WO2019012236A1 - Cuve etanche et thermiquement isolante - Google Patents

Cuve etanche et thermiquement isolante Download PDF

Info

Publication number
WO2019012236A1
WO2019012236A1 PCT/FR2018/051771 FR2018051771W WO2019012236A1 WO 2019012236 A1 WO2019012236 A1 WO 2019012236A1 FR 2018051771 W FR2018051771 W FR 2018051771W WO 2019012236 A1 WO2019012236 A1 WO 2019012236A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
primary
wall
waterproof membrane
edge
Prior art date
Application number
PCT/FR2018/051771
Other languages
English (en)
Inventor
Nicolas LAURAIN
Guillaume De Combarieu
Julien COUTEAU
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020207004328A priority Critical patent/KR102513808B1/ko
Priority to CN201880056602.5A priority patent/CN111051762B/zh
Publication of WO2019012236A1 publication Critical patent/WO2019012236A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to the field of sealed and thermally insulating vessels for storing and / or transporting fluid, such as a cryogenic fluid.
  • Sealed and thermally insulating tanks are used in particular for the transport and / or storage of various liquefied gases. Liquefied gas is usually stored at atmospheric pressure or under pressure. These tanks can be installed on the ground or on a floating structure.
  • FR-A-2549575 storage or transport tanks for low-temperature liquefied gases whose or each sealed membrane, in particular a primary waterproof membrane in contact with the product contained in the tank, consists of thin metal sheets which are carried by a thermally insulating barrier. These thin metal sheets are connected together in a sealed manner to ensure the tightness of the tank.
  • the thermally insulating barrier carrying the waterproof membrane comprises a plurality of anchoring wings developing longitudinally or transversely in the tank. These anchor wings project from an upper surface of the thermally insulating barrier.
  • the waterproof membrane consists of a plurality of strakes with raised edges each arranged longitudinally between two adjacent anchoring wings. Each raised edge of a strake is sealed welded to one of the anchoring wings between which said strake is disposed. Thus, each raised edge of the strakes is with the anchoring wing on which it is anchored a dilatation bellows can deform in a direction perpendicular to the longitudinal axis of the strake.
  • expansion bellows make it possible to absorb the deformations of the waterproof membrane in a direction perpendicular to the longitudinal axis of the strakes, for example during a contraction of the tight membrane related to a variation of temperature during the insertion of cryogenic liquid in the tank.
  • the expansion bellows make it possible to absorb the deformations of the membrane in the only direction perpendicular to said expansion bellows.
  • a rigid angle structure comprises rigid anchor plates directly anchored to the carrier structure () and passing through the thermally insulating barrier. The edges of the waterproof membrane are anchored to these anchoring plates so that the rigid angle structure can take up the tension of the membrane in a direction perpendicular to the expansion bellows.
  • the secondary sealed barrier at the angle of the tank is formed by the rigid angle structure made using rigid plates.
  • the thermally insulating barrier must also be anchored to the supporting structure including Q at the corner structure, imposing a mounting of the thermally insulating barrier on the complex carrier structure.
  • EP2306084 discloses a sealed membrane vessel formed of embossed sheets including at the angle of the vessel.
  • the device discloses an angle structure forming a support surface for the corner waterproof membrane.
  • this angle structure must allow to bear the loads present in the angle of the tank and must therefore have a significant structural strength.
  • An idea underlying a first object of the invention is to provide a sealed and thermally insulating tank simple to achieve and easy to integrate into a supporting structure including at the corners of the tank.
  • an idea underlying the first object of the invention is to provide a sealed and thermally insulating tank with freedom of design of the corner structure, at the thermally insulating barrier and / or the waterproof membrane.
  • an idea underlying the first object of the invention is also to allow a deformation of the sealed membrane in a direction perpendicular to an edge of the carrier structure while providing a waterproof membrane simple to manufacture and integrate into a supporting structure.
  • the invention provides a sealed and thermally insulating tank integrated in a supporting structure, said support structure comprising a first planar bearing wall and a second planar bearing wall at one edge of the supporting structure,
  • the vessel having a first vessel wall carried by the first planar bearing wall, a second vessel wall carried by the second planar bearing wall and an angle structure connecting said first and second vessel walls at the edge of the carrier structure, each vessel wall comprising successively from the bearing structure towards the interior of the vessel a thermally insulating barrier and a sealed membrane,
  • each tank wall comprising a plurality of insulating blocks juxtaposed and anchored on the plane bearing wall carrying said tank wall to form a support surface intended to receive the sealed membrane
  • each vessel wall having a plurality of metal plates anchored to the support surface.
  • the angle structure of the tank comprises a curved support band whose concavity is turned towards the inside of the tank and developing parallel to the edge of the supporting structure, said support strip having a first longitudinal edge resting on the thermally insulating barrier of the first tank wall and a second longitudinal edge resting on the thermally insulating barrier of the second tank wall.
  • the angle structure comprising in addition to an airtight angle membrane resting on the curved support strip and sealingly connecting the sealed membrane of the first tank wall and the sealed membrane of the second tank wall, said corner waterproof membrane comprising at least one bellows of angle expansion arranged on the support strip to provide elongation of the membran e waterproof angle at least in a direction perpendicular to the edge of the carrier structure.
  • Such a support strip forms a support surface offering a great freedom of realization of the waterproof membrane of angle, said waterproof membrane of angle resting directly on the support strip.
  • a sealed angle membrane having at least one expansion bellows for absorbing the deformations of the membrane in a direction perpendicular to the edge of the supporting structure.
  • this waterproof corner membrane does not require a rigid anchor connection with the carrier structure.
  • the support strip being supported on the thermally insulating barriers of the flat walls of the tank, the hydrostatic and dynamic load in the tank at the level of the angle structure is transmitted by the support strip and the thermally insulating barriers of the tank on which said support strip rests.
  • it is not necessary to produce a complex angle structure such as that known from the prior art to take up the hydrostatic and dynamic load in the tank at the corner structure.
  • a support strip not being directly anchored to the support structure does not generate thermal bridges between the waterproof membrane resting on the support strip and the support structure.
  • such a sealed and thermally insulating tank may comprise one or more of the following characteristics.
  • the thermally insulating barrier of each tank wall comprises a row of end insulating blocks on which slides in a direction perpendicular to the edge of the bearing structure respectively the first longitudinal edge and the second longitudinal edge of the support strip.
  • one, several or each said end insulating block of the row of end insulating blocks has a cover panel having a counterbore in which is housed the corresponding longitudinal edge of the support strip.
  • the impervious membrane and the impervious corner membrane rest on a continuous support surface formed jointly by the support strip and the support surfaces of the row of end insulating blocks.
  • the first longitudinal edge and the second longitudinal edge of the support strip are respectively anchored to the thermally insulating barrier of the first vessel wall and the second vessel wall.
  • the end of at least one longitudinal edge of the support strip has a recess in a thickness direction of the support strip, the vessel further comprising a retaining plate attached to the support panel.
  • end-insulator block cover comprising the counterbore in which said end of the longitudinal edge of the support strip is housed, said retaining plate being fastened to said cover panel at said counterbore and covering the recess of the end of the supporting strip so that said end of the support strip is interposed between a bottom of the counterbore of the end insulating block and the retaining plate.
  • one of the retaining plate and the end of the longitudinal edge of the support strip covered by said retaining plate comprises an oblong hole developing perpendicular to the edge and the other one the retaining plate and the end of the longitudinal edge of the support strip covered by said retaining plate comprises a lug housed in the oblong hole so as to block in displacement along the edge of the supporting structure and the support strip while permitting the displacement of the support strip in a direction perpendicular to the supporting structure edge.
  • the support strip is held in position along the edge of the carrier structure.
  • the waterproof corner membrane is anchored on its support strip.
  • Such anchoring allows the maintenance of the waterproof membrane angle on the support strip.
  • Such a hold is particularly important in the presence of an overpressure in the termally insulating barrier, for example during a tightness test of the sealed membrane of putting the thermally insulating barrier under overpressure.
  • the sealed membrane of each tank wall being anchored to the thermally insulating barrier of said tank wall, the sealed diaphragm angle could deform towards the inside of the tank facing such an overpressure in the absence of anchoring the waterproof corner membrane to the support strip.
  • the angular waterproof membrane is anchored to the support strip at one or more points or continuously along an anchoring line parallel to the edge of the supporting structure.
  • the support strip comprises a plurality of metallic anchoring members arranged along an anchoring line, the angle-sealing membrane being welded to said anchoring members in a specific manner. the anchor line.
  • the sealed corner membrane has several parallel expansion bellows and the sealed corner membrane is anchored on an anchor strip separating two successive support strips along the edge between two expansion bellows. of the waterproof corner membrane.
  • the anchoring of the waterproof corner membrane on the support strip does not interfere with the work in elongation of the expansion bellows of the sealed diaphragm.
  • the waterproof corner membrane comprises corrugations developing perpendicularly to the edge of the support structure, these corrugations and the expansion bellows of the sealed corner membrane being crossed.
  • the thermally insulating barrier of each tank wall is a primary thermally insulating barrier and the insulating blocks are primary insulating blocks and the impervious membrane of each tank wall is a primary waterproof membrane, the support strip of the corner structure being a primary support strip and the corner waterproof membrane of the corner structure being a primary corner waterproof membrane,
  • the vessel further comprising a secondary thermally insulating barrier anchored to the carrier structure and a secondary sealed membrane carried by the thermally secondary barrier, the primary insulating blocks being carried by the secondary waterproof membrane and anchored directly or indirectly to the supporting structure.
  • the secondary thermally insulating barrier of each cell wall comprises a plurality of secondary insulating blocks juxtaposed and anchored on the carrier structure to form a secondary support surface intended to receive the secondary waterproof membrane,
  • the angle structure of the vessel having a curved secondary support strip whose concavity is turned towards the interior of the vessel and developing parallel to the edge of the carrier structure, said secondary support band having a first longitudinal edge secondary one resting on the secondary thermally insulating barrier of the first vessel wall and a second secondary longitudinal edge resting on the secondary thermally insulating barrier of the second vessel wall so as to form a continuous secondary support surface between the secondary support surface formed by the secondary thermally insulating barrier of the first vessel wall and the secondary support surface formed by the thermally insulating barrier of the second vessel wall, the angle structure further comprising a watertight membrane secondary angle resting slidably in a direction perpendicular to the edge of the support structure on the curved secondary carrier strip and connecting so éîanche secondary éîanche membrane wall of the first tank and the secondary membrane the second éîanche vessel wall, said secondary-angle waterproof membrane having at least a secondary expansion bellows arranged on the secondary support strip to provide an elongation of the secondary waterproof membrane at least in
  • the corner structure further comprises a row of primary corner insulating blocks, one, several or each said primary corner insulating block comprises
  • a first lateral element having a first lateral face contiguous to a primary end insulating block of the first tank wall and a first bottom face resting on the secondary waterproof membrane
  • a second lateral element comprising a second lateral face contiguous to a primary end insulating block of its second tank wall and a second bottom face resting on the secondary waterproof membrane of the second tank wall, said primary corner insulating block further comprising a spacer connecting the first lateral element and the second lateral element, said spacer being arranged to provide a space between the primary corner insulating block and the secondary waterproof membrane, said space accommodating said at least one secondary expansion bellows of the secondary corner membrane,
  • the spacer comprises a bottom plate contiguous with the first bottom face and the second bottom face and inclined with respect to the first bearing wall and the second bearing wall, the first bottom face and the second bottom face of the primary corner insulating block resting on the secondary waterproof membrane being spaced apart from the at least one secondary expansion bellows of the secondary corner waterproof membrane so that said lower face is spaced from said at least one bellows of secondary expansion of the secondary angle waterproof membrane.
  • the corner structure further comprises an insulating padding disposed between the lower plate of the spacer and the secondary corner waterproof membrane.
  • Such insulating corner blocks provide a space to accommodate the expansion bellows or dilatation of the secondary corner waterproof membrane.
  • Such insulating corner blocks offer great freedom of realization of the secondary corner waterproof membrane while ensuring the thermal insulation of the tank at the corner structure.
  • the spacer further comprises a contiguous upper plate of the first lateral face and the second lateral face and inclined with respect to the first bearing wall and the second supporting wall, the corner insulating block comprising in addition an insulating padding resting on the upper plate and having a curved upper surface conforming to the primary support strip, the primary support strip resting on said insulating padding.
  • the angle structure also allows good thermal insulation.
  • this insulating padding can participate in the transmission of the hydrostatic and dynamic load undergone by the primary support band if it is rigid.
  • An idea underlying a second object of the invention is to provide a sealed and thermally insulating tank in which two successive sealed membranes can be made independently of one another in an angle of the tank.
  • the invention also provides a sealed and thermally insulating tank integrated in a supporting structure, said structure comprising a first planar bearing wall and a second planar bearing wall jointly forming an edge of the supporting structure,
  • the vessel comprising from the bearing structure towards the interior of the vessel a secondary heat-insulating barrier anchored to the carrier structure, a secondary waterproof membrane carried by the secondary heat-insulating barrier, a primary heat-insulating barrier carried by the secondary waterproof membrane and a primary waterproof membrane carried by the primary thermally insulating barrier, the tank having a first tank wall carried by the first planar bearing wall and a second tank wall carried by the second planar bearing wall, the primary heat-insulating barrier of each tank wall comprising a plurality of juxtaposed parallelepipedic insulating blocks, the blocks insulators of the primary thermally insulating barrier having lateral faces developing in a plane intersecting with the corresponding supporting wall,
  • the primary insulating barrier comprising an insulating corner block, said corner insulating block having a first lateral element and a second lateral element connected by a spacer element, the corner insulating block further comprising an insulating lining arranged between the first lateral element and the second lateral element, the first lateral element comprising a first bottom face and a first lateral face, the first bottom face being parallel to the first bearing wall and resting on the secondary waterproof membrane, the first lateral face.
  • the second side member having a second face bottom and a second side face, the second bottom face being arallel to the second supporting wall and resting on the secondary waterproof membrane, the second lateral face developing from the second bottom face towards the primary waterproof membrane parallel to and contiguous to a side face of an insulating block of the barrier thermally insulating primary of the second vessel wall, the spacer element being arranged between the first lateral element and the second lateral element to maintain at a distance the first bottom face and the second bottom face,
  • the insulating corner block further comprising a rear face connecting the first bottom face to the second bottom face and inclined relative to the first bearing wall and the second bearing wall so as to provide a space between said rear face of the corner insulating block and secondary waterproof membrane.
  • the insulating corner block offers a freedom of construction of the secondary waterproof membrane to the right of the edge of the supporting structure, without requiring that the secondary waterproof membrane is formed of rigid flat plates anchored to the bearing wall at the level of the angle of the tank.
  • the space between the rear face of the insulating corner block and the secondary waterproof membrane makes it possible to produce expansion bellows including on the secondary waterproof membrane at the edge of the edge of the supporting structure.
  • such an insulating corner block does not require an anchoring member to be held on the supporting structure, the first and second lateral faces of the insulating block each cooperating with a respective lateral face of a block. end insulator of the tank walls to block the insulating block angle on the carrier structure.
  • the spacer element allows a transmission of the forces between the thermally insulating barriers of the first tank wall and the second tank wall through the insulating block angle, a force applied by one tub wall on the insulating block angle tending to push the insulating block angle to the other wall of the tank.
  • such a sealed and thermally insulating tank may comprise one or more of the following characteristics.
  • the lateral face of the insulating element against which is contiguous the lateral face of the first or second lateral element of the insulating corner block is continuous or discontinuous.
  • said lateral face of the insulating element is formed by lateral pillars, a cover panel, a bottom panel and / or any other element forming a flat surface against which can be contiguous and / or support the first or second lateral element of the corner insulating block.
  • an insulating pad is disposed in said space between said rear face and the secondary waterproof membrane to the right of the edge of the carrier structure.
  • the spacer element comprises at least one rigid rod or a rigid plate mounted on the first lateral element and on the second side member inclined with respect to the first carrier wall and the second carrier wall.
  • the rod of the spacer element is mounted on at least one of the first lateral element and the second lateral element by means of a ball joint. Thanks to these characteristics, the same insulating corner block can be easily adapted to the edges of the supporting structure having distinct angles and facilitate assembly.
  • the spacer element comprises a lower plate connecting the first bottom face to the second bottom face and forming said rear face of the corner insulating block.
  • the spacer element further comprises an upper plate connecting an upper end of the first lateral face and an upper end of the second lateral face, said upper plate being inclined relative to the first bearing wall and to the second supporting wall.
  • the tank further comprises a rigid insulating element resting on the upper plate to form a corner support surface for the primary waterproof membrane.
  • the tank further comprises a non-rigid insulating element resting on the upper plate and interposed between said upper plate and the primary waterproof membrane.
  • the spacer element further comprises two end plates each developing in a plane perpendicular to the edge of the supporting structure, said end plates connecting the lateral elements so as to delimit together with the upper plate, the lower plate and the lateral elements an inner volume of the insulating block of angle, an insulating lining being housed in said interior volume.
  • the corner insulating block can form a box in which an insulating material can be inserted.
  • At least one of the first lateral element and the second lateral element comprises a parallelepiped-shaped plate, said parallelepiped-shaped plate forming the corresponding lateral face and bottom face of said lateral element.
  • Such side elements are simple to manufacture and compact.
  • at least one of the first lateral element and the second lateral element comprises a first plate and a second plate, the first plate developing in a plane intersecting with the bearing wall and forming the lateral face of said element. side and the second plate developing parallel to said carrier wall and forming the bottom face of said side member.
  • Such lateral elements are simple to manufacture and have important cooperation surfaces with the adjacent elements.
  • At least one of the secondary waterproof membrane and the primary waterproof membrane is formed at the edge of the edge by a corner angle.
  • the tank further comprises a curved support band whose concavity is turned towards the inside of the tank, said support band developing parallel to the edge of the supporting structure, said support band comprising a first longitudinal edge resting on the primary thermally insulating barrier of the first vessel wall and a second longitudinal edge resting on the primary thermally insulating barrier of the second vessel wall to form a continuous support surface between a support surface formed by the primary thermally insulating barrier of the first vessel wall and a support surface formed by the primary thermally insulating barrier of the second vessel wall, the primary impervious membrane resting on said carrier strip.
  • an upper face of the rigid insulating element opposite to the upper plate of the spacer element is curved, the support strip resting on said upper face of the rigid insulating element.
  • the secondary waterproof membrane comprises a plurality of expansion bellows developing parallel to the edge of the carrier structure, the first bottom face and the second bottom face resting on the secondary waterproof membrane between two bellows of adjacent dilation.
  • the spacer element is arranged at a distance from the at least one of the expansion bellows of the secondary waterproof membrane between which the first bottom face and the second bottom face rest.
  • a sealed and thermally insulating vessel according to the first embodiment and / or the second embodiment may comprise one or more of the following features.
  • the secondary waterproof membrane comprises at least one expansion bellows arranged between the first bottom face and the second bottom face to the right of the edge.
  • the first bearing wall and the second supporting wall form an angle of between 45 ° and 135 °
  • the first carrier wall and the second carrier wall form an angle of 90 ° or 135 °.
  • the waterproof membrane of each tank wall comprises a plurality of parallel expansion bellows.
  • the expansion bellows of the sealed membrane of the first and second vessel walls are arranged parallel to the edge of the supporting structure.
  • the expansion bellows of the sealed membrane of the first and second vessel wall are arranged perpendicular to the edge of the supporting structure.
  • the sealed membrane of each tank wall comprises a plurality of strakes with raised edges juxtaposed, the raised edges of two joined strakes forming a bellows of expansion of the sealed membrane.
  • the waterproof corner membrane comprises a plurality of strakes with raised edges juxtaposed, the raised edges of said strakes developing parallel to the edge of the supporting structure.
  • the raised edges of two juxtaposed strakes of the angular sealing membrane are welded to each other so as to form a bellows of expansion of the corner membrane.
  • the at least one expansion bellows of the angular waterproof membrane develops parallel or slightly oblique with respect to the edge of the supporting structure. Such oblique expansion bellows with respect to the edge of the supporting structure and allow a deformation of the waterproof membrane angle both parallel and perpendicular to the edge of the carrier structure.
  • the waterproof corner membrane comprises at least one metal plate having corrugations.
  • said corrugations of the angular waterproof membrane form the bellows or expansion bellows of the sealed diaphragm.
  • the insulating blocks are of parallelepipedal shape.
  • the insulating blocks are boxes filled with non-structural insulating material.
  • the insulating blocks are blocks of rigid insulating foam, for example high density foam.
  • the anchoring of the angular waterproof membrane on the support strip is continuous or discontinuous.
  • only part of the stretches of the angular waterproof membrane is anchored to the support strip.
  • the waterproof corner membrane is anchored to the support strip slidably in a direction perpendicular to the edge of the supporting structure, that is to say in a direction of work of the bellows of dilation of the waterproof membrane of angle.
  • the angular waterproof membrane is anchored to a metal insert separating two successive support strips arranged along the edge of the supporting structure, said metal insert comprising an anchoring strip developing perpendicularly to the the edge of the bearing structure flush with the support strips separated by said metal insert, the metal insert further comprising two flanges disposed on either side of the anchor strip and forming a recess relative to the strip anchoring, the bands each metal insert is each anchored to a respective rim of the metal insert.
  • the sealed angle membrane is welded to the support strip, for example by means of a clasp weld the iong of the anchor line.
  • a padding of insulating material is disposed between the edge of the carrier structure and the support strip.
  • the insulating padding comprises glass wool and / or high-density insulating foam
  • a strake of the waterproof membrane of at least one tank wall is carried both by the thermally insulating barrier of said vessel wall and by its support strip.
  • the support strip is metallic.
  • the support strip is made of nickel-steel alloy, for example Invar or of alloy with a high manganese content.
  • the support strip is made of composite materials.
  • the support strip is resistant to traction so as to resume its hydrostatic and dynamic loading in the angle of the tank.
  • the support strip is anchored to the thermally insulating barriers by any suitable means, for example by gluing, screwing, riveting or other.
  • the support strip is anchored to at least one thermally insulating barrier in a direction of thickness of the vessel wall on which said support strip is anchored.
  • the support strip is anchored on at least one thermally insulating barrier in a direction parallel to the edge of the supporting structure.
  • a plurality of retaining plates are disposed along the at least one end insulating block on which the support strip rests.
  • each retaining plate is developed on the whole of an edge of the end insulating block on which the support strip rests.
  • the support strip is carried by the end blocks of the thermally insulating barriers with freedom of sliding in a direction perpendicular to the edge of the supporting structure.
  • the support strip has a coefficient of expansion less than or equal to the expansion coefficient of the sealed membrane.
  • the support strip is made of stainless steel and the waterproof membrane is made of alloy with a high manganese content.
  • the support strip has a thickness greater than 2 mm, for example between 3 and 4 mm, so as to have sufficient rigidity to resume without deformation the hydrostatic and dynamic loads in the angle of the tank.
  • the rigid insulating element is a block of high density foam, for example high density polyurethane foam.
  • the corner insulating element and the support strip are independent of one another and do not cooperate directly together.
  • a tank as described above can be part of an onshore storage facility, for example to store LNG or be installed in a floating structure, coastal or deepwater, including a LNG carrier, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • Fig. 1 is a schematic perspective view of a sealed and thermally insulating tank at an angle illustrating the secondary heat-insulating barrier and the support strip resting thereon;
  • FIG. 2 is a view similar to FIG. 1 on which a secondary-angle waterproof membrane is added;
  • FIG. 3 is a view similar to FIG. 2 in which a primary thermally insulating barrier resting on the secondary waterproof membrane is illustrated:
  • Figure 4 is a view similar to Figure 3 in which a primary angle waterproof membrane has been added;
  • FIG. 5 is a sectional view in a plane perpendicular to the edge of the supporting structure of a detail of the vessel wall illustrating the secondary or primary angle waterproof membrane and the secondary or primary support strip;
  • FIG. 6 is a sectional view in a plane perpendicular to the edge of the supporting structure of a detail of the vessel wall illustrating the cooperation between the secondary or primary angle waterproof membrane and the angular waterproof membrane. secondary or primary and co-operation between the secondary or primary support strip and a secondary or primary insulation block;
  • Figure 7 is a sectional view in a plane perpendicular to the edge of the carrier structure illustrating a first embodiment of the detail of Figure 6;
  • Figure 8 is a sectional view in a plane perpendicular to the edge of the support structure illustrating a second alternative embodiment of the detail of Figure 6;
  • Figure 9 is a sectional view in a plane perpendicular to the edge of the carrier structure illustrating a first embodiment of the detail of Figure 5;
  • Figure 10 is a schematic perspective view illustrating the alternative embodiment of Figure 9;
  • Figure 1 1 is a schematic perspective view illustrating a second alternative embodiment of the detail of Figure 5;
  • FIG. 12 is a sectional view of the detail of FIG. 11 according to the axis
  • Figure 13 is a sectional view in a plane perpendicular to the edge of the carrier structure illustrating a first embodiment of an anchoring of the support strip on an insulating block;
  • Figure 14 is a top view of the detail of Figure 13;
  • Figure 15 is a sectional view along the axis XV-XV of Figure 1 illustrating a second variant of the anchoring of the support strip on an insulating block;
  • Fig. 16 is a schematic perspective view of a secondary thermally insulating barrier and a secondary corrugated secondary diaphragm corrugated at a vial angle between two walls of the vessel forming an angle of 135 °;
  • Fig. 17 is a schematic perspective view of the vial angle of Fig. 18 partially showing a primary heat-insulating barrier and a primary waterproofing membrane;
  • FIG. 18 is a schematic perspective view of a first variant embodiment of the angular waterproof membrane
  • Figure 19 is a sectional view in a plane perpendicular to the edge of a second embodiment of the waterproof membrane angle
  • FIG. 20 is a schematic perspective view of a primary corner insulator block for use in a vessel wall having an angle of 135 °;
  • FIG. 21 is a sectional view in a plane perpendicular to the edge of the carrier structure of a primary corner insulating block according to a second embodiment
  • FIG. 22 is a sectional view in a plane perpendicular to the edge of the carrying structure of a primary corner insulating block according to a third embodiment that can be used in a tank wall having a 90 ° angle. ;
  • FIG. 23 is a cutaway schematic representation of a vessel of a LNG carrier and a loading / unloading terminal of this vessel,
  • the gas may in particular be a liquefied natural gas (LNG), that is to say a gaseous mixture comprising predominantly methane and one or more other hydrocarbons, such as ethane, propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in a small proportion.
  • LNG liquefied natural gas
  • the gas may also be ethane or liquefied petroleum gas (LPG), i.e. say a mixture of hydrocarbons from petroleum refining consisting essentially of propane and butane.
  • Such a sealed and thermally insulating tank is integrated into a load-bearing structure such as, for example, the double hull of an LNG transport vessel.
  • This supporting structure defines a plurality of bearing walls contiguous at the edges 1 of the supporting structure and jointly delimiting an internal space of the double shell for receiving the sealed and thermally insulating tank.
  • the sealed and thermally insulating tank has a plurality of tank walls each carried by a respective carrier wall. The vessel walls are joined at the edges 1 of the carrier structure.
  • Each tank wall comprises, from the corresponding bearing wall to the inside of the tank, a secondary heat-insulating barrier, a secondary waterproof membrane, a primary heat-insulating barrier and a primary waterproof membrane.
  • Figures 1 to 4 illustrate the edge 1 between a first bearing wall 2 and a second supporting wall 3 together forming a 90 ° angle.
  • a first tank wall 4 is carried by the first bearing wall 2 and a second tank wall 5 is carried by the second bearing wall 3.
  • FIG. 1 illustrates the secondary thermally insulating barriers of the first and second vessel walls 4, 5.
  • These secondary thermally insulating barriers are formed of secondary insulating elements 6 juxtaposed.
  • the secondary insulating elements 6 are anchored to the supporting structure by any appropriate means, for example by gluing and / or by mechanical retaining members.
  • Each of the secondary insulating elements 6 has a rectangular parallelepiped shape having two large faces, or main faces, and four small faces, or side faces.
  • These secondary insulating elements 6 each comprise an upper face forming a secondary support surface 8 for receiving the secondary waterproof membrane.
  • Such secondary insulating elements are for example made in the form of plywood boxes filled with insulating material such as perlite, airgel, silica, glass wool or insulating foam.
  • the thermally insulating barrier further comprises a secondary angle insulating element 15 similar to the insulating elements 6 and / or which can be integrated into one of them.
  • This secondary angle insulating element 15 is of parallelepipedal shape and extends both the secondary thermally insulating barrier of the first tank wall 4 and the secondary thermally insulating barrier of the second tank wall 5.
  • the insulating element secondary angle 15 has a thickness equal to the thickness of the secondary thermally insulating barrier of the first vessel wall 4 in a direction perpendicular to the first carrier wall 2 and a thickness equal to the thickness of the secondary thermally insulating barrier the second tank wall 5 in a direction perpendicular to the second carrier wall 3, These thicknesses can be equal or different.
  • the secondary waterproof membrane of the vessel walls can be made in different ways, preferably in metal sheets.
  • a secondary waterproof membrane has expansion bellows. These expansion bellows are made in any suitable manner, for example in the form of corrugations of metal sheets or by welding two by two raised edges of the adjacent metal sheets. These expansion bellows can absorb the deformations of the secondary waterproof membrane in a direction perpendicular to the direction of said expansion bellows.
  • such secondary insulators 6 ei / or secondary waterproof membranes in membrane tanks may be similar to the corresponding elements described in documents W014057221, FR2891520 and FR2877838.
  • An angle structure connects the first vessel wall 4 and the second vessel wall 5 at the edge 1.
  • This corner structure includes a curved and rigid secondary support band 12.
  • the secondary support band 12 develops parallel to the edge 1 and has a concavity turned towards the inside of the tank.
  • the secondary support strip 12 has a first longitudinal edge 13 which develops parallel to the edge 1 and rests on a secondary insulating element 6 situated at the end of the first tank wall 4.
  • the secondary support strip 12 also comprises a second longitudinal edge 14 which develops parallel to the edge 1 and rests on a secondary insulating element 6 located at the end of the second tank wall 5.
  • This secondary support band 12 serves to take up the hydrodynamic and static loads undergone over there secondary waterproof membrane at the angle of the tank.
  • the secondary support strip 12 is made of relatively rigid and resistant material.
  • the secondary support strip 12 can be made in different ways.
  • this support strip 12 is made of a metallic material, for example nickel or manganese steel, and has a thickness greater than 2 mm, for example between 3 and 4 mm thick.
  • the support strip 12 is made of a composite material, namely a mixture of polymer resin and fibrous material.
  • the polymer resin may be a thermosetting or thermoplastic resin.
  • the fibrous material may be carbon fibers, metal fibers, synthetic fibers, glass fibers or other mineral fibers and mixtures thereof.
  • the fibers may be woven or non-woven.
  • a composite material incorporating woven carbon fibers may be selected to achieve good tensile strength at moderate cost.
  • the thickness of the composite material can be chosen as a function of the compressive stresses and thermal expansion stresses to be supported.
  • the secondary support strip 12 forms a continuous secondary corner support surface 17. As illustrated in FIG. 2, a secondary corner waterproof membrane 18 rests on the secondary corner support surface 17. Such a secondary corner waterproof membrane 18 is described in more detail below with reference to FIG. for example.
  • the secondary corner waterproof membrane 18 is sealingly connected to the secondary waterproof membrane on the one hand of the first tank wall 4 and on the other hand to the second tank wall 5, as is explained in more detail with reference to FIGS. 6 to 8.
  • the secondary support strip 12 rests on the thermally insulating barriers of the tank walls 4, 5, the charges taken up by the secondary support strip 12 are transmitted to said thermally insulating barriers without the need for complex structural support to be manufactured in the structure. angle to take back these loads.
  • a secondary insulating pad 16 is inserted between the secondary support strip. 12 and the secondary end insulating blocks 6 on which the secondary support strip 12 rests.
  • Such secondary insulating padding 18 may be made in different ways, for example using a rigid block of high-grade polyurethane foam. density matching on the one hand the upper surface of the secondary insulating blocks 8 and, on the other hand, the curved shape of the lower face of the secondary support strip 12.
  • the primary thermally insulating barrier of the first and second vessel walls 4, 5 comprises a plurality of primary insulating elements 22.
  • These primary insulating elements 22 are similar to the secondary insulating elements 8 and are, for example, made of plywood box parailelepipedic filled with insulating material.
  • the primary insulating elements 22 may be anchored to the supporting structure in different ways, for example either directly via anchoring members passing through the secondary heat-insulating barrier and the secondary waterproof membrane, or indirectly by being anchored to the secondary waterproof membrane.
  • the primary insulating elements 22 of each tank wall form a support surface carrying the primary waterproof membrane of said tank wall.
  • the corner structure also includes a primary support strip 23 similar to the secondary support strip 12 described above.
  • the primary support strip 23 develops parallel to the edge 1 along said edge 1.
  • This primary support strip 23 is curved with a concavity turned towards the inside of the tank and has a first longitudinal edge 24 resting on a primary insulating element 22 located at the end of the first tank wall 4 and a second longitudinal edge 25 resting on a primary insulating element 22 located at the end of the second tank wall 5.
  • This primary support strip 23 forms a continuous primary corner support surface 26 on which a primary corner waterproof membrane 27 rests.
  • the primary thermally insulating barrier rests on the secondary waterproof membrane.
  • the secondary waterproof membrane comprises expansion bellows projecting towards the inside of the tank.
  • the primary insulating elements 22 of the first tank wall 4 and the second tank wall 5 comprise grooves on a lower surface for accommodating said expansion bellows.
  • This grooved solution is simple to perform for the first and second vessel walls 4, 5 due to the parallelepiped nature of the primary insulating elements 22 and the substantially flat appearance, with the exception of the expansion bellows, of the membrane
  • this solution is complex to implement for a primary corner insulating element 30 of the corner structure.
  • the secondary corner waterproof membrane 18 resting on the secondary support strip 12 has a curved shape. Therefore, it is not possible to make a parallelepipedic primary corner insulating block of similar shape to the secondary corner insulating block 15.
  • the primary corner insulating element 30 includes a first side member 31 and a second side member 32 connected by a spacer 33.
  • the first lateral element 31 comprises a first lateral face 34 developing perpendicularly to the first bearing wall 2. This first lateral face 34 is contiguous to a lateral face 35 of the primary insulating element 22 situated at the end of the first wall of tank 4 on which the primary support strip 23 rests.
  • the first lateral element 31 also comprises a first bottom face 36 which rests on a flat portion of the secondary waterproof membrane, preferably between two adjacent expansion bellows.
  • the secondary waterproof membrane is made from strakes with raised edges 9 and this first bottom face 36 rests on a flat portion of a secondary strake 9 of the first wall of tank 4 sealingly connected to an adjacent secondary corner strake 19 of the secondary corner waterproof membrane 18.
  • this first bottom face 36 rests on a flat portion of a strake of secondary angle 19 of the secondary angle waterproof membrane 18, i.e. between raised edges 20 of said secondary corner strake 19,
  • the first lateral element 31 and the second lateral element 32 are symmetrical with respect to a bisector of the angle formed by the first bearing wall 2 and the second supporting wall 3.
  • the second lateral element 32 has a second lateral face 37 contiguous at one side face 38 of the primary insulating element 22 situated at the end of the second tank wall 5 on which the primary support strip 23 rests and a second bottom face 39 resting on the secondary waterproof membrane between two bellows of adjacent dilation.
  • the spacer 33 is formed using a bottom plate 40 and a cover plate 41 developing parallel to each other. These bottom plates 40 and cover 41 develop parallel to the edge 1 in respective planes inclined with respect to both the first carrier wall 2 and the second carrier wall 3.
  • the bottom plate 40 connects the first face 36 and the second bottom face 39.
  • the cover plate 41 connects the first lateral face 34 and the second lateral face 37.
  • the spacer 33 further comprises two end plates 42, only one of which is visible in the figures. 3 and 4. These end plates 42 each develop in a plane perpendicular to the respective edge 1. Each end plate 42 interconnects the first side face 34, the first bottom face 36, the bottom plate 40, the second bottom face 39, the second side face 37 and the cover plate 41.
  • primary corner insulating element 30 is a polyhedral box as illustrated in FIG. 20 and each face of which is formed by a respective plate.
  • this primary corner insulating element 30 is an extruded form of hexagonal section formed by the end plates 42 in a direction parallel to the edge 1.
  • an insulating padding is disposed between the first lateral element 31 and the second lateral element 32.
  • a primary corner insulating element 30 in the form of a box as described above and illustrated in FIGS. 4 and 19 is filled with insulating material such as perlite, glass wool or the like.
  • insulating material such as perlite, glass wool or the like.
  • Such a primary corner insulator element 30 has many advantages. Indeed, the spacer 33 connecting the bottom faces 36, 39 provides a space 43 between the primary corner insulating block 30 and the secondary corner waterproof membrane 18. This space 43 offers a freedom of design of the secondary angle waterproof membrane 18 since the primary corner insulating element 30 rests on the secondary waterproof membrane via the first and second bottom faces 36, 39 which are distant from each other.
  • first and second lateral faces 34, 37 are each contiguous to the primary insulating elements 22 end, a charge transmission between the primary thermally insulating barrier of the first tank wall 4 and the primary thermally insulating barrier of the second tank wall 5 via the primary corner insulating element 30 is possible.
  • first and second lateral faces 34, 37 developing perpendicular respectively to the first supporting wall 2 and the second supporting wall 3, the primary corner insulating element 30, once installed, is locked in position between the 35,38 side faces of the primary insulating elements 22 end of the tank walls 4, 5. Therefore, the primary insulating elements 22 end being anchored, directly or indirectly, on the carrier structure, the insulating member of primary angle 30 is indirectly anchored to the supporting structure without the need for additional anchoring.
  • displacement locking members may, however, be provided for blocking in displacement parallel to the edge the primary corner insulating element 30 along the edge 1.
  • Such locking members the primary corner insulating element 30 can be made in many ways, for example, cleats for anchoring the primary insulating elements 22 protruding end of said primary insulating elements 22 towards the edge 1 of the side and else of the primary corner insulating element 30 in order to block it in displacement along the edge 1.
  • Such displacement locking members can also be used in a similar way to block the insulation elements in displacement.
  • secondary angiography 15 cleats for anchoring the secondary insulating elements 6 end being extended and protruding towards the edge 1 to block the ele secondary angle insulators 15 moving along the edge 1.
  • a lower insulating pad 44 is disposed between the bottom plate 40 and the secondary corner waterproof membrane 18.
  • This lower insulating pad 44 can be made in many ways, for example by using a flexible insulating material such as of glass wool or low-density polyurethane foam between the expansion bellows 21 and a rigid insulating material, for example high-density polyurethane foam insulation, above the bellows 21.
  • an upper insulating padding 45 is disposed between the cover plate 41 and the primary support strip 23.
  • Such upper padding 45 is for example made using a high-density polyurethane foam conforming to its curved shape of the strip primary support 23 and allows a recovery of the loads incurred by the primary support strip 23.
  • FIGS 5 to 15 illustrate details of the embodiment of the sealed and thermally insulating vessel. These details are described below in the context of a secondary thermally insulating barrier and / or a secondary waterproof membrane. However, this description is to apply by analogy to primary sealing membrane.
  • the secondary waterproof membrane of the tank walls 4, 5 has a repeated structure alternately comprising, on the one hand, secondary metal sheet strips 9, hereinafter called secondary metal strakes 9, placed on the surface of secondary support 8 and, on the other hand, elongated welding supports 10 connected to the secondary support surface 8 and extending parallel to the secondary strakes 9 over at least a portion of the length of the secondary strakes 9.
  • Sheet metal strips 9 have lateral raised edges 11 disposed and welded against the adjacent solder supports.
  • the metal strakes are, for example, made of Invar ®, that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 e and 2.10 "6 K " 1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7 to 9.10 -6 K -1 .
  • the secondary corner waterproof membrane 18 illustrated in FIGS. 5 to 10 includes a plurality of sheet metal strips in the form of angled strakes 19 with raised edges 20 extending parallel to the edge 1.
  • the raised edges 20 protrude substantially perpendicular to the secondary support band 12.
  • the adjacent raised edges of two adjacent secondary corner strakes 19 are welded together by weld lines 46 parallel to the edge 1. These weld lines 46 are preferably made at the ends of the raised edges opposite to The secondary support strip 12.
  • the pairwise paired up edges 20 form a plurality of angle secondary expansion bellows 21 extending parallel to the ridge 1. These angle secondary expansion bellows 21 differ from the bellows.
  • the secondary support strip 12 is metallic.
  • a central secondary corner strake 19 is anchored to the secondary support strip 12 along a weld line 47 parallel to the edge 1.
  • the secondary corner waterproof membrane 18 is maintained on the secondary support band 12, even in the presence of an overpressure in the secondary thermally insulating barrier, such an overpressure may for example occur during a tightness test of the secondary waterproof membrane by overpressure of the thermally insulating barrier secondary.
  • FIG. 6 illustrates the junction between the secondary corner waterproof membrane 18 and the secondary waterproof membrane of the first tank wall 4 in the context of a secondary waterproof membrane of the first tank wall 4 having expanding expansion bellows parallel to the edge 1.
  • a cover panel 7 of the secondary secondary insulating element 6 comprises a countersink 48.
  • This countersink 48 has a depth substantially equal to the thickness of the secondary support strip 12.
  • This countersink 48 is developed over the entire length of the cover panel 7 taken parallel to the edge 1.
  • the first longitudinal edge 13 of the secondary support strip 12 rests on said secondary end insulator element 6 in said counterbore 48.
  • the corner support surface 17 formed by the secondary support strip 12 is flush with the support surface 8 formed by the cover panel 7 so as to form a substantially continuous support surface for the secondary waterproof membrane.
  • the secondary end strake 9 of the first tank wall 4 is anchored in a sealed manner by a weld 49 on the secondary corner support surface 17.
  • the raised edge 11 of this end strake 9 is welded sealed by a weld sign 50 at the raised edge 20 of an adjacent secondary corner strake 19 so as to form a dilatation bellows adapted to absorb the deformations of the secondary waterproof membrane in a direction perpendicular to the edge 1.
  • the primary corner waterproof membrane 27 may be formed of a plurality of primary corner strakes 28 with raised edges developing parallel to the edge 2. These primary corner strakes 28 have connected raised edges two by two so as to form primary expansion bellows of angle 29,
  • FIG. 7 illustrates an alternative embodiment of the sealed connection between the secondary sealed membrane of the first tank wall 4 and the secondary corner waterproof membrane 8.
  • the cover panel 7 of the secondary insulating element 8 of the end of the first tank wall 4 comprises a solder support 10 disposed between the counterbore 48 and a secondary insulating element 8 of the first tank wall 4 adjacent.
  • the secondary secondary strake 9 of the secondary watertight membrane of the first tank wall 4 has a raised edge 11 welded to said weld support 10.
  • the corner strake 19 of the end of the secondary waterproof membrane Angle 18 rests jointly on the secondary corner support surface 17 formed by the secondary support strip 12 and on the secondary support surface 8 formed by the secondary end insulating element 6 on which said secondary support strip 12 rests.
  • This end corner strake 19 also has a raised edge 20 welded to the weld support 10.
  • FIG. 8 illustrates another alternative embodiment of the sealed connection between the secondary sealed membrane of the first tank wall 4 and the secondary corner waterproof membrane 18 in the case of a secondary sealed membrane of the first tank wall 4 having expansion bellows developing perpendicularly to edge 1.
  • the raised edges 1 1 of the secondary strakes 9 are interrupted before the secondary insulating element 6 end so that the end of the secondary strakes 9 resting on the support surface 8 formed by the insulating member Secondary 6 end are flat.
  • the secondary end insulating element 6 has a housing 51 developing parallel to the edge 1.
  • An anchoring strip 52 metallic developing parallel to the edge 1 is housed in this housing 51.
  • the housing 51 and the strip anchoring each have in a plane perpendicular to the edge 1 an inverted "T" shape.
  • This inverted "T" shape allows the anchoring strip 52 to slide in the housing 51 in a direction parallel to the edge 1 while anchoring the anchoring strip 52 in the housing 51 in one direction.
  • thickness of the secondary thermally insulating barrier A clearance between the anchoring strip 52 and the housing 51 can further ensure a sliding of the anchoring strip 52 in the housing 51 in a direction perpendicular to the edge 1 and parallel to the first bearing wall 2.
  • the anchor strip 52 has a planar upper surface 53 flush with the support surface 8 formed by the secondary insulating element 6 end.
  • the flat end of the secondary end strake 9 is anchored sealingly by a weld 54 on the upper surface 53.
  • the end corner strake 19 rests jointly on the secondary support strip 12 and on the surface of the support 8 formed by the secondary insulating element 6 end.
  • a longitudinal edge 55 opposite the secondary support strip 12 of the end corner strake 19 is flat.
  • This flat longitudinal edge 55 is welded 56 sealingly at the flat end of the secondary strake 9, thereby providing the sealed connection between the secondary sealed membrane of the first tank wall 4 and the secondary corner waterproof membrane 18.
  • the flat longitudinal edge 55 is also welded 57 to the upper surface 53 of the anchoring strip 52 in order to ensure anchoring of the secondary corner waterproof membrane 18 on the strip. anchorage 52.
  • Figures 9 and 10 illustrate an alternative embodiment of the anchoring of the secondary corner waterproof membrane 18 on the secondary support strip 12.
  • This variant embodiment differs from that of Figure 5 in that the secondary support strip 12 is not metallic and therefore does not allow direct anchoring by welding of the secondary corner waterproof membrane 18 on the secondary support strip 12.
  • a plurality of metal fastening rivets 58 are installed on the secondary support strip 12. These fastening rivets 58 are arranged along an anchor line 59 parallel to the edge 1. In the embodiment shown in FIG. embodiment illustrated in Figures 9 and 10, the anchor line 59 is substantially centered on the secondary support strip 12 between the first longitudinal edge 13 and the second longitudinal edge 14.
  • Fastening rivets 58 have an upper rivet head 60 forming a flat metal plate.
  • the central secondary corner strake 19 is anchored by spot welds along the anchor line 59 on the heads 80 of the fastening rivets 58.
  • FIGs 1 1 and 12 illustrate an alternative embodiment of the secondary corner waterproof membrane 18.
  • the secondary corner waterproof membrane is formed by corrugated metal plates.
  • Such corrugated metal plates are, for example, manufactured in a similar manner to the corrugated plates described in document FR2691520 and used in the context of so-called Mark-III waterproof membranes of the applicant.
  • the secondary corner waterproof membrane 18 thus comprises expansion bellows 21 in the form of corrugations 81 developing parallel to the edge 1.
  • This embodiment also differs from the embodiments described above in that the secondary corner waterproof membrane 18 is anchored on an angle anchoring strip 62.
  • This angle anchoring strip 62 develops perpendicularly to the edge 1 and separates two successive secondary support strips 12 arranged along the edge 1.
  • Angle anchor strip 62 is curved in shape with a concavity facing the interior of the vessel.
  • the radius of curvature of the corner anchor strip 62 is substantially equal to the radius of curvature of the secondary support strips 12.
  • This corner anchor strip 62 has an anchor surface 63 flush with the support surfaces. 17 secondary support strips 12 that it separates.
  • the angle anchoring strip 62 has two recesses 64 disposed on either side of the anchoring surface 63.
  • the two secondary support strips 12 separated by the angle anchoring strip 62 are each welded to one of said recess 64 respectively.
  • the depth of these recesses 64 is equal to the thickness of the secondary support strips 12 so that the support surfaces 17 formed by the secondary support strips 12 are flush with the anchoring surface 63 and together form a continuous support surface for the secondary corner waterproof membrane 18.
  • the secondary corner waterproof membrane 18 is anchored to the anchoring surface 63 between two adjacent corrugations 61.
  • FIGS. 13 and 14 illustrate a first anchoring variant of the secondary support strip 12 on the secondary secondary insulating element 6 of the first tank wall 4.
  • the counterbore 48 comprises a step 65.
  • This step 65 is disposed between a bottom surface 66 of the counterbore 48 on which rests the first longitudinal edge 13 of the secondary support band 12 and the support surface 8 formed by said secondary insulating element 6 end.
  • the first longitudinal edge 13 further comprises a recess 67 in the thickness of the secondary support strip 12. This recess 67 forms a flat surface that is flush with the step 65.
  • a retaining plate 68 is anchored in the counterbore 48 on the step 65 by means of a screw, by gluing, riveting or otherwise.
  • This retaining plate 68 develops parallel to the first bearing wall 2 and covers both the step 65 and the recess 67.
  • the retaining plate 68 thus holds the secondary support strip 12 on the cover panel 7.
  • this plate of retainer 68 is flush with the support surface 8 and thus forms a substantially continuous flat surface between the support surface 17 of the secondary support strip 12 and the support surface 8.
  • the recess 67 of the first longitudinal edge 13 comprises a plurality of oblong holes 69. These oblong holes 89 develop perpendicularly to the edge 1.
  • the retaining plate 68 comprises a plurality of lugs 70 protruding towards the secondary support strip 12. Each lug 70 is housed in a respective oblong hole 89.
  • the secondary support strip 12 is blocked in displacement in a direction parallel to the edge 1 by abutting cooperation between the lugs 70 and the walls of the corresponding oblong holes 89.
  • the support strip 12 retains a freedom of sliding in the lamina 48 in a direction perpendicular to the edge 1 by sliding the lugs 70 in the oblong holes 69.
  • the retaining plate 88 shown in dashed lines in FIG. 14, develops along the entire length taken along a direction parallel to the edge 1 of the lamination 48, that is to say along the entire length of the secondary insulating element.
  • a plurality of retaining plates 68 of reduced size in the direction parallel to the edge 1 are anchored along the amage 48. This plurality of plates retainers 88 thus form point anchorages of the secondary support band 12 in the amamage 48.
  • the lugs 70 and the oblong holes 69 are reversed, that is to say that the lugs 70 protrude from the first longitudinal edge 13 and are housed in corresponding oblong holes 69 formed on the retaining plate 68.
  • FIG. 15 illustrates a second variant embodiment of the anchoring of the secondary support strip 12 on the cover panel 7.
  • the lamina 48 does not include a step 85 and the first longitudinal edge 13 of the strip secondary support 12 does not have a recess 87.
  • the first longitudinal edge 13 has the oblong holes 69 developing perpendicularly to the edge 1.
  • These oblong holes 69 are different from the oblong holes described above in that they comprise each having two internal flanges 71 developing parallel to the edge 1 over the entire length of said oblong hole 69.
  • the anchoring of the secondary support strip 12 is achieved by means of rivets 72 riveted in the counterbore 48 and each passing through a respective oblong hole 69.
  • Each rivet 72 has a rivet head 91 bearing on the inner flanges 71 of the corresponding oblong hole.
  • the secondary support strip 12 is anchored in the counterbore 48 in a direction perpendicular to the first bearing wall 2 by abutment of the internal flanges 71 on the rivet heads 91.
  • the secondary support strip 12 is also anchored in a parallel direction at the edge 1 by abutment of the rivets 72 on the inner flanges 71 of the oblong holes 69.
  • this anchoring allows a sliding of the secondary support strip 12 in a direction perpendicular to the edge 1 and parallel to the first bearing wall 2 by the freedom of movement of the rivets 72 along the oblong holes 69.
  • Figures 16 and 17 illustrate a tank angle at an edge 1 formed by two bearing walls having an angle of 135 °.
  • This configuration differs from that described with reference to FIGS. 1 to 4 in that the secondary end insulating elements 6 have dimensions smaller than the dimensions of the other secondary insulating elements 6 in a direction perpendicular to the edge 1.
  • the insulating angle member 15 has two bottom faces each resting on one of the carrier walls forming the edge 1, two side walls perpendicular to one of said supporting walls and contiguous to a secondary insulating member 6 respective end, and an upper face developing parallel to the edge 1 and symmetrically with respect to a bisector of the angle formed by the carrier walls 2, 3.
  • the secondary and primary angle membranes 18, 27 are formed from corrugated metal plates as described above with reference to FIG. 11 and whose corrugations 61 develop parallel to the edge 1.
  • FIG. 18 illustrates a bowl angle having a secondary angle waterproof membrane 18 according to an alternative embodiment. Furthermore, this FIG. 18 also illustrates a secondary waterproof membrane of a tank wall having expansion bellows developing perpendicularly to the edge 1.
  • the secondary corner waterproof membrane 18 comprises expansion bellows 21 in the form of corrugations 81 developing parallel to the edge 1.
  • This secondary angle waterproof membrane 18 further comprises corrugations 73 developing perpendicularly at the edge 1. These corrugations 73 develop continuously over the entire width of the secondary corner waterproof membrane 18.
  • Each end of the corrugations 73 protrudes from a respective longitudinal edge 13, 14 and is welded sealingly to the secondary waterproof membrane of the corresponding tank wall to ensure the sealing of the secondary waterproof membrane.
  • the corrugations 73 are arranged along the edge 1 between two adjacent expansion bellows of the secondary waterproof membrane of said tank walls 4, 5, such corrugations 73 can absorb the deformations of the secondary corner waterproof membrane 18 in a direction parallel to the edge 1.
  • the expansion bellows 21 of the secondary corner waterproof membrane 18 are slightly oblique with respect to the edge 1. Such oblique expansion bellows 21 can deform so as to absorb the deformations of the secondary angle waterproof membrane 18 both in a direction parallel to the edge 1 and in a direction perpendicular to said edge 1.
  • Figure 19 illustrates a detail of a bottom angle of 90 ° with an alternative embodiment of the sealed membrane primary angle 27.
  • the waterproof membrane primary angle of 27 is carried out using a rigid corner angle.
  • the rigid corner angle comprises two rigid metal flat plates 88 jointly forming a 90 ° angle, each flat plate 88 being welded 89 sealingly to the primary waterproof membrane of a respective tank wall 4, 5. Such a rigid corner angle does not require to rest on a primary support strip 23. Thus, each flat plate 88 is anchored directly on a respective insulating element 22 end. This anchoring can be achieved in different ways, for example by screwing, tacking bonding or other.
  • the corner structure comprises a primary corner insulating element 30 as described above with reference to FIGS. 3, 4 and 20. However, the upper insulating padding 45 consists of two rigid insulating blocks 90.
  • Each insulating block presents a triangular section of which a first face rests on the cover plate 41, a second face is contiguous to the side face of a respective primary end-terminal block 22, and a third lower face of a respective flat plate 88.
  • These two rigid insulating blocks 90 thus form a flat support surface for the flat plates 88.
  • Figure 19 also illustrates the space 43 cleared under the lower plate 40 for housing the secondary corner waterproof membrane 18 of curved shape. Furthermore, in this embodiment, the bottom faces 36 and 39 make it possible to accommodate expansion bellows projecting from flat portions of the secondary waterproof membrane in a similar manner to the lower surfaces of the primary insulating elements of the tank walls 4, 5. .
  • FIGS. 21 and 22 show alternative embodiments of the primary corner insulating element 30. These variant embodiments differ from the primary corner insulating element described with reference to FIGS. 3, 4 and 19 in that the first Lateral element 31 and second lateral element 32 are each formed by a flat parallelepipedal plate 74. The first lateral face 34 and the second lateral face 37 are thus each formed by one of the larger faces of the corresponding plate 74. In addition, the first bottom face 36 and the second bottom face 39 are formed by a face developing in the thickness of the corresponding plate 74.
  • the spacer 33 is formed of two rods 75 each developing perpendicular to the edge 1 and inclined relative to the bearing walls forming the edge 1. These rods 75 are anchored to Any suitable manner on the plates 74.
  • the plates 74 each comprise a through hole traversed by the rod 75.
  • Each of these orifices has an inner rim on which bears a nut mounted on one end of the rod 75 through said orifice.
  • the spacer 33 is formed by a single rod 75 developing perpendicular to the edge 1 and inclined relative to the bearing walls forming the edge 1. However, this single rod 75 is fixed on each plate 74 by means of a ball joint 92. This second variant has the advantage of being used for edges 1 having different angles.
  • the technique described above for producing a sealed and thermally insulating tank can be used in different types of tanks, for example to form an LNG tank in a land installation or in a floating structure such as a LNG tank or other.
  • a cutaway view of a LNG vessel 76 shows a sealed and insulated tank 77 of generally prismatic shape mounted in the double hull 78 of the ship.
  • the wall of the tank 77 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 78 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 78.
  • loading / unloading lines 79 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal for transferring a cargo of LNG to or from the tank 77,
  • FIG. 23 represents an example of a marine terminal comprising a loading and unloading station 81, an underwater pipe 82 and an onshore installation 83.
  • the loading and unloading station 81 is a fixed off-shore installation comprising an arm mobile 80 and a tower 84 which supports the movable arm 80.
  • the movable arm 80 carries a bundle of insulated flexible pipes 85 that can connect to the loading / unloading pipes 79.
  • the movable arm 80 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 84.
  • the loading and unloading station 81 allows the loading and unloading of the tanker 78 to or from shore facility 83.
  • Underwater pipe 82 allows the transfer of the liquefied gas between the loading or unloading station 81 and the onshore installation 83 over a large distance, for example 5 km, which makes it possible to keep the LNG ship 76 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 76 and / or pumps fitted to the shore installation 83 and / or pumps fitted to the loading and unloading station 81 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention se rapport à une cuve étanche et thermiquement isolante intégrée dans une structure porteuse formant conjointement une arête, la cuve comportant deux parois de cuve portées la structure porteuse reliée par une structure d'angle au niveau de l'arête, chaque paroi de cuve comportant une barrière thermiquement isolante secondaire, une membrane étanche secondaire, une barrière thermiquement isolante primaire et une membrane étanche primaire, la barrière isolante primaire comportant un bloc isolant d'angle (30) comportant un premier élément latéral et un deuxième élément latéral reliés par un élément d'entretoise, chaque élément latéral présentant une face de fond reposant sur la membrane étanche secondaire d'une paroi de cuve respective, le bloc isolant d'angle (30) comportant en outre une face arrière reliant les deux faces de fond de manière à ménager un espace (43) entre ladite face arrière du bloc isolant d'angle (30) et la membrane étanche secondaire.

Description

CUVE ETANCHE ET THERMIQUEMENT ISOLANTE
Domaine technique
L'invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique. Des cuves étanches et thermiquement isolantes sont notamment employées pour le transport et /ou le stockage de divers gaz liquéfiés. Le gaz liquéfié est généralement stocké à pression atmosphérique ou sous pression. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant.
Arrière-plan technologique
On connaît, par exemple d'après FR-A-2798358, FR-A-2709725 ou encore
FR-A-2549575, des cuves de stockage ou de transport pour des gaz liquéfiés à basse température dont la ou chaque membrane étanche, notamment une membrane étanche primaire en contact avec le produit contenu dans la cuve, est constituée de tôles métalliques minces qui sont portées par une barrière thermiquement isolante. Ces tôles métalliques minces sont reliées entre elles de manière étanche afin d'assurer l'étanchéité de la cuve.
Dans de telles cuves, la barrière thermiquement isolante portant la membrane étanche comporte une pluralité d'ailes d'ancrage se développant longitudinalement ou transversalement dans la cuve. Ces ailes d'ancrage font saillie d'une surface supérieure de la barrière thermiquement isolante. La membrane étanche est constituée d'une pluralité de virures à bords relevés disposées chacune longitudinalement entre deux ailes d'ancrage adjacentes. Chaque bord relevé d'une virure est soudé de manière étanche à l'une des ailes d'ancrage entre lesquelles ladite virure est disposée. Ainsi, chaque bord relevé des virures constitue avec l'aile d'ancrage sur laquelle il est ancré un soufflet de dilatation pouvant se déformer selon une direction perpendiculaire à l'axe longitudinal de la virure. Ces soufflets de dilatation permettent d'absorber les déformations de la membrane étanche selon une direction perpendiculaire à l'axe longitudinal des virures, par exemple lors d'une contraction de la membrane étanche liée à une variation de température lors de l'insertion de liquide cryogénique dans la cuve.
Cependant, les soufflets de dilatation permettent d'absorber les déformations de la membrane selon la seule direction perpendiculaire auxdits 5 soufflets de dilatation. Pour reprendre les contraintes exercées par la membrane selon une direction parallèle aux soufflets de dilatation, les bords des membranes étanches perpendiculaires aux soufflets de dilatation sont ancrés à la structure porteuse au moyen d'une structure d'angle rigide. Une telle structure d'angle rigide comporte des plats d'ancrages rigides directement ancrés sur la structure porteuseQ et traversant la barrière thermiquement isolante. Les bords de la membrane étanche sont ancrés sur ces plats d'ancrage afin que la structure d'angle rigide puisse reprendre la tension de la membrane selon une direction perpendiculaire aux soufflets de dilatation.
Cependant, une telle structure d'angle rigide est complexe à réaliser et à5 intégrer dans une cuve, en particulier, dans le cadre d'une cuve comportant deux membranes étanches et deux barrières thermiquement isolantes superposées. En effet, la barrière étanche secondaire au niveau de l'angle de la cuve est formée par la structure d'angle rigide réalisée à l'aide de plaques rigides. La barrière thermiquement isolante doit en outre être ancrée sur la structure porteuse y comprisQ au niveau de la structure d'angle, imposant un montage de la barrière thermiquement isolante sur la structure porteuse complexe.
Il est également connu du document FR2780942 une structure d'angle rigide disposée au niveau d'une barrière thermiquement isolante reposant directement sur la structure porteuse. Cependant, cette structure d'angle en plus d'être complexe de5 réalisation ne peut être utilisée de façon simple dans le cadre d'une barrière thermiquement isolante primaire d'une cuve à double membrane.
Il existe également des cuves étanches et thermiquement isolantes dont la membrane étanche est formée de tôles gaufrées, par exemple sous forme de plaques métalliques présentant des ondulations. Ainsi, le document EP2306084 décrit une0 cuve à membrane étanche formée de tôles gaufrées y compris au niveau de l'angle de la cuve. Pour cela, le dispositif décrit une structure d'angle formant une surface de support pour la membrane étanche d'angle. Cependant, cette structure d'angle doit permettre de supporter les charges présentes dans l'angle de la cuve et doit donc présenter une résistance structurelle importante.
Résumé
Une idée à la base d'un premier objet de l'invention est de fournir une cuve étanche et thermiquement isolante simple à réaliser et facile à intégrer dans une structure porteuse y compris au niveau des angles de la cuve. En particulier, une idée à la base du premier objet de l'invention est de réaliser une cuve étanche et thermiquement isolante présentant une liberté de conception de la structure d'angle, au niveau de la barrière thermiquement isolante et/ou de la membrane étanche. En outre, une idée à la base du premier objet de l'invention est également de permettre une déformation de la membrane étanche selon une direction perpendiculaire à une arête de la structure porteuse tout en proposant une membrane étanche simple à fabriquer et à intégrer dans une structure porteuse.
Selon le premier objet, l'invention fournit une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, ladite structure porteuse comportant une première paroi porteuse plane et une deuxième paroi porteuse plane sécantes au niveau d'une arête de la structure porteuse,
la cuve comportant une première paroi de cuve portée par la première paroi porteuse plane, une deuxième paroi de cuve portée par la deuxième paroi porteuse plane et une structure d'angle reliant lesdites première et deuxième parois de cuve au niveau de l'arête de la structure porteuse, chaque paroi de cuve comportant successivement depuis la structure porteuse vers l'intérieur de la cuve une barrière thermiquement isolante et une membrane étanche,
la barrière thermiquement isolante de chaque paroi de cuve comportant une pluralité de blocs isolants juxtaposés et ancrés sur la paroi porteuse plane portant ladite paroi de cuve pour former une surface de support destinée à recevoir la membrane étanche,
la membrane étanche de chaque paroi de cuve comportant une pluralité de plaques métalliques ancrées sur la surface de support.
Selon un mode de réalisation, la structure d'angle de la cuve comporte une bande de support incurvée dont la concavité est tournée vers l'intérieur de la cuve et se développant parallèlement à l'arête de la structure porteuse, ladite bande de support comportant un premier bord longitudinal reposant sur la barrière thermiquement isolante de la première paroi de cuve et un deuxième bord longitudinal reposant sur la barrière thermiquement isolante de la deuxième paroi de cuve de manière à former une surface de support continue entre la surface de support formée par la barrière thermiquement isolante de la première paroi de cuve et la surface de support formée par la barrière thermiquement isolante de la deuxième paroi de cuve, la structure d'angle comportant en outre une membrane étanche d'angle reposant sur la bande de support incurvée et reliant de manière étanche la membrane étanche de la première paroi de cuve et la membrane étanche de la deuxième paroi de cuve, ladite membrane étanche d'angle comportant au moins un soufflet de dilatation d'angle agencé sur la bande de support pour procurer une élongation de la membrane étanche d'angle au moins dans une direction perpendiculaire à l'arête de la structure porteuse.
Une telle bande de support forme une surface de support offrant une grande liberté de réalisation de la membrane étanche d'angle, ladite membrane étanche d'angle reposant directement sur la bande de support. Ainsi, il est possible de réaliser une membrane étanche d'angle présentant au moins un soufflet de dilatation permettant d'absorber les déformations de la membrane selon une direction perpendiculaire à l'arête de la structure porteuse.
De plus, cette membrane étanche d'angle ne nécessite pas de liaison d'ancrage rigide avec la structure porteuse. En effet, la bande de support étant appuyée sur les barrières thermiquement isolantes des parois planes de la cuve, la charge hydrostatique et dynamique dans la cuve au niveau de la structure d'angle est transmise par la bande de support et les barrières thermiquement isolantes de la cuve sur lesquelles repose ladite bande de support. Ainsi, il n'est pas nécessaire de réaliser une structure d'angle complexe telle que celle connue de l'art antérieur pour reprendre la charge hydrostatique et dynamique dans la cuve au niveau de la structure d'angle. Par ailleurs, une telle bande de support n'étant pas directement ancrée à la structure porteuse ne génère pas de ponts thermiques entre la membrane étanche reposant sur la bande de support et la structure porteuse. Selon des modes de réalisation, une telle cuve étanche et thermiquement isolante peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la barrière thermiquement isolante de chaque paroi de cuve comporte une rangée de blocs isolants d'extrémité sur laquelle repose de manière glissante selon une direction perpendiculaire à l'arête de fa structure porteuse respectivement le premier bord longitudinal et le deuxième bord longitudinal de la bande de support.
Selon un mode de réalisation, un, plusieurs ou chaque dit bloc isolant d'extrémité de la rangée de blocs isolants d'extrémité présente un panneau de couvercle comportant un lamage dans lequel est logé le bord longitudinal correspondant de la bande de support.
Ainsi, la membrane étanche et la membrane étanche d'angle reposent sur une surface de support continue formée conjointement par la bande de support et les surfaces de support de la rangée de blocs isolants d'extrémité.
Selon un mode de réalisation, le premier bord longitudinal et le deuxième bord longitudinal de la bande de support sont ancrés respectivement sur la barrière thermiquement isolante de la première paroi de cuve et de la deuxième paroi de cuve.
Selon un mode de réalisation, l'extrémité d'au moins un bord longitudinal de la bande de support comporte un décrochement dans une direction d'épaisseur de la bande de support, la cuve comportant en outre une plaque de retenue fixée sur le panneau de couvercle du bloc isolant d'extrémité comportant le lamage dans lequel est logé ladite extrémité du bord longitudinal de la bande de support, ladite plaque de retenue étant fixée sur ledit panneau de couvercle au niveau dudit lamage et recouvrant le décrochement de l'extrémité de la bande de support de sorte que ladite extrémité de la bande de support soit intercalée entre un fond du lamage du bloc isolant d'extrémité et la plaque de retenue. Ainsi, la bande de support est ancrée selon une direction perpendiculaire à la structure porteuse, assurant un bon maintien de ladite bande de support sur la barrière thermiquement isolante de la paroi de cuve.
Selon un mode de réalisation, l'une parmi la plaque de retenue et l'extrémité du bord longitudinal de la bande de support recouverte par ladite plaque de retenue comporte un trou oblong se développant perpendiculairement à l'arête et l'autre parmi la plaque de retenue et l'extrémité du bord longitudinal de ia bande de support recouverte par ladite plaque de retenue comporte un ergot logé dans ie trou oblong de manière à bloquer en déplacement le long de l'arête de la structure porteuse ia bande de support tout en autorisant le déplacement de la bande de support selon une direction perpendiculaire à l'arête de structure porteuse. Ainsi, ia bande de support est maintenue en position le long de l'arête de la structure porteuse.
Selon un mode de réalisation, la membrane étanche d'angle est ancrée sur Sa bande de support. Un tel ancrage permet le maintien de la membrane étanche d'angle sur la bande de support. Un tel maintien est particulièrement important en présence d'une surpression dans la barrière tbermiquement isolante, par exemple lors d'un test d'étanchéité de la membrane étanche consistant à mettre la barrière thermiquement isolante en surpression. En effet, la membrane étanche de chaque paroi de cuve étant ancrée sur la barrière thermiquement isolante de ladite paroi de cuve, la membrane étanche d'angle pourrait se déformer vers l'intérieur de la cuve face à une telle surpression en l'absence d'ancrage de la membrane étanche d'angle sur la bande de support.
Selon un mode de réalisation, la membrane étanche d'angle est ancrée à la bande de support en un ou plusieurs points ou continûment le long d'une ligne d'ancrage parallèle à l'arête de ia structure porteuse.
Selon un mode de réalisation, la bande de support comporte une pluralité d'organes d'ancrage métalliques agencés le long d'une ligne d'ancrage, la membrane étanche d'angle étant soudée auxdits organes d'ancrage de manière ponctuelle le iong de la ligne d'ancrage.
Selon un mode de réalisation, la membrane étanche d'angle comporte plusieurs soufflets de dilatation parallèles et la membrane étanche d'angle est ancrée sur une bande d'ancrage séparant deux bandes de support successives ie long de l'arête entre deux soufflets de dilatation de ia membrane étanche d'angle.
Grâce à ces caractéristiques, l'ancrage de la membrane étanche d'angle sur la bande de support ne perturbe pas ie travail en élongation des soufflets de dilatation de la membrane étanche d'angle. Selon un mode de réalisation, la membrane étanche d'angle comporte des ondulations se développant perpendiculairement à l'arête de la structure porteuse, ces ondulations et les soufflets de dilatation de la membrane étanche d'angle étant croisés.
Selon un mode de réalisation, la barrière thermiquement isolante de chaque paroi de cuve est une barrière thermiquement isolante primaire et les blocs isolants sont des blocs isolants primaires et la membrane étanche de chaque paroi de cuve est une membrane étanche primaire, la bande de support de la structure d'angle étant une bande de support primaire et la membrane étanche d'angle de la structure d'angle étant une membrane étanche d'angle primaire,
la cuve comportant en outre une barrière thermiquement isolante secondaire ancrée sur la structure porteuse et une membrane étanche secondaire portée par la barrière thermiquement secondaire, les blocs isolants primaire étant portés par la membrane étanche secondaire et ancrés directement ou indirectement à la structure porteuse.
Selon un mode de réalisation, la barrière thermiquement isolante secondaire de chaque paroi de cuve comporte une pluralité de blocs isolants secondaires juxtaposés et ancrés sur la structure porteuse pour former une surface de support secondaire destinée à recevoir la membrane étanche secondaire,
la membrane étanche secondaire de chaque paroi de cuve comportant une pluralité de plaques métalliques ancrées sur la surface de support secondaire,
la structure d'angle de la cuve comportant une bande de support secondaire incurvée dont la concavité est tournée vers l'intérieur de la cuve et se développant parallèlement à l'arête de la structure porteuse, ladite bande de support secondaire comportant un premier bord longitudinal secondaire reposant sur la barrière thermiquement isolante secondaire de la première paroi de cuve et un deuxième bord longitudinal secondaire reposant sur la barrière thermiquement isolante secondaire de la deuxième paroi de la cuve de manière à former une surface de support secondaire continue entre la surface de support secondaire formée par la barrière thermiquement isolante secondaire de la première paroi de cuve et la surface de support secondaire formée par la barrière thermiquement isolante de la deuxième paroi de cuve, la structure d'angle comportant en outre une membrane étanche d'angle secondaire reposant de manière glissante selon une direction perpendiculaire à l'arête de la structure porteuse sur la bande de support secondaire incurvée et reliant de manière éîanche la membrane éîanche secondaire de la première paroi de cuve et la membrane éîanche secondaire de la deuxième paroi de cuve, ladite membrane étanche d'angle secondaire comportant au moins un soufflet de dilatation secondaire agencé sur la bande de support secondaire pour procurer une élongation de la membrane éîanche secondaire au moins dans une direction perpendiculaire à l'arête de la structure porteuse.
Selon un mode de réalisation, la structure d'angle comporte en outre une rangée de blocs isolants d'angle primaires, un, plusieurs ou chaque dit bloc isolant d'angle primaire comporte
un premier élément latéral comportant une première face latérale accolée à un bloc isolant d'extrémité primaire de la première paroi de cuve et une première face de fond reposant sur la membrane étanche secondaire, et
un deuxième élément latéral comportant une deuxième face latérale accolée à un bloc isolant d'extrémité primaire de Sa deuxième paroi de cuve et une deuxième face de fond reposant sur la membrane étanche secondaire de la deuxième paroi de cuve, ledit bloc isolant d'angle primaire comportant en outre une entretoise reliant le premier élément latéral et Se deuxième élément latéral, ladite entretoise étant agencée pour ménager un espace entre le bloc isolant d'angle primaire et la membrane étanche secondaire, ledit espace logeant ledit au moins un soufflet de dilatation secondaire de la membrane d'angle secondaire,
Selon un mode de réalisation, l'entretoise comporte une plaque inférieure jointive de la première face de fond et de la deuxième face de fond et inclinée par rapport à la première paroi porteuse et à la deuxième paroi porteuse, la première face de fond et la deuxième face de fond du bloc isolant d'angle primaire reposant sur la membrane étanche secondaire en étant distantes du au moins un soufflet de dilatation secondaire de la membrane étanche d'angle secondaire de sorte que ladite face inférieure soit distante dudit au moins un soufflet de dilatation secondaire de la membrane étanche d'angle secondaire. Selon un mode de réalisation, la structure d'angle comporte en outre un rembourrage isolant disposé entre la plaque inférieure de l'entretoise et la membrane étanche d'angle secondaire.
De tels blocs isolants d'angle offrent un espace permettant de loger le ou les soufflets de dilatation de la membrane étanche d'angle secondaire. Ainsi, de tels blocs isolants d'angle offrent une grande liberté de réalisation de la membrane étanche d'angle secondaire tout en assurant l'isolation thermique de la cuve au niveau de la structure d'angle.
Selon un mode de réalisation, l'entretoise comporte en outre une plaque supérieure jointive de la première face latérale et de la deuxième face latérale et inclinée par rapport à la première paroi porteuse et à la deuxième paroi porteuse, le bloc isolant d'angle comportant en outre un rembourrage isolant reposant sur la plaque supérieure et présentant une face supérieure incurvée épousant la bande de support primaire, la bande de support primaire reposant sur ledit rembourrage isolant. Ainsi, la structure d'angle permet en outre une bonne isolation thermique. En outre, ce rembourrage isolant peut participer à la transmission de la charge hydrostatique et dynamique subie par la bande de support primaire s'il est rigide.
Une idée à la base d'un deuxième objet de l'invention est de fournir une cuve étanche et thermiquement isolante dans laquelle deux membranes étanches successives puissent être réalisées indépendamment l'une de l'autre dans un angle de la cuve.
Selon le deuxième objet, l'invention fournit aussi une cuve étanche et thermiquement isolante intégrée dans une structure porteuse, ladite structure comportant une première paroi porteuse plane et une deuxième paroi porteuse plane formant conjointement une arête de la structure porteuse,
la cuve comportant depuis la structure porteuse vers l'intérieur de la cuve une barrière thermiquement isolante secondaire ancrée sur la structure porteuse, une membrane étanche secondaire portée par la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire portée par la membrane étanche secondaire et une membrane étanche primaire portée par la barrière thermiquement isolante primaire, la cuve comportant une première paroi de cuve portée par la première paroi porteuse plane et une deuxième paroi de cuve portée par la deuxième paroi porteuse plane, la barrière thermiquement isolante primaire de chaque paroi de cuve comportant une pluralité de blocs isolants paraliéiépipédiques juxtaposés, les blocs isolants de la barrière thermiquement isolante primaire présentant des faces latérales se développant dans un plan sécant à la paroi porteuse correspondante,
la barrière isolante primaire comportant un bloc isolant d'angle, ledit bloc isolant d'angle comportant un premier élément latéral et un deuxième élément latéral reliés par un élément d'entretoise, le bloc isolant d'angle comportant en outre une garniture isolante agencée entre le premier élément latéral et le deuxième élément latéral, le premier élément latéral comportant une première face de fond et une première face latérale, la première face de fond étant parallèle à la première paroi porteuse et reposant sur la membrane étanche secondaire, la première face latérale se développant depuis la première face de fond en direction de la membrane étanche primaire parallèlement et de manière accolée à une face latérale d'un bloc isolant de la barrière thermiquement isolante primaire de la première paroi de cuve, le deuxième élément latéral comportant une deuxième face de fond et une deuxième face latérale, la deuxième face de fond étant parallèle à la deuxième paroi porteuse et reposant sur la membrane étanche secondaire, la deuxième face latérale se développant depuis la deuxième face de fond en direction de la membrane étanche primaire parallèlement et de manière accolée à une face latérale d'un bloc isolant de la barrière thermiquement isolante primaire de la deuxième paroi de cuve, l'élément d'entretoise étant agencé entre le premier élément latéral et le deuxième élément latéral pour maintenir à distance la première face de fond et la deuxième face de fond,
le bloc isolant d'angle comportant en outre une face arrière reliant la première face de fond à la deuxième face de fond et inclinée par rapport à la première paroi porteuse et à la deuxième paroi porteuse de manière à ménager un espace entre ladite face arrière du bloc isolant d'angle et la membrane étanche secondaire. Ainsi, le bloc isolant d'angle offre une liberté de construction de la membrane étanche secondaire au droit de l'arête de la structure porteuse, sans nécessiter que la membrane étanche secondaire ne soit formée de plaques planes rigides ancrées sur la paroi porteuse au niveau de l'angle de la cuve. En particulier, l'espace entre la face arrière du bloc isolant d'angle et la membrane étanche secondaire permet de réaliser des soufflets de dilatation y compris sur la membrane étanche secondaire au droit de l'arête de la structure porteuse. En outre, un tel bloc isolant d'angle ne nécessite pas d'organe d'ancrage pour être maintenu sur la structure porteuse, les première et deuxième faces latérales du bloc isolant d'angîe coopérant chacune avec une face latérale respective d'un bloc isolant d'extrémité des parois de cuve afin de bloquer le bloc isolant d'angle sur la structure porteuse. En outre, l'élément d 'entretoise permet une transmission des efforts entre les barrières thermiquement isolantes de la première paroi de cuve et de la deuxième paroi de cuve par l'intermédiaire du bloc isolant d'angle, une force appliquée par l'une des paroi de cuve sur le bloc isolant d'angle tendant à repousser le bloc isolant d'angle vers l'autre paroi de cuve.
Selon des modes de réalisation, une telle cuve étanche et thermiquement isolante peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la face latérale de l'élément isolant contre laquelle est accolée la face latérale du premier ou du deuxième élément latéral du bloc isolant d'angle est continue ou discontinue. Selon un mode de réalisation, ladite face latérale de l'élément isolant est formée par des piliers latéraux, un panneau de couvercle, un panneau de fond et/ou tout autre élément formant une surface plane contre laquelle peut être accolée et/ou prendre appui le premier ou le deuxième élément latéral du bloc isolant d'angle.
Selon un mode de réalisation, un rembourrage isolant est disposé dans ledit espace entre ladite face arrière et la membrane étanche secondaire au droit de l'arête de la structure porteuse.
Selon un mode de réalisation, l'élément d'entretoise comporte au moins une tige rigide ou une plaque rigide montée sur le premier élément latéral et sur le deuxième élément latéral de façon inclinée par rapport à la première paroi porteuse et à la deuxième paroi porteuse.
Selon un mode de réalisation, la tige de l'élément d'entretoise est montée sur au moins l'un parmi le premier élément latéral et le deuxième élément latéral au moyen d'une liaison rotule. Grâce à ces caractéristiques, un même bloc isolant d'angle peut être facilement adapté à des arêtes de la structure porteuse présentant des angles distincts et faciliter le montage.
Selon un mode de réalisation, l'élément d'entretoise comporte une plaque inférieure reliant la première face de fond à la deuxième face de fond et formant ladite face arrière du bloc isolant d'angle.
Selon un mode de réalisation, l'élément d'entretoise comporte en outre une plaque supérieure reliant une extrémité supérieure de la première face latérale et une extrémité supérieure de la deuxième face latérale, ladite plaque supérieure étant inclinée par rapport à la première paroi porteuse et à la deuxième paroi porteuse.
Selon un mode de réalisation, la cuve comporte en outre un élément isolant rigide reposant sur la plaque supérieure pour former une surface de support d'angle pour la membrane étanche primaire. Selon un mode de réalisation, la cuve comporte en outre un élément isolant non rigide reposant sur la plaque supérieure et intercalé entre ladite plaque supérieure et la membrane étanche primaire.
Selon un mode de réalisation, l'élément d'entretoise comporte en outre deux plaques de bout se développant chacune dans un plan perpendiculaire à l'arête de la structure porteuse, lesdites plaques de bout reliant les éléments latéraux de manière à délimiter conjointement avec la plaque supérieure, la plaque inférieure et les éléments latéraux un volume intérieur du bloc isolant d'angle, une garniture isolante étant logée dans ledit volume intérieur. Ainsi, le bloc isolant d'angle peut former une boîte dans laquelle un matériau isolant peut être inséré.
Selon un mode de réalisation, au moins l'un parmi le premier élément latéral et le deuxième élément latéral comporte une plaque de forme parailélépipédique, ladite plaque de forme parailélépipédique formant la face latérale et la face de fond correspondantes dudit élément latéral. De tels éléments latéraux sont simples à fabriquer et peu encombrants. Selon un mode de réalisation, au moins l'un parmi le premier élément latéral et le deuxième élément latéral comporte une première plaque et une deuxième plaque, la première plaque se développant dans un plan sécant à la paroi porteuse et formant la face latérale dudit élément latéral et la deuxième plaque se développant parallèlement à ladite paroi porteuse et formant la face de fond dudit élément latéral. De tels éléments latéraux sont simples à fabriquer et présentent des surfaces de coopération importantes avec les éléments adjacents.
Selon un mode de réalisation, au moins l'une parmi la membrane étanche secondaire et la membrane étanche primaire est formée au droit de l'arête par une cornière d'angle.
Selon un mode de réalisation, la cuve comporte en outre une bande de support incurvée dont la concavité est tournée vers l'intérieur de la cuve, ladite bande de support se développant parallèlement à l'arête de la structure porteuse, ladite bande de support comportant un premier bord longitudinal reposant sur la barrière thermiquement isolante primaire de la première paroi de cuve et un deuxième bord longitudinal reposant sur la barrière thermiquement isolante primaire de la deuxième paroi de cuve pour former une surface de support continue entre une surface de support formée par la barrière thermiquement isolante primaire de la première paroi de cuve et une surface de support formée par la barrière thermiquement isolante primaire de la deuxième paroi de cuve, la membrane étanche primaire reposant sur ladite bande de support.
Selon un mode de réalisation, une face supérieure de l'élément isolant rigide opposée à la plaque supérieure de l'élément d'entretoise est incurvée, la bande de support reposant sur ladite face supérieure de l'élément isolant rigide.
Selon un mode de réalisation, la membrane étanche secondaire comporte une pluralité de soufflets de dilatation se développant parallèlement à l'arête de la structure porteuse, la première face de fond et la deuxième face de fond reposant sur la membrane étanche secondaire entre deux soufflets de dilatation adjacents.
Selon un mode de réalisation, l'élément d'entretoise est agencé à distance du au moins un des soufflets de dilatation de la membrane étanche secondaire entre lesquels reposent la première face de fond et la deuxième face de fond. Selon des modes de réalisation, une cuve étanche et therrniquement isolante selon le premier mode de réalisation et/ou le deuxième mode de réalisation peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, la membrane étanche secondaire comporte au moins un soufflet de dilatation agencé entre la première face de fond et la deuxième face de fond au droit de l'arête.
Selon un mode de réalisation, la première paroi porteuse et la deuxième paroi porteuse forment un angle compris entre 45° et 135°,
Selon un mode de réalisation préférentiel, la première paroi porteuse et la deuxième paroi porteuse forment un angle de 90° ou 135°.
Selon un mode de réalisation, la membrane étanche de chaque paroi de cuve comporte une pluralité de soufflets de dilatation parallèles.
Selon un mode de réalisation, les soufflets de dilatation de la membrane étanche de la première et de la deuxième paroi de cuve sont disposés parallèlement à l'arête de la structure porteuse.
Selon un autre mode de réalisation, les soufflets de dilatation de la membrane étanche de la première et de la deuxième paroi de cuve sont disposés perpendiculairement à l'arête de la structure porteuse.
Selon un mode de réalisation, la membrane étanche de chaque paroi de cuve comporte une pluralité de virures à bords relevés juxtaposées, les bords relevés de deux virures jointives formant un soufflet de dilatation de la membrane étanche.
Selon un mode de réalisation, la membrane étanche d'angle comporte une pluralité de virures à bords relevés juxtaposées, les bords relevés desdites virures se développant parallèlement à l'arête de la structure porteuse.
Selon un mode de réalisation, les bords relevés de deux virures juxtaposées de la membrane étanche d'angle sont soudées l'un à l'autre de manière à former un soufflet de dilatation de la membrane d'angle.
Selon un mode de réalisation, ledit au moins un soufflet de dilatation de la membrane étanche d'angle se développe parallèlement ou de manière légèrement oblique par rapport à l'arête de la structure porteuse. De tels soufflets de dilatation obliques par rapport à l'arête de la structure porteuse permettent ainsi une déformation de la membrane étanche d'angle à la fois parallèlement et perpendiculairement à l'arête de la structure porteuse.
Selon un mode de réalisation, la membrane étanche d'angle comporte au moins une plaque métallique présentant des ondulations. Selon un mode de réalisation, lesdites ondulations de la membrane étanche d'angle forment le ou les soufflets de dilatation de la membrane étanche d'angle.
Selon un mode de réalisation, les blocs isolants sont de forme parallélépipédique.
Selon un mode de réalisation, les blocs isolants sont des boîtes remplies de matière isolante non structurelle.
Selon un mode de réalisation, les blocs isolants sont des blocs de mousse isolante rigide par exemple à haute densité.
Selon un mode de réalisation, l'ancrage de la membrane étanche d'angle sur la bande de support est continu ou discontinu.
Selon un mode de réalisation, une partie seulement des virures de la membrane étanche d'angle est ancrée sur la bande de support.
Selon un mode de réalisation, la membrane étanche d'angle est ancrée sur la bande de support de façon glissante selon une direction perpendiculaire à l'arête de la structure porteuse, c'est-à-dire selon une direction de travail des soufflets de dilatation de la membrane étanche d'angle.
Selon un mode de réalisation, la membrane étanche d'angle est ancrée sur un insert métallique séparant deux bandes de support successives disposées le long de l'arête de la structure porteuse, ledit insert métallique comportant une bande d'ancrage se développant perpendiculairement à l'arête de la structure porteuse affleurant avec les bandes de support séparées par ledit insert métallique, l'insert métallique comportant en outre deux rebords disposés de part et d'autre de la bande d'ancrage et formant un décrochement par rapport à la bande d'ancrage, les bandes de support séparées par i'insert métallique étant chacune ancrées sur un rebord respectif de I'insert métallique.
Selon un mode de réalisation, la membrane étanche d'angle est soudée sur la bande de support, par exemple au moyen d'une soudure à clin le iong de la ligne d'ancrage.
Selon un mode de réalisation, un rembourrage de matière isolante est disposé entre l'arête de la structure porteuse et la bande de support.
Selon un mode de réalisation, le rembourrage isolant comporte de la laine de verre et/ou de la mousse isolante à haute densité,
Selon un mode de réalisation, une virure de la membrane étanche d'au moins une paroi de cuve est portée à la fois par la barrière thermiquement isolante de ladite paroi de cuve et par Sa bande de support.
Selon un mode de réalisation, la bande de support est métallique. Selon un mode de réalisation, la bande de support est en alliage d'acier au nickel, par exemple Invar ou en alliage à forte teneur en manganèse.
Selon un mode de réalisation, la bande de support est réalisée en matériaux composites.
Selon un mode de réalisation, la bande de support est résistante à ia traction de manière à reprendre Sa charge hydrostatique et dynamique dans l'angle de la cuve.
Selon un mode de réalisation, la bande de support est ancrée sur les barrières thermiquement isolantes par tout moyen adapté, par exemple par collage, vissage, rivetage ou autre.
Selon un mode de réalisation, la bande de support est ancrée sur au moins une barrière thermiquement isolante selon une direction d'épaisseur de la paroi de cuve sur laquelle ladite bande de support est ancrée. Selon un mode de réalisation, la bande de support est ancrée sur au moins une barrière thermiquement isolante selon une direction parallèle à l'arête de la structure porteuse.
Selon un mode de réalisation, une pluralité de plaques de retenue sont disposées ie long du ou des blocs isolants d'extrémité sur lequel ou lesquels repose la bande de support. Selon un mode de réalisation, chaque plaque de retenue se développe sur l'ensemble d'un bord du bloc isolant d'extrémité sur lequel repose la bande de support.
Selon un mode de réalisation, la bande de support est portée par les blocs d'extrémité des barrières thermiquement isolantes avec une liberté de glissement selon une direction perpendiculaire à l'arête de la structure porteuse.
Selon un mode de réalisation préféré, la bande de support présente un coefficient de dilatation inférieur ou égal au coefficient de dilatation de la membrane étanche. Selon un mode de réalisation, la bande de support est en acier inoxydable et la membrane étanche est en alliage à forte teneur en manganèse.
Selon un mode de réalisation, la bande de support présente une épaisseur supérieure à 2mm, par exemple comprise entre 3 et 4 mm, de manière à présenter une rigidité suffisante pour reprendre sans déformation les charges hydrostatiques et dynamiques dans l'angle de la cuve.
Selon un mode de réalisation, l'élément isolant rigide est un bloc de mousse haute densité, par exemple de la mousse de polyuréthane à haute densité.
Selon un mode de réalisation, l'élément isolant d'angle et la bande de support sont indépendants l'un de l'autre et ne coopèrent pas directement ensemble.
Selon un mode de réalisation, une cuve telle que décrite ci-dessus peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre iilustratif et non limitatif, en référence aux dessins annexés.
* La figure 1 est une vue en perspective schématique d'une cuve étanche et thermiquement isolante au niveau d'un angle illustrant la barrière thermiquement isolante secondaire et la bande de support reposant dessus ;
« La figure 2 est une vue analogue à la figure 1 sur laquelle une membrane étanche d'angle secondaire est ajoutée ;
® La figure 3 est une vue analogue à la figure 2 sur laquelle une barrière thermiquement isolante primaire reposant sur la membrane étanche secondaire est illustrée :
La figure 4 est une vue analogue à la figure 3 sur laquelle une membrane étanche d'angle primaire a été ajoutée ;
* La figure 5 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse d'un détail de la paroi de cuve illustrant la membrane étanche d'angle secondaire ou primaire et la bande de support secondaire ou primaire ;
β La figure 6 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse d'un détail de la paroi de cuve illustrant la coopération entre la membrane étanche d'angle secondaire ou primaire et la membrane étanche d'angle secondaire ou primaire ainsi que la coopération entre la bande de support secondaire ou primaire et un bloc isolant secondaire ou primaire ;
La figure 7 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse illustrant une première variante de réalisation du détail de la figure 6 ;
La figure 8 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse illustrant une deuxième variante de réalisation du détail de la figure 6 ;
La figure 9 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse illustrant une première variante de réalisation du détail de la figure 5 ;
La figure 10 est une vue en perspective schématique illustrant la variante de réalisation de la figure 9 ;
La figure 1 1 est une vue en perspective schématique illustrant une deuxième variante de réalisation du détail de la figure 5 ;
La figure 12 est une vue en coupe du détail de la figure 1 1 selon l'axe
V-V ;
La figure 13 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse illustrant une première variante de réalisation d'un ancrage de la bande de support sur un bloc isolant ;
La figure 14 est une vue de dessus du détail de la figure 13 ;
La figure 15 est une vue en coupe selon l'axe XV-XV de la figure 1 illustrant une deuxième variante de l'ancrage de la bande de support sur un bloc isolant ;
La figure 16 est une vue en perspective schématique d'une barrière thermiquement isolante secondaire et d'une membrane étanche d'angle secondaire ondulée dans un angle de cuve entre deux parois de la cuve formant un angle de 135° ; » La figure 17 est une vue en perspective schématique de i'angle de cuve de la figure 18 représentant partiellement une barrière thermiquement isolante primaire et une membrane étanche primaire ;
* La figure 18 est un vue en perspective schématique d'une première variante de réalisation de la membrane étanche d'angle ;
* La figure 19 est une vue en coupe dans un plan perpendiculaire à l'arête d'une deuxième variante de réalisation de la membrane étanche d'angle ;
® La figure 20 est une vue en perspective schématique d'un bloc isolant d'angle primaire pouvant être utilisé dans une paroi de cuve présentant un angle de 135° ;
* La figure 21 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse d'un bloc isolant d'angle primaire selon un deuxième mode de réalisation ;
* La figure 22 est une vue en coupe dans un plan perpendiculaire à l'arête de la structure porteuse d'un bloc isolant d'angle primaire selon un troisième mode de réalisation pouvant être utilisé dans une paroi de cuve présentant un angle de 90° ;
* La figure 23 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve,
Description détaillée de modes de réalisation
Dans la description ci-dessous, on fait référence à une cuve étanche et thermiquement isolante comportant un espace interne destiné à être rempli de gaz combustible ou non combustible. Le gaz peut notamment être un gaz naturel liquéfié (GNL), c'est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu'un ou plusieurs autres hydrocarbures, tels que l'éthane, le propane, le n-butane, le i-butane, le n-pentane le i-pentane, le néopentane, et de l'azote en faible proportion. Le gaz peut également être de l'éthane ou un gaz de pétrole liquéfié (GPL), c'est-à- dire un mélange d'hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
Une telle cuve étanche et thermiquement isolante est intégrée dans une structure porteuse telle que, par exemple, la double coque d'un navire de transport du GNL. Cette structure porteuse définit une pluralité de parois porteuses jointives au niveau d'arêtes 1 de la structure porteuse et délimitant conjointement un espace interne de la double coque destiné à recevoir la cuve étanche et thermiquement isolante. La cuve étanche et thermiquement isolante comporte une pluralité de parois de cuve portées chacune par une paroi porteuse respective. Les parois de cuve sont jointes au niveau des arêtes 1 de la structure porteuse. Chaque paroi de cuve comporte, depuis la paroi porteuse correspondante jusqu'à l'intérieur de la cuve, une barrière thermiquement isolante secondaire, une membrane étanche secondaire, une barrière thermiquement isolante primaire et une membrane étanche primaire.
Les figures 1 à 4 illustrent l'arête 1 entre une première paroi porteuse 2 et une deuxième paroi porteuse 3 formant ensemble un angle de 90°. Sur ces figures 1 à 4, une première paroi de cuve 4 est portée par la première paroi porteuse 2 et une deuxième paroi de cuve 5 est portée par la deuxième paroi porteuse 3.
La figure 1 illustre les barrières thermiquement isolantes secondaire de la première et de la deuxième parois de cuve 4, 5. Ces barrières thermiquement isolantes secondaires sont formées d'éléments isolants secondaires 6 juxtaposés. Les éléments isolants secondaires 6 sont ancrés à la structure porteuse par tout moyen approprié, par exemple par collage et/ou par des organes de retenue mécaniques. Chacun des éléments isolants secondaires 6 présente une forme de parallélépipède rectangle présentant deux grandes faces, ou faces principales, et quatre petites faces, ou faces latérales. Ces éléments isolants secondaires 6 comportent chacun une face supérieure formant une surface de support secondaire 8 pour recevoir la membrane étanche secondaire. De tels éléments isolants secondaires sont par exemple réalisés sous forme de boîtes en contreplaqué remplies de matériau isolant tel que de la perlite, aérogel, silice, de la laine de verre ou de la mousse isolante.
La barrière thermiquement isolante comporte en outre un élément isolant d'angle secondaire 15 similaire aux éléments isolants 6 et/ou pouvant être intégré à l'un d'eux. Cet élément isolant d'angle secondaire 15 est de forme parallélépipédique et prolonge à la fois la barrière thermiquement isolante secondaire de la première paroi de cuve 4 et la barrière thermiquement isolante secondaire de la deuxième paroi de cuve 5. Autrement dit, l'élément isolant d'angle secondaire 15 présente une épaisseur égale à l'épaisseur de la barrière thermiquement isolante secondaire de la première paroi de cuve 4 selon une direction perpendiculaire à la première paroi porteuse 2 et une épaisseur égale à l'épaisseur de la barrière thermiquement isolante secondaire de la deuxième paroi de cuve 5 selon une direction perpendiculaire à la deuxième paroi porteuse 3, Ces épaisseurs peuvent être égaies ou différentes.
La membrane étanche secondaire des parois de cuve peut être réalisée de différentes manières, de préférence en tôles métalliques. Une telle membrane étanche secondaire présente des soufflets de dilatation. Ces soufflets de dilatation sont réalisés de toute manière adaptée, par exemple sous la forme d'ondulations des tôles métalliques ou encore par soudure deux à deux de bords relevés des tôles métalliques adjacentes. Ces soufflets de dilatation permettent d'absorber les déformations de la membrane étanche secondaire selon une direction perpendiculaire à la direction desdits soufflets de dilatation. À titre d'exemple, de tels éléments isolants secondaires 6 ei/ou membranes étanches secondaires dans des cuves à membranes peuvent être analogues aux éléments correspondant décrits dans les documents W014057221 , FR2891520 et FR2877838.
Une structure d'angle relie la première paroi de cuve 4 et la deuxième paroi de cuve 5 au niveau de l'arête 1. Cette structure d'angle comporte une bande de support secondaire 12 incurvée et rigide. La bande de support secondaire 12 se développe parallèlement à l'arête 1 et présente une concavité tournée vers l'intérieur de la cuve. La bande de support secondaire 12 comporte un premier bord longitudinal 13 qui se développe parallèlement à l'arête 1 et repose sur un élément isolant secondaire 6 situé à l'extrémité de la première paroi de cuve 4. La bande de support secondaire 12 comporte également un deuxième bord longitudinal 14 qui se développe parallèlement à l'arête 1 et repose sur un élément isolant secondaire 6 situé à l'extrémité de la deuxième paroi de cuve 5. Cette bande de support secondaire 12 sert à reprendre les charges hydrodynamiques et statiques subies par la membrane étanche secondaire au niveau de l'angle de la cuve. Pour cela, la bande de support secondaire 12 est réalisé en matériau relativement rigide et résistant.
La bande de support secondaire 12 peut être réalisée de différentes façons. Selon un premier mode de réalisation, cette bande de support 12 est réalisée en un matériau métallique, par exemple en acier au nickel ou au manganèse, et présente une épaisseur supérieure à 2mm, par exemple entre 3 et 4 mm d'épaisseur. Selon un deuxième mode de réalisation, la bande de support 12 est réalisée en un matériau composite, à savoir un mélange de résine polymère et de matière fibreuse. La résine polymère peut être une résine thermodurcissable ou thermoplastique. La matière fibreuse peut être en fibres de carbone, fibres métalliques, fibres synthétiques, fibres de verre ou autres fibres minérales et leurs mélanges. Les fibres peuvent être tissées ou non tissées. Par exemple, un matériau composite incorporant des fibres de carbones tissées peut être choisi pour obtenir une bonne résistance à la traction à un coût modéré. L'épaisseur du matériau composite peut être choisie en fonction des efforts de compression et des contraintes de dilatation thermique devant être supportés.
La bande de support secondaire 12 forme une surface de support d'angle secondaire 17 continue. Comme illustré sur la figure 2, une membrane étanche d'angle secondaire 18 repose sur la surface de support d'angle secondaire 17. Une telle membrane étanche d'angle secondaire 18 est décrite plus en détail ci-après en regard de la figure 5 par exemple. Afin d'assurer l'étanchéité de la membrane étanche secondaire, la membrane étanche d'angle secondaire 18 est reliée de manière étanche à la membrane étanche secondaire d'une part de la première paroi de cuve 4 et, d'autre part, de la deuxième paroi de cuve 5, comme cela est expliqué plus en détail au regard des figures 6 à 8.
Comme la bande de support secondaire 12 repose sur les barrières thermiquement isolantes des parois de cuve 4, 5, les charges reprises par la bande de support secondaire 12 sont transmises auxdites barrières thermiquement isolantes sans nécessiter de support structurel complexe à fabriquer dans la structure d'angle afin de reprendre ces charges.
Afin de compléter la barrière d'isolation de la structure d'angle, un rembourrage isolant secondaire 16 est inséré entre la bande de support secondaire 12 et les blocs isolants secondaires 6 d'extrémité sur lesquels repose la bande de support secondaire 12. Un tel rembourrage isolant secondaire 18 peut être réalisé de différentes manières, par exemple à l'aide d'un bloc rigide de mousse de polyuréthane à haute densité épousant d'une part la surface supérieure des blocs isolants secondaires 8 et, d'autre part, la forme incurvée de la face inférieure de la bande de support secondaire 12.
Comme illustré sur les figures 3 et 4, et de façon analogue à la barrière thermiquement isolante secondaire, la barrière thermiquement isolante primaire des première et deuxième parois de cuve 4, 5 comporte une pluralité d'éléments isolants primaires 22. Ces éléments isolants primaires 22 sont analogues aux éléments isolants secondaires 8 et sont, par exemple, constitués de boîte en contreplaqué parailélépipédiques remplies de matière isolante. Les éléments isolants primaire 22 peuvent être ancrés sur la structure porteuse de différente manières, par exemple soit directement via des organes d'ancrage traversant la barrière thermiquement isolante secondaire et la membrane étanche secondaire, soit indirectement en étant ancrés sur la membrane étanche secondaire. De même, les éléments isolants primaires 22 de chaque paroi de cuve forment une surface de support portant la membrane étanche primaire de ladite paroi de cuve.
La structure d'angle comporte également une bande de support primaire 23 analogue à la bande de support secondaire 12 décrite ci-dessus. La bande de support primaire 23 se développe parallèlement à l'arête 1 le long de ladite arête 1. Cette bande de support primaire 23 est incurvée avec une concavité tournée vers l'intérieur de la cuve et comporte un premier bord longitudinal 24 reposant sur un élément isolant primaire 22 situé à l'extrémité de la première paroi de cuve 4 et un deuxième bord longitudinal 25 reposant sur un élément isolant primaire 22 situé à l'extrémité de la deuxième paroi de cuve 5. Cette bande de support primaire 23 forme une surface de support d'angle primaire 26 continue sur laquelle repose une membrane étanche d'angle primaire 27.
A Sa différence de la barrière thermiquement isolante secondaire qui repose sur la structure porteuse, la barrière thermiquement isolante primaire repose sur la membrane étanche secondaire. Or, la membrane étanche secondaire comporte des soufflets de dilatation faisant saillie vers l'intérieur de la cuve. Afin de loger les soufflets de dilatation de la membrane étanche secondaire portée par la première et la deuxième parois de cuves 4, 5, les éléments isolants primaire 22 de la première paroi de cuve 4 et de la deuxième paroi de cuve 5 comportent des rainures sur une surface inférieure permettant de loger lesdits soufflets de dilatation. Cette solution à rainures est simple à réaliser pour les première et deuxième parois de cuve 4, 5 du fait de la nature parallélépipédique des éléments isolants primaires 22 et de l'aspect sensiblement plat, à l'exception des soufflets de dilatation, de la membrane étanche secondaire sur laquelle reposent lesdits éléments isolants primaires 22. Cependant, cette solution est complexe à mettre en œuvre pour un élément isolant d'angle primaire 30 de la structure d'angle. En effet, la membrane étanche d'angle secondaire 18 reposant sur la bande de support secondaire 12 présente une forme incurvée. Dès lors, il n'est pas possible de réaliser un bloc isolant d'angle primaire parallélépipédique de forme similaire au bloc isolant d'angle secondaire 15.
Afin de conserver une liberté de conception de la membrane étanche d'angle secondaire 18 tout en ayant une isolation primaire dans la structure d'angle, l'élément isolant d'angle primaire 30 comporte un premier élément latéral 31 et un deuxième élément latéral 32 reliés par une entretoise 33.
Le premier élément latéral 31 comporte une première face latérale 34 se développant perpendiculairement à la première paroi porteuse 2. Cette première face latérale 34 est accolée à une face latérale 35 de l'élément isolant primaire 22 situé à l'extrémité de la première paroi de cuve 4 sur lequel repose la bande de support primaire 23.
Le premier élément latéral 31 comporte également une première face de fond 36 qui repose sur une portion plane de la membrane étanche secondaire, de préférence entre deux soufflets de dilatation adjacents. Dans le mode de réalisation illustré sur les figures 3 et 4, la membrane étanche secondaire est réalisée à partir de virures à bords relevés 9 et cette première face de fond 36 repose sur une portion plane d'une virure secondaire 9 de la première paroi de cuve 4 reliée de manière étanche à une virure d'angle secondaire 19 adjacente de la membrane étanche d'angle secondaire 18. Dans un mode de réalisation non illustré, cette première face de fond 36 repose sur une portion plane d'une virure d'angle secondaire 19 de la membrane étanche d'angle secondaire 18, c'est-à-dire entre des bords relevés 20 de ladite virure d'angle secondaire 19,
Le premier élément latéral 31 et le deuxième élément latéral 32 sont symétriques par rapport à une bissectrice de l'angle formé par la première paroi porteuse 2 et la deuxième paroi porteuse 3. Ainsi, le deuxième élément latéral 32 présente une deuxième face latérale 37 accolée à une face latérale 38 de l'élément isolant primaire 22 situé à l'extrémité de la deuxième paroi de cuve 5 sur lequel repose la bande de support primaire 23 et une deuxième face de fond 39 reposant sur la membrane étanche secondaire entre deux soufflets de dilatation adjacents.
Dans le mode de réalisation illustré sur les figures 3 et 4, l'entretoise 33 est formée à l'aide d'une plaque de fond 40 et d'une plaque couvercle 41 se développant parallèlement l'une de l'autre. Ces plaques de fond 40 et de couvercle 41 se développent parallèlement à l'arête 1 dans des plans respectifs inclinés par rapport à la fois à la première paroi porteuse 2 et à la deuxième paroi porteuse 3. La plaque de fond 40 relie la première face de fond 36 et la deuxième face de fond 39. La plaque de couvercle 41 relie la première face latérale 34 et la deuxième face latérale 37. L'entretoise 33 comporte en outre deux plaques de bouts 42, dont une seule est visible sur les figures 3 et 4. Ces plaques de bout 42 se développent chacune dans un plan perpendiculaire à l'arête 1 respectif. Chaque plaque de bout 42 relie entre elles la première face latérale 34, la première face de fond 36, la plaque de fond 40, la deuxième face de fond 39, la deuxième face latérale 37 et la plaque de couvercle 41. Autrement dit, l'élément isolant d'angle primaire 30 est une boîte polyédrique telle qu'illustrée sur la figure 20 et dont chaque face est formée par une plaque respective. Sur les figures 3, 4 et 19 cet élément isolant d'angle primaire 30 est une forme extrudée de section hexagonale formée par les plaques de bouts 42 suivant une direction parallèle à l'arête 1.
Avantageusement, un rembourrage isolant est disposé entre le premier élément latéral 31 et le deuxième élément latéral 32. Typiquement, un élément isolant d'angle primaire 30 sous la forme d'une boite telle que décrite ci-dessus et illustrée sur les figures 3, 4 et 19 est rempli de matériau isolant tel que de la perlite, de la laine de verre ou autre. Un tel élément isolant d'angle primaire 30 présente de nombreux avantages. En effet, i'entretoise 33 reliant les faces de fond 36, 39 permet de ménager un espace 43 entre le bloc isolant d'angle primaire 30 et la membrane étanche d'angle secondaire 18. Cet espace 43 offre une liberté de conception de la membrane étanche d'angle secondaire 18 puisque l'élément isolant d'angle primaire 30 repose sur la membrane étanche secondaire via les première et deuxième faces de fond 36, 39 qui sont distantes l'une de l'autre. En outre, la première et la deuxième faces latérales 34, 37 étant chacune accolée aux éléments isolants primaires 22 d'extrémité, une transmission de charge entre la barrière thermiquement isolante primaire de la première paroi de cuve 4 et la barrière thermiquement isolante primaire de la deuxième paroi de cuve 5 via l'élément isolant d'angle primaire 30 est possible. Enfin, la première et la deuxième faces latérales 34, 37 se développant perpendiculairement respectivement à la première paroi porteuse 2 et à la deuxième paroi porteuse 3, l'élément isolant d'angle primaire 30, une fois installé, est bloqué en position entre les faces latérales 35,38 des éléments isolants primaires 22 d'extrémité des parois de cuve 4, 5. Dès lors, les éléments isolants primaires 22 d'extrémité étant ancrés, directement ou indirectement, sur la structure porteuse, l'élément isolant d'angle primaire 30 est indirectement ancré sur la structure porteuse sans nécessiter d'ancrage supplémentaire. Dans un mode de réalisation non illustré, des organes de blocage en déplacement peuvent cependant être prévus pour bloquer en déplacement parallèlement à l'arête l'élément isolant d'angle primaire 30 le long de l'arête 1. De tels organes de blocage de l'élément isolant d'angle primaire 30 peuvent être réalisés de nombreuses manières, par exemple, des tasseaux permettant l'ancrage des éléments isolants primaires 22 d'extrémité faisant saillie desdits éléments isolants primaires 22 en direction de l'arête 1 de part et d'autre de l'élément isolant d'angle primaire 30 afin de le bloquer en déplacement le long de l'arête 1. De tels organes de blocage en déplacement peuvent également être utilisés de façon analogue pour bloquer en déplacement les éléments isolants d'angie secondaire 15, des tasseaux permettant l'ancrage des éléments isolants secondaires 6 d'extrémité étant prolongé et faisant saillie en direction de l'arête 1 pour bloquer les éléments isolants d'angle secondaire 15 en déplacement le long de l'arête 1. Un rembourrage isolant inférieur 44 est disposé entre la plaque de fond 40 et la membrane étanche d'angle secondaire 18. Ce rembourrage isolant inférieur 44 peut être réalisé de nombreuses manières, par exemple par à l'aide d'un matériau isolant souple tel que de la laine de verre ou de la mousse de polyuréthane à basse densité entre les soufflets de dilatation 21 et d'un matériau isolant rigide, par exemple de la mousse isolante de polyuréthane haute densité, au-dessus des soufflets de dilatation 21. De même, un rembourrage isolant supérieur 45 est disposé entre la plaque de couvercle 41 et la bande de support primaire 23. Un tel rembourrage supérieur 45 est par exemple réalisé à l'aide d'une mousse de polyuréthane haute densité épousant Sa forme incurvée de la bande de support primaire 23 et permet une reprise des charges subies par la bande de support primaire 23.
Les figures 5 à 15 illustrent des détails de réalisation de la cuve étanche et thermiquement isolante. Ces détails sont décrits ci-après dans le cadre d'une barrière thermiquement isolante secondaire et/ou une membrane étanche secondaire. Cependant, cette description s'applique par analogie à la membrane étanche primaire.
Sur les figures 5 à 10, la membrane étanche secondaire des parois de cuve 4, 5 présente une structure répétée comportant alternativement d'une part des bandes de tôle métalliques secondaires 9, ci-après appelées virures secondaires 9, métalliques disposées sur la surface de support secondaire 8 et, d'autre part, des supports de soudure 10 allongés liés à la surface de support secondaire 8 et s'étendant parallèlement aux virures secondaires 9 sur au moins une partie de la longueur des virures secondaires 9. Les bandes de tôle 9 comportent des bords relevés 11 latéraux disposés et soudés contre les supports de soudure 10 adjacents. Les virures métalliques sont, par exemple, réalisées en Invar ®, c'est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10 e et 2.10"6 K"1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l'ordre de 7 à 9.10"6 K"1.
Par ailleurs, la membrane étanche d'angle secondaire 18 illustrée sur les figures 5 à 10 comporte une pluralité de bandes de tôle sous forme de virures d'angle 19 à bords relevés 20 se développant parallèlement à l'arête 1. Les bords relevés 20 font saillie sensiblement perpendiculairement à la bande de support secondaire 12. Les bords relevés 20 adjacents de deux virures d'angle secondaires 19 adjacentes sont soudés entre eux par des lignes de soudures 46 parallèles à l'arête 1. Ces lignes de soudures 46 sont de préférence réalisées au niveau des extrémités des bords relevés 20 opposées à la bande de support secondaire 12. Ainsi, les bords relevés 20 soudés deux à deux forment une pluralité de soufflets de dilatation secondaire d'angle 21 se développant parallèlement à l'arête 1. Ces soufflets de dilatation secondaire d'angle 21 diffèrent des soufflets de dilatation formés par les membranes étanches secondaire des première et deuxième parois de cuve 4, 5 en ce qu'ils sont formés par la soudure directe des bords relevés 20, sans nécessiter d'aile de soudure 10. Ces soufflets de dilatation secondaire d'angle 21 permettent d'absorber les déformations de la membrane étanche d'angle secondaire 18 selon une direction perpendiculaire à l'arête 1.
En outre, sur les figures 5 et 6, la bande de support secondaire 12 est métallique.
Sur la figure 5, Une virure d'angle secondaire 19 centrale est ancrée sur la bande de support secondaire 12 le long d'une ligne de soudure 47 parallèle à l'arête 1. Ainsi, la membrane étanche d'angle secondaire 18 est maintenue sur la bande de support secondaire 12 même en présence d'une surpression dans la barrière thermiquement isolante secondaire, une telle surpression pouvant par exemple survenir lors d'un test d'étanchéité de la membrane étanche secondaire par mise en surpression de la barrière thermiquement isolante secondaire.
La figure 6 illustre la jonction entre la membrane étanche d'angle secondaire 18 et la membrane étanche secondaire de la première paroi de cuve 4 dans le cadre d'une membrane étanche secondaire de la première paroi de cuve 4 présentant des soufflets de dilatation se développant parallèlement à l'arête 1.
Un panneau de couvercle 7 de l'élément isolant secondaire 6 d'extrémité comporte un lamage 48. Ce lamage 48 présente une profondeur sensiblement égale à l'épaisseur de la bande de support secondaire 12. Ce lamage 48 se développe sur toute la longueur du panneau de couvercle 7 prise parallèlement à l'arête 1. Le premier bord longitudinal 13 de la bande de support secondaire 12 repose sur ledit élément isolant secondaire 6 d'extrémité dans ledit lamage 48. Ainsi, la surface de support d'angle 17 formée par la bande de support secondaire 12 affleure avec la surface de support 8 formée par le panneau de couvercle 7 de manière à former une surface de support sensibiement continue pour la membrane étanche secondaire.
La virure secondaire 9 d'extrémité de la première paroi de cuve 4 est ancrée de manière étanche par une soudure 49 sur la surface de support d'angle secondaire 17. Le bord relevé 11 de cette virure secondaire 9 d'extrémité est soudé de manière étanche par une Signe de soudure 50 au bord relevé 20 d'une virure d'angle secondaire 19 adjacente de manière à former un soufflet de dilatation apte à absorber les déformations de la membrane étanche secondaire selon une direction perpendiculaire à l'arête 1.
De façon analogue, la membrane étanche d'angle primaire 27 peut être formée d'une pluralité de virures d'angle primaire 28 à bords relevés se développant parallèlement à l'arête 2. Ces virures d'angle primaire 28 présentent des bords relevés reliés deux à deux de manière à former des soufflets de dilatation primaire d'angle 29,
La figure 7 illustre une variante de réalisation de la liaison étanche entre la membrane étanche secondaire de la première paroi de cuve 4 et la membrane étanche d'angle secondaire 8.
Dans cette variante, le panneau de couvercle 7 de l'élément isolant secondaire 8 d'extrémité de la première paroi de cuve 4 comporte un support de soudure 10 disposé entre le lamage 48 et un élément isolant secondaire 8 de la première paroi de cuve 4 adjacent. La virure secondaire 9 d'extrémité de la membrane étanche secondaire de la première paroi de cuve 4 présente un bord relevé 11 soudé audit support de soudure 10. Par ailleurs, la virure d'angle 19 d'extrémité de la membrane étanche secondaire d'angle 18 repose conjointement sur la surface de support d'angle secondaire 17 formée par la bande de support secondaire 12 et sur la surface de support secondaire 8 formée par l'élément isolant secondaire 6 d'extrémité sur lequel repose ladite bande de support secondaire 12. Cette virure d'angle 19 d'extrémité présente également un bord relevé 20 soudé au support de soudure 10. Ce mode de réalisation présente l'avantage de former un soufflet de dilatation tout en assurant l'ancrage direct de la virure d'angle secondaire 19 sur la surface de support secondaire 8. La figure 8 illustre une autre variante de réalisation de la liaison étanche entre la membrane étanche secondaire de la première paroi de cuve 4 et la membrane étanche d'angle secondaire 18 dans le cas d'une membrane étanche secondaire de la première paroi de cuve 4 présentant des soufflets de dilatation se développant perpendiculairement à l'arête 1.
Dans cette variante de réalisation, les bords relevés 1 1 des virures secondaire 9 sont interrompus avant l'élément isolant secondaire 6 d'extrémité de sorte que l'extrémité des virures secondaire 9 reposant sur la surface de support 8 formée par l'élément isolant secondaire 6 d'extrémité sont planes.
L'élément isolant secondaire 6 d'extrémité présente un logement 51 se développant parallèlement à l'arête 1. Une bande d'ancrage 52 métallique se développant parallèlement à l'arête 1 est logé dans ce logement 51. Le logement 51 et la bande d'ancrage présentent chacun dans un plan perpendiculaire à l'arête 1 une forme de « T » inversé. Cette forme de « T » inversée permet le glissement de la bande d'ancrage 52 dans le logement 51 selon une direction parallèle à l'arête 1 tout en assurant l'ancrage de la bande d'ancrage 52 dans le logement 51 selon une direction d'épaisseur de la barrière thermiquement isolante secondaire. Un jeu entre la bande d'ancrage 52 et le logement 51 peut en outre assurer un glissement de la bande d'ancrage 52 dans le logement 51 selon une direction perpendiculaire à l'arête 1 et parallèle à la première paroi porteuse 2.
La bande d'ancrage 52 présente une surface supérieure 53 plane affleurant avec la surface de support 8 formée par l'élément isolant secondaire 6 d'extrémité. L'extrémité plane de la virure secondaire 9 d'extrémité est ancrée de manière étanche par une soudure 54 sur la surface supérieure 53. La virure d'angle 19 d'extrémité repose conjointement sur la bande de support secondaire 12 et sur la surface de support 8 formée par l'élément isolant secondaire 6 d'extrémité. Cependant, contrairement aux modes de réalisations illustrés sur les figures 6 et 7, un bord longitudinal 55 opposée à la bande de support secondaire 12 de cette virure d'angle 19 d'extrémité est plat. Ce bord longitudinal 55 plat est soudé 56 de manière étanche avec recouvrement à l'extrémité plane de la virure secondaire 9, assurant ainsi la liaison étanche entre la membrane étanche secondaire de la première paroi de cuve 4 et la membrane étanche d'angle secondaire 18. Selon une première manière de réaliser la soudure étanche, on soude à clin l'extrémité plane de la virure secondaire 9 d'extrémité et Sa soudure 57 n'est pas nécessaire. Selon une seconde manière de réaliser la soudure étanche, le bord longitudinal 55 plat est également soudé 57 à la surface supérieure 53 de la bande d'ancrage 52 afin d'assuré un ancrage de la membrane étanche d'angle secondaire 18 sur la bande d'ancrage 52.
Les figures 9 et 10 illustrent une variante de réalisation de l'ancrage de la membrane étanche d'angle secondaire 18 sur la bande de support secondaire 12. Cette variante de réalisation diffère de celle de la figure 5 en ce que la bande de support secondaire 12 n'est pas métallique et ne permet donc pas un ancrage direct par soudure de la membrane étanche d'angle secondaire 18 sur la bande de support secondaire 12.
Dans cette variante de réalisation, une pluralité de rivets de fixation 58 métalliques est installée sur la bande de support secondaire 12. Ces rivets de fixation 58 sont disposés le long d'une ligne d'ancrage 59 parallèle à l'arête 1. Dans le mode de réalisation illustré sur les figures 9 et 10, la ligne d'ancrage 59 est sensiblement centrée sur la bande de support secondaire 12 entre le premier bord longitudinal 13 et le deuxième bord longitudinal 14.
Les rivets de fixation 58 comportent une tête de rivet supérieure 60 formant une plaque plane métallique. La virure d'angle secondaire 19 centrale est ancrée au moyen de soudures étanches ponctuelles le long de la ligne d'ancrage 59 sur les têtes 80 des rivets de fixation 58.
Les figures 1 1 et 12 illustrent une variante de réalisation de la membrane étanche d'angle secondaire 18. Dans cette variante de réalisation, la membrane étanche d'angle secondaire est formée par des plaques métalliques ondulées. De telles plaques métalliques ondulées sont par exemple fabriquée de façon analogue aux plaques ondulées décrites dans le document FR2691520 et utilisées dans le cadre de membranes étanches dites de type Mark-lll de la demanderesse. La membrane étanche d'angle secondaire 18 comporte ainsi des soufflets de dilatation 21 sous la forme d'ondulations 81 se développant parallèlement à l'arête 1.
Ce mode de réalisation se différentie également des modes de réalisations décrits ci-dessus en ce que la membrane étanche d'angle secondaire 18 est ancrée sur une bande d'ancrage d'angle 62. Cette bande d'ancrage d'angle 62 se développe perpendiculairement à l'arête 1 et sépare deux bandes de supports secondaires 12 successives disposées le long de l'arête 1. Comme illustré sur la figure 12 la bande d'ancrage d'angle 62 se développe de façon incurvée avec une concavité tournée vers l'intérieur de la cuve. Le rayon de courbure de la bande d'ancrage d'angle 62 est sensiblement égal au rayon de courbure des bandes de support secondaire 12. Cette bande d'ancrage d'angle 62 comporte une surface d'ancrage 63 affleurant avec les surfaces de support 17 des bandes de support secondaires 12 qu'elle sépare. En outre, la bande d'ancrage d'angle 62 comporte deux décrochements 64 disposées de part et d'autre de la surface d'ancrage 63. Les deux bandes de support secondaires 12 séparées par la bande d'ancrage d'angle 62 sont soudées chacune sur un desdits décrochement 64 respectif. La profondeur de ces décrochements 64 est égale à l'épaisseur des bandes de support secondaire 12 afin que les surfaces de support 17 formées par les bandes de support secondaires 12 affleurent avec la surface d'ancrage 63 et forment conjointement une surface de support continue pour la membrane étanche d'angle secondaire 18. La membrane étanche d'angle secondaire 18 est ancrée sur la surface d'ancrage 63 entre deux ondulations 61 adjacentes.
Les figures 13 et 14 illustrent une première variante d'ancrage de la bande de support secondaire 12 sur l'élément isolant secondaire 6 d'extrémité de la première paroi de cuve 4.
Dans cette première variante, Le lamage 48 comporte une marche 65. Cette marche 65 est disposée entre une surface de fond 66 du lamage 48 sur laquelle repose le premier bord longitudinal 13 de la bande de support secondaire 12 et la surface de support 8 formée par ledit élément isolant secondaire 6 d'extrémité. Le premier bord longitudinal 13 comporte en outre un décrochement 67 dans l'épaisseur de la bande de support secondaire 12. Ce décrochement 67 forme une surface plane qui affleure avec la marche 65.
Une plaque de retenue 68 est ancrée dans le lamage 48 sur la marche 65 au moyen d'une vis, par collage, rivetage ou autre. Cette plaque de retenue 68 se développe parallèlement à la première paroi porteuse 2 et recouvre à la fois la marche 65 et le décrochement 67. La plaque de retenue 68 maintient ainsi la bande de support secondaire 12 sur le panneau de couvercle 7. Par ailleurs, cette plaque de retenue 68 affleure au niveau de la surface de support 8 et forme ainsi une surface plane sensiblement continue entre la surface de support 17 de la bande de support secondaire 12 et la surface de support 8.
Par ailleurs, comme illustré sur la figure 14, le décrochement 67 du premier bord longitudinal 13 comporte une pluralité de trous oblongs 69. Ces trous oblongs 89 se développent perpendiculairement à l'arête 1 , La plaque de retenue 68 comporte une pluralité d'ergots 70 faisant saillie en direction de la bande de support secondaire 12. Chaque ergot 70 est logé dans un trou oblong 89 respectif. Ainsi, la bande de support secondaire 12 est bloqué en déplacement selon une direction parallèle à l'arête 1 par coopération en butée entre les ergots 70 et les parois des trous oblongs 89 correspondant. Cependant, la bande de support 12 conserve une liberté de glissement dans le Iamage 48 selon une direction perpendiculaire à l'arête 1 par glissement des ergots 70 dans les trous oblongs 69.
La plaque de retenue 88, illustrée en pointillés sur la figure 14 se développe sur toute la longueur prise selon une direction parallèle à l'arête 1 du Iamage 48, c'est- à-dire sur toute la longueur de l'élément isolant secondaire 8 d'extrémité portant ledit Iamage 48. Cependant, dans un mode de réalisation non illustré, une pluralité de plaques de retenues 68 de taille réduite selon la direction parallèle à l'arête 1 sont ancrées le long du Iamage 48. Cette pluralité de plaques de retenue 88 forment ainsi des ancrages ponctuels de la bande de support secondaire 12 dans le Iamage 48. De même, dans un mode de réalisation non illustré, les ergots 70 et les trous oblongs 69 sont inversés, c'est-à-dire que les ergots 70 font saillie depuis le premier bord longitudinal 13 et sont logés dans des trous oblongs 69 correspondant formés sur la plaque de retenue 68.
La figure 15 illustre une deuxième variante de réalisation de l'ancrage de la bande de support secondaire 12 sur le panneau de couvercle 7. Dans cette variante, le Iamage 48 ne comporte pas de marche 85 et le premier bord longitudinal 13 de la bande de support secondaire 12 ne comporte pas de décrochement 87. Cependant, le premier bord longitudinal 13 comporte les trous oblongs 69 se développant perpendiculairement à l'arête 1. Ces trous oblongs 69 se différencient des trous oblongs décrit ci-dessus en ce qu'ils comportent chacun deux rebords internes 71 se développant parallèlement à l'arête 1 sur toute la longueur dudit trou oblong 69. L'ancrage de la bande de support secondaire 12 est réalisé au moyen de rivets 72 rivetés dans le lamage 48 et traversant chacun un trou oblong 69 respectif. Chaque rivet 72 comporte une tête de rivet 91 prenant appui sur les rebords internes 71 du trou oblong correspondant. Ainsi, la bande de support secondaire 12 est ancrée dans le lamage 48 selon une direction perpendiculaire à la première paroi porteuse 2 par butée des rebords internes 71 sur les têtes de rivet 91. La bande de support secondaire 12 est également ancrée selon une direction parallèle à l'arête 1 par butée des rivets 72 sur les rebords internes 71 des trous oblongs 69. Cependant, cet ancrage permet un glissement de la bande de support secondaire 12 selon une direction perpendiculaire à l'arête 1 et parallèle à la première paroi porteuse 2 par la liberté de déplacement des rivets 72 le long des trous oblongs 69.
Les figures 16 et 17 illustrent un angle de cuve au niveau d'une arête 1 formée par deux parois porteuses présentant un angle de 135°.
Cette configuration diffère de celle décrite en regard des figures 1 à 4 en ce que les éléments isolants secondaires 6 d'extrémité présentent des dimensions inférieures aux dimensions des autres éléments isolants secondaires 6 selon une direction perpendiculaire à l'arête 1.
En outre, l'élément isolant d'angle 15 présente deux faces de fond reposant chacune sur l'une des parois porteuse formant l'arête 1 , deux parois latérales perpendiculaires à l'une desdites parois porteuses et accolées à un élément isolant secondaire 6 d'extrémité respectif, et une face supérieure se développant parallèlement à l'arête 1 et symétriquement par rapport à une bissectrice de l'angle formé par les paroi porteuses 2, 3.
Par ailleurs, les membranes d'angles secondaire et primaire 18, 27 sont formées à partir de plaques métalliques ondulées telles que décrites ci-dessus en regard de la figure 1 1 et dont les ondulations 61 se développent parallèlement à l'arête 1.
La figure 18 illustre un angle de cuve présentant une membrane étanche d'angle secondaire 18 selon une variante de réalisation. Par ailleurs, cette figure 18 illustre également une membrane étanche secondaire d'une paroi de cuve présentant des soufflets de dilatation se développant perpendiculairement à l'arête 1. Dans cette variante de réalisation, la membrane étanche d'angle secondaire 18 comporte des soufflets de dilatation 21 sous forme d'ondulations 81 se développant parallèlement à l'arête 1. Cette membrane étanche d'angle secondaire 18 comporte en outre des ondulations 73 se développant perpendiculairement à l'arête 1. Ces ondulations 73 se développent de façon continue sur toute la largeur de la membrane étanche d'angle secondaire 18. Chaque extrémité des ondulations 73 fait saillie depuis un bord longitudinal 13, 14 respectif et est soudée de manière étanche à la membrane étanche secondaire de la paroi de cuve correspondante afin d'assurer l'étanchéité de la membrane étanche secondaire. En outre, afin d'éviter les interférences avec les soufflets de dilatation des membranes étanches secondaire des parois de cuve 4, 5, les ondulations 73 sont disposées le long de l'arête 1 entre deux soufflets de dilatation adjacents de la membrane étanche secondaire desdites parois de cuve 4, 5, De telles ondulations 73 permettent d'absorber les déformations de la membrane étanche d'angle secondaire 18 selon une direction parallèle à l'arête 1.
Dans un mode de réalisation non illustré, les soufflets de dilatation 21 de la membrane étanche d'angle secondaire 18 sont légèrement obliques par rapport à l'arête 1. De tels soufflets de dilatation 21 obliques peuvent se déformer de manière à absorber les déformations de la membrane étanche d'angle secondaire 18 tant selon une direction parallèle à l'arête 1 que selon une direction perpendiculaire à ladite arête 1.
La figure 19 illustre un détail d'un angle de cuve à 90° comportant une variante de réalisation de la membrane étanche d'angle primaire 27. Dans cette variante, la membrane étanche d'angle primaire 27 est réalisée à l'aide d'une cornière d'angle rigide.
La cornière d'angle rigide comporte deux plaques planes 88 rigides métalliques formant conjointement un angle de 90°, chaque plaque plane 88 étant soudée 89 de manière étanche à la membrane étanche primaire d'une paroi de cuve 4, 5 respective. Une telle cornière d'angle rigide ne nécessite pas de reposer sur une bande de support primaire 23. Ainsi, chaque plaque plane 88 est ancrée directement sur un élément isolant 22 d'extrémité respectif. Cet ancrage peut être réalisé de différentes manières, par exemple par vissage, rivefage collage ou autre. La structure d'angle comporte un élément isolant d'angle primaire 30 tel que décrit ci-dessus en regard des figures 3, 4 et 20. Cependant, le rembourrage isolant supérieur 45 est constitué de deux blocs isolants rigides 90. Chaque bloc isolant présente une section triangulaire dont une première face repose sur la plaque de couvercle 41 , une deuxième face est accolée à la face latérale d'un bloc isolant primaire d'extrémité 22 respectif, et une troisième face inférieure d'une plaque plane 88 respective. Ces deux blocs isolants rigides 90 forment ainsi une surface de support plane pour les plaques planes 88.
La figure 19 illustre également l'espace 43 dégagé sous la plaque inférieure 40 permettant de loger la membrane étanche d'angle secondaire 18 de forme incurvée. Par ailleurs, dans ce mode de réalisation, les faces de fond 36 et 39 permettent de loger des soufflets de dilatation faisant saillie de portions planes de la membrane étanche secondaire de façon analogue aux surfaces inférieures des éléments isolants primaires des parois de cuve 4, 5.
Les figures 21 et 22 représentent des variantes de réalisation de l'élément isolant d'angle primaire 30. Ces variantes de réalisation diffèrent de l'élément isolant d'angle primaire décrit en regard des figures 3, 4 et 19 en ce que le premier élément latéral 31 et le deuxième élément latéral 32 sont chacun formés par une plaque parallélépipédique plane 74. La première face latérale 34 et la deuxième face latérale 37 sont ainsi chacune formées par l'une des faces de plus grandes dimensions de la plaque 74 correspondante. En outre, la première face de fond 36 et la deuxième face de fond 39 sont formées par une face se développant dans l'épaisseur de la plaque 74 correspondante.
Dans une première variante illustrée sur la figure 21 , l'entretoise 33 est formée de deux tiges 75 se développant chacun perpendiculairement à l'arête 1 et de façon inclinée par rapport aux parois porteuses formant l'arête 1. Ces tiges 75 sont ancrées de toute manière adaptée sur les plaques 74. Par exemple les plaques 74 comportent chacune un orifice traversant traversé par la tige 75. Chacun de ces orifices présente un rebord interne sur lequel prend appui un écrou monté sur une extrémité de la tige 75 traversant ledit orifice. Dans une deuxième variante illustrée sur la figure 22, l'entretoise 33 est formée par une unique fige 75 se développant perpendiculairement à l'arête 1 et de façon inclinée par rapport aux parois porteuses formant l'arête 1. Cependant, cette unique tige 75 est fixée sur chaque plaque 74 au moyen d'une liaison rotule 92. Cette deuxième variante présente l'avantage de pouvoir être utilisée pour des arêtes 1 présentant des angles différents.
La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 23, une vue écorchée d'un navire méthanier 76 montre une cuve étanche et isolée 77 de forme générale prismatique montée dans la double coque 78 du navire. La paroi de la cuve 77 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 78 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 78.
De manière connue en soi, des canalisations de chargement/déchargement 79 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 77,
La figure 23 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 81 , une conduite sous-marine 82 et une installation à terre 83. Le poste de chargement et de déchargement 81 est une installation fixe off-shore comportant un bras mobile 80 et une tour 84 qui supporte le bras mobile 80. Le bras mobile 80 porte un faisceau de tuyaux flexibles isolés 85 pouvant se connecter aux canalisations de chargement/déchargement 79. Le bras mobile 80 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 84. Le poste de chargement et de déchargement 81 permet le chargement et le déchargement du méthanier 78 depuis ou vers l'installation à terre 83. Celle-ci comporte des cuves de stockage de gaz liquéfié 86 et des conduites de liaison 87 reliées par la conduite sous-marine 82 au poste de chargement ou de déchargement 81. La conduite sous-marine 82 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 81 et l'installation à terre 83 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 76 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 76 et/ou des pompes équipant l'installation à terre 83 et/ou des pompes équipant le poste de chargement et de déchargement 81.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Ainsi, dans la description ci-dessus, il a été fait référence à des éléments individualisés, mais les caractéristiques décrites ci-dessus s'appliquent aussi à une pluralité d'éléments identiques répétés selon un motif régulier dans la cuve. Ainsi, lorsqu'une liaison entre deux éléments a été décrite, cette liaison peut par exemple s'appliquer par analogie à une rangée desdits deux éléments se développant de manière répétée dans la cuve le long d'une arête 1.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante intégrée dans une structure porteuse, ladite structure comportant une première paroi porteuse (2) plane et une deuxième paroi porteuse (3) plane formant conjointement une arête (1 ) de la structure porteuse,
la cuve comportant depuis la structure porteuse vers l'intérieur de la cuve une barrière thermiquement isolante secondaire ancrée sur la structure porteuse, une membrane étanche secondaire portée par la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire portée par la membrane étanche secondaire et une membrane étanche primaire portée par la barrière thermiquement isolante primaire,
la cuve comportant une première paroi de cuve (4) portée par la première paroi porteuse (2) plane et une deuxième paroi de cuve (5) portée par la deuxième paroi porteuse (3) plane,
la barrière thermiquement isolante primaire de chaque paroi de cuve comportant une pluralité de blocs isolants (22) parallélépipédiques juxtaposés, les blocs isolants (22) de la barrière thermiquement isolante primaire présentant des faces latérales se développant dans un plan sécant à la paroi porteuse (2, 3) correspondante, la barrière isolante primaire comportant un bloc isolant d'angle (30), ledit bloc isolant d'angle (30) comportant un premier élément latéral (31) et un deuxième élément latéral (32) reliés par un élément d'entretoise (33), le bloc isolant d'angle (30) comportant en outre une garniture isolante agencée entre le premier élément latéral (31 ) et le deuxième élément latéral (32),
le premier élément latéral (31 ) comportant une première face de fond (36) et une première face latérale (34), la première face de fond (36) étant parallèle à la première paroi porteuse (2) et reposant sur la membrane étanche secondaire, la première face latérale (34) se développant depuis la première face de fond (36) en direction de la membrane étanche primaire parallèlement et de manière accolée à une face latérale (35) d'un bloc isolant (22) de la barrière thermiquement isolante primaire de la première paroi de cuve (4), le deuxième élément latéral (32) comportant une deuxième face de fond (39) et une deuxième face latérale (37), la deuxième face de fond (39) étant parallèle à la deuxième paroi porteuse (3) et reposant sur la membrane étanche secondaire, la deuxième face latérale (37) se développant depuis la deuxième face de fond (39) en direction de la membrane étanche primaire parallèlement et de manière accolée à une face latérale (38) d'un bloc isolant (22) de la barrière thermiquement isolante primaire de la deuxième paroi de cuve (5),
l'élément d'entretoise (33) étant agencé entre le premier élément latéral (31 ) et le deuxième élément latéral (32) pour maintenir à distance la première face de fond (36) et la deuxième face de fond (39),
le bloc isolant d'angle (30) comportant en outre une face arrière reliant la première face de fond (36) à la deuxième face de fond (39) et inclinée par rapport à la première paroi porteuse (2) et à la deuxième paroi porteuse (3) de manière à ménager un espace (43) entre ladite face arrière du bloc isolant d'angle (30) et la membrane étanche secondaire,
dans laquelle la membrane étanche secondaire comporte au moins un soufflet de dilatation agencé entre la première face de fond (36) et la deuxième face de fond (39) au droit de l'arête (1 ) de la structure porteuse.
2. Cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle un rembourrage isolant (44) est disposé dans ledit espace (43) entre ladite face arrière et la membrane étanche secondaire au droit de l'arête (1 ) de la structure porteuse.
3. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 2, dans laquelle l'élément d'entretoise (33) comporte au moins une tige rigide ou plaque rigide (75) rigide montée sur le premier élément latéral (31 ) et sur le deuxième élément latéral (32) de façon inclinée par rapport à la première paroi porteuse (2) et à la deuxième paroi porteuse (3).
4. Cuve étanche et thermiquement isolante selon la revendication 3, dans laquelle la tige (75) de l'élément d'entretoise (33) est montée sur au moins l'un parmi le premier élément latéral (31 ) et le deuxième élément latéral (32) au moyen d'une liaison rotule (92).
5, Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 2, dans laquelle l'élément d'entretoise (33) comporte une plaque inférieure (40) reliant la première face de fond (38) à la deuxième face de fond (39) et formant ladite face arrière du bloc isolant d'angle (30).
8. Cuve étanche et thermiquement isolante selon la revendication 5, dans laquelle l'élément d'entretoise (33) comporte en outre une plaque supérieure (41 ) reliant une extrémité supérieure de la première face latérale (34) et une extrémité supérieure de la deuxième face latérale (37), ladite plaque supérieure (41 ) étant inclinée par rapport à la première paroi porteuse (2) et à la deuxième paroi porteuse (3).
7. Cuve étanche et thermiquement isolante selon la revendication 8, comportant en outre un élément isolant (45) reposant sur la plaque supérieure (41) pour former une surface de support d'angle pour la membrane étanche primaire.
8. Cuve étanche et thermiquement isolante selon l'une des revendications 6 à 7, dans laquelle l'élément d'entretoise (33) comporte en outre deux plaques de bout (42) se développant chacune dans un plan perpendiculaire à l'arête (1) de la structure porteuse, lesdites plaques de bout (42) reliant les éléments latéraux (31 , 32) de manière à délimiter conjointement avec la plaque supérieure (41 ), la plaque inférieure (40) et les élément latéraux (31 , 32) un volume intérieur du bloc isolant d'angle (30), une garniture isolante étant logée dans ledit volume intérieur.
9. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 8, dans laquelle au moins l'un parmi le premier élément latéral (31 ) et le deuxième élément latéral (32) comporte une plaque (74) de forme parailélépipédique, ladite plaque (74) de forme paralléiépipédique formant la face latérale (34, 37) et la face de fond (36, 39) correspondantes dudit élément latéral (31 , 32).
10. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 8, dans laquelle au moins l'un parmi le premier élément latéral (31 ) et le deuxième élément latéral (32) comporte une première plaque et une deuxième plaque, la première plaque se développant dans un pian sécant à la paroi porteuse et formant la face latérale dudit élément latéral et la deuxième plaque se développant parallèlement à ladite paroi porteuse et formant la face de fond dudit élément latéral.
1 1. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 10, dans laquelle au moins l'une parmi la membrane étanche secondaire et la membrane étanche primaire est formée au droit de l'arête (1 ) par une cornière d'angle.
12. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 1 1 , comportant en outre une bande de support (23) incurvée dont la concavité est tournée vers l'intérieur de la cuve, ladite bande de support (23) se développant parallèlement à l'arête (1) de la structure porteuse, ladite bande de support (23) comportant un premier bord longitudinal (24) reposant sur la barrière thermiquement isolante primaire de la première paroi de cuve (4) et un deuxième bord longitudinal (25) reposant sur la barrière thermiquement isolante primaire de la deuxième paroi de cuve (5) pour former une surface de support (17) continue entre une surface de support (8) formée par la barrière thermiquement isolante primaire de la première paroi de cuve (4) et une surface de support (8) formée par la barrière thermiquement isolante primaire de la deuxième paroi de cuve (5), la membrane étanche primaire reposant sur ladite bande de support (23).
13. Cuve étanche et thermiquement isolante selon les revendications 7 et 12 prises en combinaison, dans laquelle une face supérieure de l'élément isolant rigide (45) opposée à la plaque supérieure (41) de l'élément d'entretoise (33) est incurvée, la bande de support (23) reposant sur ladite face supérieure de l'élément isolant rigide (45).
14. Cuve étanche et thermiquement isolante selon l'une des revendications 1 à 13, dans laquelle la membrane étanche secondaire comporte une pluralité de soufflets de dilatation se développant parallèlement à l'arête (1) de la structure porteuse, la première face de fond (36) et la deuxième face de fond (39) reposant sur la membrane étanche secondaire entre deux soufflets de dilatation adjacents.
15. Cuve étanche et thermiquement isolante selon la revendication 14, dans laquelle l'élément d'entretoise (33) est agencé à distance du au moins un des soufflets de dilatation de la membrane étanche secondaire entre lesquels reposent la première face de fond (36) et la deuxième face de fond (39).
16. Navire (78) pour le transport d'un produit liquide froid, le navire comportant une double coque (78) et une cuve (77) selon l'une des revendications 1 à 15 disposée dans la double coque.
17. Procédé de chargement ou déchargement d'un navire (76) selon la revendication 18, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (79, 85, 81 , 87) depuis ou vers une installation de stockage flottante ou terrestre (93) vers ou depuis la cuve du navire (76).
18. Système de transfert pour un produit liquide froid, le système comportant un navire (76) selon la revendication 16, des canalisations isolées (79, 85, 81 , 87) agencées de manière à relier la cuve (77) installée dans la coque du navire à une installation de stockage flottante ou terrestre (83) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
PCT/FR2018/051771 2017-07-13 2018-07-12 Cuve etanche et thermiquement isolante WO2019012236A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207004328A KR102513808B1 (ko) 2017-07-13 2018-07-12 단열 밀봉 탱크
CN201880056602.5A CN111051762B (zh) 2017-07-13 2018-07-12 隔热密封的容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756692 2017-07-13
FR1756692A FR3069044B1 (fr) 2017-07-13 2017-07-13 Cuve etanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
WO2019012236A1 true WO2019012236A1 (fr) 2019-01-17

Family

ID=60080968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051771 WO2019012236A1 (fr) 2017-07-13 2018-07-12 Cuve etanche et thermiquement isolante

Country Status (4)

Country Link
KR (1) KR102513808B1 (fr)
CN (1) CN111051762B (fr)
FR (1) FR3069044B1 (fr)
WO (1) WO2019012236A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686309A1 (fr) * 2019-01-22 2020-07-29 Gaztransport et Technigaz Systeme de stockage et/ou de transport pour un gaz liquefie
WO2020260440A1 (fr) * 2019-06-28 2020-12-30 Gaztransport Et Technigaz Procede de fabrication d'une structure d'angle pour cuve
WO2022013031A1 (fr) * 2020-07-17 2022-01-20 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3115853A1 (fr) * 2020-07-17 2022-05-06 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
US20220388885A1 (en) * 2019-11-25 2022-12-08 Saint-Gobain Centre De Recheroches Et D'etude European Corner block for glass furnace
RU2803628C2 (ru) * 2019-01-22 2023-09-18 Газтранспорт Эт Технигаз Система хранения и/или транспортировки сжиженного газа
FR3135773A1 (fr) * 2022-05-23 2023-11-24 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102350337B1 (ko) * 2020-07-31 2022-01-12 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
EP4191118A1 (fr) * 2020-07-31 2023-06-07 Hyundai Heavy Industries Co., Ltd. Réservoir de stockage de gaz liquéfié et navire le comprenant
KR102327633B1 (ko) * 2020-07-31 2021-11-16 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
US20240230030A9 (en) * 2020-12-14 2024-07-11 Hyundai Heavy Industries Co., Ltd. Liquefied gas storage tank and ship comprising same
DE102021102749A1 (de) * 2021-02-05 2022-08-11 Deutsche Holzveredelung Schmeing GmbH & Co. KG Lagerblock und Verfahren zur Herstellung
CN117685492B (zh) * 2024-02-01 2024-06-11 沪东中华造船(集团)有限公司 液化气绝缘储罐用密封膜单元、密封膜、加工方法及储罐

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
FR2780942A1 (fr) 1998-07-10 2000-01-14 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante a structure d'angle perfectionnee, integree dans une structure porteuse de navire
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
KR20070077540A (ko) * 2006-01-24 2007-07-27 현대중공업 주식회사 액화천연가스 운반선의 화물창 설치방법
EP2306064A2 (fr) 2008-06-20 2011-04-06 Samsung Heavy IND. CO., LTD. Panneau de coin pour réservoir de cargo transporteur de gaz naturel liquéfié
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
WO2014167214A2 (fr) * 2013-04-12 2014-10-16 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
KR20160021351A (ko) * 2014-08-14 2016-02-25 삼성중공업 주식회사 액화가스 화물창
WO2016036026A1 (fr) * 2014-09-01 2016-03-10 삼성중공업 주식회사 Structure barrière pour partie de coin de section à bagages et procédé d'installation de barrière pour partie de coin de section à bagages

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2813111B1 (fr) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
FR3004510B1 (fr) * 2013-04-12 2016-12-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
US10557592B2 (en) * 2014-08-06 2020-02-11 Kc Lng Tech Co., Ltd. Corner structure of LNG storage tank
KR20160027381A (ko) * 2014-08-29 2016-03-10 삼성중공업 주식회사 액화가스 화물창

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549575A1 (fr) 1983-07-18 1985-01-25 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2709725A1 (fr) 1993-09-09 1995-03-17 Gaz Transport Cuve étanche et thermiquement isolante intégrée à la structure porteuse d'un navire ayant une structure d'angle simplifiée.
FR2780942A1 (fr) 1998-07-10 2000-01-14 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante a structure d'angle perfectionnee, integree dans une structure porteuse de navire
FR2798358A1 (fr) 1999-09-14 2001-03-16 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
KR20070077540A (ko) * 2006-01-24 2007-07-27 현대중공업 주식회사 액화천연가스 운반선의 화물창 설치방법
EP2306064A2 (fr) 2008-06-20 2011-04-06 Samsung Heavy IND. CO., LTD. Panneau de coin pour réservoir de cargo transporteur de gaz naturel liquéfié
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
WO2014167214A2 (fr) * 2013-04-12 2014-10-16 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
KR20160021351A (ko) * 2014-08-14 2016-02-25 삼성중공업 주식회사 액화가스 화물창
WO2016036026A1 (fr) * 2014-09-01 2016-03-10 삼성중공업 주식회사 Structure barrière pour partie de coin de section à bagages et procédé d'installation de barrière pour partie de coin de section à bagages

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686309A1 (fr) * 2019-01-22 2020-07-29 Gaztransport et Technigaz Systeme de stockage et/ou de transport pour un gaz liquefie
WO2020152207A1 (fr) * 2019-01-22 2020-07-30 Gaztransport Et Technigaz Systeme de stockage et/ou de transport pour un gaz liquefie
RU2803628C2 (ru) * 2019-01-22 2023-09-18 Газтранспорт Эт Технигаз Система хранения и/или транспортировки сжиженного газа
WO2020260440A1 (fr) * 2019-06-28 2020-12-30 Gaztransport Et Technigaz Procede de fabrication d'une structure d'angle pour cuve
FR3097934A1 (fr) * 2019-06-28 2021-01-01 Gaztransport Et Technigaz Procédé de fabrication d'une structure d'angle pour cuve
CN114008373A (zh) * 2019-06-28 2022-02-01 气体运输技术公司 用于制造罐角部结构的方法
RU2808190C2 (ru) * 2019-06-28 2023-11-24 Газтранспорт Эт Технигаз Способ изготовления угловой конструкции резервуара
US20220388885A1 (en) * 2019-11-25 2022-12-08 Saint-Gobain Centre De Recheroches Et D'etude European Corner block for glass furnace
WO2022013031A1 (fr) * 2020-07-17 2022-01-20 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3115853A1 (fr) * 2020-07-17 2022-05-06 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3135773A1 (fr) * 2022-05-23 2023-11-24 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2023227551A1 (fr) * 2022-05-23 2023-11-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse

Also Published As

Publication number Publication date
KR102513808B1 (ko) 2023-03-27
FR3069044B1 (fr) 2020-10-30
KR20200023483A (ko) 2020-03-04
CN111051762A (zh) 2020-04-21
CN111051762B (zh) 2022-06-03
FR3069044A1 (fr) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2019012236A1 (fr) Cuve etanche et thermiquement isolante
EP3362732B1 (fr) Cuve étanche et thermiquement isolante
EP4158237B1 (fr) Dispositif d'ancrage destine a retenir des blocs isolants
EP3033564B1 (fr) Cuve etanche et thermiquement isolante comportant une piece d'angle
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
WO2017103500A1 (fr) Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
WO2014096600A1 (fr) Cuve etanche et thermiquement isolante
FR3008765A1 (fr) Structure d'angle pour cuve isolante et etanche
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
WO2018024982A1 (fr) Structure de paroi etanche
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
FR3004508A1 (fr) Bloc isolant pour la fabrication d'une paroi de cuve etanche et isolante
WO2019215404A1 (fr) Paroi de cuve étanche comprenant une membrane d'étanchéité
WO2019162596A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
FR3073270A1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2020021208A1 (fr) Cuve etanche et thermiquement isolante
WO2022053320A1 (fr) Cuve étanche et thermiquement isolante
WO2021239432A1 (fr) Caisse autoporteuse convenant pour le soutien et l'isolation thermique d'une membrane étanche
WO2023227551A1 (fr) Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
FR3131360A1 (fr) Installation de stockage pour gaz liquéfié
FR3111176A1 (fr) Paroi de cuve pour cuve étanche et thermiquement isolante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004328

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18758917

Country of ref document: EP

Kind code of ref document: A1