, 111 comprises in particular an upper plate 90, a block of insulating foam and a lower plate.
  • the top plate 90 includes a counterbore 91 extending in the direction of the edge 100 and located on the end closest to the edge 100 of the top plate 90.
  • the counterbore 91 is made on a thickness of the plate. greater than 90 equal to the thickness of the metal covering element 15 plus the thickness of the metal anchoring strip 88.
  • the counterbore 91 thus makes it possible to maintain good flatness of the secondary waterproofing membrane 4, 104 at the level of the connection with the metal seal 23 and the end strake 87.
  • the end of the support portion 65 thus comes to be placed in the counterbore 91 of the secondary insulating panel 7.
  • Figure 18 also shows the junction between the primary thermally insulating barrier 5 of the first vessel wall 1 and the primary thermally insulating barrier 105 of the second vessel wall 101 at the angle of the dihedral.
  • the tank comprises a primary corner insulating block 50 which is fixed by two couplers 46 to the first insulating fixing beam 11 and by two couplers 46 to the second insulating fixing beam 111.
  • the metal cover member 15 also includes fixing holes 64 located in the middle of the flat metal plate 63 between the shear webs 14 so as to allow the couplers 46 to fix the block of primary angle 50 to the insulating fixing beams 11, 111.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the vessel, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 22 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm. mobile 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the mobile swivel arm 74 adapts to all sizes of LNG carriers .
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Abstract

L'invention concerne une installation de stockage pour un gaz liquéfié comprenant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la cuve comprenant au moins une première paroi de cuve (1) et une deuxième paroi de cuve (101), chaque paroi de cuve (1, 101) comprenant au moins une membrane d'étanchéité (4, 104) et au moins une barrière thermiquement isolante (2, 102), la première paroi porteuse (3) formant un angle avec la deuxième paroi porteuse (103) le long d'une arête (100), dans laquelle la barrière thermiquement isolante (2) de la première paroi de cuve (1) comprend une poutre isolante de fixation (11), la poutre isolante de fixation (11) comportant une face inférieure (12) située contre la première paroi porteuse (3) et élément de couverture métallique maintenue à distance de la face inférieure (12) par une pluralité de voiles de cisaillement (14), et dans laquelle la structure porteuse comprend un premier dispositif de butée (19), le premier dispositif de butée (19) étant placé le long d'un bord de la poutre isolante de fixation (11) opposé à l'arête (100) et étant configuré pour former une butée limitant le déplacement de la poutre isolante de fixation (11) dans la direction longitudinale s'éloignant de l'arête.

Description

Installation de stockage pour gaz liquéfié
L’invention se rapporte au domaine de des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
Le document FR2549575 décrit une cuve étanche et thermiquement isolante intégrée à la structure porteuse d’un navire, comprenant une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire, une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire. Les membranes d’étanchéité sont formées par une pluralité de plaques métalliques soudées les unes autres. Les membranes d’étanchéité sont fixées à la structure porteuse dans les angles de la cuve à l’aide d’anneaux de raccordement. Chaque anneau de raccordement est donc fixé d’une part à la structure porteuse et d’autre part aux membranes d’étanchéité afin de permettre le transfert des efforts entre les membranes et la coque du navire solidifiant ainsi la structure globale de la cuve.
Lors de chargements et déchargements de GNL, le changement de température ainsi que l’état de remplissage des cuves imposent de fortes contraintes aux membranes de la cuve. De même, lors d’un transport en mer, le mouvement du navire exerce des forces importantes sur les barrières de la cuve. Afin d’éviter une dégradation des caractéristiques d’étanchéité et d’isolation de la cuve, au moins la membrane d’étanchéité secondaire est ancrée sur la structure porteuse à l’aide d’une structure de raccordement au niveau des angles.
L’anneau de raccordement permet notamment de reprendre les efforts de tension résultant de la contraction thermique des plaques métalliques formant les membranes d’étanchéité, de la déformation de la coque, et de l’état de remplissage des cuves.
L’anneau de raccordement est formé d’une pluralité de tôles métalliques assemblées les unes aux autres de manière à ce qu’une partie des tôles métalliques soient reliées à une membrane d’étanchéité d’une première paroi de cuve et qu’une autre partie des tôles métalliques soient reliées à une membrane d’étanchéité d’une deuxième paroi de cuve. L’anneau de raccordement du document FR2549575 permet donc de relier dans le plan formé par la membrane d’étanchéité, la membrane d’étanchéité à la structure porteuse à l’aide de tôles métalliques.
Dans ce genre de structure, au niveau d’un angle de la cuve, la barrière thermiquement isolante secondaire est donc traversée par des tôles métalliques de l’anneau de raccordement ce qui induit un phénomène de pont thermique entre la membrane d’étanchéité et la structure porteuse.
Le document FR2798358 décrit également une cuve étanche et thermiquement isolante intégrée à la structure porteuse d’un navire qui est munie d’un anneau de raccordement. Dans ce document, l’anneau de raccordement est composé d’une pluralité de coupleurs métalliques permettant de fixer la membrane d’étanchéité à la structure porteuse. De la même façon que dans le document FR2549575, les coupleurs du document FR2798358 permettent de relier dans le plan formé par la membrane d’étanchéité, la membrane d’étanchéité à la structure porteuse. Afin de réaliser cette liaison, les coupleurs traversent également la barrière thermiquement isolante. De la même manière que précédemment, l’anneau de raccordement induit un phénomène de pont thermique entre la membrane d’étanchéité et la structure porteuse. De plus, le montage des coupleurs est assez complexe à réaliser.
L’invention vise à remédier aux problèmes rencontrés dans les systèmes de l’art antérieur.
Résumé
Une idée à la base de l’invention est de modifier la fixation de la membrane d’étanchéité à la structure porteuse afin d’améliorer l’isolation de la barrière thermiquement isolante.
Une autre idée à la base de l’invention est de simplifier la fixation de la membrane d’étanchéité à la structure porteuse.
Selon un mode de réalisation, l’invention fournit une installation de stockage pour un gaz liquéfié comprenant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la cuve comprenant au moins une première paroi de cuve fixée à une première paroi porteuse de la structure porteuse et une deuxième paroi de cuve fixée à une deuxième paroi porteuse de la structure porteuse, chaque paroi de cuve comprenant au moins une membrane d’étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d’étanchéité et la structure porteuse, la première paroi porteuse formant un angle avec la deuxième paroi porteuse le long d’une arête, la membrane d’étanchéité de la première paroi de cuve comportant une pluralité de plaques métalliques,
dans laquelle la barrière thermiquement isolante de la première paroi de cuve comprend une poutre isolante de fixation ancrée à la première paroi porteuse et comportant une face supérieure maintenue à distance de la première paroi porteuse par une pluralité de voiles de cisaillement, les voiles de cisaillement étant situés entre la face supérieure et la première paroi porteuse et orientés perpendiculairement à l’arête, la poutre isolante de fixation comportant une garniture isolante agencée entre les voiles de cisaillement, et la poutre isolante de fixation comportant également un élément de couverture métallique comprenant une portion plane formant la face supérieure, un bord d’extrémité de la membrane d’étanchéité de la première paroi de cuve étant soudé à la portion plane de l’élément de couverture métallique,
et dans laquelle la structure porteuse comprend un dispositif de butée faisant saillie de la première paroi porteuse en direction de l’intérieur de la cuve, le dispositif de butée ayant une longueur s’étendant parallèlement à l’arête, le dispositif de butée étant placé le long d’un bord de la poutre isolante de fixation opposé à l’arête et étant configuré pour former une butée limitant le déplacement de la poutre isolante de fixation dans une direction s’éloignant de la deuxième paroi de cuve.
Grâce à ces caractéristiques, la membrane d’étanchéité de la cuve est fixée directement sur la poutre isolante de fixation de la barrière thermiquement isolante à l’aide de l’élément de couverture métallique de sorte que contrairement à l’art antérieur aucun élément métallique ne relie directement la membrane d’étanchéité à la structure porteuse. La fixation de la membrane d’étanchéité à la structure porteuse à l’aide de la poutre isolante de fixation est donc un moyen simple permettant d’améliorer l’isolation de la barrière thermiquement isolante en évitant que des éléments métalliques traversent la barrière thermiquement isolante. De plus, les voiles de cisaillement permettent à la poutre isolante de fixation d’être plus résistante notamment aux efforts de cisaillement dues à la contraction/dilatation de la membrane d’étanchéité et à l’élongation de la poutre du navire correspondant aux mouvements de la coque du navire en réponse à la houle en mer. Ces efforts de cisaillement sont transmis à la poutre isolante de fixation à l’aide de l’élément de couverture métallique et du premier dispositif de butée. De plus, la face supérieure permet d’assurer le portage de la membrane d’étanchéité.
Selon des modes de réalisation, une telle installation de stockage peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la cuve comprend un joint d’étanchéité métallique comprenant un premier pan et un deuxième pan formant un angle avec le premier pan, le premier pan étant soudé de manière étanche à la membrane d’étanchéité de la première paroi de cuve et le deuxième pan étant soudé de manière étanche à la membrane d’étanchéité de la deuxième paroi de cuve, le joint d’étanchéité ondulé étant configuré pour raccorder de manière étanche la membrane d’étanchéité de la première paroi de cuve et la membrane d’étanchéité de la deuxième paroi de cuve,
le premier pan étant supporté par l’élément de couverture métallique de la poutre isolante de fixation.
Selon un mode de réalisation, l’élément de couverture métallique comprend une plaque plane métallique comportant une portion de support faisant saillie des voiles de cisaillement dans la direction de la membrane d’étanchéité et dans un sens opposé à l’arête de sorte qu’une extrémité de la portion de support repose sur un panneau isolant de la barrière thermiquement isolante adjacent à la poutre isolante de fixation.
Selon un mode de réalisation, la plaque plane métallique comporte une dimension dans la direction de l’arête égale à l’écartement entre deux voiles de cisaillement adjacents et est agencée de sorte à s’étendre entre les deux voiles de cisaillement adjacents.
Selon un mode de réalisation, les voiles de cisaillement sont réalisés en matériau composite comportant une résine polymère et des fibres.
Selon un mode de réalisation, les fibres sont orientées au moins partiellement selon un angle de +/- 45° par rapport à une direction d’épaisseur de la paroi de cuve. Une telle caractéristique permet de cumuler une bonne résistance au cisaillement et par exemple une bonne résistance à la traction selon une direction d’épaisseur de la paroi de cuve avec des fibres orientées selon la même direction.
Selon un mode de réalisation, la poutre isolante de fixation comprend une cornière de fixation comportant une première aile de cornière et une deuxième aile de cornière reliée à la première aile de cornière, la deuxième aile de cornière étant fixée à l’un des voiles de cisaillement, et la première aile de cornière étant soudée à l’élément de couverture métallique.
Selon un mode de réalisation, la poutre isolante de fixation comprend une cornière de fixation comportant une première aile de cornière et une deuxième aile de cornière reliée à la première aile de cornière, la deuxième aile de cornière étant fixée à l’un des voiles de cisaillement, et la première aile de cornière comprenant au moins un orifice de fixation coïncidant avec un orifice de fixation de l’élément de couverture métallique de sorte à fixer la première aile de cornière avec la plaque plane métallique au moyen d’un dispositifs de fixation traversant l’orifice de fixation de l’élément de couverture métallique et l’orifice de fixation de la première aile de cornière.
Selon un mode de réalisation, la deuxième aile de cornière est collée à l’un des voiles de cisaillement.
Selon un mode de réalisation, la deuxième aile de cornière comporte à une extrémité éloignée de la première aile de cornière une portion biseautée pour limiter les contraintes dans le collage.
Selon un mode de réalisation, la poutre isolante de fixation comporte un tasseau fixée sur une face du voile de cisaillement perpendiculaire à l’arête et s’étendant parallèlement à l’élément de couverture métallique, le tasseau comportant une portion principale, une extension supérieure et une extension inférieure de part et d’autre de la portion principale, la portion principale, l’extension supérieure et l’extension inférieure étant fixées au voile de cisaillement, l’extension supérieure et l’extension inférieure permettant d’accroitre la surface de fixation du tasseau,
et dans laquelle le tasseau est fixé à la structure porteuse à l’aide de plots d’ancrage répartis sur une longueur du tasseau, les plots d’ancrage venant exercer un effort de serrage contre une face supérieure de la portion principale du tasseau.
Selon un mode de réalisation, l’extension supérieure et l’extension inférieure sont collées au voile de cisaillement, l’extension supérieure et l’extension inférieure permettant d’accroitre la surface de collage du tasseau.
Selon un mode de réalisation, l’extension supérieure est biseautée de sorte à avoir une épaisseur décroissante en s’éloignant de la portion principale afin de limiter les contraintes dans la fixation ou dans le collage.
Selon un mode de réalisation, les voiles de cisaillement sont régulièrement répartis le long de la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation.
Selon un mode de réalisation, la distance entre un premier voile de cisaillement desdits voiles de cisaillement et un deuxième voile de cisaillement directement adjacent au premier voile de cisaillement est inférieure à 340mm.
Selon un mode de réalisation, l’épaisseur des voiles de cisaillement est comprise entre 5 et 25 mm.
Selon un mode de réalisation, les voiles de cisaillements sont réalisés dans un matériau tel que le contreplaqué, du bois, un matériau composite, ou tout autre matériau ayant une raideur suffisante et un rapport conductivité thermique sur raideur limité.
Selon un mode de réalisation, la poutre isolante de fixation est une première poutre isolante de fixation, le dispositif de butée est un premier dispositif de butée et la membrane d’étanchéité de la première paroi de cuve comportant une pluralité de plaques métalliques ou une pluralité de virures parallèles à une direction longitudinale perpendiculaire ou oblique à ladite arête, chaque virure comportant une portion centrale plane reposant sur une surface supérieure de la barrière thermiquement isolante et deux bords relevés faisant saillie vers l’intérieur de la cuve par rapport à la portion centrale, les virures étant juxtaposées selon un motif répété et soudées ensemble de manière étanche au niveau des bords relevés, et la barrière thermiquement isolante de la deuxième paroi de cuve comprend une deuxième poutre isolante de fixation comportant une face supérieure maintenue à distance de la deuxième paroi porteuse par une pluralité de voiles de cisaillement, les voiles de cisaillement étant situés entre la face supérieure et la deuxième paroi porteuse et orientés perpendiculairement à l’arête, la deuxième poutre isolante comportant une garniture isolante agencée entre les voiles de cisaillement, et la deuxième poutre isolante de fixation comportant également un élément de couverture métallique comprenant une portion plane formant la face supérieure, un bord d’extrémité de la membrane d’étanchéité de la deuxième paroi de cuve étant soudé à la portion plane de l’élément de couverture métallique,
et dans laquelle la structure porteuse comprend un deuxième dispositif de butée faisant saillie de la deuxième paroi porteuse en direction de l’intérieur de la cuve, le deuxième dispositif de butée ayant une longueur s’étendant parallèlement à l’arête, le deuxième dispositif de butée étant placé le long d’un bord de la deuxième poutre isolante opposé à l’arête et étant configuré pour former une butée limitant le déplacement de la deuxième poutre isolante de fixation dans une direction s’éloignant de la première paroi de cuve
Selon un mode de réalisation, l’élément de couverture métallique de la poutre isolante de fixation et/ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation comprend une première aile latérale s’étendant perpendiculairement aux voiles de cisaillement et en direction de la première paroi porteuse ou de la deuxième paroi porteuse respectivement, la première aile latérale prenant en sandwich les voiles de cisaillement avec le dispositif de butée ou le premier dispositif de butée et/ou le deuxième dispositif de butée respectivement afin de reprendre les efforts de cisaillement exercés par la membrane d’étanchéité
Ainsi, la première aile latérale permet d’améliorer la transmission des efforts provenant de la membrane d’étanchéité, notamment sa tension lors d’une contraction thermique due à par exemple un refroidissement lors du chargement du GNL ou une élongation de la poutre du navire, vers la poutre isolante de fixation.
Selon un mode de réalisation, l’élément de couverture métallique de la poutre isolante de fixation comprend une troisième aile plane dans le prolongement de la portion plane de l’élément de couverture métallique de la poutre isolante de fixation et s’étendant en direction de l’arête afin que les éléments de couvercle métallique des poutres isolantes de fixation des deux parois formant l’arête se rejoignent quasiment.
Ainsi les éléments de couvercle métallique des poutres isolantes de fixation des deux parois assurent le portage de la membrane d’étanchéité dans l’angle.
Selon un mode de réalisation, l’élément de couverture métallique de la poutre isolante de fixation et/ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation comprend une deuxième aile latérale s’étendant perpendiculairement aux voiles de cisaillement et en direction de la première paroi porteuse ou de la deuxième paroi porteuse respectivement, de sorte que la première aile latérale et la deuxième aile latérale encadrent les voiles de cisaillement, la première aile latérale étant située plus proche de l’arête que la deuxième aile latérale.
Grâce à ces caractéristiques, la deuxième aile latérale permet, de la même manière que la première aile latérale, d’améliorer la transmission des efforts provenant de la membrane d’étanchéité vers la poutre isolante de fixation. De plus, les ailes latérales en encadrant les voiles de cisaillement permettent d’éviter la rotation de l’élément de couverture métallique autour des voiles de cisaillement ce qui pourrait nuire à la reprise des efforts.
Selon un mode de réalisation, la première aile latérale et/ou la deuxième aile latérale sont reliées à la portion plane de l’élément de couverture métallique, de préférence la première aile latérale et la deuxième aile latérale sont reliées à la portion plane au niveau de deux extrémités opposées.
Selon un mode de réalisation, la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation comporte une portion anti-déversement externe prolongeant les voiles de cisaillement en direction de l’arête et s’étendant sur une portion de la dimension séparant la première paroi porteuse ou la deuxième paroi porteuse respectivement de l’élément de couverture métallique, la portion anti-déversement externe étant fixée par un moyen de fixation à la première paroi porteuse et/ou à la deuxième paroi porteuse respectivement.
Selon un mode de réalisation, la structure porteuse comprend un dispositif de buté additionnel ou un premier dispositif de butée additionnel faisant saillie de la première paroi porteuse en direction de l’intérieur de la cuve, le dispositif de butée additionnel ou le premier dispositif de butée additionnel ayant une longueur s’étendant parallèlement à l’arête, le dispositif de butée additionnel ou le premier dispositif de butée additionnel étant placé le long d’un bord de la poutre isolante de fixation ou de la première poutre isolante de fixation adjacent à l’arête et étant configuré pour former une butée limitant le déplacement de la poutre isolante de fixation ou de la première poutre isolante de fixation dans une direction opposée à la direction du dispositif de butée ou du premier dispositif de butée.
Selon un mode de réalisation, la structure porteuse comprend un deuxième dispositif de butée additionnel faisant saillie de la deuxième paroi porteuse en direction de l’intérieur de la cuve, le deuxième dispositif de butée additionnel ayant une longueur s’étendant parallèlement à l’arête, le deuxième dispositif de butée additionnel étant placé le long d’un bord de la deuxième poutre isolante de fixation adjacent à l’arête et étant configuré pour former une butée limitant le déplacement de la deuxième poutre isolante de fixation dans une direction opposée à la direction de la deuxième barre de butée.
Selon un mode de réalisation, la cuve comprend un joint d’étanchéité ondulé ou non comprenant un premier pan et un deuxième pan formant un angle avec le premier pan, le premier pan étant soudé de manière étanche à la membrane d’étanchéité de la première paroi de cuve et le deuxième pan étant soudé de manière étanche à la membrane d’étanchéité de la deuxième paroi de cuve, le joint d’étanchéité ondulé étant configuré pour raccorder de manière étanche la membrane d’étanchéité de la première paroi de cuve et la membrane d’étanchéité de la deuxième paroi de cuve afin de former une membrane d’étanchéité continue au niveau d’un angle de la cuve.
Selon un mode de réalisation, la membrane d’étanchéité comporte un bandeau métallique d’ancrage soudé sur l’élément de couverture métallique, l’une des plaques métalliques étant soudée de manière étanche sur une portion du bandeau métallique d’ancrage et le joint métallique étant soudée de manière étanche sur une autre portion du bandeau métallique d’ancrage.
Selon un mode de réalisation, le panneau isolant secondaire adjacent à la poutre isolante de fixation comporte une plaque supérieure munie d’un lamage s’étendant dans la direction de l’arête et situé sur l’extrémité la plus proche de l’arête de la plaque supérieure, une extrémité de l’élément de couverture métallique étant placée dans le lamage afin d’obtenir une surface plane de support de la membrane d’étanchéité.
Selon un mode de réalisation, la cuve comprend un bloc d’isolation d’angle situé dans le prolongement de la barrière thermiquement isolante de la première paroi de cuve et de la barrière thermiquement isolante de la deuxième paroi de cuve au niveau de l’arête, le bloc d’isolation d’angle étant configuré pour assurer la continuité de la barrière thermiquement isolante de la première paroi de cuve et de la barrière thermiquement isolante de la deuxième paroi de cuve au niveau de l’arête de la structure porteuse.
Selon un mode de réalisation, le bloc d’isolation d’angle comprend une première face située contre la première paroi porteuse, une deuxième face située contre la deuxième paroi porteuse, une troisième face configurée pour offrir une surface d’appui au premier pan du joint d’étanchéité ondulé et une quatrième face configurée pour offrir une surface d’appui au deuxième pan du joint d’étanchéité ondulé.
Selon un mode de réalisation le joint d’étanchéité ondulé est un joint métallique d’étanchéité ondulé.
Selon un mode de réalisation, au moins une ou chaque ondulation du joint d’étanchéité ondulé s’étend parallèlement à l’arête.
Selon un mode de réalisation, la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation est juxtaposée au bloc d’isolation d’angle.
Selon un mode de réalisation, le dispositif de butée ou le premier dispositif de butée et/ou le deuxième dispositif de butée comporte une barre de butée ou une première barre de butée et/ou une deuxième barre de butée respectivement, la barre de butée ou la première barre de butée et/ou la deuxième barre de butée s’étendant de manière continue parallèlement à l’arête le long du bord opposé à l’arête de la poutre isolante de fixation ou la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement.
Selon un mode de réalisation, le dispositif de butée additionnel ou le premier dispositif de butée additionnel et/ou le deuxième dispositif de butée additionnel comporte une barre de butée additionnelle ou une première barre de butée additionnelle et/ou une deuxième barre de butée additionnelle respectivement, la barre de butée additionnelle ou la première barre de butée additionnelle et la deuxième barre de butée additionnelle s’étendant de manière continue parallèlement à l’arête le long du bord adjacent à l’arête de la poutre isolante de fixation ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement.
Selon un mode de réalisation, le dispositif de butée ou le premier dispositif de butée et/ou le deuxième dispositif de butée comporte une pluralité de pattes de butée ou une pluralité de premières pattes de butée et/ou une pluralité de deuxièmes pattes de butée respectivement, les pattes de butée ou les premières pattes de butée et/ou les deuxièmes pattes de butée étant régulièrement espacées le long du bord opposé à l’arête de la poutre isolante de fixation ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement.
Selon un mode de réalisation, le dispositif de butée additionnel ou le premier dispositif de butée additionnel et/ou le deuxième dispositif de butée additionnel comporte une pluralité de pattes de butée additionnelles ou une pluralité de premières pattes de butée additionnelles et/ou une pluralité de deuxièmes pattes de butée additionnelles respectivement, les pattes de butée additionnelles ou les premières pattes de butée additionnelles et/ou les deuxièmes pattes de butée additionnelles étant régulièrement espacées le long du bord adjacent à l’arête de la poutre isolante de fixation ou de la première poutre isolante et/ou de la deuxième poutre isolante respectivement.
Selon un mode de réalisation, le dispositif d’ancrage additionnel ou le premier dispositif de butée additionnel et/ou le deuxième dispositif de butée additionnel comporte un dispositif formant crochet configuré pour fixer la portion anti-déversement externe à la première paroi porteuse, le dispositif formant crochet constituant ledit moyen de fixation.
Selon un mode de réalisation, l’une des ou les pattes de butée, ou l’une des ou les pattes de butée additionnelles ont la forme d’un crochet de sorte à former le dispositif formant crochet.
Selon un mode de réalisation, l’une des ou les barres de butée, ou l’une des ou les barres de butée additionnelles ont la forme d’un crochet de sorte à former le dispositif formant crochet.
Selon un mode de réalisation, la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation comporte une portion anti-déversement interne prolongeant les voiles de cisaillement dans une direction opposé à l’arête et s’étendant sur une portion de la dimension séparant la première paroi porteuse ou la deuxième paroi porteuse respectivement de l’élément de couverture métallique, la portion anti-déversement interne étant fixée par un moyen de fixation à la première paroi porteuse et/ou à la deuxième paroi porteuse respectivement, et le dispositif de butée ou le premier dispositif de butée comporte un dispositif formant crochet ou un premier dispositif formant crochet configuré pour fixer la portion anti-déversement interne à la première paroi porteuse.
Ainsi, la portion anti-déversement interne permet d’éviter la déformation voire le basculement de la poutre isolante de fixation lorsque la membrane d’étanchéité exerce un effort important sur celle-ci dans un sens opposé par rapport à la portion anti-déversement externe.
Selon un mode de réalisation, le moyen de fixation comprend un goujon fixant la portion anti-déversement externe ou la portion anti-déversement interne à la structure porteuse, de sorte qu’une première extrémité du goujon est ancrée à la structure porteuse et une deuxième extrémité du goujon opposée à la première extrémité est équipée d’un écrou venant en appui, directement ou indirectement, sur la portion anti-déversement externe ou la portion anti-déversement interne. Par exemple, le goujon peut traverser de part en part ou être placé à côté de la portion anti-déversement externe ou la portion anti-déversement interne.
Selon un mode de réalisation, le moyen de fixation comprend une plaque de renfort étant placée entre l’écrou et la portion anti-déversement externe ou la portion anti-déversement interne de sorte à propager l’effort de serrage de l’écrou sur une surface correspondant à la surface de la plaque de renfort.
Selon un mode de réalisation, au moins une parmi la portion anti-déversement externe et la portion anti-déversement interne est formée par des portions de prolongement des voiles de cisaillement.
Selon un mode de réalisation, la portion anti-déversement externe comprend une première barre latérale s’étendant parallèlement à l’arête, la première barre latérale comportant une paroi plaquée contre une surface latérale des voiles de cisaillement.
Selon un mode de réalisation, la portion anti-déversement interne comprend une deuxième barre latérale s’étendant parallèlement à l’arête, la deuxième barre latérale comportant une paroi plaquée contre une autre surface latérale des voiles de cisaillement, la première barre latérale et la deuxième barre latérale encadrant les voiles de cisaillement.
Selon un mode de réalisation, au moins une des ou les premières pattes de butée et/ou au moins une des ou les deuxièmes pattes de butée comprennent une première portion de patte s’étendant dans un plan parallèle à la face inférieure de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement, la première portion de patte venant en chevauchement sur la portion anti-déversement interne.
Selon un mode de réalisation, au moins une des ou les premières pattes de butée et/ou au moins une des ou les deuxièmes pattes de butée comprennent une deuxième portion de patte s’étendant dans un plan orthogonal à la première portion de patte et orthogonal aux voiles de cisaillement.
Selon un mode de réalisation, au moins une des ou les premières pattes de butée additionnelles et/ou au moins une des ou les deuxièmes pattes de butée additionnelles comprennent une première portion de patte s’étendant dans un plan parallèle à la face inférieure de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement, la première portion de patte venant en chevauchement sur la portion anti-déversement externe.
Selon un mode de réalisation, au moins une des ou les premières pattes de butée additionnelles et/ou au moins une des ou les deuxièmes pattes de butée additionnelles comprennent une deuxième portion de patte s’étendant dans un plan orthogonal à la première portion de patte et orthogonal aux voiles de cisaillement.
Selon un mode de réalisation, la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation comprend une plaque supérieure située sous l’élément de couverture métallique et s’étendant le long de la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation respectivement, et dans laquelle chaque voile de cisaillement comprend sur une arête supérieure deux tenons supérieurs séparés l’un de l’autre de manière à former une encoche supérieure, la plaque supérieure comprenant une pluralité de rainures s’étendant parallèlement aux voiles de cisaillement et ayant une forme complémentaire des tenons supérieurs de manière à ce que les tenons supérieurs se logent dans les rainures de la plaque supérieure, afin à former un assemblage tenon-mortaise entre les voiles de cisaillement et la plaque supérieure.
Selon un mode de réalisation, la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation comprend N voiles de cisaillement, N étant un entier naturel, de préférence N étant supérieur ou égal à 3, de manière préférentielle N étant supérieur ou égal à 5.
Selon un mode de réalisation, la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation comprend une plaque inférieure située sur la première paroi porteuse et s’étendant le long de la poutre isolante de fixation et/ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation respectivement, et dans laquelle chaque voile de cisaillement comprend sur une arête inférieure deux tenons inférieurs séparés l’un de l’autre de manière à former une encoche inférieure, la plaque inférieure comprenant une pluralité de rainures s’étendant parallèlement aux voiles de cisaillement et ayant une forme complémentaire des tenons inférieurs de manière à ce que les tenons inférieurs se logent dans les rainures de la plaque inférieure, de manière à former un assemblage tenon-mortaise entre les voiles de cisaillement et la plaque inférieure.
Selon un mode de réalisation, la plaque supérieure et/ou la plaque inférieure comprend 2N rainures de sorte chaque tenon supérieur et/ou chaque tenon inférieur de la poutre isolante de fixation et/ou la première poutre isolante de fixation et/ou la deuxième poutre isolante de fixation soit logée dans une des rainures de la plaque supérieure et/ou inférieure respectivement.
Selon un mode de réalisation, la barrière thermiquement isolante de la première paroi de cuve et/ou la barrière thermiquement isolante de la deuxième paroi de cuve comprend une pluralité de panneaux isolants comportant une paroi inférieure située à proximité de la première paroi porteuse et/ou de la deuxième paroi porteuse respectivement, une paroi supérieure, et une garniture isolante structurelle maintenant à distance la paroi supérieure de la paroi inférieure, la garniture isolante étant de préférence composée de mousse polymère renforcée de fibres.
Selon un mode de réalisation, la barrière thermiquement isolante est une barrière thermiquement isolante secondaire et la membrane d’étanchéité est une membrane d’étanchéité secondaire, et dans laquelle la première paroi de cuve et la deuxième paroi de cuve comportent en outre, dans une direction d’épaisseur de l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante primaire portée par la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire portée par la barrière thermiquement isolante primaire.
Selon un mode de réalisation, la membrane d’étanchéité primaire comporte une pluralité de tôles métalliques ondulées, les tôles métalliques ondulées étant juxtaposées selon un motif répété et soudées ensemble de manière étanche.
Selon un mode de réalisation, la membrane d’étanchéité ou la membrane d’étanchéité secondaire est formée dans un alliage de fer et de nickel présentant un coefficient de dilatation thermique compris entre 0.5.10-6 et 2.10-6 K-1.
Selon un mode de réalisation, la membrane d’étanchéité primaire est formée en acier inoxydable.
Selon un mode de réalisation, l’élément de couverture de métallique est formé en acier inoxydable ou en alliage à base de fer et à forte teneur en manganèse.
Selon un mode de réalisation, le joint d’étanchéité ondulé est formé dans le même matériau que la membrane d’étanchéité secondaire, de préférence dans un alliage de fer et de nickel présentant un coefficient de dilatation thermique compris entre 0.5.10-6 et 2.10-6 K-1.
Selon un mode de réalisation, la garniture isolante de la poutre isolante de fixation et/ou de la première poutre isolante de fixation et/ou de la deuxième poutre isolante de fixation est formée de perlite, de laine de verre, de mousse ou tout autre matériau isolant thermiquement adapté.
Selon un mode de réalisation, la barrière thermiquement isolante primaire comprend au moins un panneau isolant primaire d’angle, le panneau isolant primaire d’angle étant fixé à au moins l’une de la première poutre isolante de fixation et de la deuxième poutre isolante de fixation à l’aide d’un coupleur.
Selon un mode de réalisation, la première paroi de cuve et/ou la deuxième paroi de cuve comprend des bandes de mastic disposées entre la poutre isolante de fixation et la première paroi porteuse ou entre la première poutre isolante de fixation et la première paroi porteuse et/ou entre la deuxième poutre isolante de fixation et la deuxième paroi porteuse.
Selon un mode de réalisation, les bandes de mastic sont collés à la structure porteuse.
Selon un mode de réalisation, la membrane d’étanchéité comporte une pluralité de virures parallèles à une direction longitudinale perpendiculaire ou oblique à ladite arête, chaque virure comportant une portion centrale plane reposant sur une surface supérieure de la barrière thermiquement isolante et deux bords relevés faisant saillie vers l’intérieur de la cuve par rapport à la portion centrale, les virures étant juxtaposées selon un motif répété et soudées ensemble de manière étanche au niveau des bords relevés.
Selon des modes de réalisation, la poutre isolante de fixation comporte une face inférieure, c’est-à-dire une surface tournée vers la première paroi porteuse, qui peut être réalisée de manière continue par exemple sous la forme d’une paroi de fond, ou discontinue par exemple par des surfaces d’arêtes inférieures ou des semelles inférieures des voiles de cisaillement.
Selon un mode de réalisation, les voiles de cisaillement comprennent une portion centrale orientée perpendiculairement à l’arête et deux portions périphériques s’étendant perpendiculairement à la portion centrale, les portions périphériques étant parallèles l’une à l’autre et encadrant la portion centrale.
Selon un mode de réalisation, les portions périphériques comportent une semelle inférieure et une semelle supérieure s’étendant parallèlement à la première paroi porteuse, les semelles inférieures de l’ensemble des voiles de cisaillement formant une paroi de fond continue ou discontinue, les semelles supérieures de l’ensemble des voiles de cisaillement formant une paroi de couvercle continue ou discontinue.
Selon un mode de réalisation, les portions périphériques comportent une semelle frontale et une semelle arrière s’étendant perpendiculairement à la première paroi porteuse, les semelles frontales de l’ensemble des voiles de cisaillement formant une paroi frontale continue ou discontinue tournée à l’opposé de l’arête, les semelles arrière de l’ensemble des voiles de cisaillement formant une paroi arrière continue ou discontinue tournée vers l’arête.
Selon un mode de réalisation, la poutre isolante de fixation comprend un élément de fond comportant une portion plane reposant sur la première paroi porteuse et deux ailes latérales encadrant les voiles de cisaillement et s’étendant parallèlement aux voiles de cisaillement en direction de l’élément de couverture métallique, les ailes latérales étant fixées par un moyen de fixation sur la portion centrale de voiles de cisaillement d’extrémité, les voiles de cisaillement d’extrémité étant deux voiles de cisaillement formés aux extrémités de la poutre isolante de fixation dans la direction de l’arête.
Selon un mode de réalisation, l’élément de fond comprend au moins un élément d’appui fixé à l’une des ailes latérales, l’élément d’appui faisant saillie de l’un des voiles de cisaillement d’extrémité, le moyen d’ancrage comprenant un dispositif formant crochet situé sur l’élément d’appui et configuré pour fixer la poutre isolante de fixation à la première paroi porteuse.
Selon un mode de réalisation, l’élément d’appui est fixé à une extrémité d’une aile latérale de l’élément de fond.
Selon un mode de réalisation, l’élément d’appui est fixé à l’une des ailes latérales de manière à prendre en sandwich un voile de cisaillement d’extrémité.
Selon un mode de réalisation, l’élément de fond est réalisé dans un matériau métallique ou dans un matériau composite.
Selon un mode de réalisation, l’élément de couverture métallique comprend deux ailes internes s’étendant aux extrémités de la portion plane et parallèlement à la première aile latérale et à la deuxième aile latérale, les ailes internes étant situées entre les portions périphériques des voiles de cisaillement, la première aile latérale et la deuxième aile latérale encadrant les portions périphériques des voiles de cisaillement, la première aile latérale étant fixée par un moyen de fixation à l’une des ailes internes et la deuxième aile latérale étant fixée par un moyen de fixation à l’autre des ailes internes.
Selon un mode de réalisation, une aile interne comporte une pluralité de portions d’ailes espacées les unes des autres dans la direction de l’arête, un voile de cisaillement ou la portion principale d’un voile de cisaillement étant interposé entre deux portions d’ailes adjacentes.
Une telle installation de stockage peut être une installation de stockage terrestre, par exemple pour stocker du GNL ou être une installation de stockage flottante, côtière ou en eau profonde, notamment sur un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle installation de stockage peut aussi servir de réservoir de carburant dans tout type de navire.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une installation de stockage précitée, une partie de la double coque formant la structure porteuse de l’installation de stockage.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
La figure 1 représente une vue en coupe d’une cuve au niveau d’un angle formé par deux parois de cuve selon un premier mode réalisation.
La figure 2 représente une vue en coupe d’une cuve au niveau d’un angle formé par deux parois de cuve selon un deuxième mode réalisation.
La figure 3 représente une vue en coupe partielle d’une cuve au niveau d’un angle formé par deux parois de cuve selon un troisième mode de réalisation.
La figure 4 est une vue en perspective d’un angle formé par deux parois de cuve où seules la première poutre isolante de fixation et la deuxième poutre isolante de fixation sont représentées selon le premier mode de réalisation.
La figure 5 représente une vue schématique de face d’une poutre isolante de fixation avec un dispositif de butée, selon un quatrième mode de réalisation.
La figure 6 représente une vue schématique en perspective d’une poutre isolante de fixation selon le quatrième mode de réalisation.
La figure 7 représente une vue schématique en perspective d’un angle formé par deux parois de cuve où seules la première poutre isolante de fixation et la deuxième poutre isolante de fixation sont représentées selon un cinquième mode de réalisation.
La figure 8 représente une vue éclatée d’une poutre isolante de fixation selon un sixième mode de réalisation.
La figure 9 représente une vue schématique en perspective d’une poutre isolante de fixation selon un septième mode de réalisation.
La figure 10 représente une vue en perspective d’une poutre isolante de fixation selon un huitième mode de réalisation, l’élément de couverture métallique étant présenté à distance des voiles de cisaillement.
La figure 11 représente une vue en perspective d’une poutre isolante de fixation selon un neuvième mode de réalisation, l’élément de couverture métallique étant présenté à distance des voiles de cisaillement.
La figure 12 représente une vue éclatée d’une poutre isolante de fixation selon un dixième mode de réalisation.
La figure 13 représente une vue en perspective de la poutre isolante de fixation selon le dixième mode de réalisation.
La figure 14 représente une vue éclatée d’une poutre isolante de fixation selon un onzième mode de réalisation.
La figure 15 représente une vue en perspective de la poutre isolante de fixation selon le onzième mode de réalisation.
La figure 16 représente une vue éclatée de la poutre isolante de fixation selon le cinquième mode de réalisation.
La figure 17 représente une vue en perspective de la poutre isolante de fixation selon le cinquième mode de réalisation.
La figure 18 représente une vue schématique en perspective d’un angle formé par deux parois de cuve illustrant notamment la première poutre isolante de fixation et la deuxième poutre isolante de fixation selon un douzième mode de réalisation
La figure 19 représente une vue de détail XIX de la figure 18 illustrant notamment la fixation de la membrane d’étanchéité secondaire à la poutre isolante de fixation.
La figure 20 représente une vue en perspective de la poutre isolante de fixation selon le douzième mode de réalisation.
La figure 21 représente une vue de face de la poutre isolante de fixation selon le douzième mode de réalisation.
La figure 22 est une représentation schématique écorchée d’un navire méthanier comportant une installation de stockage pour un gaz liquéfié, et d’un terminal de chargement/déchargement de cette installation.
Par convention, on appellera « sur » ou « au-dessus » ou « supérieur » une position située plus près de l’intérieur de la cuve et « sous » ou « en dessous » ou « inférieur » une position située plus près de la structure porteuse, quelle que soit l’orientation de la paroi de cuve par rapport au champ de gravité terrestre.
Sur la figure 1, on a représenté la structure multicouche de deux parois de cuve 1 et 101 d’une cuve étanche et thermiquement isolante pour le stockage d’un gaz liquéfié, tel que du gaz naturel liquéfié (GNL). Chaque paroi de cuve 1, 101 comporte successivement, dans le sens de l’épaisseur, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire 2, 102 retenue à une paroi porteuse 3, 103, une membrane d’étanchéité secondaire 4, 104 reposant contre la barrière thermiquement isolante secondaire 2, 102, une barrière thermiquement isolante primaire 5, 105 reposant contre la membrane d’étanchéité secondaire 4, 104 et une membrane d’étanchéité primaire 6, 106 destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
La structure porteuse peut notamment être formée par la coque ou la double coque d’un navire. La structure porteuse comporte une pluralité de parois porteuses 3, 103 définissants la forme générale de la cuve, habituellement une forme polyédrique. Les deux parois porteuses 3 et 103 se rejoignent au niveau d’une arête 100, en formant un angle de dièdre qui pourrait avoir différentes valeurs. Ici, un angle de 90° est représenté.
Hors de la zone d’angle, la barrière thermiquement isolante secondaire 2, 102 comporte une pluralité de panneaux isolants secondaires 7, 107 qui sont ancrés sur la paroi porteuse 3, 103 au moyen de dispositifs de retenue (non représenté) connus par ailleurs.
Un panneau isolant secondaire 7, 107 comporte une plaque de fond, une plaque de couvercle et éventuellement une plaque intermédiaire, par exemple réalisées en bois contreplaqué. Le panneau isolant secondaire 7, 107 comporte également une ou plusieurs couches de mousse polymère isolante prises en sandwich entre la plaque de fond, la plaque de couvercle et l’éventuelle plaque intermédiaire et collées à celles-ci. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne, optionnellement renforcée par des fibres
La membrane d’étanchéité secondaire 4, 104 comporte une nappe continue de virures métalliques, à bord relevés. Les virures sont soudées par leurs bords relevés sur des supports de soudure parallèles qui sont fixés dans des rainures ménagées sur les plaques de couvercle des panneaux isolants secondaires 7, 107. Les virures sont, par exemple, réalisées en Invar ® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1,2.10-6 et 2.10-6 K-1. Il est aussi possible d’utiliser des alliages de fer et de manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7 à 9.10-6 K-1.
La barrière thermiquement isolante primaire 5, 105 comporte une pluralité de panneaux isolants primaires 8, 108 qui peuvent être réalisés selon différentes structures connues par ailleurs.
La membrane d’étanchéité primaire 6, 106 peut être réalisée de diverses manière. Sur la figure 1, elle comporte une nappe continue de tôle qui présente deux séries d’ondulations mutuellement perpendiculaires. La première série d’ondulations 9, 109 s’étend perpendiculairement à l’arête 100. La deuxième série d’ondulations 10, 110 s’étend parallèlement à l’arête 100. Les deux séries d’ondulations peuvent présenter un espacement régulier ou un espacement irrégulier périodique
La structure de l’élément secondaire de la cuve au niveau de la jonction entre les deux parois de cuve 1 et 101 va maintenant être plus particulièrement décrite, notamment en référence aux figures 1 et 2.
La membrane d’étanchéité secondaire 4 de la première paroi de cuve 1 et la membrane d’étanchéité secondaire 104 de la deuxième paroi de cuve 101 sont ancrées à la structure porteuse à l’aide d’une première poutre isolante de fixation 11 et d’une deuxième poutre isolante de fixation 111 respectivement, au niveau d’un angle de la cuve, c’est-à-dire à proximité de l’arête 100 où les deux parois porteuses 3 et 103 se rejoignent.
En effet, la barrière thermiquement isolante secondaire 2 de la première paroi de cuve 1 et la barrière thermiquement isolante secondaire 102 de la deuxième paroi de cuve 101 comprennent à proximité de l’arête 100 une première poutre isolante de fixation 11 et une deuxième poutre isolante de fixation 111 respectivement, la première poutre isolante de fixation 11 et la deuxième poutre isolante de fixation 111 se trouvant dans la continuité des panneaux isolants secondaires 7, 107.
La première poutre isolante de fixation 11 et la deuxième poutre isolante de fixation 111 sont ancrées à la première paroi porteuse 3 et la deuxième paroi porteuse 103 respectivement et ont une longueur s’étendant parallèlement à l’arête 100. Chaque poutre isolante de fixation 11, 111 comporte une face inférieure 12 située contre la paroi porteuse 3, 103 et une face supérieure 3 maintenue à distance de la face inférieure 12 par une pluralité de voiles de cisaillement 14.
Les voiles de cisaillement 14 sont des parois planes situées entre la face supérieure et la face inférieure et orientées perpendiculairement à l’arête 100. Chaque poutre isolante de fixation 11, 111 comporte une garniture isolante thermiquement, telle que la laine de verre ou la perlite ou un bloc de mousse, entre les voiles de cisaillement 14. Les voiles de cisaillement 14 sont régulièrement répartis le long des poutres isolantes de fixation 11, 111, comme visibles sur les figures 4 et 6.
Chaque poutre isolante de fixation 11, 111 comporte également une plaque supérieure 40 au niveau de la face supérieure 13 permettant de fixer les voiles de cisaillement 14 les uns aux autres dans une portion supérieure. De la même manière, chaque poutre isolante de fixation 11, 111 comporte une plaque inférieure 41 au niveau de la face inférieure 12 permettant de fixer les voiles de cisaillement 14 les uns aux autres dans une portion inférieure.
Comme on peut le voir sur les figures 1 et 2, les poutres isolantes de fixation 11, 111 comprennent un élément de couverture métallique 15 comportant une portion plane 16 située contre la face supérieure 13, une première aile latérale 17 s’étendant perpendiculairement aux voiles de cisaillement 14 contre un bord des voiles 14 adjacent à l’arête 100 et en direction de la face inférieure 12, et une deuxième aile latérale 18 s’étendant perpendiculairement aux voiles de cisaillement 14 contre un bord des voiles 14 opposée à l’arête 100 et en direction de la face inférieure 12. Un bord d’extrémité de la membrane d’étanchéité secondaire 4, 104 est soudé à la portion plane 16 de l’élément de couverture métallique 15.
La première aile latérale 17 et la deuxième aile latérale 18 sont reliées à la portion plane 16 au niveau de ses deux extrémités opposées. Ainsi, l’élément de couverture métallique 15 est placé contre trois faces des poutres isolantes de fixation 11, 111 afin de transmettre les efforts de traction/compression de la membrane d’étanchéité secondaire 4, 104 à la poutre isolante de fixation 11, 111.
La structure porteuse comprend un premier dispositif de butée 19 faisant saillie de la première paroi porteuse 3 en direction de l’intérieur de la cuve, le premier dispositif de butée 19 ayant une longueur s’étendant parallèlement à l’arête 100. Le premier dispositif de butée 19 est placé le long d’un bord de la première poutre isolante de fixation 11 opposé à l’arête 100 et est configuré pour former une butée limitant le déplacement de la première poutre isolante de fixation 11 dans la direction longitudinale des virures de la membrane d’étanchéité secondaire 4 de la première paroi de cuve 1. La structure porteuse comprend également un premier dispositif de butée additionnel 20 faisant saillie de la première paroi porteuse 3 en direction de l’intérieur de la cuve, le premier dispositif de butée additionnel 20 ayant une longueur s’étendant parallèlement à l’arête 100. Le premier dispositif de butée additionnel est placé le long d’un bord de la première poutre isolante de fixation 11 adjacent à l’arête 100 et est configuré pour former une butée limitant le déplacement de la première poutre isolante de fixation 11 dans une direction opposée à la direction du premier dispositif de butée 19. Ainsi, le premier dispositif de butée 19 et le dispositif de butée additionnel 20 bloquent la translation de la première poutre isolante de fixation 11 dans la direction longitudinale des virures de la membrane d’étanchéité secondaire 4.
De façon analogue, la structure porteuse comprend un deuxième dispositif de butée 119 et un deuxième dispositif de butée additionnel 120 qui font saillie de la deuxième paroi porteuse 103 et qui bloquent la translation de la deuxième poutre isolante de fixation 111 dans la direction longitudinale des virures de la membrane d’étanchéité secondaire 104.
Dans le premier mode de réalisation illustré à la figure 1 et dans le deuxième mode de réalisation illustré à la figure 2, le premier dispositif de butée 19 comporte une première barre de butée 30 s’étendant de manière continue parallèlement à l’arête 100 le long du bord opposé à l’arête 100 de la première poutre isolante de fixation 11 et le premier dispositif de butée additionnel 20 comporte une première barre de butée additionnel 31 s’étendant de manière continue parallèlement à l’arête 100 le long du bord adjacent à l’arête 100 de la première poutre isolante de fixation 11. De manière analogue, le deuxième dispositif de butée 119 comprend une deuxième barre de butée 130 et le deuxième dispositif de butée 120 comprend une deuxième barre de butée additionnelle 131.
De plus comme illustré dans le premier mode de réalisation et le deuxième mode de réalisation, les poutres isolantes de fixation 11, 111 comportent chacune une portion anti-déversement externe 21 prolongeant la face inférieure 12 en direction de l’arête 100 et s’étendant sur une portion de la dimension séparant la face inférieure 12 de la face supérieure 13. La portion anti-déversement externe est fixée par un moyen de fixation 47 à la structure porteuse.
Ainsi, comme visible à la figure 4 qui montre une vue où la structure porteuse a été omise, la portion anti-déversement externe 21 est formée par des portions de prolongement 43 des voiles de cisaillement 14, c’est-à-dire des portions des voiles 14 qui s’étendent au-delà de la portion principale située sous l’élément de couverture métallique 15. De plus, la plaque inférieure 41 peut être prolongée dans la même direction que les portions de prolongement 43 afin d’être placée en dessous de ceux-ci. Dans ce mode de réalisation, le moyen de fixation 47 est formé par un goujon traversant la portion anti-déversement externe 21 de part en part de sorte qu’une première extrémité du goujon est ancrée à la structure porteuse et qu’une deuxième extrémité du goujon opposée à la première extrémité est équipée d’un écrou. Le moyen de fixation 47 comprend également une plaque de renfort placée entre l’écrou et la portion anti-déversement externe 21 de sorte que l’effort de serrage de l’écrou s’exerce sur toute la surface de la plaque de renfort afin de fixer les poutres isolantes de fixation 11, 111 à la structure porteuse.
Dans un mode de réalisation non représenté, les poutres isolantes de fixation 11, 111 peuvent comprendre une portion anti-déversement interne 22 formée par les portions de prolongement 43, la portion anti-déversement interne 22 prolongeant la face inférieure 12 dans une direction opposée à la portion anti-déversement externe 21 et s’étendant sur une portion de la dimension séparant la face inférieure 12 de la face supérieure 13.
Afin de relier les membranes d’étanchéités secondaires 4, 104 au niveau du dièdre formé par les parois de cuve 1, 101, il est prévu de fixer un joint métallique 23 comprenant un premier pan et un deuxième pan formant un angle avec le premier égal à l’angle du dièdre. Le premier pan est soudé de manière étanche à la membrane d’étanchéité secondaire 4 de la première paroi de cuve 1 et le deuxième pan est soudé de manière étanche à la membrane d’étanchéité secondaire 104 de la deuxième paroi de cuve 101 afin de former une membrane d’étanchéité continue au niveau de l’angle de la cuve.
Dans le mode de réalisation représenté à la figure 1, le moyen de fixation 47 de la première paroi de cuve 1 est décalé latéralement de l’arête 100 afin de ne pas se trouver dans l’alignement avec la membrane d’étanchéité secondaire 104 et la barrière thermiquement isolante secondaire 102 de la deuxième paroi de cuve 101 de façon à faciliter la fixation de la portion anti-déversement externe 21 à la structure porteuse lors de l’assemblage de la cuve. Il en va de même pour le moyen de fixation 47 de la deuxième paroi de cuve 101.
Ce décalage pour la fixation des premières portions anti-déversement 21 induit un décalage des poutres isolantes de fixation 11, 111 augmentant ainsi la taille du joint 23 entre les membranes d’étanchéité secondaires 4, 104.
Dans le premier mode de réalisation, la cuve comprend donc un bloc d’isolation d’angle 25 situé dans le prolongement de la barrière thermiquement isolante secondaire 2 de la première paroi de cuve 1 et de la barrière thermiquement isolante secondaire 102 de la deuxième paroi de cuve 101 au niveau de l’arête 100. Le bloc d’isolation d’angle 25 comprend une première face 26 située contre la première paroi porteuse 3, une deuxième face 27 située contre la deuxième paroi porteuse 103, une troisième face 28 configurée pour former une surface d’appui au premier pan du joint métallique 23 et une quatrième face 29 configurée pour former une surface d’appui au deuxième pan du joint métallique 23. Le bloc d’isolant d’angle 25 sert donc de support au joint métallique 23 pour éviter que celui-ci au vu de sa taille importante du au décalage latéral se retrouve non soutenu.
Comme illustré sur la figure 1, il existe un espace entre le bloc d’isolation d’angle 25 et les poutres isolantes de fixation 11, 111 de sorte à permettre la fixation des moyens de fixations 47. Cet espace est toutefois rempli de garniture isolante 48 après fixation afin de ne pas dégrader la propriété d’isolation thermique de la barrière thermiquement isolante secondaire 2, 102.
De plus, le joint métallique 23 dans le premier mode de réalisation est réalisé avec une ondulation 24 sortante située sur son premier pan et une ondulation 24 sortante située sur son deuxième pan, les ondulations 24 étant situées au niveau l’espace séparant le bloc d’isolation d’angle 25 et les poutres isolantes de fixation 11, 111, de sorte à former un joint métallique ondulé 23. Les ondulations 24 permettent notamment d’absorber l’effort de tension de la membrane d’étanchéité secondaire 4, 104.
La figure 5 représente un troisième mode de réalisation qui diffère du premier mode de réalisation de la figure 1 par la forme du joint métallique 23. En effet, dans ce mode de réalisation, le joint métallique 23 comprend des ondulations 24 rentrantes sur son premier pan et sur son deuxième pan, de sorte à former un joint métallique ondulé 23.
La figure 1 représente également la jonction entre la barrière thermiquement isolante primaire 5 de la première paroi de cuve 1 et la barrière thermiquement isolante primaire 105 de la deuxième paroi de cuve 101 au niveau de l’angle du dièdre. Comme on peut le voir, la cuve comprend un bloc d’isolation d’angle primaire 50 qui est fixé par un coupleur 46 à la première poutre isolante de fixation 11 et par un coupleur 46 à la deuxième poutre isolante de fixation 111.
Le deuxième mode de réalisation illustré à la figure 2 diffère notamment du premier mode de réalisation par le fait que les moyens de fixation 47 ne sont pas décalés latéralement par rapport à l’arête 100. Ainsi, dans ce mode de réalisation, le moyen de fixation 47 de la portion anti-déversement externe 21 de la première poutre isolante de fixation 11 est dans l’alignement avec la membrane d’étanchéité secondaire 104 de la deuxième paroi de cuve 101. Il en va de même pour la deuxième poutre isolante de fixation 111. De ce fait, le joint métallique 23 du deuxième mode de réalisation est suffisamment supporté par les éléments métalliques de couverture 15 des poutres isolantes de fixation 11, 111. Le deuxième mode de réalisation ne comprend donc pas de bloc d’angle à la jonction des barrières isolantes thermiquement secondaires 2, 102. Ainsi, seule une garniture isolante 48 est placée entre les poutres isolantes de fixation 11, 111 au niveau de l’arête 100 dans ce mode de réalisation.
Les figures 5 et 6 représentent un quatrième mode de réalisation des poutres isolantes de fixation 11, 111 et des dispositifs de butée 19, 20, 119, 120.
En effet, comme on peut le voir sur la figure 5, dans ce mode de réalisation, chaque poutre isolante de fixation 11, 111 comprend une portion anti-déversement externe 21 et une portion anti-déversement interne 22. La portion anti-déversement externe 21 comprend ici une première barre latérale 44 s’étendant parallèlement à l’arête et comportant une paroi fixée contre une surface latérale des voiles de cisaillement 14. De la même manière, la portion anti-déversement interne 22 comprend une deuxième barre latérale 45 de manière à ce que la première barre latérale 44 et la deuxième barre latérale 45 encadrent les voiles de cisaillement 14.
De plus, dans le quatrième mode de réalisation, les dispositifs de butée 19, 119 comportent une pluralité de pattes de butée 32, 132 régulièrement espacées le long du bord opposé à l’arête 100 des poutres isolantes de fixation 11, 111 respectivement. De la même manière, les dispositifs de butée additionnels 20, 120 comportent une pluralité de pattes de butée additionnelles 33, 133 régulièrement espacées le long du bord adjacent à l’arête 100 des poutres isolantes de fixation 11, 111 respectivement.
Comme visible sur la figure 5, les pattes de butée 32, 132 comprennent une première portion de patte 34 s’étendant dans un plan parallèle à la face inférieure 12 des poutres isolantes de fixation 11, 111 où la première portion de patte 34 vient en chevauchement sur la portion anti-déversement interne 22. De plus, les pattes de butée additionnelles 33, 133 comprennent une première portion de patte 34 s’étendant dans un plan parallèle à la face inférieure 12 des poutres isolantes de fixation 11, 111 où la première portion de patte 34 vient en chevauchement sur la portion anti-déversement externe 21. Les pattes de butée 32, 132 ainsi que les pattes de butée additionnelles comprennent une deuxième portion de patte 35 s’étendant dans un plan orthogonal à la première portion de patte 34 et étant orthogonale aux voiles de cisaillement 14. La deuxième portion de patte 35 est fixée aux parois porteuses 3, 103. Ainsi, les pattes de butée forment un dispositif d’ancrage formant crochet permettant de fixer la poutre isolante de fixation 11, 111 à la structure porteuse.
La figure 6 illustre l’assemblage dans le quatrième mode de réalisation entre les plaques supérieure 40 et inférieure 41, et les voiles de cisaillement 14.
En effet, comme on peut le voir sur cette figure, les voiles de cisaillement 14 comprennent sur leur arête supérieure deux tenons supérieurs 36 séparés l’un de l’autre de manière à former une encoche supérieure 37. La plaque supérieure 40 comprend quant à elle une pluralité de rainures 42 s’étendant parallèlement aux voiles de cisaillement 14 et ayant une forme complémentaire des tenons supérieurs 36 de manière à ce que les tenons supérieurs 36 se logent dans les rainures 42 de la plaque supérieure 40, afin à former un assemblage tenon-mortaise entre les voiles de cisaillement 14 et la plaque supérieure 40. La plaque supérieure 40 se prolonge ainsi au travers des voiles de cisaillement 14 dans les encoches supérieures 37.
De façon analogue, les voiles de cisaillement 14 comprennent sur leur arête inférieure deux tenons inférieurs 38 séparés l’un de l’autre de manière à former une encoche inférieure 39. La plaque inférieure 41 comprend quant à elle une pluralité de rainures 42 s’étendant parallèlement aux voiles de cisaillement 14 et ayant une forme complémentaire des tenons inférieurs 38 de manière à ce que les tenons inférieurs 38 se logent dans les rainures 42 de la plaque inférieure 41, afin à former un assemblage tenon-mortaise entre les voiles de cisaillement 14 et la plaque inférieure 41. La plaque inférieure 41 se prolonge ainsi au travers des voiles de cisaillement 14 dans les encoches inférieures 39.
Cet assemblage entre la plaque supérieure 40, la plaque inférieure 41 et les voiles de cisaillement 14 permet d’améliorer la transmission des efforts de cisaillement dans la poutre isolante de fixation 11, 111.
Le cinquième mode de réalisation illustré à la figure 7 diffère notamment du premier mode de réalisation par la structure même de la poutre isolante de fixation 11, 111. En effet, dans ce mode de réalisation, les voiles de cisaillement sont fixées différemment à l’élément métallique de couverture. De plus, dans ce mode de réalisation, la poutre isolante de fixation 11, 111 comprend un élément de fond 53. Ce mode de réalisation sera explicité ci-dessous plus en détails au regard des figures 16 et 17.
Dans un mode de réalisation non représenté, l’élément de couverture métallique 15 peut comprendre une aile supplémentaire plane formée dans le prolongement de la portion plane 16 de l’élément de couverture métallique 15 et s’étendant en direction de l’arête 100. Ainsi, l’aile supplémentaire plane de la première poutre isolante de fixation 11 peut s’étendre de manière à avoir l’une de ses extrémités se situant dans le prolongement ou à proximité du prolongement de la membrane d’étanchéité 104 de la deuxième paroi de cuve 101. De manière analogue, l’aile supplémentaire plane de la deuxième poutre isolante de fixation 111 peut s’étendre de manière à avoir l’une de ses extrémités se situant dans le prolongement ou à proximité du prolongement de la membrane d’étanchéité 4 de la première paroi de cuve 1. L’aile supplémentaire a ainsi notamment la fonction de surface de portage de la membrane d’étanchéité dans au niveau de l’arête de la cuve, et notamment de portage du joint d’étanchéité 23.
On appellera par la suite les deux voiles de cisaillement 14 formés aux extrémités de la poutre isolante de fixation 11, 111 dans la direction de l’arête, des voiles de cisaillement d’extrémité 56.
La figure 8 représente un sixième mode de réalisation de la poutre isolante de fixation 11, 111. Dans ce mode de réalisation, l’élément de couverture métallique 15 est similaire au premier mode de réalisation en ce sens qu’il comprend une portion plane 16, une première aile latérale 17 agencée à une première extrémité de la portion plane 16 et une deuxième aile latérale 18 agencée une deuxième extrémité de la portion plane 16, l’élément de couverture métallique 15 étant ici formé d’une seule pièce.
Comme on peut le voir sur la figure 8, les voiles de cisaillements 14, 56 comportent une portion centrale 51 orientée perpendiculairement à l’arête comme c’est déjà le cas dans le premier mode de réalisation. Toutefois, dans ce mode de réalisation, les voiles de cisaillements 14, 56 comprennent également deux semelles 52 s’étendant perpendiculairement à la portion centrale 51. Les semelles inférieures et supérieures 252 sont parallèles l’une à l’autre et encadrent la portion centrale 51. La portion centrale 51 des voiles de cisaillement d’extrémité 56 comprend dans une partie inférieure une marche 61 faisant saillie vers l’extérieur de la poutre isolante de fixation 11, 111. Cette marche 61 permet à l’aide d’un dispositif d’ancrage formant crochet de venir fixer en recouvrant la marche 61 la poutre isolante de fixation 11, 111 à la structure porteuse.
Pour le sixième mode de réalisation de la figure 8, les semelles 52 s’étendent parallèlement à la première paroi porteuse 3 de sorte à former des semelles inférieures et supérieures 252. Ainsi, les semelles inférieures 252 mises bout à bout d’un côté inférieure des voiles de cisaillement 14, 56 forment une paroi de fond continue parallèle à l’élément de couverture métallique 15. Dans un mode de réalisation non illustré, cette surface pourrait être discontinue. De même, les semelles supérieures 252 mises bout à bout forment une paroi de couvercle continue.
La figure 9 représente un septième mode de réalisation de la poutre isolante de fixation 11, 111. Ce mode de réalisation est très similaire au sixième mode de réalisation. En effet, ici la poutre isolante de fixation 11, 111 comporte des voiles de cisaillement 14, 56 formés deux à deux d’un seul tenant de sorte que les voiles de cisaillement forment des tubes de cisaillement s’étendant dans la direction des voiles de cisaillement 14, 56. Les tubes de cisaillement sont fixés les uns aux autres de façon à former la poutre isolante de fixation 11, 111.
La figure 10 représente un huitième mode de réalisation de la poutre isolante de fixation 11, 111. La structure de cette poutre isolante de fixation 11, 111 est proche de celle du sixième mode de réalisation. En effet, dans ce mode de réalisation, seule diffère l’orientation des semelles 52. Les semelles 52 s’étendent perpendiculairement à la première paroi porteuse 3, de sorte à former des semelles frontales et arrière 152. Ainsi, les semelles frontales 152 mises bout à bout d’un côté opposé des voiles de cisaillement 14, 56 à l’arête 100 forment une paroi frontale continue perpendiculairement à l’élément de couverture métallique 15. De même, les semelles arrière 152 forment une paroi arrière continue. Dans un mode de réalisation non illustré, ces parois pourraient être discontinues.
La figure 11 représente un neuvième mode de réalisation de la poutre isolante de fixation 11, 111. Ce mode de réalisation diffère du huitième mode de réalisation par le nombre de voiles de cisaillement 14, 56. En effet, dans ce mode de réalisation, la poutre isolante de fixation 11, 111 comprend uniquement deux voiles de cisaillement d’extrémité 56 de sorte à former une poutre isolante de fixation 11, 111 en forme de boite.
Les figures 12 et 13 représentent un dixième mode de réalisation de la poutre isolante de fixation 11, 111. Dans ce mode de réalisation, les voiles de cisaillement 14, 56 sont formés de la même manière que dans le huitième mode de réalisation. Toutefois, le dixième mode de réalisation diffère des modes de réalisation précédents par la présence d’un élément de fond 53 et d’un élément de couverture métallique 15 ayant une structure différente. En effet, l’élément de couverture métallique 15 comprend deux ailes internes 58 s’étendant aux extrémités de la portion plane 16 et parallèlement à la première aile latérale 17 et à la deuxième aile latérale 18. Les ailes internes 58 sont situées entre les semelles frontales et arrière 152 des voiles de cisaillement 14 de sorte à ce qu’une aile interne 58 soit située contre une face interne d’une semelle 52.
De plus, les ailes internes 58 comportent une pluralité de portions d’ailes 59 espacées les unes des autres dans la direction de l’arête 100 de sorte qu’un voile de cisaillement 14, 56 soit interposé entre deux portions d’aile 59 adjacentes. Dans ce mode de réalisation, la première aile latérale 17 et la deuxième aile latérale 18 sont formées d’une plaque fixée à une aile interne 58 en traversant les semelles frontales et arrière 52 par des moyens de fixation 60, par exemple de type vis/écrou. Dans le mode illustré, la plaque formant l’une des ailes latérales 17, 18 est fixée à chacune des portions d’aile 59 d’une aile interne 58 au niveau de la jointure entre deux semelles 52 adjacentes.
Dans le dixième mode de réalisation des figures 12 et 13, l’élément de fond 53 est un élément de fond métallique 53 comportant une portion plane 54 formant la face inférieure 12 de la poutre isolante de fixation 11, 111. L’élément de fond 53 comporte également deux ailes latérales 55 s’étendant parallèlement aux voiles de cisaillement 14, 56 et en direction de l’élément de couverture métallique 15. Les ailes latérales 55 sont ici situées contre une face interne de la portion centrale 51 des voiles de cisaillement d’extrémité 56. De plus, les ailes latérales 55 sont fixées par une pluralité de moyens de fixation 60, par exemple de type vis/écrou, sur la portion centrale 51 des voiles de cisaillement d’extrémité 56. Chaque aile latérale 55 est ici formée par deux portions d’ailes latérales 55 espacées l’une de l’autre.
L’élément de fond 53 comprend également des éléments d’appui 57 fixés aux ailes latérales 55 et faisant saillie de l’une des portions principales 51 des voiles de cisaillement d’extrémité 56 vers l’extérieur de la poutre isolante de fixation 11, 111. Les éléments d’appui 57 présentent une surface d’appui supérieure permettant à l’aide d’un dispositif d’ancrage formant crochet de venir fixer, en recouvrant la surface d’appui supérieure, la poutre isolante de fixation 11, 111 à la structure porteuse.
Dans ce mode de réalisation, les éléments d’appui 57 sont des plaques épaisses évidés 57 traversés par l’un des moyens de fixation 60 servant à fixer l’une des ailes latérales 55. Les plaques épaisses 57 sont fixées sur une face externe de la portion centrale 51 des voiles de cisaillement d’extrémité 56.
Les figures 14 et 15 représentent un onzième mode de réalisation de la poutre isolante de fixation 11, 111. Ce mode de réalisation est très similaire du dixième mode de réalisation et diffère seulement de celui-ci par certaines caractéristiques de l’élément de fond 53. En effet, dans ce mode de réalisation, l’élément de fond 53 est réalisé en matériau composite. Chaque aile latérale 55 est située à une extrémité de la portion plane 54 et s’étend sur toute la dimension de l’élément de fond 53 dans la direction des voiles de cisaillement 14, 56. Les ailes latérales 55 sont ici situées contre une face externe de la portion centrale 51 des voiles de cisaillement d’extrémité 56. L’élément d’appui 57 est dans ce mode de réalisation une extension d’aile latérale s’étendant orthogonalement à l’aile latérale 55 de manière à faire saillie vers l’extérieur de la poutre isolante de fixation 11, 111. L’élément d’appui comporte comme précédemment une surface d’appui supérieure permettant d’ancrer la poutre isolante de fixation 11, 111 à la structure porteuse.
Dans les modes de réalisation des figures 10 à 15, les semelles frontales et arrière 152 des voiles de cisaillement d’extrémité 56 ne font pas saillies vers l’extérieur de la poutre isolante de fixation 11, 111 par rapport à la portion centrale 51. En effet, les semelles 52 des voiles de cisaillement d’extrémité 56 s’étendent seulement de la portion centrale 51 vers le voile de cisaillement 14 adjacent.
Les figures 16 et 17 présentent plus en détails le cinquième mode de réalisation de la poutre isolante de fixation 11, 111 figurant sur la figure 7. Le cinquième mode de réalisation est similaire au onzième mode de réalisation des figures 14 et 15 et ne diffère de celui-ci que par les semelles frontales et arrière 152 des voiles de cisaillement d’extrémité 56. En effet contrairement aux modes de réalisation des figures 10 à 15, les semelles 52 des voiles de cisaillement d’extrémité 56 s’étendent de part et d’autre de la portion centrale 51 dans la direction de l’arête 100. Ainsi dans ce mode de réalisation, les éléments d’appui 57 font bien saillis de la portion centrale 51 des voiles de cisaillement d’extrémité 56 mais reste en retrait des semelles 52 des voiles de cisaillement d’extrémité 56. Ce retrait permet de loger plus facilement un dispositif d’ancrage.
Dans certains modes de réalisation, comme visible sur la figure 1, des bandes de mastic 49 sont disposées entre la structure porteuse et les poutres isolantes de fixation 11, 111 afin de reprendre les irrégularités de planéité de la structure porteuse. De plus, des bandes de mastic 49 peuvent également être disposées entre les dispositifs de butée 19, 119 et les poutres isolantes de fixation 11, 111, et entre les dispositifs de butée additionnels 20, 120 et les poutres isolantes de fixation 11, 111 afin de combler les éventuels jeux de montage.
Les figures 18 à 21 représentent un douzième mode de réalisation de la poutre isolante de fixation 11, 111. Le douzième mode de réalisation diffère notamment du cinquième mode de réalisation illustré à la figure 7 par la structure même de la poutre isolante de fixation 11, 111. En effet, dans ce mode de réalisation, les voiles de cisaillement 14 sont fixées différemment à l’élément métallique de couverture 15. De plus, l’élément métallique de couverture.15 et les éléments permettant la fixation à la structure porteuse sont conçus de manière différente.
La figure 18 représente particulièrement l’assemblage de la poutre isolante de fixation 11, 111 aux autres éléments de l’installation de stockage.
Comme visible notamment en figure 20, chaque poutre isolante de fixation 11, 111 comporte donc une pluralité de voiles de cisaillement 14, des garnitures thermiquement isolantes 62 situées entre les voiles de cisaillement 14, une plaque inférieure 41 au niveau de la face inférieure 12 entre deux voiles de cisaillement 14 adjacents et des éléments de couverture métallique 15 reliant deux voiles de cisaillement 14 adjacents au niveau d’une face supérieure des voiles de cisaillement 14.
Les éléments de couverture métallique 15 comportent une plaque plane métallique 63 munie d’orifices de fixation 64 la traversant de part en part. Les orifices de fixation 64 sont configurés pour permettre le passage d’un dispositif de fixation 47, par exemple de type vis/écrou, qui fixe l’élément de couverture métallique 15 à l’un des voiles de cisaillement 14. La plaque plane métallique 63 possède une dimension dans la direction de l’arête 100 égale à l’écartement entre deux voiles de cisaillement 14 adjacents de sorte à être située et fixée au droit de ces deux voiles de cisaillement 14 adjacents. La plaque métallique plane 63 comporte une portion de support 65 faisant saillie des voiles de cisaillement 14 dans la direction de la membrane d’étanchéité secondaire 4 et dans un sens opposé à l’arête 100, comme visible en figures 19 et 21, de sorte que l’extrémité de la portion de support 65 repose sur le panneau isolant secondaire 7 adjacent. La portion de support 65 permet de supporter la membrane d’étanchéité secondaire 4 entre la poutre isolante de fixation 11, 111 et le panneau isolant secondaire 7 adjacent à la poutre isolante de fixation 11, 111. L’extrémité de la portion de support 65 comporte également des orifices de fixation 64 configurés pour permettre le passage d’un dispositif de fixation 47, par exemple de type vis/écrou, permettant de fixer l’élément de couverture métallique 15 au panneau isolant secondaire 7 adjacent. Toutefois, la fixation de l’élément de couverture métallique 15 au panneau isolant secondaire 7 adjacent est optionnelle, la portion de support 65 de l’élément de couverture métallique 15 pouvant simplement reposer sur le panneau isolant secondaire 7 adjacent.
De plus, l’élément de couverture métallique 15 peut comprendre un rebord 66 relié à la plaque métallique plane 63 et s’étendant contre une face des voiles de cisaillement 14 proche de l’arête 100 et s’étendant en direction de la structure porteuse, comme illustré en figure 18.
Dans ce mode de réalisation, les voiles de cisaillement 14 sont réalisés en matériau composite renforcé de fibres, les fibres 99 étant orientés à +/- 45° comme schématisé sur la figure 20. La poutre isolante de fixation 11, 111 comprend des cornières de fixation 67 comportant une première aile de cornière 68 et une deuxième aile de cornière 69 reliée à la première aile de cornière 68 de sorte à former une cornière à angle droit. La deuxième aile de cornière 69 est collée à l’un des voiles de cisaillement 14 sur une partie supérieure de celui-ci. La première aile de cornière 68 est quant à elle munie d’orifices de fixation 64 coïncidant avec les orifices 64 de l’élément de couverture métallique 15 de sorte à fixer la première aile de cornière 68 avec la plaque plane métallique 63 au moyen des dispositifs de fixation 47. Ainsi, deux voiles de cisaillement 14 adjacents, l’élément de couverture métallique 15 et la plaque inférieure 41 forment une boite parallélépipédique où les cornières 67 sont situées au niveau de deux coins supérieurs à l’intérieur de ladite boite. La deuxième aile de cornière 69 comporte à son extrémité éloignée de la première aile de cornière 68 une portion biseautée 82 pour limiter les contraintes dans le collage, comme visible en figure 21.
Dans un autre mode de réalisation non représenté, la plaque plane métallique 63 est fixée à la première aile de cornière 68 par soudage de sorte qu’il n’est pas nécessaire que la plaque plane métallique 63 et la première aile de cornière 68 comprennent des orifices de fixation 64 permettant de les fixer l’un à l’autre. Toutefois, dans un autre mode de réalisation, la plaque plane métallique 63 et la première aile de cornière 68 comprennent toujours des orifices de fixation 64 pour permettre la fixation en complément du soudage.
La poutre isolante de fixation 11, 111 comporte sur une face de chaque voile de cisaillement 14 opposée à la position des cornières de fixation 67, un tasseau 83 s’étendant dans une direction du dispositif de butée 19, 119 au dispositif de butée additionnel 20, 120. Le tasseau 83 comporte une portion principale 84, une extension supérieure 85 et une extension inférieure 86 de part et d’autre de la portion principale 84. La portion principale 84, l’extension supérieure 85 et l’extension inférieure 86 sont collées au voile de cisaillement 14, l’extension supérieure 85 et l’extension inférieure 86 permettant d’accroitre la surface de collage du tasseau 83. L’extension supérieure 85 est biseautée de sorte à avoir une épaisseur décroissante en s’éloignant de la portion principale 84 afin de limiter les contraintes dans le collage.
Le tasseau 83 permet de fixer la poutre isolante de fixation 11, 111 à la structure porteuse à l’aide de plots d’ancrage 92 répartis sur la longueur du tasseau 83, par exemple au nombre de deux comme illustrés en figure 18. Le plot d’ancrage 92 est par exemple muni d’une plaque de serrage venant contre une face supérieure de la portion principale 84 du tasseau 83 afin de maintenir en position le tasseau 83 et donc le voile de cisaillement 14 à la structure porteuse.
La poutre isolante de fixation 11, 111 est placé entre le dispositif de butée 19, 119 et le dispositif de butée additionnel 20, 120 afin de limiter le déplacement de la poutre isolante de fixation 11, 111 dans la direction longitudinale des virures de la membrane d’étanchéité secondaire 4. Chaque dispositif de butée 19, 119 comporte une barre de butée 30, 130 s’étendant de manière continue parallèlement à l’arête 100 le long du bord opposé à l’arête 100 de la poutre isolante de fixation 11, 111. Chaque dispositif de butée additionnel 20, 120 comportent une barre de butée additionnelle 31, 131 s’étendant de manière continue parallèlement à l’arête 100 le long du bord opposé à l’arête 100 de la poutre isolante de fixation 11, 111.
Dans un autre mode de réalisation non représente, le dispositif de butée 19, 119 comporte un élément de butée en forme de U comprenant une partie centrale s’étendant parallèlement à l’arête 100 le long du bord opposé à l’arête 100 de la poutre isolante de fixation 11, 111, une première branche reliée à la partie centrale et s’étendant perpendiculairement à l’arête 100 en direction de celle-ci de sorte à venir se fixer à l’un des plots d’ancrage 92, et une deuxième branche reliée à la partie centrale à l’opposé de la première branche et s’étendant perpendiculairement à l’arête 100 en direction de celle-ci de sorte à venir se fixer à l’un des plots d’ancrage 92. Ainsi, l’élément de butée vient encadrer de part et d’autre dans la direction de l’arête 100 la poutre isolante de fixation 11, 111 en venant se fixer aux plots d’ancrage 92.
En revenant à la figure 18 et de la même manière que dans le premier mode de réalisation, afin de relier les membranes d’étanchéités secondaires 4, 104 au niveau du dièdre formé par les parois de cuve 1, 101, il est prévu de fixer un joint métallique 23 comprenant un premier pan et un deuxième pan formant un angle avec le premier égal à l’angle du dièdre. De plus, le joint métallique 23 comprend des ondulations 24 rentrantes sur son premier pan et sur son deuxième pan, de sorte à former un joint métallique ondulé 23. Ces ondulations 24 sont situées sur une partie du joint métallique 23 qui n’est pas supportée par les poutres isolantes de fixation 11, 111, le joint métallique 23 étant supportée sur cette partie par un bloc d’isolation d’angle 25 ayant une surface de forme complémentaire au joint métallique 23, comme illustré en figure 18.
Toutefois, contrairement au premier mode de réalisation, le joint métallique 23 n’est pas relié directement à une virure métallique d’extrémité 87 de la membrane d’étanchéité secondaire 4, 104. En effet, dans ce douzième mode de réalisation, la membrane d’étanchéité secondaire 4, 104 comporte un bandeau métallique d’ancrage 88 soudé sur la portion de support 65 de l’élément de couverture métallique 15. La virure métallique d’extrémité 87 est ensuite soudée de manière étanche sur une portion du bandeau métallique d’ancrage 88 et le joint métallique 23 est soudée de manière étanche sur une autre portion du bandeau métallique d’ancrage 88. Le joint d’étanchéité peut également présenter une portion déportée 89 de sorte à venir recouvrir en partie le bandeau 88.
Dans un autre mode de réalisation non représenté, le joint métallique 23 est soudé de manière étanche directement à l’élément de couverture métallique 15 tandis que la virure métallique d’extrémité 87 est soudée de manière étanche sur une portion du bandeau métallique d’ancrage 88. Il n’est donc pas nécessaire dans ce mode de prévoir une portion déportée 89 sur le joint métallique 23. Dans un autre mode de réalisation non représenté, le joint métallique 23 et la virure métallique d’extrémité 87 sont soudés de manière étanche directement à l’élément de couverture métallique 15 de sorte qu’une portion de l’élément de couverture métallique 15 sert de prolongement de la membrane d’étanchéité secondaire 4. Il n’est donc pas nécessaire dans ce mode de prévoir un bandeau métallique d’ancrage 88.
Le panneau isolant secondaire 7 adjacent à la poutre isolante de fixation 11, 111 comporte notamment une plaque supérieure 90, un bloc de mousse isolante et une plaque inférieure. La plaque supérieure 90 comprend un lamage 91 s’étendant dans la direction de l’arête 100 et situé sur l’extrémité la plus proche de l’arête 100 de la plaque supérieure 90. Le lamage 91 est réalisé sur une épaisseur de la plaque supérieure 90 égale à l’épaisseur de l’élément de couverture métallique 15 plus l’épaisseur du bandeau métallique d’ancrage 88. Le lamage 91 permet ainsi de garder une bonne planéité de la membrane d’étanchéité secondaire 4, 104 au niveau du raccord avec le joint métallique 23 et la virure d’extrémité 87. L’extrémité de la portion de support 65 vient ainsi se placer dans le lamage 91 du panneau isolant secondaire 7.
La figure 18 représente également la jonction entre la barrière thermiquement isolante primaire 5 de la première paroi de cuve 1 et la barrière thermiquement isolante primaire 105 de la deuxième paroi de cuve 101 au niveau de l’angle du dièdre. Comme on peut le voir, la cuve comprend un bloc d’isolation d’angle primaire 50 qui est fixé par deux coupleurs 46 à la première poutre isolante de fixation 11 et par deux coupleurs 46 à la deuxième poutre isolante de fixation 111. En effet, comme visible sur la figure 20, l’élément de couverture métallique 15 comprend également des orifices de fixation 64 situés au milieu de la plaque plane métallique 63 entre les voiles de cisaillement 14 de sorte à permettre aux coupleurs 46 de fixer le bloc d’angle primaire 50 aux poutres isolantes de fixation 11, 111.
En référence à la figure 22, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 22 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (46)

  1. Installation de stockage pour un gaz liquéfié comprenant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la cuve comprenant au moins une première paroi de cuve (1) fixée à une première paroi porteuse (3) de la structure porteuse et une deuxième paroi de cuve (101) fixée à une deuxième paroi porteuse (103) de la structure porteuse, chaque paroi de cuve (1, 101) comprenant au moins une membrane d’étanchéité (4, 104) et au moins une barrière thermiquement isolante (2, 102), la barrière thermiquement isolante (2, 102) étant placée entre la membrane d’étanchéité (4, 104) et la structure porteuse, la première paroi porteuse (3) formant un angle avec la deuxième paroi porteuse (103) le long d’une arête (100), la membrane d’étanchéité (4) de la première paroi de cuve (3) comportant une pluralité de plaques métalliques,
    dans laquelle la barrière thermiquement isolante (2) de la première paroi de cuve (1) comprend une poutre isolante de fixation (11) ancrée à la première paroi porteuse (3) et ayant une longueur s’étendant parallèlement à l’arête (100), la poutre isolante de fixation (11) comportant une face supérieure (13) maintenue à distance de la première paroi porteuse (3) par une pluralité de voiles de cisaillement (14), les voiles de cisaillement (14) étant situés entre la face supérieure (13) et la première paroi porteuse (3) et orientés perpendiculairement à l’arête (100), la poutre isolante de fixation (11) comportant une garniture isolante agencée entre les voiles de cisaillement (14), et la poutre isolante de fixation (11) comportant également un élément de couverture métallique (15) comprenant une portion plane (16) formant la face supérieure (13), un bord d’extrémité de la membrane d’étanchéité (4) de la première paroi de cuve (1) étant soudé à la portion plane (16) de l’élément de couverture métallique (15),
    et dans laquelle la structure porteuse comprend un dispositif de butée (19) faisant saillie de la première paroi porteuse (3) en direction de l’intérieur de la cuve, le dispositif de butée (19) ayant une longueur s’étendant parallèlement à l’arête (100), le dispositif de butée (19) étant placé le long d’un bord de la poutre isolante de fixation (11) opposé à l’arête (100) et étant configuré pour former une butée limitant le déplacement de la poutre isolante de fixation (11) dans une direction s’éloignant de la deuxième paroi de cuve (101).
  2. Installation de stockage selon la revendication 1, dans laquelle l’élément de couverture métallique (15) comprend une plaque plane métallique (63) comportant une portion de support (65) faisant saillie des voiles de cisaillement (14) dans la direction de la membrane d’étanchéité (4, 104) et dans un sens opposé à l’arête (100) de sorte qu’une extrémité de la portion de support (65) repose sur un panneau isolant (7) de la barrière thermiquement isolante (2, 102) adjacent à la poutre isolante de fixation (11, 111).
  3. Installation de stockage selon la revendication 2, dans laquelle la plaque plane métallique (63) comporte une dimension dans la direction de l’arête (100) égale à l’écartement entre deux voiles de cisaillement (14) adjacents et est agencée de sorte à s’étendre entre les deux voiles de cisaillement (14) adjacents.
  4. Installation de stockage selon l’une des revendications 1 à 3, dans laquelle les voiles de cisaillement (14) sont réalisés en matériau composite comportant une résine polymère et des fibres (99).
  5. Installation de stockage selon la revendication 4, dans laquelle les fibres (99) sont orientées selon un angle de +/- 45° par rapport à une direction d’épaisseur de la paroi de cuve.
  6. Installation de stockage selon l’une des revendications 1 à 5, dans laquelle la poutre isolante de fixation (11, 111) comprend une cornière de fixation (67) comportant une première aile de cornière (68) et une deuxième aile de cornière (69) reliée à la première aile de cornière (68), la deuxième aile de cornière (69) étant fixée à l’un des voiles de cisaillement (14), et la première aile de cornière (68) étant soudée à l’élément de couverture métallique (15).
  7. Installation de stockage selon l’une des revendications 1 à 5, dans laquelle la poutre isolante de fixation (11, 111) comprend une cornière de fixation (67) comportant une première aile de cornière (68) et une deuxième aile de cornière (69) reliée à la première aile de cornière (68), la deuxième aile de cornière (69) étant fixée à l’un des voiles de cisaillement (14), et la première aile de cornière (68) comprenant au moins un orifice de fixation (64) coïncidant avec un orifice de fixation (64) de l’élément de couverture métallique (15) de sorte à fixer la première aile de cornière (68) avec la plaque plane métallique (63) au moyen d’un dispositifs de fixation (47) traversant l’orifice de fixation (64) de l’élément de couverture métallique (15) et l’orifice de fixation (64) de la première aile de cornière (68).
  8. Installation de stockage selon la revendication 6 ou la revendication 7, dans laquelle la deuxième aile de cornière (69) comporte à une extrémité éloignée de la première aile de cornière (68) une portion biseautée (82).
  9. Installation de stockage selon l’une des revendications 1 à 8, dans laquelle la poutre isolante de fixation (11, 111) comporte un tasseau (83) fixée sur une face du voile de cisaillement (14) perpendiculaire à l’arête (100) et s’étendant parallèlement à l’élément de couverture métallique (15), le tasseau (83) comportant une portion principale (84), une extension supérieure (85) et une extension inférieure (86) de part et d’autre de la portion principale (84), la portion principale (84), l’extension supérieure (85) et l’extension inférieure (86) étant fixées au voile de cisaillement (14),
    et dans laquelle le tasseau (83) est fixé à la structure porteuse à l’aide de plots d’ancrage (92) répartis sur une longueur du tasseau (83), les plots d’ancrage (92) venant exercer un effort de serrage contre une face supérieure de la portion principale (84) du tasseau (83).
  10. Installation de stockage selon la revendication 9, dans laquelle l’extension supérieure (85) est biseautée de sorte à avoir une épaisseur décroissante en s’éloignant de la portion principale (84).
  11. Installation de stockage selon l’une des revendications 1 à 10, dans laquelle le dispositif de butée (19) comporte une barre de butée (30), la barre de butée (30) s’étendant de manière continue parallèlement à l’arête (100) le long du bord opposé à l’arête (100) de la poutre isolante de fixation (11).
  12. Installation de stockage selon l’une des revendications 1 à 10, dans laquelle le dispositif de butée (19) comporte une pluralité de pattes de butée (32), les pattes de butée (32) étant régulièrement espacées le long du bord opposé à l’arête (100) de la poutre isolante de fixation (11).
  13. Installation de stockage selon l’une des revendications 1 à 12, dans laquelle la poutre isolante de fixation (11) comporte une portion anti-déversement interne (22) prolongeant les voiles de cisaillement (14) dans une direction opposée à l’arête (100) et s’étendant sur une portion de la dimension séparant la première paroi porteuse (3) de l’élément de couverture métallique (15) , la portion anti-déversement interne (22) étant fixée par au moins un moyen de fixation (19, 47) à la première paroi porteuse (3), et dans laquelle le dispositif d’ancrage (19) comporte un dispositif formant crochet configuré pour fixer la portion anti-déversement interne (22) à la première paroi porteuse (3).
  14. Installation de stockage selon l’une des revendications 1 à 13, dans laquelle la poutre isolante de fixation (11) comporte une portion anti-déversement externe (21) prolongeant les voiles de cisaillement (14) en direction de l’arête (100) et s’étendant sur une portion de la dimension séparant la première paroi porteuse (3) de l’élément de couverture métallique (15), la portion anti-déversement externe (21) étant fixée par un moyen de fixation (47) à la première paroi porteuse (3).
  15. Installation de stockage selon la revendication 13 ou 14, dans laquelle le moyen de fixation (47) comprend un goujon fixant la portion anti-déversement externe (21) ou la portion anti-déversement interne (22) à la structure porteuse, de sorte qu’une première extrémité du goujon est ancrée à la structure porteuse et une deuxième extrémité du goujon opposée à la première extrémité est équipée d’un écrou venant en appui sur la portion anti-déversement externe (21) ou la portion anti-déversement interne (22).
  16. Installation de stockage selon l’une des revendications 1 à 15, dans laquelle la structure porteuse comprend un dispositif de butée additionnel (20) faisant saillie de la première paroi porteuse (3) en direction de l’intérieur de la cuve, le dispositif de butée additionnel (20) ayant une longueur s’étendant parallèlement à l’arête (100), le dispositif de butée additionnel (20) étant placé le long d’un bord de la poutre isolante de fixation (11) adjacent à l’arête (100) et étant configuré pour former une butée limitant le déplacement de la poutre isolante de fixation (11) dans une direction opposée à la direction du dispositif de butée (19).
  17. Installation de stockage selon la revendication 16, dans laquelle le dispositif de butée additionnel (20) comporte une barre de butée additionnelle (31), la barre de butée additionnelle (31) s’étendant de manière continue parallèlement à l’arête (100) le long du bord opposé à l’arête (100) de la poutre isolante de fixation (11).
  18. Installation de stockage selon la revendication 16, dans laquelle le dispositif de butée additionnel (20) comporte une pluralité de pattes de butée additionnelles (33), les pattes de butée additionnelles (33) étant régulièrement espacées le long du bord opposé à l’arête (100) de la poutre isolante de fixation (11).
  19. Installation de stockage selon l’une des revendications 16 à 18 prise en combinaison avec la revendication 14, dans laquelle le dispositif d’ancrage additionnel (20) comporte un dispositif formant crochet configuré pour fixer la portion anti-déversement externe (21) à la première paroi porteuse (3), le dispositif formant crochet constituant ledit moyen de fixation (47).
  20. Installation de stockage selon la revendication 13 ou la revendication 14, dans laquelle au moins une parmi la portion anti-déversement externe (21) et la portion anti-déversement interne (22) est formée par des portions de prolongement (43) des voiles de cisaillement (14).
  21. Installation de stockage selon les revendications 13 et 14 prises en combinaison, dans laquelle la portion anti-déversement externe (21) comprend une première barre latérale (44) s’étendant parallèlement à l’arête (100), la première barre latérale (44) comportant une paroi plaquée contre une surface latérale des voiles de cisaillement (14), et la portion anti-déversement interne (22) comprend une deuxième barre latérale (45) s’étendant parallèlement à l’arête (100), la deuxième barre latérale (45) comportant une paroi plaquée contre une autre surface latérale des voiles de cisaillement (14), la première barre latérale (44) et la deuxième barre latérale (45) encadrant les voiles de cisaillement (14).
  22. Installation de stockage selon l’une des revendications 1 à 21, dans laquelle l’élément de couverture métallique (15) de la poutre isolante de fixation (11) comprend une première aile latérale (17) s’étendant perpendiculairement aux voiles de cisaillement (14) et en direction de la première paroi porteuse (3), la première aile latérale (17) prenant en sandwich les voiles de cisaillement (14) avec le dispositif de butée (19) afin de reprendre les efforts de cisaillement exercés par la membrane d’étanchéité (4, 104).
  23. Installation de stockage selon la revendication 22, dans laquelle l’élément de couverture métallique (15) de la poutre isolante de fixation (11) comprend une deuxième aile latérale (18) s’étendant perpendiculairement aux voiles de cisaillement (14) et en direction de la première paroi porteuse (3), de sorte que la première aile latérale (17) et la deuxième aile latérale (18) encadrent les voiles de cisaillement (14), la première aile latérale (17) étant située plus proche de l’arête (100) que la deuxième aile latérale (18).
  24. Installation de stockage selon l’une des revendications 1 à 23, dans laquelle la cuve comprend un joint d’étanchéité ondulé (23) comprenant un premier pan et un deuxième pan formant un angle avec le premier pan, le premier pan étant soudé de manière étanche à la membrane d’étanchéité (4) de la première paroi de cuve (1) et le deuxième pan étant soudé de manière étanche à la membrane d’étanchéité (104) de la deuxième paroi de cuve (101), le joint d’étanchéité ondulé (23) étant configuré pour raccorder de manière étanche la membrane d’étanchéité (4) de la première paroi de cuve (1) et la membrane d’étanchéité (104) de la deuxième paroi de cuve (101).
  25. Installation de stockage selon la revendication 24, dans laquelle la membrane d’étanchéité (4, 104) comporte un bandeau métallique d’ancrage (88) soudé sur l’élément de couverture métallique (15), l’une des plaques métalliques (87) étant soudée de manière étanche sur une portion du bandeau métallique d’ancrage (88) et le joint métallique (23) étant soudée de manière étanche sur une autre portion du bandeau métallique d’ancrage (88).
  26. Installation de stockage selon la revendication 25, dans laquelle le panneau isolant secondaire (7) adjacent à la poutre isolante de fixation (11, 111) comporte une plaque supérieure (90) munie d’un lamage (91) s’étendant dans la direction de l’arête (100) et situé sur l’extrémité la plus proche de l’arête (100) de la plaque supérieure (90), une extrémité de l’élément de couverture métallique (15) étant placée dans le lamage (91) afin d’obtenir une surface plane de support de la membrane d’étanchéité (4, 104).
  27. Installation de stockage selon l’une des revendications 1 à 26, dans laquelle la cuve comprend un bloc d’isolation d’angle (25) situé dans le prolongement de la barrière thermiquement isolante (2) de la première paroi de cuve (1) et de la barrière thermiquement isolante (102) de la deuxième paroi de cuve (101) au niveau de l’arête (100), le bloc d’isolation d’angle (25) étant configuré pour assurer la continuité de la barrière thermiquement isolante (2) de la première paroi de cuve (1) et de la barrière thermiquement isolante (102) de la deuxième paroi de cuve (101) au niveau de l’arête (100) de la structure porteuse.
  28. Installation de stockage selon les revendications 24 et 27 prises en combinaison, dans laquelle le bloc d’isolation d’angle (25) comprend une première face (26) située contre la première paroi porteuse (3), une deuxième face (27) située contre la deuxième paroi porteuse (103), une troisième face (28) configurée pour offrir une surface d’appui au premier pan du joint d’étanchéité ondulé (23) et une quatrième face (29) configurée pour offrir une surface d’appui au deuxième pan du joint d’étanchéité ondulé (23).
  29. Installation de stockage selon l’une des revendications 1 à 28, dans laquelle la poutre isolante de fixation (11) comprend une plaque supérieure (40) située sous l’élément de couverture métallique (15) et s’étendant le long de la poutre isolante de fixation (11), et dans laquelle chaque voile de cisaillement (14) comprend sur une arête supérieure deux tenons supérieurs (36) séparés l’un de l’autre de manière à former une encoche supérieure (37), la plaque supérieure (40) comprenant une pluralité de rainures (42) s’étendant parallèlement aux voiles de cisaillement (14) et ayant une forme complémentaire des tenons supérieurs (36) de manière à ce que les tenons supérieurs (36) se logent dans les rainures (42) de la plaque supérieure (40), afin à former un assemblage tenon-mortaise entre les voiles de cisaillement (14) et la plaque supérieure (40).
  30. Installation de stockage selon l’une des revendications 1 à 29, dans laquelle la poutre isolante de fixation (11) comprend une plaque inférieure (41) située sur la première paroi porteuse (3) et s’étendant le long de la poutre isolante de fixation (11), et dans laquelle chaque voile de cisaillement (14) comprend sur une arête inférieure deux tenons inférieurs (38) séparés l’un de l’autre de manière à former une encoche inférieure (39), la plaque inférieure (41) comprenant une pluralité de rainures (42) s’étendant parallèlement aux voiles de cisaillement (14) et ayant une forme complémentaire des tenons inférieurs (38) de manière à ce que les tenons inférieurs (38) se logent dans les rainures (42) de la plaque inférieure (41), de manière à former un assemblage tenon-mortaise entre les voiles de cisaillement (14) et la plaque inférieure (41).
  31. Installation de stockage selon l’une des revendications 1 à 30, dans laquelle la barrière thermiquement isolante (2) de la première paroi de cuve (1) ou la barrière thermiquement isolante (102) de la deuxième paroi de cuve (101) comprend une pluralité de panneaux isolants (7, 107) comportant une paroi inférieure située à proximité de la première paroi porteuse (3) ou de la deuxième paroi porteuse (103) respectivement, une paroi supérieure, et une garniture isolante structurelle maintenant à distance la paroi supérieure de la paroi inférieure, la garniture isolante étant composée de mousse polymère renforcée de fibres.
  32. Installation de stockage selon l’une des revendications 1 à 31, dans laquelle la barrière thermiquement isolante est une barrière thermiquement isolante secondaire (2, 102) et la membrane d’étanchéité est une membrane d’étanchéité secondaire (4, 104), et dans laquelle la première paroi de cuve (1) et la deuxième paroi de cuve (101) comportent en outre, dans une direction d’épaisseur de l’extérieur vers l’intérieur de la cuve une barrière thermiquement isolante primaire (5, 105) portée par la membrane d’étanchéité secondaire (4, 104) et une membrane d’étanchéité primaire (6, 106) portée par la barrière thermiquement isolante primaire (5, 105).
  33. Installation de stockage selon la revendication 32, dans laquelle la membrane d’étanchéité primaire (6, 106) comporte une pluralité de tôles métalliques ondulées, les tôles métalliques ondulées étant juxtaposées selon un motif répété et soudées ensemble de manière étanche.
  34. Installation de stockage selon l’une des revendications 1 à 33, dans laquelle la première paroi de cuve (1) comprend des bandes de mastic (49) disposées entre la poutre isolante de fixation (11) et la première paroi porteuse (3).
  35. Installation de stockage selon l’une des revendications 1 à 34, dans laquelle la membrane d’étanchéité (24) comporte une pluralité de virures parallèles à une direction longitudinale perpendiculaire ou oblique à ladite arête (100), chaque virure comportant une portion centrale plane reposant sur une surface supérieure de la barrière thermiquement isolante et deux bords relevés faisant saillie vers l’intérieur de la cuve par rapport à la portion centrale, les virures étant juxtaposées selon un motif répété et soudées ensemble de manière étanche au niveau des bords relevés.
  36. Installation de stockage selon l’une des revendications 1 à 35, dans laquelle les voiles de cisaillement (14) comprennent une portion centrale (51) orientée perpendiculairement à l’arête (100) et deux portions périphériques (52) s’étendant perpendiculairement à la portion centrale (51), les portions périphériques (52) étant parallèles l’une à l’autre et encadrant la portion centrale (51).
  37. Installation de stockage selon la revendication 36, dans laquelle les portions périphériques (52) comportent une semelle inférieure (252) et une semelle supérieure (252) s’étendant parallèlement à la première paroi porteuse (3), les semelles inférieures (252) de l’ensemble des voiles de cisaillement (14) formant une paroi de fond continue ou discontinue, les semelles supérieures (252) formant une paroi de couvercle continue ou discontinue.
  38. Installation de stockage selon la revendication 36, dans laquelle les portions périphériques (52) comportent une semelle frontale (152) et une semelle arrière (152) s’étendant perpendiculairement à la première paroi porteuse (3), les semelles frontales (152) de l’ensemble des voiles de cisaillement (14) formant une paroi frontale continue ou discontinue tournée à l’opposé de l’arête (100), les semelles arrière (152) de l’ensemble des voiles de cisaillement (14) formant une paroi arrière continue ou discontinue tourné vers l’arête (100).
  39. Installation de stockage selon l’une des revendications 1 à 38, dans laquelle la poutre isolante de fixation (11) comprend un élément de fond (53) comportant une portion plane (54) reposant sur la première paroi porteuse (3) et deux ailes latérales (55) encadrant les voiles de cisaillement (14) et s’étendant parallèlement aux voiles de cisaillement (14) en direction de l’élément de couverture métallique (15), les ailes latérales (55) étant fixées par un moyen d’ancrage sur une portion centrale (51) de voiles de cisaillement d’extrémité (56), les voiles de cisaillement d’extrémité (56) étant deux voiles de cisaillement (14) formés aux extrémités de la poutre isolante de fixation (11) dans la direction de l’arête (100).
  40. Installation de stockage selon la revendication 39, dans laquelle l’élément de fond (53) comprend au moins un élément d’appui (57) fixé à l’une des ailes latérales (55), l’élément d’appui (57) faisant saillie de l’un des voiles de cisaillement d’extrémité (56), le moyen d’ancrage comprenant un dispositif formant crochet situé sur l’élément d’appui (57) et configuré pour fixer la poutre isolante de fixation (11) à la première paroi porteuse (3).
  41. Installation de stockage selon la revendication 39 ou la revendication 40, dans laquelle l’élément de fond (53) est réalisé dans un matériau métallique ou dans un matériau composite.
  42. Installation de stockage selon les revendications 23 et 39 prises en combinaison, dans laquelle l’élément de couverture métallique (15) comprend deux ailes internes (58) s’étendant aux extrémités de la portion plane (16) de l’élément de couverture métallique (15) et parallèlement à la première aile latérale (17) et à la deuxième aile latérale (18), les ailes internes (58) étant situées entre les semelles frontales et arrière (152) des voiles de cisaillement (14), la première aile latérale (17) et la deuxième aile latérale (18) encadrant les semelles frontales et arrière (152) des voiles de cisaillement (14), la première aile latérale(17) étant fixée par un moyen de fixation (60) à l’une des ailes internes (58) et la deuxième aile latérale (18) étant fixée par un moyen de fixation (60) à l’autre des ailes internes (58).
  43. Installation de stockage selon la revendication l’une des revendications 1 à 42, dans laquelle la poutre isolante de fixation est une première poutre isolante de fixation (11), le dispositif de butée est un premier dispositif de butée (19) et la membrane d’étanchéité (104) de la deuxième paroi de cuve (103) comporte une pluralité de plaques métalliques ou une pluralité de virures parallèles à une direction longitudinale perpendiculaire ou oblique à ladite arête (100), chaque virure comportant une portion centrale plane reposant sur une surface supérieure de la barrière thermiquement isolante (102) et deux bords relevés faisant saillie vers l’intérieur de la cuve par rapport à la portion centrale, les virures étant juxtaposées selon un motif répété et soudées ensemble de manière étanche au niveau des bords relevés, et la barrière thermiquement isolante (102) de la deuxième paroi de cuve (101) comprend une deuxième poutre isolante de fixation (111) comportant une face supérieure (13) maintenue à distance de la deuxième paroi porteuse (103) par une pluralité de voiles de cisaillement (14), les voiles de cisaillement (14) étant situés entre la face supérieure (13) et la deuxième paroi porteuse (103) et orientés perpendiculairement à l’arête (100), la deuxième poutre isolante (111) comportant une garniture isolante agencée entre les voiles de cisaillement (14), et la deuxième poutre isolante de fixation (111) comportant également un élément de couverture métallique (15) comprenant une portion plane (16) formant la face supérieure (13), un bord d’extrémité de la membrane d’étanchéité (104) de la deuxième paroi de cuve (101) étant soudé à la portion plane (16) de l’élément de couverture métallique (15),
    et dans laquelle la structure porteuse comprend un deuxième dispositif de butée (119) faisant saillie de la deuxième paroi porteuse (103) en direction de l’intérieur de la cuve, le deuxième dispositif de butée (119) ayant une longueur s’étendant parallèlement à l’arête (100), le deuxième dispositif de butée (119) étant placé le long d’un bord de la deuxième poutre isolante (11) opposé à l’arête (100) et étant configuré pour former une butée limitant le déplacement de la deuxième poutre isolante de fixation (111) dans une direction s’éloignant de la première paroi de cuve (1).
  44. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une installation de stockage (71) selon l’une des revendications 1 à 43, une partie de la double coque formant la structure porteuse de l’installation de stockage.
  45. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 44, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  46. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 44, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
PCT/EP2020/058416 2019-03-26 2020-03-25 Installation de stockage pour gaz liquéfié WO2020193653A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20713893.4A EP3948055B1 (fr) 2019-03-26 2020-03-25 Installation de stockage pour gaz liquéfié
JP2021557191A JP2022536572A (ja) 2019-03-26 2020-03-25 液化ガス用の貯蔵設備
CN202080024753.XA CN114761727A (zh) 2019-03-26 2020-03-25 用于液化气体的储存设施
SG11202109963V SG11202109963VA (en) 2019-03-26 2020-03-25 Storage facility for liquefied gas
KR1020217030836A KR20210141526A (ko) 2019-03-26 2020-03-25 액화 가스의 저장 설비

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1903164A FR3094452B1 (fr) 2019-03-26 2019-03-26 Installation de stockage pour gaz liquéfié
FRFR1903164 2019-03-26
FRFR1915199 2019-12-20
FR1915199A FR3094453B1 (fr) 2019-03-26 2019-12-20 Installation de stockage pour gaz liquéfié

Publications (1)

Publication Number Publication Date
WO2020193653A1 true WO2020193653A1 (fr) 2020-10-01

Family

ID=69960656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058416 WO2020193653A1 (fr) 2019-03-26 2020-03-25 Installation de stockage pour gaz liquéfié

Country Status (4)

Country Link
EP (1) EP3948055B1 (fr)
JP (1) JP2022536572A (fr)
CN (1) CN114761727A (fr)
WO (1) WO2020193653A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2867831A1 (fr) * 2004-03-17 2005-09-23 Gaz Transport & Technigaz Caisse autoporteuse en bois convenant pour le soutien et l'isolation thermique d'une membrane de cuve etanche
WO2013169076A1 (fr) * 2012-05-11 2013-11-14 대우조선해양 주식회사 Réservoir de stockage de gaz naturel liquéfié à double structure
WO2014020257A2 (fr) * 2012-08-03 2014-02-06 Gaztransport Et Technigaz Paroi de cuve etanche et thermiquement isolante comportant des elements porteurs espaces
WO2015007974A2 (fr) * 2013-07-19 2015-01-22 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et étanche
FR3042253A1 (fr) * 2015-10-13 2017-04-14 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2017207938A1 (fr) * 2016-06-01 2017-12-07 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP3425260A1 (fr) * 2017-07-04 2019-01-09 Gaztransport et Technigaz Cuve etanche et thermiquement isolante comportant une corniere

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2466965A (en) * 2009-01-15 2010-07-21 Cappelen Skovholt As Liquefied gas storage tank with curved sidewall
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
EP3165441A4 (fr) * 2014-07-04 2018-06-27 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Cuve de stockage de gaz naturel liquéfié et paroi isolante pour une cuve de stockage de gaz naturel liquéfié
KR101875328B1 (ko) * 2017-06-01 2018-07-05 가즈트랑스포르 에 떼끄니가즈 밀봉 및 단열 탱크, 상기 탱크를 포함하는 선박, 상기 선박의 적재 또는 하역 방법, 및 상기 선박을 포함하는 이송 시스템
FR3068762B1 (fr) * 2017-07-04 2019-08-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3069043B1 (fr) * 2017-07-13 2020-10-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a bande de support incurvee

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2867831A1 (fr) * 2004-03-17 2005-09-23 Gaz Transport & Technigaz Caisse autoporteuse en bois convenant pour le soutien et l'isolation thermique d'une membrane de cuve etanche
WO2013169076A1 (fr) * 2012-05-11 2013-11-14 대우조선해양 주식회사 Réservoir de stockage de gaz naturel liquéfié à double structure
WO2014020257A2 (fr) * 2012-08-03 2014-02-06 Gaztransport Et Technigaz Paroi de cuve etanche et thermiquement isolante comportant des elements porteurs espaces
WO2015007974A2 (fr) * 2013-07-19 2015-01-22 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et étanche
FR3042253A1 (fr) * 2015-10-13 2017-04-14 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
WO2017207938A1 (fr) * 2016-06-01 2017-12-07 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP3425260A1 (fr) * 2017-07-04 2019-01-09 Gaztransport et Technigaz Cuve etanche et thermiquement isolante comportant une corniere

Also Published As

Publication number Publication date
JP2022536572A (ja) 2022-08-18
EP3948055B1 (fr) 2023-08-23
EP3948055C0 (fr) 2023-08-23
EP3948055A1 (fr) 2022-02-09
CN114761727A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
EP3362732B1 (fr) Cuve étanche et thermiquement isolante
WO2014096600A1 (fr) Cuve etanche et thermiquement isolante
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
WO2021074435A1 (fr) Cuve étanche et thermiquement isolante
FR3049678A1 (fr) Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve
WO2019110894A1 (fr) Cuve étanche et thermiquement isolante
EP3425261B1 (fr) Cuve etanche et thermiquement isolante
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
FR3068763A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere.
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
WO2020193653A1 (fr) Installation de stockage pour gaz liquéfié
FR3094453A1 (fr) Installation de stockage pour gaz liquéfié
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
WO2022233907A1 (fr) Installation de stockage pour gaz liquéfié
WO2022053320A1 (fr) Cuve étanche et thermiquement isolante
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
WO2022152794A1 (fr) Installation de stockage pour gaz liquefie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713893

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021557191

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20217030836

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020713893

Country of ref document: EP

Effective date: 20211026