EP3473915B1 - Cuve etanche et thermiquement isolante - Google Patents

Cuve etanche et thermiquement isolante Download PDF

Info

Publication number
EP3473915B1
EP3473915B1 EP18199169.6A EP18199169A EP3473915B1 EP 3473915 B1 EP3473915 B1 EP 3473915B1 EP 18199169 A EP18199169 A EP 18199169A EP 3473915 B1 EP3473915 B1 EP 3473915B1
Authority
EP
European Patent Office
Prior art keywords
wall
sealing
tank
sealing membrane
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18199169.6A
Other languages
German (de)
English (en)
Other versions
EP3473915A1 (fr
Inventor
François Durand
Guillaume LE ROUX
Johan Bougault
Vincent Berger
Sébastien DELANOE
Raphaël PRUNIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3473915A1 publication Critical patent/EP3473915A1/fr
Application granted granted Critical
Publication of EP3473915B1 publication Critical patent/EP3473915B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2221/00Methods and means for joining members or elements
    • B63B2221/02Methods and means for joining members or elements by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2221/00Methods and means for joining members or elements
    • B63B2221/08Methods and means for joining members or elements by means of threaded members, e.g. screws, threaded bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks.
  • the invention relates to the field of sealed and thermally insulating tanks in the context of the storage or transport of liquid at low temperature such as ship tanks for the transport of Liquefied Petroleum Gas (also called LPG) having by for example a temperature between -50°C and 0°C, or for the transport of liquefied natural gas (LNG) at approximately -162°C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG liquefied natural gas
  • Sealed and thermally insulating tanks for ships are known for example from the document WO-A-2017064413 .
  • This document describes a propane tank or LNG tank comprising a plurality of tank walls. Each wall of the tank comprises at least one sealing membrane and at least one thermal insulation barrier.
  • the document JP2009079736 proposes a terrestrial tank for cryogenic liquid having a supporting concrete structure and a thermal insulation barrier including an M-shaped piece designed to adapt to the thickness of the thermal insulation barrier by changing the height of a M-shaped piece.
  • the M-shaped piece requires complicated shaping.
  • the document JPS55140200 presents a tank for cryogenic liquid comprising a support structure made of concrete and having a corner structure between a first wall and a second wall of the support structure.
  • the corner structure is made up of two anchoring wings on which an angle iron rests.
  • the corner structure is not suitable for all types of angles formed by the two walls of the load-bearing structure.
  • An object of the invention is to provide a corner structure capable of supporting one or more waterproofing membranes at the level an angle between two tank walls and can be adapted to different thicknesses of the thermal insulation barrier.
  • the invention provides a sealed and thermally insulating tank for storing a fluid comprising a first wall and a second wall, the first and the second wall each comprising, in a direction of thickness, a load-bearing wall, an insulating barrier thermal insulation fixed to the load-bearing wall, a sealing membrane parallel to the load-bearing wall and fixed to the thermal insulation barrier, the sealed and thermally insulating tank comprising, at an edge between the load-bearing wall of the first wall and the load-bearing wall of the second wall, a corner structure, the corner structure comprising a first anchoring wing fixed to the load-bearing wall of the second wall, a second anchoring wing fixed to the load-bearing wall of the first wall, a sealing angle fixed, on the one hand, to the first anchoring wing by means of a first connecting piece, and on the other hand, to the second anchoring wing by means of a second connecting piece is lying.
  • the sealing angle is connected in a leaktight manner to the sealing membrane of the first wall and to the sealing membrane of the second wall, the sealing angle comprising a first planar branch extending in the plane of the sealing membrane of the second wall, and a second planar branch extending in the plane of the sealing membrane of the first wall, the first connecting piece comprising a first planar branch parallel to the first anchoring wing, and a second planar branch parallel to the sealing membrane of the second wall, the second connecting piece comprising a first planar branch parallel to the second anchoring wing, and a second planar branch parallel to the sealing membrane of the first wall, the first planar leg of the first connecting piece being welded to the first anchoring wing, the first planar leg of the second connecting piece being welded to the second wing e anchor, the first flat leg of the angle iron sealing being welded to the second planar branch of the first connecting piece, and the second planar branch of the sealing angle being welded to the second planar branch of the second connecting piece, the sealing membrane of the first wall being welded
  • This corner structure makes it possible to adjust the position of the corner sealing membranes by adapting the position of the anchoring of the connecting pieces on the anchoring flanges to the desired position of the sealing angle.
  • This adjustment of the position of the sealing angle makes it possible to easily adapt the corner structure to the thickness of the insulation barriers of the vessel walls.
  • the position of the first planar branch of the first connecting piece on the first anchoring wing makes it possible to adjust the distance between the second planar branch of the first connecting piece and the load-bearing wall of the second wall and therefore between the first flat branch of the sealing angle and the bearing wall of the second wall.
  • the position of the second planar branch of the second connecting piece on the second anchoring wing makes it possible to adjust the distance between the second planar branch of the second connecting piece and the load-bearing wall of the first wall and therefore between the second flat branch of the sealing angle and the bearing wall of the first wall.
  • such a tank may comprise one or more of the following characteristics.
  • the first anchoring wing is also fixed to the supporting wall of the first wall and the second anchoring wing is fixed to the supporting wall of the second wall.
  • the first and second anchoring wings are fixed at the intersection of the bearing walls of the first and second walls in this case.
  • the sealing angle comprises a plurality of cross sections, two adjacent cross sections being sealingly connected to one another by means of a corrugated connection projecting in the direction of the inside the tank, the sealing membrane of the first and of the second wall each comprising a series of corrugations projecting in the direction of the interior of the tank and developing in a direction perpendicular to the edge, each corrugation of the first wall and the second wall being aligned with a corrugated connection of the sealing angle.
  • Such corrugated connections are simple to make and to fit on a corrugation of the first wall and on a corrugation of the second wall, so as to ensure the continuity of the seal between the sealing angle and the sealing membranes while being able to deform with the waterproofing membranes.
  • the sealing angle comprises a plurality of cross sections, two adjacent cross sections being sealingly connected to one another by means of a corrugated connection projecting in the direction of the inside the tank, the sealing membrane of the first and of the second wall each comprising a series of undulations projecting in the direction of the outside of the tank and developing in a direction perpendicular to the edge, each undulation of the first wall and the second wall being aligned with a corrugated connection of the sealing angle.
  • a corrugated connector comprises a central part, a first bent end, and a second bent end, the first bent end fitting, on the one hand, on a corrugation of the sealing membrane of the first wall, and on the other hand, on the central part, the second bent end fitting, on the one hand, on a corrugation of the sealing membrane of the second wall, and on the other hand, on the central part.
  • the first anchoring wing extends parallel to the load-bearing wall of the first wall, the second anchoring wing extending parallel to the load-bearing wall of the second wall.
  • the bearing wall of the first and the bearing wall of the second wall together form a projecting angle on the inside of the tank, the first anchoring wing extending in the extension of the load-bearing wall of the first wall, and the second anchoring wing extending in the extension of the load-bearing wall of the second wall.
  • the bearing wall of the first and the bearing wall of the second wall together form a re-entrant angle on the interior side of the vessel, the first anchoring wing extending parallel to distance from the load-bearing wall of the first wall, the second anchoring wing extending parallel away from the load-bearing wall of the second wall.
  • the thermally insulating barrier of the first wall and/or of the second wall comprises a plurality of heat-insulating elements, each heat-insulating element comprising a cover panel facing the interior of the vessel, the internal face of the heat-insulating element bordering the ridge comprising a step facing the sealing membrane, a connecting plate being housed in the step and flush with the level of the inner face of the heat-insulating element and of the face interior of the flat leg of the angle iron to which the waterproofing membrane is attached to form a continuous planar support surface for the waterproofing membrane.
  • slots are formed in the first anchoring wing and/or in the second anchoring wing, the slots being arranged at the level of the corrugated connections. These slots make it possible to limit, at least in part, the mechanical stresses undergone by the welds between the corrugated connections and the cross sections of the sealing angle.
  • the thermal insulation barrier fixed to the load-bearing wall is a secondary thermal insulation barrier
  • the sealing membrane fixed to the secondary thermal insulation barrier being a secondary sealing membrane
  • the angle sealing connected in a leaktight manner to the secondary sealing membrane of the first wall and to the secondary sealing membrane of the second wall being a secondary sealing angle
  • the first and the second wall further comprising, in the thickness direction of the tank, from outside to inside, over the secondary thermal insulation barrier and the secondary sealing membrane, a primary thermal insulation barrier and a primary sealing membrane intended to be in contact with the liquid contained in the tank
  • the corner structure further comprising a primary sealing angle connected in leaktight manner to the primary sealing membrane area of the first wall and to the primary waterproofing membrane of the second wall.
  • the primary sealing angle is fixed to the secondary sealing angle via one or more spacers.
  • an outer face of the primary sealing angle carries primary studs, each spacer comprising at least one orifice through which a primary stud passes, the spacer being held against the outer face of the primary sealing angle by a primary nut mounted on the primary stud, an inner face of the secondary sealing angle carrying secondary studs, a spacer having fixing lugs, a stud secondary being positioned between the fixing lugs of two adjacent spacers, a support plate having an orifice being mounted on the secondary stud, the two adjacent spacers being held in abutment by said support plate against an inner face of the angle iron Secondary sealing by a secondary nut mounted on the secondary stud.
  • the secondary sealing membranes are composite membranes, the secondary sealing angle comprising a plurality of cross sections, two adjacent cross sections being connected in a leaktight manner to one another via of a composite sealing strip.
  • the composite sealing strips are glued between the angles.
  • Such a tank can be part of an onshore storage installation, for example to store liquefied gas or be installed in a floating, coastal or deep-water structure, in particular an LNG carrier, an LPG transport ship, a floating unit storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • LNG carrier for example to store liquefied gas
  • LPG transport ship for example to transport LNG
  • FSRU floating unit storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a hull and an aforementioned tank placed in the hull.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation to or from the ship's tank.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or land and a pump to drive a flow of cold liquid product through the insulated pipes from or to the floating or land storage facility to or from the ship's tank.
  • FIG. 1 illustrates such a load-bearing structure in which walls longitudinal, comprising an upper wall 104, a lower wall 105 and side walls 106, 107, 108, 109, 110, 111, of the supporting structure extend parallel to the longitudinal direction of the ship and form a polygonal section in a plane perpendicular to the longitudinal direction of the ship.
  • the general structure of a ship equipped with such polyhedral tanks is for example described with regard to the figure 1 of the document FR3008765 .
  • the longitudinal walls 104, 105, 106, 107, 108, 109, 110, 111 are interrupted in the longitudinal direction of the ship by transverse bearing walls 101, 103 which are perpendicular to the longitudinal direction of the ship.
  • the longitudinal walls 104, 105, 106, 107, 108, 109, 110, 111 and the transverse walls 101, 103 meet at reentrant edges.
  • each wall of the support structure carries a respective tank wall.
  • each of the vessel walls is composed of a thermally insulating barrier carrying a sealing membrane in contact with a fluid stored in the vessel such as liquefied petroleum gas comprising butane, propane, propene or other and having an equilibrium temperature comprised for example between -50°C and 0°C.
  • the upper wall 104 comprises a space, for example of rectangular parallelepipedal shape, projecting upwards, called liquid dome 112.
  • the liquid dome 112 is defined by two transverse walls, front 113 and rear 114, and by two side walls 115, 116 which extend vertically and project from the upper wall 104 upwards.
  • the liquid dome 112 further comprises a horizontal cover, not shown in the figure 2 , which is intended to cover the opening formed between the front 113, rear 114 and side walls 115, 116 of the liquid dome 112.
  • the horizontal cover is crossed by a series of pipes intended to load or unload the liquids and gases mentioned above.
  • the upper longitudinal wall 104 and the walls of the liquid dome 112 meet at projecting edges 100.
  • the front 113 and side walls 115, 116 of the liquid dome 112 meet at reentrant edges 201.
  • the picture 3 is a view from inside the vessel of a vessel corner at a projecting edge 100 between a first bearing wall 5 and a second bearing wall 25 carrying respectively a first vessel wall 1 and a second wall tank 2.
  • the first bearing wall 5 and the second bearing wall 25 form an angle ⁇ between them.
  • the first tank wall 1 and the second tank wall 2 meet at a corner structure 10 of the tank.
  • the corner structure 10 can be a protruding corner structure (the angle ⁇ towards the inside of the tank between the two supporting walls is between 180° and 360°, so that the edge is protruding seen from inside the tank), which is for example the case for an edge between the upper longitudinal wall 104, and one of the front 113, rear 114 and side 115, 116 walls of the liquid dome 112.
  • figures 3 to 6 illustrate the particular case of an angle ⁇ of 270°.
  • the corner structure 10 can be a re-entrant corner structure (the angle ⁇ is between 0° and 180°, so that the edge is re-entrant seen from inside the vessel), which is for example the case for an edge between the longitudinal walls 104, 105, 106, 107, 108, 109, 110, 111 and the transverse walls 101, 103.
  • the figure 13 illustrates the particular case of an angle ⁇ of 90°.
  • the first vessel wall 1 comprises, in a direction of thickness, a bearing wall 5, a thermal insulation barrier 6 fixed to the bearing wall 5, a sealing membrane 27 parallel to the bearing wall 5.
  • the second vessel wall 2 comprises, in a direction of thickness, a bearing wall 25, an insulation barrier 26 fixed to the load-bearing wall 25, a sealing membrane 7 parallel to the load-bearing wall 25.
  • the thermal insulation barrier 6 of the first vessel wall 1 consists of a plurality of heat-insulating elements 61 anchored on the first load-bearing wall 5. These heat-insulating elements 61 together form a flat surface on which the membrane is anchored. sealing 27.
  • the thermal insulation barrier 26 of the second wall of the vessel 2 consists of a plurality of heat-insulating elements 61 anchored on the second bearing wall 25. These heat-insulating elements 61 together form a flat surface on which is anchored the sealing membrane 7.
  • the heat-insulating elements 61 are anchored to the supporting structure by any suitable means.
  • the heat-insulating elements 61 are made in the form of boxes anchored to the load-bearing wall by studs, as described in the publication WO-A-2017064413 .
  • the sealing membrane 7, 27 consists of a plurality of metal plates juxtaposed to each other with overlap. These metal plates are preferably rectangular in shape. The metal plates are welded together to ensure the tightness of the waterproofing membrane.
  • the metal plates are for example made of stainless steel, an iron-based alloy with a high nickel or manganese content 0.5 to 1.5 mm thick.
  • the metal plates comprise a plurality of undulations 71, 72 facing the inside of the tank.
  • the sealing membrane 7 comprises a first series of undulations 71 and a second series of undulations 72 forming a regular rectangular pattern.
  • the first one series of undulations 71 is perpendicular to edge 100 and the second series of undulations 72 is parallel to edge 100.
  • the undulations 71, 72 develop parallel to the edges of the rectangular metal plates.
  • the distance between two successive undulations 71, 72 of a series of undulations is for example of the order of 300 mm to 800 mm and ideally 600 mm.
  • the corner structure 10 comprises a first anchoring wing 11 extending from and in the extension of the load-bearing wall 5 of the first vessel wall 1, and a second anchoring wing 211 extending to from and in the extension of the bearing wall 25 of the second vessel wall 2.
  • the first anchoring wing 11 may not extend in the extension of the bearing wall 5 of the first vessel wall 1 as long as it extends in a direction that is not parallel to the load-bearing wall 25 of the second wall 2.
  • the first anchoring wing 11 extends from the load-bearing wall 25 in a direction that is not parallel to said wall carrier 25.
  • the first anchoring wing 11 extends, preferably, perpendicular to the carrier wall 25.
  • the first anchoring wing 11 extends from the intersection of the load-bearing walls 5 and 25 and parallel to the load-bearing wall 5.
  • the row of heat-insulating elements 61 of the thermally insulating barrier 6 bordering the edge 100 are arranged so as to provide a space between the row of heat-insulating elements 61 bordering the edge 100 and the second anchoring wing 211.
  • the second anchoring wing 211 may not extend in the extension of the bearing wall 25 of the second vessel wall 2 as long as it extends in a direction that is not parallel to the bearing wall 5 of the first wall 1.
  • the second anchoring wing 211 extends from the load-bearing wall 5 in a direction not parallel to said load-bearing wall 5.
  • the second anchoring wing 211 extends, preferably, perpendicular to the bearing wall 5.
  • the second anchoring wing 211 extends from the intersection of the load-bearing walls 5 and 25, and parallel to the load-bearing wall 25.
  • the row of heat-insulating elements 61 of the thermally insulating barrier 26 bordering the edge 100 are arranged so as to provide a space between the row of heat-insulating elements 61 bordering the edge 100 and the first anchoring wing 11.
  • the corner structure 1 includes a first connecting piece 12 and a second connecting piece 212.
  • the first connecting piece 12 includes a first planar branch 122 fixed to the anchoring wing 11 and extending in the extension of the anchoring wing 11, and a second planar branch 121 extending parallel to the load-bearing wall 25 in the space provided between the first anchoring wing 11 and the row of heat-insulating elements 61 of the barrier thermal insulation 26 bordering the edge 100.
  • the first connecting piece 12 may in particular be composed of a plurality of successive sections 125.
  • the second connecting piece 212 comprises a first planar branch 2122 fixed to the anchoring wing 211 and extending in the extension of the anchoring wing 211, and a second planar branch 2121 extending parallel to the load-bearing wall 5 in the space provided between the first anchoring wing 211 and the row of heat-insulating elements 61 of the thermal insulation barrier 6 bordering the edge 100.
  • the second connecting piece 212 can in particular be composed of a plurality of successive sections 215.
  • the connecting part 12, 212 is welded indifferently on the face of the anchoring wing 11, 211 facing the insulating blocks 61 of the wall of the vessel 1 or 2.
  • the connecting pieces 12 and 212 may comprise a reinforcement between their two planar branches to increase their rigidity.
  • the spaces provided between the first anchoring wing 11, the row of heat-insulating elements 61 of the thermal insulation barrier 26 bordering the edge 100, the second planar branch 121 and the bearing wall 25 are advantageously filled with heat-insulating lining such than glass wool or polyurethane foam.
  • the spaces between the second anchoring wing 211, the row of heat-insulating elements 61 of the thermal insulation barrier 6 bordering the edge 100, the second planar branch 211 and the bearing wall 5 are advantageously filled with heat-insulating lining such than glass wool or polyurethane foam.
  • the corner structure 10 further comprises a sealing angle 13 fixed, on the one hand, to the first anchoring wing 11 via the first connecting piece 12, and on the other hand, to the second anchoring wing 211 via the second connecting piece 212.
  • the sealing angle 13 is a plate, for example metallic, having a thickness greater than that of the sealing membrane 7, 27.
  • the sealing angle 13 has for example a thickness of between 3 mm and 10 mm. confers sufficient rigidity to support itself, which is not necessarily the case with the sealing membranes 7, 27.
  • the sealing angle 13 comprises a first planar branch 131 extending in the plane of the sealing membrane 7 of the second vessel wall 2, and a second planar branch 132 extending in the plane of the membrane of sealing 27 of the first vessel wall 1.
  • the first flat branch 131 is fixed to the first connecting piece 12 (more precisely welded to the second flat branch 121 of the first connecting piece 12), and the second flat branch 132 is welded to the second connecting part 212 (more precisely welded to the second planar branch 2121 of the second connecting part 212).
  • the sealing angle 13 may include a reinforcement 134 on its outer face.
  • Such a corner structure makes it possible to adjust the position of the sealing angle 13 by adapting on the one hand the position of the anchoring of the first planar branches 122, 2122 of the connecting pieces 12, 212 on the wings of anchoring 11, 211 and on the other hand the position of the anchoring of the flat branches 131, 132 of the sealing angle 13 on the second flat branches 121, 2121 of the connecting pieces 12, 212.
  • This adjustment of the position of the sealing angle 13 makes it possible to easily adapt the corner structure to the thickness of the heat-insulating elements 61 of the insulation barriers 6, 26.
  • the first branch 131 of the sealing angle forms a flat support for the sealing membrane 7 of the second vessel wall 2
  • the second branch 132 of the sealing angle forms a flat support for the sealing membrane 27 of the first tank wall 1.
  • the sealing membrane 7 of the second wall rests on the first branch 131 of the sealing angle 13.
  • the sealing membrane 27 of the first wall rests on the second branch 132 of the sealing angle 13.
  • the sealing angle 13 is connected in a leaktight manner to the sealing membrane sealing 7 of the second wall and the sealing membrane 27 of the first wall.
  • the sealing membrane 7 of the second wall can be welded to the first branch 131 of the sealing angle 13 on which it rests, and the sealing membrane 27 of the first wall welded to the second branch 132 of the sealing angle on which it rests.
  • the sealing angle 13 may comprise a plurality of cross sections 135.
  • the cross sections 135 of the sealing angle are for example fixed in overlap on two adjacent sections 125 of the first connecting piece 12 and on two adjacent sections 215 of the second connecting piece 212.
  • two adjacent cross-sections 135 can be sealingly connected to each other via a corrugated connection 15.
  • Each corrugation of the first series of corrugations 71 of the first wall and of the second wall is aligned with a corrugated connection 15 of the sealing angle.
  • the corrugated coupling 15 fits over a corrugation 71 of the sealing membrane 27 of the first wall and over a corrugation 71 of the sealing membrane 7 of the second wall.
  • the corrugated fittings 15 allow the sealing angle 13 to deform with the sealing membranes 7, 27.
  • the corrugated connector 15 comprises a central part 153, a first bent end 151, and a second bent end 152.
  • the central part 153 comprises two lateral legs, one of the lateral legs being welded to the central part 133 of a section 155 of the sealing angle, and the other lateral tab being welded to the central part of an adjacent section 155 of the sealing angle.
  • the first bent end 151 fits on the one hand on a corrugation 71 of the first wall, and on the other hand on the central part 153.
  • the first bent end 151 comprises two lateral tabs, one of the lateral tabs being welded on a section 155 of the sealing angle, and the other lateral tab being welded to the adjacent section 155 of the sealing angle, covering the area of overlap between the sealing angle 13 and the sealing membrane 7 with the second tank wall 2.
  • the second bent end 152 has two side tabs, one of the side tabs being welded to a section 155 of the sealing angle, and the other side tab being welded to the adjacent section 155 of the sealing angle, covering the area of overlap between the angle seal 13 and the sealing membrane 27 of the first tank wall 1.
  • Such corrugated connections 15 are simple to make and to fit on a corrugation 71 of the first wall and on a corrugation 71 of the second wall, so as to ensure the continuity of the seal between the sealing angle 13 and the membranes sealing 7, 27, while being able to deform with the sealing membranes 7, 27.
  • slots 119 are optionally provided in the first anchoring wing 11.
  • slots 2119 are optionally provided in the second anchoring wing 211.
  • the slots 119 and/or 2119 can in particular extend from the end of the anchoring wing 11, 211 in a direction perpendicular to the edge 100, and, in particular, over a distance equal to between 1 ⁇ 2 and 2/3 of the dimension of the anchoring wing 11 , 211 in that direction.
  • the slots 119 and/or 2119 can in particular be placed at the level of the corrugated connectors 15, that is to say typically every 600mm.
  • each heat-insulating element 61 comprises a cover panel facing the inside of the tank.
  • the adjective “interior” applied to an element of the tank designates the part of this element oriented towards the inside of the tank and the adjective “exterior” designates the part of this element oriented towards the outside of the tank. vessel, regardless of the orientation of the vessel wall with respect to the earth's gravity field.
  • the inner face of the cover panel has a recess 62 vis-à-vis the connecting piece 12, 212.
  • a connecting plate 63 is housed in the recess 62 and is flush with the inner face of the heat-insulating element 61 and the inner face of the flat leg 132 of the sealing angle on which the membrane is fixed. sealing 27 in order to form a continuous planar support surface for the sealing membrane 27. Furthermore, the connecting plate 63 makes it possible to make up for construction clearances which may appear during the construction of the tank.
  • the connecting plate 63 may also have a recess on its outer face, the first branch 2122 of the connecting piece 212 on which the flat branch 132 of the sealing angle is fixed being housed in the recess of the connecting plate. connection 63.
  • connection plate 63 is thus supported both on the inner face of the heat-insulating element 61 and on the inner face of the first branch 2122 of the connecting piece 212.
  • the connecting plate 63 is described in relative to the first tank wall 1, but it is understood that a similar connecting plate can be provided on the second tank wall 2.
  • the technique described above for making a tank with a single sealing membrane can be used in different types of tanks, for example to form a double membrane tank for liquefied natural gas (LNG) in an onshore installation or in a structure. floating like an LNG carrier or other.
  • LNG liquefied natural gas
  • the waterproofing membrane illustrated in the previous figures is a secondary waterproofing membrane, and that a primary thermal insulation barrier as well as a primary waterproofing membrane must still be added on this secondary waterproofing membrane.
  • this technique can also be applied to tanks having a plurality of thermally insulating barriers and superimposed sealed membranes.
  • the figure 8 represents two walls of the tank at the level of an edge 100 according to a variant embodiment in which the first wall of the tank 1 comprises, in the thickness direction of the tank, from the outside inwards, a barrier of secondary thermal insulation 6, which corresponds to the thermal insulation barrier 6 described in relation to the preceding figures, a secondary sealing membrane 27, which corresponds to the sealing membrane 27 described in relation to the preceding figures, a primary thermal insulation barrier 6 and a primary sealing membrane 9 intended to be in contact with the liquid contained in the tank.
  • the second vessel wall 2 comprises, in the thickness direction of the vessel, from the outside inwards, a secondary thermal insulation barrier 26, which corresponds to the thermal insulation barrier 26 described in relation to the preceding figures, a secondary sealing membrane 7, which corresponds to the sealing membrane 7 described in relation to the preceding figures, a primary thermal insulation barrier 26 and a primary sealing membrane 29 intended to be in contact with the liquid contained in the tank.
  • the primary thermal insulation barrier 6, 26 and the primary sealing membrane 29, 9 may be similar to the secondary thermal insulation barrier 6, 26 and the secondary sealing membrane 27, 7 will not be described further. in detail.
  • the primary sealing membranes 9, 29 are different from the secondary sealing membranes 7, 27 for example, the corrugations of the secondary sealing membrane 7, 27 can be turned towards the outside of the tank wall.
  • the primary sealing membranes 9,29 and the secondary sealing membrane 7, 27 have corrugations facing outward from the vessel wall
  • the secondary sealing membranes 7, 27 are composite sealing barriers.
  • a composite connecting strip is glued on one side to the secondary sealing angle 13 on the second flat branch 132 and on the other to the composite sealing barrier present on top of the insulating blocks 61.
  • the strip composite connecting piece can be glued on one side to the second connecting piece 212 and on the other to the composite sealing barrier present on top of the insulating blocks 61.
  • composite sealing strips are glued between the angles 135.
  • the composite sealing barrier may in particular be made of a composite material comprising three layers: the two outer layers are fabrics of glass fibers and the intermediate layer is a thin metal foil, for example aluminum foil with a thickness of about 0.1 mm. This metal sheet constitutes the secondary sealing barrier and it is glued on the insulating blocks 61 of the thermal insulation barrier 6, 26.
  • the composite connecting strips and the composite sealing strips can in particular be glued with polyurethane or epoxy glue.
  • a primary sealing angle 913 is fixed to the secondary sealing angle 13, which corresponds to the sealing angle 13 described in relation to the figures 3 to 6 .
  • the primary sealing angle 913 will not be described in detail because it is similar to the sealing angle 13 described in relation to the figures 3 to 6 .
  • the primary sealing angle 913 is connected in a leaktight manner to the primary sealing membrane 29 of the first tank wall 1 and to the primary sealing membrane 9 of the second tank wall 2.
  • the primary sealing angle 913 can in particular be fixed to the secondary sealing angle 13 by anchoring members 30.
  • the anchoring members 30 may comprise one or more spacers 32 fixed to the primary sealing angle 913 before the assembly formed by the spacers 32 and the primary sealing angle 913 is fixed to the sealing angle secondary 13.
  • the inner face of the secondary sealing angle 13 can carry secondary studs 31 fixed by welding and/or screwing.
  • the figure 9 is a sectional view in the plane of two studs 31 fixed to the secondary sealing angle 13.
  • each cross section 135 of the secondary sealing angle 13 can comprise two studs 31.
  • Each stud 31 develops perpendicular to the central part 133 of the secondary sealing angle 13 towards the inside of the tank.
  • the outer face of the primary sealing angle 913 can carry primary studs 35 fixed by welding and/or screwing.
  • the figure 10 is a sectional view in the plane of two studs 35 fixed to the primary sealing angle 913.
  • each cross section of the primary sealing angle 913 can comprise two studs 35.
  • Each stud 35 develops perpendicular to the central part of the primary sealing angle towards the outside of the tank.
  • each cross section 9135 of the primary sealing angle 913 comprises one or more primary studs 35.
  • One end of the studs opposite the sealing angle primary 913 has a thread.
  • Each spacer 32 has one or more holes 322 extending from its inside face.
  • each spacer 32 may include two orifices 322 extending from its inner face.
  • each spacer 32 is mounted on one or more studs 35 so that each orifice 322 of the spacer is crossed by a stud 35.
  • a nut 351 is mounted on the threaded end of each stud 35.
  • the inner face of the spacer 32 is thus held in abutment by said nut 351 against the outer face of the primary sealing angle 913.
  • the outer face of the spacer 32 (that is to say the face of the spacer 32 opposite the primary sealing angle 913) is then fixed by any means, for example gluing, riveting, or screwing, on the inside face of the secondary sealing angle 13.
  • each cross section 135 of the secondary sealing angle 13 comprises one or more studs 31.
  • One end of the studs 31 opposite the secondary sealing angle 13 comprises a thread.
  • a spacer 32 has fixing lugs 323 extending in alignment with the outer face of the spacer.
  • a stud 31 is positioned between the fixing lugs 323 of two adjacent struts 32.
  • a support plate 33 having an orifice is mounted on the pin 31.
  • a nut 311 is mounted on the threaded end of the pin 31.
  • the two adjacent spacers 32 are thus maintained supported by said bearing plate 33 against an inner face of the secondary sealing angle 13.
  • the studs 31 extending from the secondary sealing angle 31 pass through holes in the primary sealing angle 913, the nut being mounted on the inner face of the primary sealing 913, the primary sealing angle 913 thus being held in abutment by said nut against the inner face of the spacer 32, the spacer 32 itself being held in abutment by said nut against an inner face of the angle secondary seal 13.
  • the primary sealing angle 913 may alternatively comprise two planar branches forming between them an angle equal to the angle ⁇ between the bearing walls of the edge, that is to say 90° in the case illustrated by the figure 11 .
  • the primary sealing angle 913 is then fixed on a support 37 forming an angle equal to the angle a.
  • a support 37 can for example be a beam of isosceles triangular section, the base of the triangle being fixed on the outer face of the spacer 32.
  • a similar angle structure can also be used in a re-entrant edge 201 of the tank.
  • the figure 13 represents a vessel edge between two vessel walls forming an interior angle ⁇ of the order of 90°.
  • Such a tank edge comprises a corner structure 510 similar to the corner structure 10 as described with regard to the figures 2 to 6 , with the difference that the first anchoring wing 11 extends parallel at a distance from the load-bearing wall 5 of the first vessel wall 1, and that the second anchoring wing 211 extends parallel at a distance from the load-bearing wall 25 of the second vessel wall 2.
  • a cutaway view of an LNG or propane tanker 1070 shows a sealed and insulated tank 1000 of generally prismatic shape mounted in the double hull 1072 of the ship.
  • the wall of the tank comprises at least one tight barrier intended to be in contact with the liquefied gas contained in the tank and at least one insulating barrier arranged between the tight barrier and the double shell 1072.
  • loading/unloading pipes 1073 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of liquefied gas from or to the tank 1000.
  • the figure 14 represents an example of a maritime terminal comprising a loading and unloading station 1075, an underwater pipe 1076 and an installation on land 1077.
  • the loading and unloading station 1075 is a fixed off-shore installation comprising a mobile arm 1074 and a tower 1078 which supports the mobile arm 1074.
  • the mobile arm 1074 carries a bundle of insulated flexible pipes 1079 which can be connected to the loading/unloading pipes 1073.
  • the orientable mobile arm 1074 adapts to all the templates of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 1078.
  • the loading and unloading station 1075 allows the loading and unloading of the ship 1070 from or to the shore installation 1077.
  • This comprises liquefied gas storage tanks 1080 and connection pipes 1081 connected by the underwater pipe 1076 to the loading or unloading station 1075.
  • the underwater pipe 1076 allows the transfer of the liquefied gas between the loading or unloading station 1075 and the installation on land 1077 over a great distance, for example 5 km, which makes it possible to keep the ship 1070 at a great distance from the coast during loading and unloading operations.

Description

    Domaine technique
  • L'invention se rapporte au domaine des cuves étanches et thermiquement isolantes. En particulier, l'invention se rapporte au domaine des cuves étanches et thermiquement isolantes dans le cadre du stockage ou du transport de liquide à basse température telles que des cuves de navires pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de gaz naturel liquéfié (GNL) à environ -162°C à pression atmosphérique.
  • Arrière-plan technologique
  • Des cuves étanches et thermiquement isolantes pour navires sont connues par exemple du document WO-A-2017064413 . Ce document décrit une cuve de propanier ou méthanier comportant une pluralité de parois de cuve. Chaque paroi de la cuve comporte au moins une membrane d'étanchéité et au moins une barrière d'isolation thermique.
  • Le document JP2009079736 propose un réservoir terrestre pour liquide cryogénique comportant une structure porteuse en béton et une barrière d'isolation thermique incluant une pièce en forme de M conçue pour s'adapter à l'épaisseur de la barrière d'isolation thermique en changeant la hauteur d'une pièce en forme de M. Toutefois, la pièce en forme de M impose une mise en forme compliquée.
  • Le document JPS55140200 présente un réservoir pour liquide cryogénique comportant une structure porteuse en béton et ayant une structure d'angle entre une première paroi et une deuxième paroi de la structure porteuse. La structure d'angle est constituée de deux ailes d'ancrage sur lesquelles une cornière vient s'appuyer. Cependant la structure d'angle n'est pas adaptée à tous les types d'angle formé par les deux parois de la structure porteuse.
  • Résumé
  • Un objectif de l'invention est de proposer une structure d'angle capable de supporter une ou plusieurs membranes d'étanchéité au niveau d'un angle entre deux parois de cuve et pouvant s'adapter à différentes épaisseurs de la barrière d'isolation thermique.
  • L'invention fournit une cuve étanche et thermiquement isolante de stockage d'un fluide comprenant une première paroi et une deuxième paroi, la première et la deuxième paroi comportant chacune, dans une direction d'épaisseur, une paroi porteuse, une barrière d'isolation thermique fixée à la paroi porteuse, une membrane d'étanchéité parallèle à la paroi porteuse et fixée à la barrière d'isolation thermique, la cuve étanche et thermiquement isolante comportant, à une arête entre la paroi porteuse de la première paroi et la paroi porteuse de la deuxième paroi, une structure d'angle, la structure d'angle comportant une première aile d'ancrage fixée à la paroi porteuse de la deuxième paroi, une deuxième aile d'ancrage fixée à la paroi porteuse de la première paroi, une cornière d'étanchéité fixée, d'une part, à la première aile d'ancrage par l'intermédiaire d'une première pièce de raccordement, et d'autre part, à la deuxième aile d'ancrage par l'intermédiaire d'une deuxième pièce de raccordement. La cornière d'étanchéité est raccordée de manière étanche à la membrane d'étanchéité de la première paroi et à la membrane d'étanchéité de la deuxième paroi, la cornière d'étanchéité comportant une première branche plane s'étendant dans le plan de la membrane d'étanchéité de la deuxième paroi, et une deuxième branche plane s'étendant dans le plan de la membrane d'étanchéité de la première paroi, la première pièce de raccordement comportant une première branche plane parallèle à la première aile d'ancrage, et une deuxième branche plane parallèle à la membrane d'étanchéité de la deuxième paroi, la deuxième pièce de raccordement comportant une première branche plane parallèle à la deuxième aile d'ancrage, et une deuxième branche plane parallèle à la membrane d'étanchéité de la première paroi, la première branche plane de la première pièce de raccordement étant soudée à la première aile d'ancrage, la première branche plane de la deuxième pièce de raccordement étant soudée à la deuxième aile d'ancrage, la première branche plane de la cornière d'étanchéité étant soudée sur la deuxième branche plane de la première pièce de raccordement, et la deuxième branche plane de la cornière d'étanchéité étant soudée sur la deuxième branche plane de la deuxième pièce de raccordement, la membrane d'étanchéité de la première paroi étant soudée sur la deuxième branche plane de la cornière d'étanchéité, et la membrane d'étanchéité de la deuxième paroi étant soudée sur la première branche plane de la cornière d'étanchéité.
  • Cette structure d'angle permet de régler la position des membranes d'étanchéité d'angle en adaptant la position de l'ancrage des pièces de raccordement sur les ailes d'ancrage à la position désirée de la cornière d'étanchéité. Ce réglage de la position de la cornière d'étanchéité permet d'adapter facilement la structure d'angle à l'épaisseur des barrières d'isolation des parois de cuve. En effet, la position de la première branche plane de la première pièce de raccordement sur la première aile d'ancrage permet de régler la distance entre la deuxième branche plane de la première pièce de raccordement et la paroi porteuse de la deuxième paroi et donc entre la première branche plane de la cornière d'étanchéité et la paroi porteuse de la deuxième paroi. De même, la position de la deuxième branche plane de la deuxième pièce de raccordement sur la deuxième aile d'ancrage permet de régler la distance entre la deuxième branche plane de la deuxième pièce de raccordement et la paroi porteuse de la première paroi et donc entre la deuxième branche plane de la cornière d'étanchéité et la paroi porteuse de la première paroi.
  • Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
  • Selon certains modes de réalisation, la première aile d'ancrage est aussi fixée à la paroi porteuse de la première paroi et la deuxième aile d'ancrage est fixée à la paroi porteuse de la deuxième paroi. En d'autres termes, les première et deuxième ailes d'ancrage sont fixées à l'intersection des parois porteuses des première et deuxième parois dans ce cas.
  • Selon certains modes de réalisation, la cornière d'étanchéité comporte une pluralité de sections transversales, deux sections transversales adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'un raccord ondulé faisant saillie en direction de l'intérieur de la cuve, la membrane d'étanchéité de la première et de la deuxième paroi comportant chacune une série d'ondulations faisant saillie en direction de l'intérieur de la cuve et se développant selon une direction perpendiculaire à l'arête, chaque ondulation de la première paroi et de la deuxième paroi étant alignée avec un raccord ondulé de la cornière d'étanchéité. De tels raccords ondulés sont simples à réaliser et à emboiter sur une ondulation de la première paroi et sur une ondulation de la deuxième paroi, de manière à assurer la continuité de l'étanchéité entre la cornière d'étanchéité et les membranes d'étanchéité tout en pouvant se déformer avec les membranes d'étanchéité.
  • Selon certains modes de réalisation, la cornière d'étanchéité comporte une pluralité de sections transversales, deux sections transversales adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'un raccord ondulé faisant saillie en direction de l'intérieur de la cuve, la membrane d'étanchéité de la première et de la deuxième paroi comportant chacune une série d'ondulations faisant saillie en direction de l'extérieur de la cuve et se développant selon une direction perpendiculaire à l'arête, chaque ondulation de la première paroi et de la deuxième paroi étant alignée avec un raccord ondulé de la cornière d'étanchéité.
  • Selon certains modes de réalisation, un raccord ondulé comporte une partie centrale, une première extrémité coudée, et une deuxième extrémité coudée, la première extrémité coudée s'emboitant, d'une part, sur une ondulation de la membrane d'étanchéité de la première paroi, et d'autre part, sur la partie centrale, la deuxième extrémité coudée s'emboitant, d'une part, sur une ondulation de la membrane d'étanchéité de la deuxième paroi, et d'autre part, sur la partie centrale. Le fait que les raccords ondulés soient en trois parties simplifie le raccordement avec les membranes d'étanchéité et permet de rectifier des écarts d'alignement entre les ondulations.
  • Selon certains modes de réalisation, la première aile d'ancrage s'étend parallèlement à la paroi porteuse de la première paroi, la deuxième aile d'ancrage s'étendant parallèlement à la paroi porteuse de la deuxième paroi.
  • Selon certains modes de réalisation, au niveau de l'arête, la paroi porteuse de la première et la paroi porteuse de la deuxième paroi forment ensemble un angle saillant du côté intérieur de la cuve, la première aile d'ancrage s'étendant dans le prolongement de la paroi porteuse de la première paroi, et la deuxième aile d'ancrage s'étendant dans le prolongement de la paroi porteuse de la deuxième paroi.
  • Selon certains modes de réalisation, au niveau de l'arête, la paroi porteuse de la première et la paroi porteuse de la deuxième paroi forment ensemble un angle rentrant du côté intérieur de la cuve, la première aile d'ancrage s'étendant parallèlement à distance de la paroi porteuse de la première paroi, la deuxième aile d'ancrage s'étendant parallèlement à distance de la paroi porteuse de la deuxième paroi.
  • Selon certains modes de réalisation, la barrière thermiquement isolante de la première paroi et/ou de la deuxième paroi comporte une pluralité d'éléments calorifuges, chaque élément calorifuge comportant un panneau de couvercle tourné vers l'intérieur de la cuve, la face intérieure de l'élément calorifuge bordant l'arête comportant un décrochement en vis-à-vis de la membrane d'étanchéité, une plaque de liaison étant logée dans le décrochement et affleurant au niveau de la face intérieure de l'élément calorifuge et de la face intérieure de la branche plane de la cornière d'étanchéité sur laquelle est fixée la membrane d'étanchéité afin de former une surface de support plane continue pour la membrane d'étanchéité.
  • Selon certains modes de réalisation, des fentes sont ménagées dans la première aile d'ancrage et/ou dans la deuxième aile d'ancrage, les fentes étant disposées au niveau des raccords ondulés. Ces fentes permettent de limiter au moins en partie les contraintes mécaniques subies par les soudures entre les raccords ondulées et les sections transversales de la cornière d'étanchéité.
  • Selon certains modes de réalisation, la barrière d'isolation thermique fixée à la paroi porteuse est une barrière d'isolation thermique secondaire, la membrane d'étanchéité fixée sur la barrière d'isolation thermique secondaire étant une membrane d'étanchéité secondaire, la cornière d'étanchéité raccordée de manière étanche à la membrane d'étanchéité secondaire de la première paroi et à la membrane d'étanchéité secondaire de la deuxième paroi étant une cornière d'étanchéité secondaire, la première et la deuxième paroi comportant, en outre, dans la direction d'épaisseur de la cuve, de l'extérieur vers l'intérieur, par-dessus la barrière d'isolation thermique secondaire et la membrane d'étanchéité secondaire, une barrière d'isolation thermique primaire et une membrane d'étanchéité primaire destinée à être en contact avec le liquide contenu dans la cuve, la structure d'angle comportant en outre une cornière d'étanchéité primaire raccordée de manière étanche à la membrane d'étanchéité primaire de la première paroi et à la membrane d'étanchéité primaire de la deuxième paroi.
  • Selon certains modes de réalisation, la cornière d'étanchéité primaire est fixée à la cornière d'étanchéité secondaire par l'intermédiaire d'une ou plusieurs entretoises.
  • Selon certains modes de réalisation, une face extérieure de la cornière d'étanchéité primaire porte des goujons primaires, chaque entretoise comportant au moins un orifice traversé par un goujon primaire, l'entretoise étant maintenue en appui contre la face extérieure de la cornière d'étanchéité primaire par un écrou primaire monté sur le goujon primaire, une face intérieure de la cornière d'étanchéité secondaire portant des goujons secondaires, une entretoise présentant des pattes de fixation, un goujon secondaire étant positionné entre les pattes de fixation de deux entretoises adjacentes, une plaque d'appui comportant un orifice étant montée sur le goujon secondaire, les deux entretoises adjacentes étant maintenues en appui par ladite plaque d'appui contre une face intérieure de la cornière d'étanchéité secondaire par un écrou secondaire monté sur le goujon secondaire.
  • Selon certains modes de réalisation, les membranes d'étanchéité secondaires sont des membranes composites, la cornière d'étanchéité secondaire comportant une pluralité de sections transversales, deux sections transversales adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'une bande d'étanchéité composite.
  • Selon certains modes de réalisation, les bandes d'étanchéité composite sont collées entre les cornières.
  • Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du gaz liquéfié ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, un navire de transport de GPL, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
  • Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une coque et une cuve précitée disposée dans la coque.
  • Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Brève description des figures
  • L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
    • La figure 1 est une vue en perspective d'une cuve selon un mode de réalisation de l'invention.
    • La figure 2 est une vue en perspective d'une portion de la cuve de la figure 1 illustrant le dôme gaz vu de l'intérieur de la cuve.
    • Les figures 3 à 6 sont des vues en perspective d'une structure d'angle saillante selon un mode de réalisation de l'invention au cours de différentes étapes de sa construction.
    • La figure 7 est une vue en coupe de la structure d'angle de la figure 6.
    • Les figures 8 à 11 sont des vues en coupe d'une structure d'angle pour une cuve comportant deux membranes d'étanchéité intercalées avec deux barrières d'isolation thermique, selon différentes variantes de réalisation de l'invention. En particulier, les figures 9 et 10 illustrent un mode de réalisation particulier d'ancrage de la cornière d'étanchéité primaire sur la cornière d'étanchéité secondaire, la figure 10 étant une vue en coupe dans le plan de deux goujons fixés à la cornière d'étanchéité primaire tandis que la figure 9 est une vue en coupe dans le plan de deux goujons fixés à la cornière d'étanchéité secondaire. Les figures 10b à 10f sont des vues en coupe dans un plan perpendiculaire à la cornière d'étanchéité primaire et parallèle à l'arête et illustrent les différentes étapes d'un mode de réalisation particulier du montage de la cornière d'étanchéité primaire sur la cornière d'étanchéité secondaire. La figure 11 illustre un mode de réalisation alternative d'ancrage de la cornière d'étanchéité primaire sur la cornière d'étanchéité secondaire.
    • La figure 12 est une vue de profil d'une cornière d'étanchéité.
    • La figure 13 est une vue en coupe d'une structure d'angle rentrante selon un autre mode de réalisation de l'invention.
    • La figure 14 est une vue écorchée d'un navire méthanier ou propanier comportant une cuve selon un mode de réalisation de l'invention.
    • La figure 15 est une vue en perspective partielle d'une structure d'angle saillante selon certains modes de réalisation de l'invention.
    Description détaillée de modes de réalisation
  • Les figures sont décrites ci-après dans le cadre d'une structure porteuse constituée par les parois internes d'une double coque d'un navire pour le transport de gaz liquéfié. Une telle structure porteuse peut notamment présenter une géométrie polyédrique, par exemple de forme prismatique. La figure 1 illustre une telle structure porteuse dans laquelle des parois longitudinales, comportant une paroi supérieure 104, une paroi inférieure 105 et des parois latérales 106, 107, 108, 109, 110, 111, de la structure porteuse s'étendent parallèlement à la direction longitudinale du navire et forment une section polygonale dans un plan perpendiculaire à la direction longitudinale du navire. La structure générale d'un navire muni de telles cuves polyédriques est par exemple décrite en regard de la figure 1 du document FR3008765 .
  • Les parois longitudinales 104, 105, 106, 107, 108, 109, 110, 111 sont interrompues dans la direction longitudinale du navire par des parois porteuses transversales 101, 103 qui sont perpendiculaires à la direction longitudinale du navire. Les parois longitudinales 104, 105, 106, 107, 108, 109, 110, 111 et les parois transversales 101, 103 se rejoignent au niveau d'arêtes rentrantes.
  • Chaque paroi de la structure porteuse porte une paroi de cuve respective. Sur les figures 2 à 7, chacune des parois de cuve est composée d'une barrière thermiquement isolante portant une membrane d'étanchéité au contact d'un fluide stocké dans la cuve tel que du gaz de pétrole liquéfié comportant du butane, du propane, du propène ou autre et présentant une température d'équilibre comprise par exemple entre -50°C et 0°C.
  • La paroi supérieure 104 comporte un espace, par exemple de forme parallélépipédique rectangle, en saillie vers le haut, appelé dôme liquide 112.
  • Comme illustré plus en détails sur la figure 2, le dôme liquide 112 est défini par deux parois transversales, avant 113 et arrière 114, et par deux parois latérales 115, 116 qui s'étendent verticalement et font saillie de la paroi supérieure 104 vers le haut. Le dôme liquide 112 comporte en outre un couvercle horizontal, non représenté sur la figure 2, qui est destiné à recouvrir l'ouverture ménagée entre les parois avant 113, arrière 114 et latérales 115, 116 du dôme liquide 112. Le couvercle horizontal est traversé par une série de tuyaux destinés à charger ou décharger les liquides et gaz précédemment cités. La paroi longitudinale supérieure 104 et les parois du dôme liquide 112 se rejoignent au niveau d'arêtes saillantes 100. Les parois avant 113 et latérales 115, 116 du dôme liquide 112 se rejoignent au niveau d'arêtes rentrantes 201.
  • La figure 3 est une vue à partir de l'intérieur de la cuve d'un angle de cuve au niveau d'une arête saillante 100 entre une première paroi porteuse 5 et une deuxième paroi porteuse 25 portant respectivement une première paroi de cuve 1 et une deuxième paroi de cuve 2. La première paroi porteuse 5 et la deuxième paroi porteuse 25 forment un angle α entre elles. La première paroi de cuve 1 et la deuxième paroi de cuve 2 se rejoignent au niveau d'une structure d'angle 10 de la cuve.
  • En particulier, comme il sera décrit en relation avec les figures 3 à 6, la structure d'angle 10 peut être une structure d'angle saillante (l'angle α vers l'intérieur de la cuve entre les deux parois porteuses est compris entre 180° et 360°, de sorte que l'arête est saillante vue depuis l'intérieur de la cuve), ce qui est par exemple le cas pour une arête entre la paroi longitudinale supérieure 104, et l'une des parois avant 113, arrière 114 et latérales 115, 116 du dôme liquide 112. Les figures 3 à 6 illustrent le cas particulier d'un angle α de 270°.
  • Comme il sera décrit en relation avec la figure 13, la structure d'angle 10 peut être une structure d'angle rentrante (l'angle α est compris entre 0° et 180°, de sorte que l'arête est rentrante vue depuis l'intérieur de la cuve), ce qui est par exemple le cas pour une arête entre les parois longitudinales 104, 105, 106, 107, 108, 109, 110, 111 et les parois transversales 101, 103. La figure 13 illustre le cas particulier d'un angle α de 90°.
  • Comme illustré par la figure 6, la première paroi de cuve 1 comporte, dans une direction d'épaisseur, une paroi porteuse 5, une barrière d'isolation thermique 6 fixée à la paroi porteuse 5, une membrane d'étanchéité 27 parallèle à la paroi porteuse 5. La deuxième paroi de cuve 2 comporte, dans une direction d'épaisseur, une paroi porteuse 25, une barrière d'isolation thermique 26 fixée à la paroi porteuse 25, une membrane d'étanchéité 7 parallèle à la paroi porteuse 25.
  • Comme illustré par la figure 3, la barrière d'isolation thermique 6 de la première paroi de cuve 1 est constituée d'une pluralité d'éléments calorifuges 61 ancrés sur la première paroi porteuse 5. Ces éléments calorifuges 61 forment conjointement une surface plane sur laquelle est ancrée la membrane d'étanchéité 27. De même, la barrière d'isolation thermique 26 de deuxième paroi de cuve 2 est constituée d'une pluralité d'éléments calorifuges 61 ancrés sur la deuxième paroi porteuse 25. Ces éléments calorifuges 61 forment conjointement une surface plane sur laquelle est ancrée la membrane d'étanchéité 7. Les éléments calorifuges 61 sont ancrés sur la structure porteuse par tout moyen adapté.
  • Dans un mode de réalisation, les éléments calorifuges 61 sont réalisés sous la forme de caissons ancrés à la paroi porteuse par des goujons, comme décrit dans la publication WO-A-2017064413 .
  • Comme illustré par la figure 6, la membrane d'étanchéité 7, 27 est constituée d'une pluralité de plaques métalliques juxtaposées les unes aux autres avec recouvrement. Ces plaques métalliques sont de préférence de forme rectangulaire. Les plaques métalliques sont soudées entre elles afin d'assurer l'étanchéité de la membrane d'étanchéité. Les plaques métalliques sont par exemple réalisées en acier inoxydable, en alliage à base de fer à forte teneur en nickel ou en manganèse de 0,5 à 1,5 mm d'épaisseur.
  • Afin de permettre la déformation de la membrane d'étanchéité en réponse aux différentes contraintes subies par la cuve, en particulier en réponse à la contraction thermique résultant du chargement de gaz liquéfié dans la cuve, les plaques métalliques comportent une pluralité d'ondulations 71, 72 orientées vers l'intérieur de la cuve. Plus particulièrement, la membrane d'étanchéité 7 comporte une première série d'ondulations 71 et une seconde série d'ondulations 72 formant un motif rectangulaire régulier. La première série d'ondulations 71 est perpendiculaire à l'arête 100 et la seconde série d'ondulations 72 est parallèle à l'arête 100. De préférence, les ondulations 71, 72 se développent parallèlement aux bords des plaques métalliques rectangulaires. La distance entre deux ondulations 71, 72 successives d'une série d'ondulations est par exemple de l'ordre de 300 mm à 800mm et idéalement 600mm.
  • Comme illustré par la figure 3, la structure d'angle 10 comporte une première aile d'ancrage 11 s'étendant à partir de et dans le prolongement de la paroi porteuse 5 de la première paroi de cuve 1, et une deuxième aile d'ancrage 211 s'étendant à partir de et dans le prolongement de la paroi porteuse 25 de la deuxième paroi de cuve 2. La première aile d'ancrage 11 peut ne pas s'étendre dans le prolongement de la paroi porteuse 5 de la première paroi de cuve 1 tant qu'elle s'étend dans une direction non-parallèle à la paroi porteuse 25 de la deuxième paroi 2. En d'autres termes, la première aile d'ancrage 11 s'étend depuis la paroi porteuse 25 dans une direction non parallèle à ladite paroi porteuse 25. Comme illustré sur les figures, la première aile d'ancrage 11 s'étend, préférentiellement, perpendiculairement à la paroi porteuse 25. Sur les figures 1 à 10 et sur la figure 11, la première aile d'ancrage 11 s'étend depuis l'intersection des parois porteuses 5 et 25 et parallèlement à la paroi porteuse 5. La rangée d'éléments calorifuges 61 de la barrière thermiquement isolante 6 bordant l'arête 100 sont disposés de manière à ménager un espace entre la rangée d'éléments calorifuges 61 bordant l'arête 100 et la deuxième aile d'ancrage 211.
  • De même, la deuxième aile d'ancrage 211 peut ne pas s'étendre dans le prolongement de la paroi porteuse 25 de la deuxième paroi de cuve 2 tant qu'elle s'étend dans une direction non-parallèle à la paroi porteuse 5 de la première paroi 1. En d'autres termes, la deuxième aile d'ancrage 211 s'étend depuis la paroi porteuse 5 dans une direction non parallèle à ladite paroi porteuse 5. Comme illustré sur les figures, la deuxième aile d'ancrage 211 s'étend, préférentiellement, perpendiculairement à la paroi porteuse 5. Sur les figures 1 à 10 et sur la figure 11, la deuxième aile d'ancrage 211 s'étend depuis l'intersection des parois porteuses 5 et 25, et parallèlement à la paroi porteuse 25. La rangée d'éléments calorifuges 61 de la barrière thermiquement isolante 26 bordant l'arête 100 sont disposés de manière à ménager un espace entre la rangée d'éléments calorifuges 61 bordant l'arête 100 et la première aile d'ancrage 11.
  • Comme illustré par la figure 4, la structure d'angle 1 comporte une première pièce de raccordement 12 et une deuxième pièce de raccordement 212. La première pièce de raccordement 12 comporte une première branche plane 122 fixée à l'aile d'ancrage 11 et s'étendant dans le prolongement de l'aile d'ancrage 11, et une deuxième branche plane 121 s'étendant parallèlement à la paroi porteuse 25 dans l'espace ménagé entre la première aile d'ancrage 11 et la rangée d'éléments calorifuges 61 de la barrière d'isolation thermique 26 bordant l'arête 100. La première pièce de raccordement 12 peut en particulier être composée d'une pluralité de sections 125 successives. De même, la deuxième pièce de raccordement 212 comporte une première branche plane 2122 fixée à l'aile d'ancrage 211 et s'étendant dans le prolongement de l'aile d'ancrage 211, et une deuxième branche plane 2121 s'étendant parallèlement à la paroi porteuse 5 dans l'espace ménagé entre la première aile d'ancrage 211 et la rangée d'éléments calorifuges 61 de la barrière d'isolation thermique 6 bordant l'arête 100. La deuxième pièce de raccordement 212 peut en particulier être composée d'une pluralité de sections 215 successives. La pièce de raccordement 12, 212 est soudée indifféremment sur la face de l'aile d'ancrage 11, 211 tournée vers les blocs isolants 61 de la paroi de cuve 1 ou 2. Comme illustré par la figure 7, les pièces de raccordement 12 et 212 peuvent comporter un renfort entre leurs deux branches planes pour augmenter leur rigidité.
  • Les espaces ménagés entre la première aile d'ancrage 11, la rangée d'éléments calorifuges 61 de la barrière d'isolation thermique 26 bordant l'arête 100, la deuxième branche plane 121 et la paroi porteuse 25 sont avantageusement remplis de garniture calorifuge telle que de la laine de verre ou de la mousse polyuréthane. Les espaces ménagés entre la deuxième aile d'ancrage 211, la rangée d'éléments calorifuges 61 de la barrière d'isolation thermique 6 bordant l'arête 100, la deuxième branche plane 211 et la paroi porteuse 5 sont avantageusement remplis de garniture calorifuge telle que de la laine de verre ou de la mousse polyuréthane.
  • Comme illustré par la figure 5, la structure d'angle 10 comporte en outre une cornière d'étanchéité 13 fixée, d'une part, à la première aile d'ancrage 11 par l'intermédiaire de la première pièce de raccordement 12, et d'autre part, à la deuxième aile d'ancrage 211 par l'intermédiaire de la deuxième pièce de raccordement 212.
  • La cornière d'étanchéité 13 est une plaque, par exemple métallique, ayant une épaisseur supérieure à celle de la membrane d'étanchéité 7, 27. La cornière d'étanchéité 13 a par exemple une épaisseur comprise entre 3 mm et 10mm Cette épaisseur lui confère une rigidité suffisante pour se soutenir elle-même, ce qui n'est pas nécessairement le cas des membranes d'étanchéité 7, 27.
  • La cornière d'étanchéité 13 comporte une première branche plane 131 s'étendant dans le plan de la membrane d'étanchéité 7 de la deuxième paroi de cuve 2, et une deuxième branche plane 132 s'étendant dans le plan de la membrane d'étanchéité 27 de la première paroi de cuve 1. La première branche plane 131 est fixée sur la première pièce de raccordement 12 (plus précisément soudée sur la deuxième branche plane 121 de la première pièce de raccordement 12), et la deuxième branche plane 132 est soudée sur la deuxième pièce de raccordement 212 (plus précisément soudée sur la deuxième branche plane 2121 de la deuxième pièce de raccordement 212). Comme illustré sur la figure 12, la cornière d'étanchéité 13 peut comporter un renfort 134 sur sa face extérieure.
  • Une telle structure d'angle permet d'ajuster la position de la cornière d'étanchéité 13 en adaptant d'une part la position de l'ancrage des premières branches planes 122, 2122 des pièces de raccordement 12, 212 sur les ailes d'ancrage 11, 211 et d'autre part la position de l'ancrage des branches planes 131, 132 de la cornière d'étanchéité 13 sur les deuxièmes branches planes 121, 2121 des pièces de raccordement 12, 212. Ce réglage de la position de la cornière d'étanchéité 13 permet d'adapter facilement la structure d'angle à l'épaisseur des éléments calorifuges 61 des barrières d'isolation 6, 26.
  • La première branche 131 de la cornière d'étanchéité forme un appui plan pour la membrane d'étanchéité 7 de la deuxième paroi de cuve 2, et la deuxième branche 132 de la cornière d'étanchéité forme un appui plan pour la membrane d'étanchéité 27 de la première paroi de cuve 1.
  • Comme illustré par la figure 6, la membrane d'étanchéité 7 de la deuxième paroi repose sur la première branche 131 de la cornière d'étanchéité 13. La membrane d'étanchéité 27 de la première paroi repose sur la deuxième branche 132 de la cornière d'étanchéité 13. Pour assurer la continuité entre la membrane d'étanchéité 7 de la deuxième paroi et la membrane d'étanchéité 27 de la première paroi au niveau de la structure d'angle 10, la cornière d'étanchéité 13 est raccordée de manière étanche à la membrane d'étanchéité 7 de la deuxième paroi et à la membrane d'étanchéité 27 de la première paroi. Par exemple, la membrane d'étanchéité 7 de la deuxième paroi peut être soudée sur la première branche 131 de la cornière d'étanchéité 13 sur laquelle elle repose, et la membrane d'étanchéité 27 de la première paroi soudée sur la deuxième branche 132 de la cornière d'étanchéité sur laquelle elle repose.
  • Comme illustré par la figure 5, la cornière d'étanchéité 13 peut comporter une pluralité de sections transversales 135. Les sections transversales 135 de la cornière d'étanchéité sont par exemple fixées en chevauchement sur deux sections 125 adjacentes de la première pièce de raccordement 12 et sur deux sections 215 adjacentes de la deuxième pièce de raccordement 212.
  • Comme illustré par la figure 6, deux sections transversales 135 adjacentes peuvent être reliées de manière étanche l'une à l'autre par l'intermédiaire d'un raccord ondulé 15. Chaque ondulation de la première série d'ondulations 71 de la première paroi et de la deuxième paroi est alignée avec un raccord ondulé 15 de la cornière d'étanchéité. Le raccord ondulé 15 s'emboite sur une ondulation 71 de la membrane d'étanchéité 27 de la première paroi et sur une ondulation 71 de la membrane d'étanchéité 7 de la deuxième paroi. Les raccords ondulés 15 permettent à la cornière d'étanchéité 13 de se déformer avec les membranes d'étanchéité 7, 27.
  • Comme mieux visible sur la figure 7, le raccord ondulé 15 comporte une partie centrale 153, une première extrémité coudée 151, et une deuxième extrémité coudée 152. La partie centrale 153 comporte deux pattes latérales, une des pattes latérales étant soudée sur la partie centrale 133 d'une section 155 de la cornière d'étanchéité, et l'autre patte latérale étant soudée sur la partie centrale d'une section adjacente 155 de la cornière d'étanchéité. La première extrémité coudée 151 s'emboite d'une part sur une ondulation 71 de la première paroi, et d'autre part sur la partie centrale 153. Le première extrémité coudée 151 comporte deux pattes latérales, une des pattes latérales étant soudée sur une section 155 de la cornière d'étanchéité, et l'autre patte latérale étant soudée sur la section adjacente 155 de la cornière d'étanchéité, en recouvrant la zone de chevauchement entre la cornière d'étanchéité 13 et la membrane d'étanchéité 7 de la deuxième paroi de cuve 2. De même, la deuxième extrémité coudée 152 comporte deux pattes latérales, une des pattes latérales étant soudée sur une section 155 de la cornière d'étanchéité, et l'autre patte latérale étant soudée sur la section adjacente 155 de la cornière d'étanchéité, en recouvrant la zone de chevauchement entre la cornière d'étanchéité 13 et la membrane d'étanchéité 27 de la première paroi de cuve 1.
  • De tels raccords ondulés 15 sont simples à réaliser et à emboiter sur une ondulation 71 de la première paroi et sur une ondulation 71 de la deuxième paroi, de manière à assurer la continuité de l'étanchéité entre la cornière d'étanchéité 13 et les membranes d'étanchéité 7, 27, tout en pouvant se déformer avec les membranes d'étanchéité 7, 27. Le fait que les raccords ondulés 15 soient en trois parties simplifie le raccordement avec les membranes d'étanchéité 7, 27 et permet de rectifier des écarts d'alignement entre les ondulations 71.
  • Comme illustré par la figure 15, des fentes 119 sont optionnellement ménagées dans la première aile d'ancrage 11. De même, des fentes 2119 sont optionnellement ménagées dans la deuxième aile d'ancrage 211. Les fentes 119 et/ou 2119 peuvent en particulier s'étendre à partir de l'extrémité de l'aile d'ancrage 11, 211 dans une direction perpendiculaire à l'arête 100, et, en particulier, sur une distance égale à entre ½ et 2/3 de la dimension de l'aile d'ancrage 11, 211 dans cette direction. Les fentes 119 et/ou 2119 peuvent en particulier être disposées au niveau des raccords ondulés 15, c'est-à-dire typiquement tous les 600mm. Ces fentes 119, 2119 permettent de relâcher les contraintes mécaniques subies par les soudures entre les raccords ondulées 15 et les sections transversales 135 de la cornière d'étanchéité 13.
  • Comme illustré sur la figure 5, chaque élément calorifuge 61 comporte un panneau de couvercle tourné vers l'intérieur de la cuve. Par convention, l'adjectif « intérieur » appliqué à un élément de la cuve désigne la partie de cet élément orientée vers l'intérieur de la cuve et l'adjectif « extérieur » désigne la partie de cet élément orientée vers l'extérieur de la cuve, quelle que soit l'orientation de la paroi de cuve par rapport au champ de gravité terrestre. Sur le côté des éléments calorifuges 61 immédiatement adjacent à la structure d'angle 10, la face intérieure du panneau de couvercle présente un décrochement 62 en vis-à-vis de la pièce de raccordement 12, 212. Comme illustré sur la figure 6, une plaque de liaison 63 est logée dans le décrochement 62 et affleure au niveau de la face intérieure de l'élément calorifuge 61 et de la face intérieure de la branche plane 132 de la cornière d'étanchéité sur laquelle est fixée la membrane d'étanchéité 27 afin de former une surface de support plane continue pour la membrane d'étanchéité 27. Par ailleurs, la plaque de liaison 63 permet de rattraper les jeux de construction pouvant apparaître lors de la construction la cuve. La plaque de liaison 63 peut en outre présenter un décrochement sur sa face extérieure, la première branche 2122 de la pièce de raccordement 212 sur laquelle est fixée la branche plane 132 de la cornière d'étanchéité venant se loger dans le décrochement de la plaque de liaison 63. La plaque de liaison 63 est ainsi en appui à la fois sur la face intérieure de l'élément calorifuge 61 et sur la face intérieure de la première branche 2122 de la pièce de raccordement 212. La plaque de liaison 63 est décrite en rapport avec la première paroi de cuve 1, mais il est entendu qu'une plaque de liaison similaire peut être prévue sur la deuxième paroi de cuve 2.
  • La technique décrite ci-dessus pour réaliser une cuve présentant une seule membrane d'étanchéité peut être utilisée dans différents types de réservoirs, par exemple pour constituer une cuve à double membrane pour gaz naturel liquéfié (GNL) dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre. Dans ce contexte, on peut considérer que la membrane d'étanchéité illustrée sur les figures précédentes est une membrane d'étanchéité secondaire, et qu'une barrière d'isolation thermique primaire ainsi qu'une membrane d'étanchéité primaire doivent encore être ajoutées sur cette membrane d'étanchéité secondaire. De cette manière, cette technique peut également être appliquée aux cuves présentant une pluralité de barrière thermiquement isolante et de membranes étanches superposées.
  • La figure 8 représente deux parois de la cuve au niveau d'une arête 100 selon une variante de réalisation dans laquelle la première paroi de cuve 1 comporte, dans la direction d'épaisseur de la cuve, de l'extérieur vers l'intérieur, une barrière d'isolation thermique secondaire 6, qui correspond à la barrière d'isolation thermique 6 décrite en relations avec les figures précédentes, une membrane d'étanchéité secondaire 27, qui correspond à la membrane d'étanchéité 27 décrite en relations avec les figures précédentes, une barrière d'isolation thermique primaire 6 et une membrane d'étanchéité primaire 9 destinée à être en contact avec le liquide contenu dans la cuve. De même, la deuxième paroi de cuve 2 comporte, dans la direction d'épaisseur de la cuve, de l'extérieur vers l'intérieur, une barrière d'isolation thermique secondaire 26, qui correspond à la barrière d'isolation thermique 26 décrite en relations avec les figures précédentes, une membrane d'étanchéité secondaire 7, qui correspond à la membrane d'étanchéité 7 décrite en relations avec les figures précédentes, une barrière d'isolation thermique primaire 26 et une membrane d'étanchéité primaire 29 destinée à être en contact avec le liquide contenu dans la cuve.
  • La barrière d'isolation thermique primaire 6, 26 et la membrane d'étanchéité primaire 29, 9 peuvent être semblables à la barrière d'isolation thermique secondaire 6, 26 et à la membrane d'étanchéité secondaire 27, 7 ne seront pas décrites plus en détails.
  • Dans une version non représentée, les membranes d'étanchéité primaires 9, 29 sont différentes des membranes d'étanchéité secondaires 7, 27 par exemple, les ondulations de la membrane d'étanchéité secondaire 7, 27 peuvent être tournées vers l'extérieur de la paroi de cuve.
  • Dans une autre version non représentée, les membranes d'étanchéité primaires 9,29 et la membrane d'étanchéité secondaire 7, 27 ont des ondulations tournées vers l'extérieur de la paroi de cuve
  • Une autre version non représentée, les membranes d'étanchéité secondaire 7, 27 sont des barrières d'étanchéité composite. Une bande de liaison composite est collée d'un côté sur la cornière d'étanchéité secondaire 13 sur la deuxième branche plane 132 et de l'autre sur la barrière d'étanchéité composite présente sur le dessus des blocs isolants 61. Alternativement, la bande de liaison composite pourra être collée d'un côté sur la deuxième pièce de raccordement 212 et de l'autre sur la barrière d'étanchéité composite présente sur le dessus des blocs isolants 61. Afin d'assurer l'étanchéité de la barrière secondaire, des bandes d'étanchéité composite sont collées entre les cornières 135. La barrière d'étanchéité composite peut en particulier être constituée d'un matériau composite comportant trois couches : les deux couches externes sont des tissus de fibres de verre et la couche intermédiaire est une feuille métallique mince, par exemple une feuille d'aluminium d'une épaisseur d'environ 0,1 mm. Cette feuille métallique constitue la barrière d'étanchéité secondaire et elle est collée sur les blocs isolants 61 de la barrière d'isolation thermique 6, 26. Les bandes de liaison composite et les bandes d'étanchéité composite peuvent en particulier être collées avec de la colle polyuréthane ou époxyde.
  • Une cornière d'étanchéité primaire 913 est fixée à la cornière d'étanchéité secondaire 13, qui correspond à la cornière d'étanchéité 13 décrite en relations avec les figures 3 à 6. La cornière d'étanchéité primaire 913 ne sera pas décrit en détail car elle est semblable à la cornière d'étanchéité 13 décrite en relations avec les figures 3 à 6. La cornière d'étanchéité primaire 913 est raccordée de manière étanche à la membrane d'étanchéité primaire 29 de la première paroi de cuve 1 et à la membrane d'étanchéité primaire 9 de la deuxième paroi de cuve 2.
  • Plusieurs possibilités existent pour fixer la cornière d'étanchéité primaire 913 à la cornière d'étanchéité secondaire 13. Comme illustré par les figures 9 à 11, la cornière d'étanchéité primaire 913 peut en particulier être fixée à la cornière d'étanchéité secondaire 13 par des organes d'ancrage 30.
  • Comme illustré par les figures 9 et 10, les organes d'ancrage 30 peuvent comporter une ou plusieurs entretoises 32 fixées à la cornière d'étanchéité primaire 913 avant que l'ensemble formé par les entretoises 32 et la cornière d'étanchéité primaire 913 ne soit fixé sur la cornière d'étanchéité secondaire 13.
  • Comme illustré sur la figure 9, la face intérieure de la cornière d'étanchéité secondaire 13 peut porter des goujons secondaires 31 fixés, par soudage et/ou vissage. La figure 9 est une vue en coupe dans le plan de deux goujons 31 fixés à la cornière d'étanchéité secondaire 13. En particulier, chaque section transversale 135 de la cornière d'étanchéité secondaire 13 peut comporter deux goujons 31. Chaque goujon 31 se développe perpendiculairement à la partie centrale 133 de la cornière d'étanchéité secondaire 13 vers l'intérieur de la cuve.
  • Comme illustré par la figure 10, la face extérieure de la cornière d'étanchéité primaire 913 peut porter des goujons primaires 35 fixés, par soudage et/ou vissage. La figure 10 est une vue en coupe dans le plan de deux goujons 35 fixés à la cornière d'étanchéité primaire 913. En particulier, chaque section transversale de la cornière d'étanchéité primaire 913 peut comporter deux goujons 35. Chaque goujon 35 se développe perpendiculairement à la partie centrale de la cornière d'étanchéité primaire vers l'extérieur de la cuve.
  • Un mode de réalisation du montage de la cornière d'étanchéité primaire 913 sur la cornière d'étanchéité secondaire 13 est maintenant décrit en relation avec les figures 10b à 10f.
  • Comme illustré par la figure 10b, chaque section transversale 9135 de la cornière d'étanchéité primaire 913 comporte un ou plusieurs goujons primaire 35. Une extrémité des goujons opposée à la cornière d'étanchéité primaire 913 comporte un filetage. Chaque entretoise 32 comporte un ou plusieurs orifices 322 s'étendant de sa face intérieure. En particulier, chaque entretoise 32 peut comporter deux orifices 322 s'étendant de sa face intérieure.
  • Comme illustré par la figure 10c, chaque entretoise 32 est montée sur un ou plusieurs goujons 35 de manière à ce que chaque orifice 322 de l'entretoise soit traversé par un goujon 35.
  • Comme illustré par la figure 10d, un écrou 351 est monté sur l'extrémité filetée de chaque goujon 35. La face intérieure de l'entretoise 32 est ainsi maintenue en appui par ledit écrou 351 contre la face extérieure de la cornière d'étanchéité primaire 913. Une cheminée 321 pratiquée dans l'entretoise 32 au droit de l'orifice traversé par le goujon 31 permet le vissage de l'écrou 351 sur le goujon et est remplie par un isolant après le vissage de l'écrou 351.
  • Comme illustré par les figures 10e et 10f, la face extérieure de l'entretoise 32 (c'est-à-dire la face de l'entretoise 32 opposée à la cornière d'étanchéité primaire 913) est ensuite fixée par tout moyen, par exemple collage, rivetage, ou vissage, sur la face intérieure de la cornière d'étanchéité secondaire 13.
  • Comme illustré par la figure 10e, chaque section transversale 135 de la cornière d'étanchéité secondaire 13 comporte un ou plusieurs goujons 31. Une extrémité des goujons 31 opposée à la cornière d'étanchéité secondaire 13 comporte un filetage. Une entretoise 32 présente des pattes de fixation 323 s'étendant dans l'alignement de la face extérieure de l'entretoise. Un goujon 31 est positionné entre les pattes de fixation 323 de deux entretoises 32 adjacentes.
  • Comme illustré par la figure 10f, une plaque d'appui 33 comportant un orifice est montée sur le goujon 31. Un écrou 311 est monté sur l'extrémité filetée du goujon 31. Les deux entretoises 32 adjacentes sont ainsi maintenues en appui par ladite plaque d'appui 33 contre une face intérieure de la cornière d'étanchéité secondaire 13.
  • Alternativement, selon une variante non représentée, les goujons 31 s'étendant à partir de la cornière d'étanchéité secondaire 31 traversent des trous dans la cornière d'étanchéité primaire 913, l'écrou étant monté sur la face intérieure de la cornière d'étanchéité primaire 913, la cornière d'étanchéité primaire 913 étant ainsi maintenue en appui par ledit écrou contre la face intérieure de l'entretoise 32, l'entretoise 32 étant elle-même maintenue en appui par ledit écrou contre une face intérieure de la cornière d'étanchéité secondaire 13.
  • Comme illustré sur la figure 11, la cornière d'étanchéité primaire 913 peut alternativement comporter deux branches planes formant entre elles un angle égale à l'angle α entre les parois porteuses de l'arrête, c'est-à-dire 90°dans le cas illustré par la figure 11. La cornière d'étanchéité primaire 913 est alors fixée sur un support 37 formant un angle égale à l'angle a. Un tel support 37 peut par exemple être une poutre de section triangulaire isocèle, la base du triangle étant fixée sur la face extérieure de l'entretoise 32.
  • Une structure d'angle similaire peut également être utilisée dans une arête rentrante 201 de la cuve. La figure 13 représente une arête de cuve entre deux parois de cuves formant un angle α intérieur de l'ordre de 90°. Une telle arête de cuve comporte une structure d'angle 510 similaire à la structure d'angle 10 telle que décrite en regard des figures 2 à 6, à la différence que la première aile d'ancrage 11 s'étend parallèlement à distance de la paroi porteuse 5 de la première paroi de cuve 1, et que la deuxième aile d'ancrage 211 s'étend parallèlement à distance de la paroi porteuse 25 de la deuxième paroi de cuve 2.
  • En référence à la figure 14, une vue écorchée d'un navire méthanier ou propanier 1070 montre une cuve étanche et isolée 1000 de forme générale prismatique montée dans la double coque 1072 du navire. La paroi de la cuve comporte au moins une barrière étanche destinée à être en contact avec le gaz liquéfié contenu dans la cuve et au moins une barrière isolante agencée entre la barrière étanche et la double coque 1072.
  • De manière connue en soi, des canalisations de chargement/déchargement 1073 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de gaz liquéfié depuis ou vers la cuve 1000.
  • La figure 14 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 1075, une conduite sous-marine 1076 et une installation à terre 1077. Le poste de chargement et de déchargement 1075 est une installation fixe off-shore comportant un bras mobile 1074 et une tour 1078 qui supporte le bras mobile 1074. Le bras mobile 1074 porte un faisceau de tuyaux flexibles isolés 1079 pouvant se connecter aux canalisations de chargement/déchargement 1073. Le bras mobile 1074 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 1078. Le poste de chargement et de déchargement 1075 permet le chargement et le déchargement du navire 1070 depuis ou vers l'installation à terre 1077. Celle-ci comporte des cuves de stockage de gaz liquéfié 1080 et des conduites de liaisons 1081 reliées par la conduite sous-marine 1076 au poste de chargement ou de déchargement 1075. La conduite sous-marine 1076 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 1075 et l'installation à terre 1077 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire 1070 à grande distance de la côte pendant les opérations de chargement et de déchargement.
  • Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 1070 et/ou des pompes équipant l'installation à terre 1077 et/ou des pompes équipant le poste de chargement et de déchargement 1075.
  • Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
  • Le cadre de l'invention est celui tel que défini par les revendications.
  • L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
  • Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (15)

  1. Cuve (1000) étanche et thermiquement isolante de stockage d'un fluide comprenant une première paroi (1) et une deuxième paroi (2), la première (1) et la deuxième paroi (2) comportant chacune, dans une direction d'épaisseur, une paroi porteuse (5, 25), une barrière d'isolation thermique (6, 26) fixée à la paroi porteuse (5, 25), une membrane d'étanchéité (7, 27) parallèle à la paroi porteuse (5, 25) et fixée à la barrière d'isolation thermique (6, 26), la cuve (1000) étanche et thermiquement isolante comportant, à une arête (100, 201) entre la paroi porteuse (5) de la première paroi (1) et la paroi porteuse (25) de la deuxième paroi (2), une structure d'angle (10), la structure d'angle comportant :
    - une première aile d'ancrage (11) fixée à la paroi porteuse (25) de la deuxième paroi (2),
    - une deuxième aile d'ancrage (211) fixée à la paroi porteuse (5) de la première paroi (1),
    - une cornière d'étanchéité (13) fixée, d'une part, à la première aile d'ancrage (11) par l'intermédiaire d'une première pièce de raccordement (12), et d'autre part, à la deuxième aile d'ancrage (211) par l'intermédiaire d'une deuxième pièce de raccordement (212), la cornière d'étanchéité (13) étant raccordée de manière étanche à la membrane d'étanchéité (27) de la première paroi et à la membrane d'étanchéité (7) de la deuxième paroi,
    la cornière d'étanchéité (13) comportant une première branche plane (131) s'étendant dans le plan de la membrane d'étanchéité (7) de la deuxième paroi (2), et une deuxième branche plane (132) s'étendant dans le plan de la membrane d'étanchéité (27) de la première paroi (1),
    la première pièce de raccordement (12) comportant une première branche plane (122) parallèle à la première aile d'ancrage (11),
    la deuxième pièce de raccordement (212) comportant une première branche plane (2122) parallèle à la deuxième aile d'ancrage (211),
    la première branche plane (122) de la première pièce de raccordement (12) étant soudée à la première aile d'ancrage (11),
    la première branche plane (2122) de la deuxième pièce de raccordement (212) étant soudée à la deuxième aile d'ancrage (211),
    la membrane d'étanchéité (27) de la première paroi (1) étant soudée sur la deuxième branche plane (132) de la cornière d'étanchéité (13),
    et la membrane d'étanchéité (7) de la deuxième paroi (2) étant soudée sur la première branche plane (131) de la cornière d'étanchéité (13),
    caractérisé en ce que
    la première pièce de raccordement comporte en outre une deuxième branche plane (121) parallèle à la membrane d'étanchéité (7) de la deuxième paroi (2), la deuxième pièce de raccordement comportant en outre une deuxième branche plane (2121) parallèle à la membrane d'étanchéité (27) de la première paroi (1),
    la première branche plane (131) de la cornière d'étanchéité (13) étant soudée sur la deuxième branche plane (121) de la première pièce de raccordement (12), et la deuxième branche plane (132) de la cornière d'étanchéité (13) étant soudée sur la deuxième branche plane (2121) de la deuxième pièce de raccordement (212).
  2. Cuve (1000) selon la revendication précédente, dans laquelle la cornière d'étanchéité (13) comporte une pluralité de sections transversales (135), deux sections transversales (135) adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'un raccord ondulé (15) faisant saillie en direction de l'intérieur de la cuve, la membrane d'étanchéité (27, 7) de la première et de la deuxième paroi comportant chacune une série d'ondulations (71, 271) faisant saillie en direction de l'intérieur de la cuve et se développant selon une direction perpendiculaire à l'arête (100, 201), chaque ondulation (71) de la première paroi et de la deuxième paroi étant alignée avec un raccord ondulé (15) de la cornière d'étanchéité.
  3. Cuve (1000) selon la revendication 1, dans laquelle la cornière d'étanchéité (13) comporte une pluralité de sections transversales (135), deux sections transversales (135) adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'un raccord ondulé (15) faisant saillie en direction de l'intérieur de la cuve, la membrane d'étanchéité (27, 7) de la première et de la deuxième paroi comportant chacune une série d'ondulations (71, 271) faisant saillie en direction de l'extérieur de la cuve et se développant selon une direction perpendiculaire à l'arête (100, 201), chaque ondulation (71) de la première paroi et de la deuxième paroi étant alignée avec un raccord ondulé (15) de la cornière d'étanchéité.
  4. Cuve (1000) selon l'une des revendications 2 à 3, dans laquelle le raccord ondulé (15) comporte une partie centrale (153), une première extrémité coudée (151), et une deuxième extrémité coudée (152), la première extrémité coudée (151) s'emboitant, d'une part, sur une ondulation (71) de la membrane d'étanchéité (27) de la première paroi, et d'autre part, sur la partie centrale (153), la deuxième extrémité coudée (152) s'emboitant, d'une part, sur une ondulation (71) de la membrane d'étanchéité (7) de la deuxième paroi, et d'autre part, sur la partie centrale (153).
  5. Cuve (1000) selon l'une des revendications précédentes, dans laquelle, la première aile d'ancrage (11) s'étend parallèlement à la paroi porteuse (5) de la première paroi (1), la deuxième aile d'ancrage (211) s'étendant parallèlement à la paroi porteuse (25) de la deuxième paroi (2).
  6. Cuve (1000) selon l'une des revendications précédentes, dans laquelle, au niveau de l'arête (100), la paroi porteuse (5) de la première paroi et la paroi porteuse (25) de la deuxième paroi forment ensemble un angle (a) saillant du côté intérieur de la cuve, la première aile d'ancrage (11) s'étendant dans le prolongement de la paroi porteuse (5) de la première paroi (1), et la deuxième aile d'ancrage (211) s'étendant dans le prolongement de la paroi porteuse (25) de la deuxième paroi (2).
  7. Cuve (1000) selon l'une des revendications 1 à 5, dans laquelle, au niveau de l'arête (201), la paroi porteuse (5) de la première paroi et la paroi porteuse (25) de la deuxième paroi forment ensemble un angle (a) rentrant du côté intérieur de la cuve, la première aile d'ancrage (11) s'étendant parallèlement à distance de la paroi porteuse (5) de la première paroi (1), la deuxième aile d'ancrage (211) s'étendant parallèlement à distance de la paroi porteuse (25) de la deuxième paroi (2).
  8. Cuve (1000) selon l'une des revendications précédentes, dans laquelle la barrière thermiquement isolante (6, 26) de la première paroi (1) et/ou de la deuxième paroi (2) comporte une pluralité d'éléments calorifuges (61), chaque élément calorifuge (61) comportant un panneau de couvercle tourné vers l'intérieur de la cuve, la face intérieure de l'élément calorifuge 61 (61) bordant l'arête (100) comportant un décrochement (62) en vis-à-vis de la membrane d'étanchéité (27), une plaque de liaison (63) étant logée dans le décrochement (62) et affleurant au niveau de la face intérieure de l'élément calorifuge (61) et de la face intérieure de la branche plane (132) de la cornière d'étanchéité (13) sur laquelle est fixée la membrane d'étanchéité (27) afin de former une surface de support plane continue pour la membrane d'étanchéité (27).
  9. Cuve (1000) selon l'une des revendications précédentes, dans laquelle la barrière d'isolation thermique (6, 26) fixée à la paroi porteuse (5, 25) est une barrière d'isolation thermique secondaire, la membrane d'étanchéité (7, 27) fixée sur la barrière d'isolation thermique secondaire (6, 26) étant une membrane d'étanchéité secondaire, la cornière d'étanchéité (13) raccordée de manière étanche à la membrane d'étanchéité secondaire (27) de la première paroi et à la membrane d'étanchéité secondaire (7) de la deuxième paroi étant une cornière d'étanchéité secondaire, la première (1) et la deuxième (2) paroi comportant, en outre, dans la direction d'épaisseur de la cuve, de l'extérieur vers l'intérieur, par-dessus la barrière d'isolation thermique secondaire (6,26) et la membrane d'étanchéité secondaire (7, 27), une barrière d'isolation thermique primaire (8, 28) et une membrane d'étanchéité primaire (9, 29) destinée à être en contact avec le liquide contenu dans la cuve, la structure d'angle (10) comportant en outre une cornière d'étanchéité primaire (913) raccordée de manière étanche à la membrane d'étanchéité primaire (9) de la première paroi et à la membrane d'étanchéité primaire (29) de la deuxième paroi.
  10. Cuve (1000) selon la revendication 9, dans laquelle la cornière d'étanchéité primaire (913) est fixée à la cornière d'étanchéité secondaire (13) par l'intermédiaire d'une ou plusieurs entretoises (32).
  11. Cuve (1000) selon la revendication 10, dans laquelle une face extérieure de la cornière d'étanchéité primaire (913) porte des goujons primaires (35), chaque entretoise (32) comportant au moins un orifice traversé par un goujon primaire (35), l'entretoise (32) étant maintenue en appui contre la face extérieure de la cornière d'étanchéité primaire (913) par un écrou primaire monté sur le goujon primaire (35), une face intérieure de la cornière d'étanchéité secondaire (13) portant des goujons secondaires (31), une entretoise (32) présentant des pattes de fixation (323), un goujon secondaire (31) étant positionné entre les pattes de fixation (323) de deux entretoises (32) adjacentes, une plaque d'appui (33) comportant un orifice étant montée sur le goujon secondaire (31), les deux entretoises (32) adjacentes étant maintenues en appui par ladite plaque d'appui (33) contre une face intérieure de la cornière d'étanchéité secondaire (13) par un écrou secondaire (311) monté sur le goujon secondaire (31).
  12. Cuve (1000) selon l'une des revendications 9 à 11 dans laquelle les membranes d'étanchéité secondaires (27, 7) sont des membranes composites, la cornière d'étanchéité secondaire (13) comportant une pluralité de sections transversales (135), deux sections transversales (135) adjacentes étant reliées de manière étanche l'une à l'autre par l'intermédiaire d'une bande d'étanchéité composite.
  13. Navire (1070) pour le transport d'un produit liquide froid, le navire comportant une coque (1072) et une cuve (1000) selon l'une des revendications 1 à 12 disposée dans la coque.
  14. Système de transfert pour un produit liquide froid, le système comportant un navire (1070) selon la revendication 13, des canalisations isolées (1073, 1079, 1076, 1081) agencées de manière à relier la cuve (1071) installée dans la coque du navire à une installation de stockage flottante ou terrestre (1077) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  15. Procédé de chargement ou déchargement d'un navire (1070) selon la revendication 13, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (1073, 1079, 1076, 1081) depuis ou vers une installation de stockage flottante ou terrestre (1077) vers ou depuis la cuve du navire.
EP18199169.6A 2017-10-20 2018-10-08 Cuve etanche et thermiquement isolante Active EP3473915B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1759934A FR3072759B1 (fr) 2017-10-20 2017-10-20 Cuve etanche et thermiquement isolante

Publications (2)

Publication Number Publication Date
EP3473915A1 EP3473915A1 (fr) 2019-04-24
EP3473915B1 true EP3473915B1 (fr) 2022-08-10

Family

ID=61003149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18199169.6A Active EP3473915B1 (fr) 2017-10-20 2018-10-08 Cuve etanche et thermiquement isolante

Country Status (7)

Country Link
EP (1) EP3473915B1 (fr)
JP (1) JP2019078406A (fr)
KR (1) KR102472929B1 (fr)
CN (1) CN109695819B (fr)
ES (1) ES2928289T3 (fr)
FR (1) FR3072759B1 (fr)
SA (1) SA118400104B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099226B1 (fr) * 2019-07-23 2023-03-24 Gaztransport Et Technigaz Membrane d’étanchéité pour cuve étanche de stockage de fluide
FR3102138B1 (fr) * 2019-10-17 2022-05-20 Gaztransport Et Technigaz Poutre de raccordement pour une cuve étanche et thermiquement isolante de stockage de gaz liquéfié
FR3102532B1 (fr) * 2019-10-25 2023-12-08 Gaztransport Et Technigaz Cuve de gaz naturel à l’état liquide d’un navire
FR3106193B1 (fr) * 2020-01-10 2023-11-24 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié
CN111924048B (zh) * 2020-09-18 2021-01-19 上海蓝魂环保科技有限公司 一种用于在海洋结构物的船体舱室中容纳液态气体装置
FR3126688A1 (fr) 2021-09-07 2023-03-10 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1112136A (en) * 1965-08-23 1968-05-01 Linde Ag Improvements in or relating to containers for liquefied gases
US3319431A (en) * 1966-05-25 1967-05-16 Exxon Research Engineering Co Double walled cryogenic tank
JPS597678Y2 (ja) * 1979-03-24 1984-03-08 川崎重工業株式会社 コ−ナ−部保持構造
FR2462336A1 (fr) * 1979-07-27 1981-02-13 Gaz Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire
JPS5684199U (fr) * 1979-12-04 1981-07-07
FR2683786B1 (fr) * 1991-11-20 1994-02-18 Gaz Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire.
JPH05157195A (ja) * 1991-12-04 1993-06-22 Tokyo Gas Co Ltd 低温液体貯槽の保冷構造
KR101195802B1 (ko) * 2004-07-06 2012-11-05 쉘 인터내셔날 리써취 마트샤피지 비.브이. 액화 가스의 저장 용기
KR100499710B1 (ko) * 2004-12-08 2005-07-05 한국가스공사 선박 내부에 설치되는 액화천연가스 저장용 탱크 구조 및 탱크 제조방법
US7204195B2 (en) * 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
JP5076779B2 (ja) 2007-09-27 2012-11-21 株式会社Ihi 低温タンクのコーナ部用メンブレンアンカー
KR101258936B1 (ko) * 2011-03-04 2013-04-29 삼성중공업 주식회사 리퀴드돔 방벽 설치구조물
FR3004509B1 (fr) * 2013-04-12 2016-11-25 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
FR3004510B1 (fr) * 2013-04-12 2016-12-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
FR3008765B1 (fr) 2013-07-19 2017-05-19 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et etanche
FR3009745B1 (fr) * 2013-08-15 2016-01-29 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une piece d'angle
JP6446773B2 (ja) * 2013-11-19 2019-01-09 株式会社Ihi 低温タンク
WO2016021948A1 (fr) * 2014-08-06 2016-02-11 한국가스공사 Structure de coin de réservoir de stockage de gnl
FR3042253B1 (fr) 2015-10-13 2018-05-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
KR102150458B1 (ko) * 2015-10-30 2020-09-01 대우조선해양 주식회사 액화가스 화물창의 단열 시스템

Also Published As

Publication number Publication date
FR3072759A1 (fr) 2019-04-26
ES2928289T3 (es) 2022-11-16
CN109695819B (zh) 2021-12-24
SA118400104B1 (ar) 2022-06-05
EP3473915A1 (fr) 2019-04-24
CN109695819A (zh) 2019-04-30
KR20190045065A (ko) 2019-05-02
FR3072759B1 (fr) 2021-04-30
JP2019078406A (ja) 2019-05-23
KR102472929B1 (ko) 2022-12-02

Similar Documents

Publication Publication Date Title
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
EP3362732B1 (fr) Cuve étanche et thermiquement isolante
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP2984383B1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP2984384B1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
EP3033564B1 (fr) Cuve etanche et thermiquement isolante comportant une piece d'angle
WO2016046487A1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
WO2014096600A1 (fr) Cuve etanche et thermiquement isolante
WO2019012236A1 (fr) Cuve etanche et thermiquement isolante
FR2973098A1 (fr) Cuve etanche et thermiquement isolante
EP3425261B1 (fr) Cuve etanche et thermiquement isolante
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
WO2018024982A1 (fr) Structure de paroi etanche
FR3068763A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere.
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2019215404A1 (fr) Paroi de cuve étanche comprenant une membrane d'étanchéité
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
WO2021233712A1 (fr) Installation de stockage pour gaz liquéfié
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
EP3948055B1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2021074413A1 (fr) Poutre de raccordement pour une cuve etanche et thermiquement isolante de stockage de gaz liquefie
FR3131360A1 (fr) Installation de stockage pour gaz liquéfié
FR3111176A1 (fr) Paroi de cuve pour cuve étanche et thermiquement isolante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191017

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220406

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRUNIER, RAPHAEL

Inventor name: DELANOE, SEBASTIEN

Inventor name: BERGER, VINCENT

Inventor name: BOUGAULT, JOHAN

Inventor name: LE ROUX, GUILLAUME

Inventor name: DURAND, FRANCOIS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510790

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018039015

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220810

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2928289

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221116

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1510790

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018039015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221008

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

26N No opposition filed

Effective date: 20230511

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221008

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 6

Ref country code: DE

Payment date: 20231011

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181008