EP3948055B1 - Lagereinrichtung für flüssiggas - Google Patents

Lagereinrichtung für flüssiggas Download PDF

Info

Publication number
EP3948055B1
EP3948055B1 EP20713893.4A EP20713893A EP3948055B1 EP 3948055 B1 EP3948055 B1 EP 3948055B1 EP 20713893 A EP20713893 A EP 20713893A EP 3948055 B1 EP3948055 B1 EP 3948055B1
Authority
EP
European Patent Office
Prior art keywords
edge
insulating
wall
fixing beam
shear webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20713893.4A
Other languages
English (en)
French (fr)
Other versions
EP3948055C0 (de
EP3948055A1 (de
Inventor
Antoine PHILIPPE
Sébastien DELANOE
Karim Chapot
Johan Bougault
Pierre Montfort
Guillaume SALMON LEGAGNEUR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1903164A external-priority patent/FR3094452B1/fr
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3948055A1 publication Critical patent/EP3948055A1/de
Application granted granted Critical
Publication of EP3948055B1 publication Critical patent/EP3948055B1/de
Publication of EP3948055C0 publication Critical patent/EP3948055C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating membrane tanks.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at around -162°C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the document FR2549575 describes a watertight and thermally insulating tank integrated into the load-bearing structure of a ship, comprising a secondary thermally insulating barrier, a secondary sealing membrane, a primary thermally insulating barrier and a primary sealing membrane.
  • the waterproofing membranes are formed by a plurality of metal plates welded together.
  • the waterproofing membranes are fixed to the supporting structure in the corners of the tank using connection rings. Each connection ring is therefore fixed on the one hand to the load-bearing structure and on the other hand to the sealing membranes in order to allow the transfer of the forces between the membranes and the hull of the ship, thus solidifying the overall structure of the tank.
  • the change in temperature as well as the state of filling of the tanks impose strong constraints on the membranes of the tank.
  • the movement of the ship exerts significant forces on the barriers of the tank.
  • at least the secondary sealing membrane is anchored to the supporting structure using a connection structure at the corners.
  • connection ring makes it possible in particular to take up the tensile forces resulting from the thermal contraction of the metal plates forming the sealing membranes, from the deformation of the shell, and from the state of filling of the tanks.
  • connection ring is formed of a plurality of metal sheets assembled together so that a part of the metal sheets are connected to a sealing membrane of a first vessel wall and another part of the metal sheets are connected to a sealing membrane of a second vessel wall.
  • the document connecting ring FR2549575 therefore makes it possible to connect, in the plane formed by the waterproofing membrane, the waterproofing membrane to the load-bearing structure using metal sheets.
  • the secondary thermally insulating barrier is therefore crossed by metal sheets of the connection ring, which induces a thermal bridge phenomenon between the sealing membrane and the supporting structure.
  • the document FR2798358 also describes a watertight and thermally insulating tank integrated into the load-bearing structure of a ship which is provided with a connection ring.
  • the connection ring is composed of a plurality of metal couplers making it possible to fix the sealing membrane to the supporting structure.
  • the document couplers FR2798358 make it possible to connect, in the plane formed by the waterproofing membrane, the waterproofing membrane to the load-bearing structure.
  • the couplers also cross the thermally insulating barrier.
  • the connection ring induces a thermal bridge phenomenon between the sealing membrane and the supporting structure.
  • the assembly of the couplers is quite complex to achieve.
  • the document WO2014/020257 describes a vessel wall comprising a thermally insulating barrier formed of a plurality of parallelepiped heat-insulating boxes juxtaposed in a regular pattern.
  • the box comprises a bottom panel, several rows of pillars which extend along the thickness of the box, ie in a direction perpendicular to the load-bearing wall.
  • the rows of pillars carry a reinforced cover panel.
  • a thermal insulation fills the space between the pillars.
  • the invention aims to remedy the problems encountered in the systems of the prior art.
  • One idea underlying the invention is to modify the attachment of the sealing membrane to the supporting structure in order to improve the insulation of the thermally insulating barrier.
  • Another idea underlying the invention is to simplify the attachment of the waterproofing membrane to the supporting structure.
  • the sealing membrane of the tank is fixed directly on the insulating beam for fixing the thermally insulating barrier using the metal cover element so that, unlike the prior art, no metal element directly connects the waterproofing membrane to the load-bearing structure.
  • Fixing the waterproofing membrane to the load-bearing structure using the insulating fixing beam is therefore a simple way of improving the insulation of the thermally insulating barrier by preventing metal elements from crossing the thermally insulating barrier.
  • the shear webs allow the beam corresponding to the movements of the hull of the ship in response to the swell at sea. These shear forces are transmitted to the insulating fixing beam using the metal cover element and the first abutment device.
  • the upper face ensures the bearing of the waterproofing membrane.
  • such a storage facility may comprise one or more of the following characteristics.
  • the tank comprises a metal seal comprising a first face and a second face forming an angle with the first face, the first face being welded in leaktight manner to the sealing membrane of the first wall of vessel and the second pan being sealed to the sealing membrane of the second vessel wall, the corrugated seal being configured to sealingly connect the sealing membrane of the first vessel wall and the membrane sealing of the second tank wall, the first face being supported by the metal covering element of the insulating fixing beam.
  • the metal cover element comprises a flat metal plate comprising a support portion protruding from the shear webs in the direction of the sealing membrane and in a direction opposite to the edge so that one end of the support portion rests on an insulating panel of the thermally insulating barrier adjacent to the insulating fixing beam.
  • the flat metal plate has a dimension in the direction of the edge equal to the spacing between two adjacent shear webs and is arranged so as to extend between the two adjacent shear webs.
  • the shear webs are made of a composite material comprising a polymer resin and fibers.
  • the fibers are oriented at least partially at an angle of +/- 45° with respect to a thickness direction of the vessel wall.
  • Such a characteristic makes it possible to combine good shear strength and, for example, good tensile strength in a direction of thickness of the vessel wall with fibers oriented in the same direction.
  • the insulating fixing beam comprises a fixing angle iron comprising a first angle iron wing and a second angle iron wing connected to the first angle iron wing, the second angle iron wing being fixed to one of the shear, and the first angle leg being welded to the metal cover member.
  • the insulating fixing beam comprises a fixing angle iron comprising a first angle iron wing and a second angle iron wing connected to the first angle iron wing, the second angle iron wing being fixed to one of the shear, and the first angle leg comprising at least one fixing hole coinciding with a fixing hole of the metal cover element so as to fix the first angle leg with the flat metal plate by means of a fixing device passing through the fixing hole of the metal cover element and the fixing hole of the first angle wing.
  • the second angle wing is glued to one of the shear webs.
  • the second angle iron wing comprises at an end remote from the first angle iron wing a beveled portion to limit the stresses in the bonding.
  • the insulating fixing beam comprises a cleat fixed to one face of the shear web perpendicular to the edge and extending parallel to the metal cover element, the cleat comprising a main portion, an upper extension and a lower extension on either side of the main portion, the main portion, the upper extension and the lower extension being fixed to the shear wall, the upper extension and the lower extension making it possible to increase the surface fixing the cleat, and in which the cleat is fixed to the supporting structure using anchoring studs distributed over a length of the cleat, the anchoring studs exerting a clamping force against an upper face of the main portion of the cleat.
  • the upper extension and the lower extension are glued to the shear web, the upper extension and the lower extension making it possible to increase the bonding surface of the cleat.
  • the upper extension is bevelled so as to have a decreasing thickness as it moves away from the main portion in order to limit the stresses in the fixing or in the bonding.
  • the shear webs are evenly distributed along the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam.
  • the distance between a first shear web of said shear webs and a second shear web directly adjacent to the first shear web is less than 340mm.
  • the thickness of the shear webs is between 5 and 25 mm.
  • the shear webs are made of a material such as plywood, wood, a composite material, or any other material having sufficient stiffness and a limited thermal conductivity to stiffness ratio.
  • the insulating fixing beam is a first insulating fixing beam
  • the abutment device is a first abutment device and the sealing membrane of the first vessel wall comprising a plurality of metal plates or a plurality strakes parallel to a longitudinal direction perpendicular or oblique to said edge, each strake comprising a flat central portion resting on an upper surface of the thermally insulating barrier and two raised edges projecting towards the inside of the tank with respect to the central portion , the strakes being juxtaposed in a repeated pattern and welded together in a sealed manner at the raised edges
  • the thermally insulating barrier of the second vessel wall comprises a second insulating fixing beam comprising an upper face held at a distance from the second wall load-bearing by a plurality of shear webs, the shear webs being located between the upper face and the second load-bearing wall and oriented perpendicular to the edge, the second insulating beam comprising an insulating lining arranged between the she
  • the metal covering element of the insulating fixing beam and/or of the first insulating fixing beam and/or of the second insulating fixing beam comprises a first lateral wing extending perpendicularly to the shear webs and in the direction of the first load-bearing wall or of the second load-bearing wall respectively, the first side flange sandwiching the shear webs with the abutment device or the first abutment device and/or the second abutment device respectively in order to absorb the shear forces exerted by the waterproofing membrane
  • the first lateral wing makes it possible to improve the transmission of the forces coming from the sealing membrane, in particular its tension during a thermal contraction due to, for example, cooling during the loading of the LNG or an elongation of the ship's beam. , towards the insulating fixing beam.
  • the metal cover element of the insulating fixing beam comprises a third flat wing in the extension of the flat portion of the metal cover element of the insulating fixing beam and extending in the direction of the ridge so that the metal cover elements of the insulating beams for fixing the two walls forming the ridge almost meet.
  • the metal cover elements of the insulating beams for fixing the two walls ensure the bearing of the sealing membrane in the corner.
  • the metal covering element of the insulating fixing beam and/or of the first insulating fixing beam and/or of the second insulating fixing beam comprises a second lateral wing extending perpendicularly to the sails of shear and in the direction of the first load-bearing wall or the second load-bearing wall respectively, so that the first side flange and the second side flange frame the shear webs, the first side flange being located closer to the edge than the second side wing.
  • the second lateral wing makes it possible, in the same way as the first lateral wing, to improve the transmission of the forces originating from the sealing membrane towards the insulating fixing beam.
  • the side flanges framing the shear webs make it possible to avoid rotation of the metal cover element around the shear webs, which could harm the uptake of forces.
  • the first lateral wing and/or the second lateral wing are connected to the planar portion of the metal cover element, preferably the first lateral wing and the second lateral wing are connected to the planar portion at the level from two opposite ends.
  • the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam comprises an external anti-tilting portion extending the shear webs in the direction of the edge and extending over a portion of the dimension separating the first load-bearing wall or the second load-bearing wall respectively from the metal cover element, the external anti-spill portion being fixed by fastening means to the first load-bearing wall and/or to the second bearing wall respectively.
  • the supporting structure comprises an additional abutment device or a first additional abutment device projecting from the first supporting wall in the direction of the interior of the vessel, the additional abutment device or the first abutment device additional abutment device having a length extending parallel to the edge, the additional abutment device or the first additional abutment device being positioned along an edge of the insulating fixing beam or the first insulating fixing beam adjacent to the ridge and being configured to form an abutment limiting the movement of the insulating fixing beam or the first insulating fixing beam in a direction opposite to the direction of the abutment device or the first abutment device.
  • the supporting structure comprises a second additional abutment device projecting from the second supporting wall in the direction of the interior of the vessel, the second additional abutment device having a length extending parallel to the edge , the second additional abutment device being placed along an edge of the second insulating fixing beam adjacent to the edge and being configured to form an abutment limiting the movement of the second insulating fixing beam in a direction opposite to the direction of the second stop bar.
  • the tank comprises a corrugated or non-corrugated seal comprising a first face and a second face forming an angle with the first face, the first face being welded in leaktight manner to the sealing membrane of the first face.
  • vessel wall and the second pan being sealingly welded to the sealing membrane of the second vessel wall, the corrugated seal being configured to sealingly connect the sealing membrane of the first vessel wall and the sealing membrane of the second tank wall in order to form a continuous sealing membrane at the level of a corner of the tank.
  • the waterproofing membrane comprises a metal anchoring strip welded to the metal cover element, one of the metal plates being welded in a sealed manner to a portion of the metal strip anchor and the metal joint being welded in a sealed manner to another portion of the metal anchor strip.
  • the secondary insulating panel adjacent to the insulating fixing beam comprises an upper plate provided with a counterbore extending in the direction of the edge and located on the end closest to the edge of the upper plate, one end of the metal covering element being placed in the counterbore in order to obtain a flat support surface for the waterproofing membrane.
  • the vessel comprises a corner insulation block located in the extension of the thermally insulating barrier of the first vessel wall and of the thermally insulating barrier of the second vessel wall at the level of the edge , the corner insulation block being configured to ensure the continuity of the thermally insulating barrier of the first vessel wall and of the thermally insulating barrier of the second vessel wall at the level of the edge of the supporting structure.
  • the corner insulation block comprises a first face located against the first load-bearing wall, a second face located against the second load-bearing wall, a third face configured to provide a support surface for the first face of the corrugated gasket and a fourth face configured to provide a bearing surface for the second face of the corrugated gasket.
  • the corrugated seal is a corrugated metal seal.
  • At least one or each corrugation of the corrugated seal extends parallel to the edge.
  • the first insulating fixing beam and/or the second insulating fixing beam is juxtaposed to the corner insulation block.
  • the stop device or the first stop device and/or the second stop device comprises a stop bar or a first stop bar and/or a second stop bar respectively, the stop bar or the first abutment bar and/or the second abutment bar extending continuously parallel to the edge along the edge opposite the edge of the insulating fixing beam or the first insulating fixing beam and/or the second fixing insulating beam respectively.
  • the additional stop device or the first additional stop device and/or the second additional stop device comprises an additional stop bar or a first additional stop bar and/or a second additional abutment bar respectively, the additional abutment bar or the first additional abutment bar and the second additional abutment bar extending continuously parallel to the edge along the edge adjacent to the edge of the insulating beam of fixing or of the first insulating fixing beam and/or of the second insulating fixing beam respectively.
  • the abutment device or the first abutment device and/or the second abutment device comprises a plurality of abutment lugs or a plurality of first abutment lugs and/or a plurality of second abutment lugs respectively , the abutment lugs or the first abutment lugs and/or the second abutment lugs being regularly spaced along the edge opposite the edge of the insulating fixing beam or the first insulating fixing beam and/or the second fixing insulating beam respectively.
  • the additional abutment device or the first additional abutment device and/or the second additional abutment device comprises a plurality of additional abutment lugs or a plurality of first additional abutment lugs and/or a plurality of second additional abutment lugs respectively, the additional abutment lugs or the first additional abutment lugs and/or the second additional abutment lugs being regularly spaced along the edge adjacent to the edge of the insulating fixing beam or of the first insulating beam and/or the second insulating beam respectively.
  • the additional anchoring device or the first additional abutment device and/or the second additional abutment device comprises a device forming a hook configured to fix the external anti-overturning portion to the first bearing wall, the device forming a hook constituting said fixing means.
  • one or more abutment lugs, or one or more additional abutment lugs have the shape of a hook so as to form the device forming a hook.
  • one of the stop bar(s), or one of the additional stop bar(s) has the shape of a hook so as to form the device forming the hook.
  • the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam comprises an internal anti-tilt portion extending the shear webs in a direction opposite to the edge and extending over a portion of the dimension separating the first load-bearing wall or the second load-bearing wall respectively of the metal cover element, the internal anti-spill portion being fixed by a fixing means to the first load-bearing wall and/or to the second load-bearing wall respectively, and the abutment device or the first abutment device includes a hook device or a first hook device configured to secure the internal anti-spill portion to the first supporting wall.
  • the internal anti-spill portion makes it possible to avoid the deformation or even the tilting of the insulating fixing beam when the sealing membrane exerts a significant force thereon in an opposite direction with respect to the external anti-spill portion.
  • the securing means comprises a stud securing the external anti-spill portion or the internal anti-spill portion to the load-bearing structure, such that a first end of the stud is anchored to the load-bearing structure and a second end of the stud opposite the first end is equipped with a nut bearing, directly or indirectly, on the external anti-spill portion or the internal anti-spill portion.
  • the stud may cross through or be placed adjacent to the outer spill guard portion or the inner spill guard portion.
  • the fastening means comprises a reinforcement plate being placed between the nut and the external anti-spill portion or the internal anti-spill portion so as to propagate the tightening force of the nut on a surface corresponding to the surface of the reinforcement plate.
  • At least one of the external anti-spill portion and the internal anti-spill portion is formed by extension portions of the shear webs.
  • the external anti-tilting portion comprises a first lateral bar extending parallel to the ridge, the first lateral bar comprising a wall pressed against a lateral surface of the shear webs.
  • the internal anti-tilting portion comprises a second side bar extending parallel to the edge, the second side bar comprising a wall pressed against another side surface of the shear webs, the first side bar and the second sidebar framing the shear sails.
  • At least one of the first abutment lugs and/or at least one of the second abutment lugs comprise a first leg portion extending in a plane parallel to the underside of the first insulating fixing beam and/or of the second insulating fixing beam respectively, the first leg portion overlapping the internal anti-spilling portion.
  • At least one of the first abutment tab(s) and/or at least one of the second abutment tab(s) comprise a second tab portion extending in a plane orthogonal to the first tab portion and orthogonal shear sails.
  • At least one of the first additional abutment lugs and/or at least one of the second additional abutment lugs comprise a first lug portion extending in a plane parallel to the underside of the first insulating fixing beam and/or of the second insulating fixing beam respectively, the first leg portion overlapping on the external anti-tilt portion.
  • At least one of the first additional abutment lugs and/or at least one of the second additional abutment lugs comprise a second lug portion extending in a plane orthogonal to the first lug portion and orthogonal to the shear walls.
  • the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam comprises an upper plate located under the metal cover element and extending along the beam insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam respectively, and in which each shear web comprises on an upper edge two upper tenons separated from each other so as to form an upper notch, the upper plate comprising a plurality of grooves extending parallel to the shear webs and having a complementary shape to the upper tenons so that the upper tenons seat in the grooves of the upper plate, in order to form a mortise and tenon connection between the shear sails and the top plate.
  • the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam comprises N shear webs, N being a natural integer, preferably N being greater than or equal to 3 , preferably N being greater than or equal to 5.
  • the insulating fixing beam and/or the first insulating fixing beam and/or the second insulating fixing beam comprises a lower plate located on the first load-bearing wall and extending along the insulating fixing and/or of the first insulating fixing beam and/or of the second insulating fixing beam respectively, and in which each shear web comprises on a lower edge two lower tenons separated from each other so as to form a lower notch, the lower plate comprising a plurality of grooves extending parallel to the shear webs and having a shape complementary to the lower tenons so that the lower tenons fit into the grooves of the lower plate, so as to form a mortise and tenon connection between the shear webs and the bottom plate.
  • the upper plate and/or the lower plate comprises 2N grooves so that each upper tenon and/or each lower tenon of the insulating fixing beam and/or the first insulating fixing beam and/or the second beam insulating fixing is housed in one of the grooves of the upper and/or lower plate respectively.
  • the thermally insulating barrier of the first vessel wall and/or the thermally insulating barrier of the second vessel wall comprises a plurality of insulating panels comprising a lower wall located close to the first load-bearing wall and/or of the second load-bearing wall respectively, a top wall, and a structural insulating gasket maintaining a distance between the top wall and the bottom wall, the insulating gasket being preferably composed of fiber-reinforced polymer foam.
  • the thermally insulating barrier is a secondary thermally insulating barrier and the sealing membrane is a secondary sealing membrane, and in which the first tank wall and the second tank wall further comprise, in a thickness direction from the outside to the inside of the tank, a primary thermally insulating barrier carried by the secondary sealing membrane and a primary sealing membrane carried by the primary thermally insulating barrier.
  • the primary waterproofing membrane comprises a plurality of corrugated metal sheets, the corrugated metal sheets being juxtaposed in a repeated pattern and welded together in a sealed manner.
  • the sealing membrane or the secondary sealing membrane is formed from an alloy of iron and nickel having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6 K -1 .
  • the primary sealing membrane is formed from stainless steel.
  • the metal cover element is formed from stainless steel or an iron-based alloy with a high manganese content.
  • the corrugated seal is formed in the same material as the secondary sealing membrane, preferably in an alloy of iron and nickel having a thermal expansion coefficient of between 0.5.10 -6 and 2.10 -6K -1 .
  • the insulating lining of the insulating fixing beam and/or of the first insulating fixing beam and/or of the second insulating fixing beam is formed of perlite, glass wool, foam or any other thermally adapted insulating material.
  • the primary thermally insulating barrier comprises at least one primary corner insulating panel, the primary corner insulating panel being fixed to at least one of the first insulating fixing beam and the second insulating beam attachment using a coupler.
  • the first tank wall and/or the second tank wall comprises mastic strips placed between the insulating fixing beam and the first load-bearing wall or between the first insulating fixing beam and the first load-bearing wall and / or between the second insulating fixing beam and the second load-bearing wall.
  • the mastic strips are glued to the supporting structure.
  • the sealing membrane comprises a plurality of strakes parallel to a longitudinal direction perpendicular or oblique to said edge, each strake comprising a flat central portion resting on an upper surface of the thermally insulating barrier and two raised edges forming projecting towards the inside of the tank with respect to the central portion, the strakes being juxtaposed in a repeated pattern and welded together in a sealed manner at the level of the raised edges.
  • the insulating fixing beam comprises a lower face, that is to say a surface facing the first load-bearing wall, which can be made continuously for example in the form of a bottom wall, or discontinuous for example by lower edge surfaces or lower flanges of the shear webs.
  • the shear webs comprise a central portion oriented perpendicular to the edge and two peripheral portions extending perpendicular to the central portion, the peripheral portions being parallel to each other and framing the central portion .
  • the peripheral portions comprise a lower flange and an upper flange extending parallel to the first load-bearing wall, the lower flanges of the set of shear webs forming a continuous or discontinuous bottom wall, the upper flanges of all the shear webs forming a continuous or discontinuous cover wall.
  • the peripheral portions comprise a front flange and a rear flange extending perpendicularly to the first load-bearing wall, the front flanges of the set of shear webs forming a continuous or discontinuous front wall facing away from of the ridge, the rear flanges of all the shear webs forming a continuous or discontinuous rear wall facing the ridge.
  • the insulating fixing beam comprises a bottom element comprising a flat portion resting on the first load-bearing wall and two lateral flanges framing the shear webs and extending parallel to the shear webs in the direction of the of metal roofing, the side wings being fixed by a fixing means on the central portion of end shear webs, the end shear webs being two shear webs formed at the ends of the insulating fixing beam in the direction of the ridge.
  • the bottom element comprises at least one support element fixed to one of the side wings, the support element protruding from one of the end shear webs, the means anchor comprising a device forming a hook located on the support element and configured to fix the insulating fixing beam to the first load-bearing wall.
  • the support element is fixed to one end of a side wing of the bottom element.
  • the support element is fixed to one of the side wings so as to sandwich an end shear web.
  • the bottom element is made of a metallic material or of a composite material.
  • the metal cover element comprises two internal wings extending at the ends of the flat portion and parallel to the first lateral wing and to the second lateral wing, the internal wings being located between the peripheral portions of the veils shear, the first side wing and the second lateral wing framing the peripheral portions of the shear webs, the first lateral wing being fixed by means of fixing to one of the internal wings and the second lateral wing being fixed by means of attachment to each other of the inner wings.
  • an inner wing comprises a plurality of wing portions spaced from each other in the direction of the edge, a shear web or the main portion of a shear web being interposed between two portions of adjacent wings.
  • Such a storage installation can be an onshore storage installation, for example for storing LNG or be a floating, coastal or deep-sea storage installation, in particular on an LNG carrier, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a storage facility can also serve as a fuel tank in any type of ship.
  • a vessel for the transport of a cold liquid product comprises a double hull and an aforementioned storage facility, part of the double hull forming the supporting structure of the storage facility.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or land and a pump to cause a flow of cold liquid product through the insulated pipes from or to the floating or land storage facility to or from the tank of the ship.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation to or from the ship's tank.
  • FIG. 1 there is shown the multilayer structure of two tank walls 1 and 101 of a sealed and thermally insulating tank for storing a liquefied gas, such as liquefied natural gas (LNG).
  • Each vessel wall 1, 101 comprises successively, in the direction of the thickness, from the outside towards the interior of the vessel, a secondary thermally insulating barrier 2, 102 retained on a bearing wall 3, 103, a secondary sealing membrane 4, 104 resting against the secondary thermally insulating barrier 2, 102, a primary thermally insulating barrier 5, 105 resting against the secondary sealing membrane 4, 104 and a primary sealing membrane 6, 106 intended to be in contact with the liquefied natural gas contained in the tank.
  • LNG liquefied natural gas
  • the load-bearing structure can in particular be formed by the hull or the double hull of a ship.
  • the supporting structure comprises a plurality of supporting walls 3, 103 defining the general shape of the tank, usually a polyhedral shape.
  • the two load-bearing walls 3 and 103 meet at an edge 100, forming a dihedral angle which could have different values.
  • an angle of 90° is represented.
  • the secondary thermally insulating barrier 2, 102 comprises a plurality of secondary insulating panels 7, 107 which are anchored to the load-bearing wall 3, 103 by means of retaining devices (not shown) known elsewhere.
  • a secondary insulating panel 7, 107 comprises a bottom plate, a cover plate and possibly an intermediate plate, for example made of plywood.
  • the secondary insulating panel 7, 107 also comprises one or more layers of insulating polymer foam sandwiched between the bottom plate, the cover plate and the optional intermediate plate and glued to these.
  • the insulating polymer foam may in particular be a polyurethane-based foam, optionally reinforced with fibers
  • the secondary sealing membrane 4, 104 comprises a continuous sheet of metal strakes, with raised edges.
  • the strakes are welded by their raised edges to parallel welding supports which are fixed in grooves formed on the cover plates of the secondary insulating panels 7, 107.
  • the strakes are, for example, made of Invar® : that is that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2.10 -6 and 2.10 -6 K -1 . It is also possible to use alloys of iron and manganese whose coefficient of expansion is typically of the order of 7 to 9.10 -6 K -1 .
  • the primary thermally insulating barrier 5, 105 comprises a plurality of primary insulating panels 8, 108 which can be produced according to various structures known elsewhere.
  • the primary sealing membrane 6, 106 can be made in various ways. On the figure 1 , it comprises a continuous layer of sheet metal which has two series mutually perpendicular waves.
  • the first series of corrugations 9, 109 extends perpendicular to the ridge 100.
  • the second series of corrugations 10, 110 extends parallel to the ridge 100.
  • the two series of corrugations can have a regular spacing or periodic irregular spacing
  • the secondary sealing membrane 4 of the first tank wall 1 and the secondary sealing membrane 104 of the second tank wall 101 are anchored to the load-bearing structure using a first insulating fixing beam 11 and a second insulating fixing beam 111 respectively, at a corner of the tank, that is to say close to the edge 100 where the two supporting walls 3 and 103 meet.
  • the secondary thermally insulating barrier 2 of the first vessel wall 1 and the secondary thermally insulating barrier 102 of the second vessel wall 101 comprise near the edge 100 a first insulating fixing beam 11 and a second insulating beam fixing 111 respectively, the first insulating fixing beam 11 and the second insulating fixing beam 111 being in the continuity of the secondary insulating panels 7, 107.
  • the first insulating fixing beam 11 and the second insulating fixing beam 111 are anchored to the first supporting wall 3 and the second supporting wall 103 respectively and have a length extending parallel to the edge 100.
  • Each insulating fixing beam 11 , 111 comprises a lower face 12 located against the bearing wall 3, 103 and an upper face 3 held at a distance from the lower face 12 by a plurality of shear webs 14.
  • the shear webs 14 are flat walls located between the upper face and the lower face and oriented perpendicular to the edge 100.
  • Each insulating fixing beam 11, 111 comprises a thermally insulating lining, such as glass wool or perlite or a block of foam, between the shear webs 14.
  • the shear webs 14 are regularly distributed along the insulating fixing beams 11, 111, as visible on the figure 4 And 6 .
  • Each insulating fixing beam 11, 111 also comprises an upper plate 40 at the level of the upper face 13 making it possible to fix the shear webs 14 to each other in an upper portion.
  • each insulating fixing beam 11, 111 comprises a lower plate 41 at the level of the lower face 12 making it possible to fix the shear webs 14 to each other in a lower portion.
  • the insulating fixing beams 11, 111 comprise a metal covering element 15 comprising a flat portion 16 located against the upper face 13, a first lateral wing 17 extending perpendicularly to the shear webs 14 against an edge of the webs 14 adjacent to the edge 100 and in the direction of the lower face 12, and a second lateral wing 18 extending perpendicularly to the shear webs 14 against an edge of the webs 14 opposite the edge 100 and in the direction of the lower face 12.
  • a end edge of the secondary sealing membrane 4, 104 is welded to the flat portion 16 of the metal cover element 15.
  • the first lateral wing 17 and the second lateral wing 18 are connected to the planar portion 16 at its two opposite ends.
  • the metal cover element 15 is placed against three faces of the insulating fixing beams 11, 111 in order to transmit the tensile/compressive forces of the secondary sealing membrane 4, 104 to the insulating fixing beam 11, 111 .
  • the supporting structure comprises a first abutment device 19 projecting from the first supporting wall 3 in the direction of the interior of the tank, the first abutment device 19 having a length extending parallel to the edge 100.
  • the first device abutment 19 is placed along an edge of the first insulating fixing beam 11 opposite the edge 100 and is configured to form an abutment limiting the displacement of the first insulating fixing beam 11 in the longitudinal direction of the strakes of the secondary sealing membrane 4 of the first vessel wall 1.
  • the supporting structure also comprises a first additional abutment device 20 projecting from the first supporting wall 3 in the direction of the interior of the vessel, the first abutment device additional first abutment device 20 having a length extending parallel to ridge 100.
  • the first abutment device 19 and the additional abutment device 20 block the translation of the first insulating fixing beam 11 in the longitudinal direction of the strakes of the secondary waterproofing membrane 4.
  • the support structure comprises a second abutment device 119 and a second additional abutment device 120 which protrude from the second wall carrier 103 and which block the translation of the second insulating fixing beam 111 in the longitudinal direction of the strakes of the secondary sealing membrane 104.
  • the first abutment device 19 comprises a first abutment bar 30 extending continuously parallel to the edge 100 along the edge opposite the edge 100 of the first insulating fixing beam 11 and the first abutment device additional 20 comprises a first additional abutment bar 31 extending continuously parallel to the edge 100 along the edge adjacent to the edge 100 of the first insulating fixing beam 11.
  • the second abutment device 119 comprises a second stop bar 130 and the second stop device 120 comprises an additional second stop bar 131.
  • the insulating fixing beams 11, 111 each comprise an external anti-tilting portion 21 extending the lower face 12 in the direction of the edge 100 and extending over a portion of the dimension separating the lower face 12 from the upper face 13.
  • the external anti-spill portion is fixed by a fixing means 47 to the supporting structure.
  • the external anti-tilt portion 21 is formed by extension portions 43 of the shear webs 14, that is to say portions of the webs 14 which extend at the - beyond the main portion located under the metal cover element 15.
  • the lower plate 41 can be extended in the same direction as the extension portions 43 in order to be placed below them.
  • the fixing means 47 is formed by a stud passing through the external anti-tilt portion 21 right through so that a first end of the stud is anchored to the load-bearing structure and a second end of the stud opposite the first end is fitted with a nut.
  • the fixing means 47 also comprises a reinforcement plate placed between the nut and the external anti-spill portion 21 so that the tightening force of the nut is exerted over the entire surface of the reinforcement plate in order to fix the insulating fixing beams 11, 111 to the load-bearing structure.
  • the insulating fixing beams 11, 111 may comprise an internal anti-tilt portion 22 formed by the extension portions 43, the internal anti-tilt portion 22 extending the lower face 12 in a direction opposite to the external anti-spill portion 21 and extending over a portion of the dimension separating the lower face 12 from the upper face 13.
  • a metal gasket 23 comprising a first face and a second face forming an angle with the first equal at the angle of the dihedral.
  • the first face is welded in a leaktight manner to the secondary sealing membrane 4 of the first wall of the tank 1 and the second face is welded in a leakproof manner to the secondary sealing membrane 104 of the second wall of the tank 101 in order to form a continuous sealing membrane at the corner of the tank.
  • the fixing means 47 of the first tank wall 1 is offset laterally from the edge 100 so as not to be in alignment with the secondary sealing membrane 104 and the secondary thermally insulating barrier 102 of the second wall tank 101 so as to facilitate the attachment of the external anti-spill portion 21 to the support structure during assembly of the tank. The same goes for the fixing means 47 of the second tank wall 101.
  • This shift for the fixing of the first anti-spill portions 21 induces a shift of the insulating fixing beams 11, 111 thus increasing the size of the joint 23 between the secondary sealing membranes 4, 104.
  • the tank therefore comprises a corner insulation block 25 located in the extension of the secondary thermally insulating barrier 2 of the first wall of the tank 1 and of the secondary thermally insulating barrier 102 of the second wall of tank 101 at the level of the edge 100.
  • the corner insulation block 25 comprises a first face 26 located against the first load-bearing wall 3, a second face 27 located against the second load-bearing wall 103, a third face 28 configured to form a bearing surface on the first face of the metal joint 23 and a fourth face 29 configured to form a bearing surface on the second face of the metal joint 23.
  • the corner insulating block 25 therefore serves as a support for the joint metal 23 to prevent it, given its large size due to the lateral offset, from being unsupported.
  • the metal seal 23 in the first embodiment is made with an outgoing corrugation 24 located on its first side and an outgoing corrugation 24 located on its second side, the corrugations 24 being located at the level of the space separating the block from corner insulation 25 and the insulating fixing beams 11, 111, so as to form a corrugated metal joint 23.
  • the corrugations 24 make it possible in particular to absorb the tensile stress of the secondary sealing membrane 4, 104.
  • FIG 5 shows a third embodiment which differs from the first embodiment of the figure 1 by the shape of the metal seal 23.
  • the metal seal 23 comprises re-entrant corrugations 24 on its first face and on its second face, so as to form a corrugated metal seal 23.
  • the tank comprises a primary corner insulation block 50 which is fixed by a coupler 46 to the first insulating fixing beam 11 and by a coupler 46 to the second insulating fixing beam 111.
  • the second embodiment illustrated in picture 2 differs in particular from the first embodiment in that the fixing means 47 are not offset laterally with respect to the edge 100.
  • the fixing means 47 of the external anti-spill portion 21 of the first insulating fixing beam 11 is in alignment with the secondary sealing membrane 104 of the second vessel wall 101.
  • the metal seal 23 of the second embodiment is sufficiently supported by the metal cover elements 15 of the insulating fixing beams 11, 111.
  • the second embodiment therefore does not include a corner block at the junction of the secondary thermally insulating barriers 2, 102
  • only an insulating lining 48 is placed between the insulating fixing beams 11, 111 at the level of the edge 100 in this embodiment.
  • THE figure 5 And 6 represent a fourth embodiment of the insulating fixing beams 11, 111 and the abutment devices 19, 20, 119, 120.
  • each insulating fixing beam 11, 111 comprises an external anti-tilt portion 21 and an internal anti-tilt portion 22.
  • the external anti-tilt portion 21 here comprises a first lateral bar 44 extending parallel to the edge and comprising a wall fixed against a side surface of the shear webs 14.
  • the internal anti-spill portion 22 includes a second sidebar 45 so that the first sidebar 44 and the second sidebar 45 frame the shear webs 14.
  • the abutment devices 19, 119 comprise a plurality of abutment tabs 32, 132 regularly spaced along the edge opposite the edge 100 of the insulating fixing beams 11, 111 respectively.
  • the additional abutment devices 20, 120 comprise a plurality of additional abutment tabs 33, 133 regularly spaced along the edge adjacent to the edge 100 of the insulating fixing beams 11, 111 respectively.
  • the abutment lugs 32, 132 comprise a first lug portion 34 extending in a plane parallel to the underside 12 of the insulating fixing beams 11, 111 where the first lug portion 34 overlaps the anti- internal spillage 22.
  • the additional abutment lugs 33, 133 comprise a first lug portion 34 extending in a plane parallel to the underside 12 of the fixing insulating beams 11, 111 where the first lug portion 34 comes overlapping on the external anti-spill portion 21.
  • the abutment lugs 32, 132 as well as the additional abutment lugs comprise a second lug portion 35 extending in a plane orthogonal to the first lug portion 34 and being orthogonal to the shear webs 14.
  • the second leg portion 35 is fixed to the load-bearing walls 3, 103.
  • the abutment legs form an anchoring device forming a hook making it possible to fix the insulating fixing beam 11, 111 to the load-bearing structure.
  • FIG. 6 illustrates the assembly in the fourth embodiment between the upper 40 and lower 41 plates, and the shear webs 14.
  • the shear webs 14 comprise on their upper edge two upper tenons 36 separated from each other so as to form an upper notch 37.
  • the upper plate 40 comprises as for it has a plurality of grooves 42 extending parallel to the shear webs 14 and having a complementary shape to the upper tenons 36 so that the upper tenons 36 fit into the grooves 42 of the upper plate 40, in order to form an assembly mortise and tenon between the shear webs 14 and the upper plate 40.
  • the upper plate 40 thus extends through the shear webs 14 in the upper notches 37.
  • the shear webs 14 comprise on their lower edge two lower studs 38 separated from each other so as to form a notch bottom 39.
  • the bottom plate 41 comprises for its part a plurality of grooves 42 extending parallel to the shear webs 14 and having a shape complementary to the lower tenons 38 so that the lower tenons 38 are housed in the grooves 42 of the lower plate 41, in order to form a mortise and tenon assembly between the shear webs 14 and the lower plate 41.
  • the lower plate 41 thus extends through the shear webs 14 in the lower notches 39.
  • This assembly between the upper plate 40, the lower plate 41 and the shear webs 14 makes it possible to improve the transmission of shear forces in the insulating fixing beam 11, 111.
  • the fifth embodiment illustrated in figure 7 differs in particular from the first embodiment by the very structure of the insulating fixing beam 11, 111. Indeed, in this embodiment, the shear webs are fixed differently to the metal covering element. In addition, in this embodiment, the insulating fixing beam 11, 111 comprises a bottom element 53. This embodiment will be explained below in more detail with regard to the figures 16 and 17 .
  • the metal cover element 15 may comprise an additional planar wing formed in the extension of the planar portion 16 of the metal cover element 15 and extending in the direction of the edge 100.
  • the flat additional wing of the first insulating fixing beam 11 can extend so as to have one of its ends located in the extension or close to the extension of the sealing membrane 104 of the second wall of the tank 101.
  • the additional flat wing of the second insulating fixing beam 111 can extend so as to have one of its ends located in the extension or near the extension of the membrane of sealing 4 of the first tank wall 1.
  • the additional wing thus has in particular the function of carrying surface for the sealing membrane in the level of the edge of the tank, and in particular of carrying the seal 23 .
  • end shear webs 56 The two shear webs 14 formed at the ends of the insulating fixing beam 11, 111 in the direction of the edge will subsequently be called end shear webs 56.
  • the metal cover element 15 is similar to the first embodiment in that it comprises a flat portion 16, a first lateral wing 17 arranged at a first end of the flat portion 16 and a second lateral wing 18 arranged at a second end of flat portion 16, metal cover element 15 here being formed in one piece.
  • the shear webs 14, 56 comprise a central portion 51 oriented perpendicular to the edge as is already the case in the first embodiment.
  • the shear webs 14, 56 also include two flanges 52 extending perpendicular to the central portion 51.
  • the lower and upper flanges 252 are parallel to each other and frame the central portion 51.
  • the central portion 51 of the end shear webs 56 comprises in a lower part a step 61 projecting outwards from the insulating fixing beam 11, 111. This step 61 allows, using a device anchor forming a hook to come and fix, covering the step 61, the insulating fixing beam 11, 111 to the support structure.
  • the flanges 52 extend parallel to the first load-bearing wall 3 so as to form lower and upper flanges 252.
  • the lower flanges 252 placed end to end on a lower side of the shear webs 14, 56 form a wall continuous bottom parallel to the metal cover element 15. In an embodiment not shown, this surface could be discontinuous.
  • the top flanges 252 placed end to end form a continuous cover wall.
  • FIG. 9 shows a seventh embodiment of the fixing insulating beam 11, 111.
  • This embodiment is very similar to the sixth embodiment.
  • the insulating fixing beam 11, 111 comprises shear webs 14, 56 formed two by two in one piece so that the shear webs form shear tubes extending in the direction of the webs of shear tube 14, 56.
  • the shear tubes are attached to each other so as to form the fixing insulating beam 11, 111.
  • FIG 10 shows an eighth embodiment of the insulating fixing beam 11, 111.
  • the structure of this insulating fixing beam 11, 111 is close to that of the sixth embodiment. Indeed, in this embodiment, only the orientation of the soles 52 differs.
  • the soles 52 extend perpendicularly to the first bearing wall 3, so as to form front and rear soles 152.
  • the front soles 152 end to end on an opposite side of the shear webs 14, 56 at the edge 100 form a continuous front wall perpendicular to the metal cover element 15.
  • the rear flanges 152 form a continuous rear wall. In an embodiment not illustrated, these walls could be discontinuous.
  • FIG. 11 represents a ninth embodiment of the insulating fixing beam 11, 111.
  • This embodiment differs from the eighth embodiment by the number of shear webs 14, 56.
  • the insulating beam of attachment 11, 111 comprises only two end shear webs 56 so as to form an insulating attachment beam 11, 111 in the form of a box.
  • THE figures 12 and 13 show a tenth embodiment of the fixing insulating beam 11, 111.
  • the shear webs 14, 56 are formed in the same way as in the eighth embodiment.
  • the tenth embodiment differs from the previous embodiments by the presence of a bottom element 53 and a metal cover element 15 having a different structure.
  • the metal cover element 15 comprises two internal flanges 58 extending to the ends of the flat portion 16 and parallel to the first lateral flange 17 and to the second lateral flange 18.
  • the internal flanges 58 are located between the flanges front and rear 152 of the shear webs 14 so that an internal wing 58 is located against an internal face of a sole 52.
  • the internal wings 58 comprise a plurality of wing portions 59 spaced apart from each other in the direction of the edge 100 so that a shear web 14, 56 is interposed between two adjacent wing portions 59 .
  • the first lateral wing 17 and the second lateral wing 18 are formed of a plate fixed to an internal wing 58 by crossing the front and rear flanges 52 by fixing means 60, for example of the screw/ nut.
  • the plate forming one of the lateral wings 17, 18 is fixed to each of the wing portions 59 of an inner wing 58 at the level of the joint between two adjacent flanges 52.
  • the bottom element 53 is a metal bottom element 53 comprising a flat portion 54 forming the underside 12 of the insulating fixing beam 11, 111.
  • the bottom element 53 also comprises two lateral flanges 55 extending parallel to the shear webs 14, 56 and in the direction of the metal cover element 15.
  • the side wings 55 are here located against an internal face of the central portion 51 of the end shear webs 56.
  • the side wings 55 are fixed by a plurality of fixing means 60, for example of the screw/nut type, on the central portion 51 of the end shear webs 56.
  • Each lateral wing 55 is here formed by two portions of lateral wings 55 spaced one from the other.
  • the bottom element 53 also comprises support elements 57 attached to the side wings 55 and projecting from one of the main portions 51 of the shear webs end 56 towards the outside of the insulating fixing beam 11, 111.
  • the support elements 57 have an upper support surface allowing the aid of an anchoring device forming a hook to come covering the upper support surface, the insulating beam for fixing 11, 111 to the support structure.
  • the support elements 57 are thick hollow plates 57 through which one of the fixing means 60 passes, serving to fix one of the lateral flanges 55.
  • the thick plates 57 are fixed on an external face of the central portion 51 of the end shear webs 56.
  • THE figures 14 and 15 represent an eleventh embodiment of the insulating fixing beam 11, 111.
  • This embodiment is very similar to the tenth embodiment and differs only from the latter by certain characteristics of the bottom element 53.
  • the bottom element 53 is made of composite material.
  • Each side wing 55 is located at one end of the flat portion 54 and extends over the entire dimension of the bottom element 53 in the direction of the shear webs 14, 56.
  • the side wings 55 are here located against a face outer part of the central portion 51 of the end shear webs 56.
  • the support element 57 is in this embodiment a side wing extension extending orthogonally to the side wing 55 so as to protrude towards the outside of the insulating fixing beam 11, 111.
  • the support element comprises, as before, an upper support surface making it possible to anchor the insulating fixing beam 11, 111 to the load-bearing structure.
  • the front and rear flanges 152 of the end shear webs 56 do not project outwards from the insulating fixing beam 11, 111 with respect to the central portion 51. Indeed, the flanges 52 of the shear webs end 56 extend only from the central portion 51 to the shear web 14 adjacent.
  • THE figures 16 and 17 present in more detail the fifth embodiment of the insulating fixing beam 11, 111 appearing on the figure 7 .
  • the fifth embodiment is similar to the eleventh embodiment of the figures 14 and 15 and differs from it only by the front and rear flanges 152 of the end shear webs 56.
  • the flanges 52 of the end shear webs 56 extend on either side of the central portion 51 in the direction of the edge 100.
  • the support elements 57 do well protrudes from the central portion 51 of the end shear webs 56 but remains recessed from the flanges 52 of the end shear webs 56. This recess makes it easier to accommodate an anchoring device.
  • mastic strips 49 are arranged between the supporting structure and the insulating fixing beams 11, 111 in order to take up the irregularities in the flatness of the supporting structure.
  • mastic strips 49 can also be placed between the abutment devices 19, 119 and the insulating fixing beams 11, 111, and between the additional abutment devices 20, 120 and the insulating fixing beams 11, 111 in order to fill in any assembly play.
  • THE figures 18 to 21 represent a twelfth embodiment of the insulating fixing beam 11, 111.
  • the twelfth embodiment differs in particular from the fifth embodiment illustrated in figure 7 by the very structure of the insulating fixing beam 11, 111.
  • the shear webs 14 are fixed differently to the metal cover element 15.
  • the metal cover element. 15 and the elements allowing attachment to the supporting structure are designed differently.
  • FIG 18 particularly represents the assembly of the insulating beam 11, 111 for fixing to the other elements of the storage installation.
  • each insulating fixing beam 11, 111 therefore comprises a plurality of shear webs 14, thermally insulating gaskets 62 located between the shear webs 14, a lower plate 41 at the level of the lower face 12 between two adjacent shear webs 14 and metal cover elements 15 connecting two adjacent shear webs 14 at an upper face of the shear webs 14.
  • the metal cover elements 15 comprise a flat metal plate 63 provided with fixing holes 64 crossing it right through.
  • the fixing orifices 64 are configured to allow the passage of a fixing device 47, for example of the screw/nut type, which fixes the metal covering element 15 to one of the shear webs 14.
  • the flat metal plate 63 has a dimension in the direction of the edge 100 equal to the spacing between two adjacent shear webs 14 so as to be located and fixed to the right of these two adjacent shear webs 14.
  • the flat metal plate 63 comprises a support portion 65 projecting from the shear webs 14 in the direction of the secondary sealing membrane 4 and in a direction opposite to the edge 100, as seen in figure 19 And 21 , so that the end of the support portion 65 rests on the secondary insulating panel 7 adjacent.
  • the support portion 65 makes it possible to support the secondary sealing membrane 4 between the insulating fixing beam 11, 111 and the secondary insulating panel 7 adjacent to the insulating fixing beam 11, 111.
  • the end of the support portion 65 also comprises fixing holes 64 configured to allow the passage of a fixing device 47, for example of the screw/nut type, making it possible to fix the metal covering element 15 to the secondary insulating panel 7 adjacent.
  • a fixing device 47 for example of the screw/nut type
  • the metal covering element 15 may comprise a flange 66 connected to the flat metal plate 63 and extending against a face of the shear webs 14 close to the edge 100 and extending in the direction of the load-bearing structure. , as shown in figure 18 .
  • the shear webs 14 are made of composite material reinforced with fibers, the fibers 99 being oriented at +/- 45° as shown schematically in the figure 20 .
  • the fixing insulating beam 11, 111 comprises fixing brackets 67 comprising a first bracket wing 68 and a second bracket wing 69 connected to the first bracket wing 68 so as to form a right angle bracket.
  • the second angle wing 69 is glued to one of the shear webs 14 on an upper part thereof.
  • the first angle iron wing 68 is for its part provided with fixing holes 64 coinciding with the holes 64 of the metal covering element 15 so as to fix the first angle iron wing 68 with the flat metal plate 63 by means of the devices fixing 47.
  • two adjacent shear webs 14, the metal covering element 15 and the lower plate 41 form a parallelepipedic box where the angles 67 are located at two upper corners inside said box.
  • the second angle iron wing 69 comprises at its end remote from the first angle iron wing 68 a beveled portion 82 to limit the stresses in the bonding, as seen in figure 21 .
  • the flat metal plate 63 is fixed to the first angle wing 68 by welding so that it is not necessary for the flat metal plate 63 and the first angle wing 68 to comprise fixing holes 64 allowing them to be fixed to one another.
  • the flat metal plate 63 and the first angle leg 68 still include fixing holes 64 to allow fixing in addition to welding.
  • the insulating fixing beam 11, 111 comprises on one face of each shear web 14 opposite to the position of the fixing brackets 67, a cleat 83 extending in a direction from the abutment device 19, 119 to the abutment device additional 20, 120.
  • the cleat 83 comprises a main portion 84, an upper extension 85 and a lower extension 86 on either side of the main portion 84.
  • the main portion 84, the upper extension 85 and the lower extension 86 are glued to the shear veil 14, the upper extension 85 and the lower extension 86 making it possible to increase the bonding surface of the cleat 83.
  • the upper extension 85 is bevelled so as to have a decreasing thickness as it moves away of the main portion 84 in order to limit the stresses in the bonding.
  • the cleat 83 makes it possible to fix the insulating fixing beam 11, 111 to the supporting structure using anchoring studs 92 distributed over the length of the cleat 83, for example two in number as illustrated in figure 18 .
  • the anchoring stud 92 is for example provided with a clamping plate coming against an upper face of the main portion 84 of the cleat 83 in order to hold the cleat 83 in position and therefore the shear web 14 to the load-bearing structure.
  • the insulating fixing beam 11, 111 is placed between the abutment device 19, 119 and the additional abutment device 20, 120 in order to limit the displacement of the insulating fixing beam 11, 111 in the longitudinal direction of the strakes of the membrane secondary sealing 4.
  • Each stop device 19, 119 comprises a stop bar 30, 130 extending continuously parallel to the edge 100 along the edge opposite the edge 100 of the insulating fixing beam 11 , 111.
  • Each additional stop device 20, 120 comprises an additional stop bar 31, 131 extending continuously parallel to the edge 100 along the edge opposite the edge 100 of the insulating fixing beam 11, 111.
  • the abutment device 19, 119 comprises a U-shaped abutment element comprising a central portion extending parallel to the edge 100 along the edge opposite the edge 100 of the insulating fixing beam 11, 111, a first branch connected to the central part and extending perpendicularly to the edge 100 in the direction of the latter so as to be fixed to one of the anchoring studs 92, and a second branch connected to the central part opposite the first branch and extending perpendicularly to the edge 100 in the direction of the latter so as to be fixed to one of the anchoring studs 92.
  • the abutment element comes to frame on either side in the direction of the edge 100 the insulating fixing beam 11, 111 by being fixed to the anchoring studs 92.
  • a metal seal 23 comprising a first face and a second face forming an angle with the first equal to the angle of the dihedral.
  • the metal joint 23 comprises re-entrant corrugations 24 on its first side and on its second side, so as to form a corrugated metal joint 23.
  • corrugations 24 are located on a part of the metal joint 23 which is not supported by the insulating fixing beams 11, 111, the metal gasket 23 being supported on this part by a corner insulation block 25 having a surface of shape complementary to the metal gasket 23, as illustrated in figure 18 .
  • the metal seal 23 is not connected directly to an end metal strake 87 of the secondary sealing membrane 4, 104.
  • the membrane secondary seal 4, 104 comprises a metal anchor strip 88 welded to the support portion 65 of the metal cover element 15.
  • the end metal strake 87 is then welded in a sealed manner to a portion of the metal strip anchor 88 and the metal seal 23 is welded in a sealed manner to another portion of the metal anchor strip 88.
  • the seal may also have an offset portion 89 so as to partially cover the strip 88.
  • the metal joint 23 is welded in a leaktight manner directly to the metal cover element 15 while the end metal strake 87 is welded in a leaktight manner to a portion of the metal anchoring strip 88. It is therefore not necessary in this mode to provide an offset portion 89 on the metal seal 23.
  • the metal seal 23 and the end metal strake 87 are welded in a sealed manner. directly to the metal cover element 15 so that a portion of the metal cover element 15 serves as an extension of the secondary sealing membrane 4. It is therefore not necessary in this mode to provide a metal strip anchor 88.
  • the secondary insulating panel 7 adjacent to the insulating fixing beam 11, 111 comprises in particular an upper plate 90, a block of insulating foam and a lower plate.
  • the upper plate 90 comprises a counterbore 91 extending in the direction of the edge 100 and located on the end closest to the edge 100 of the upper plate 90.
  • the counterbore 91 is made on a thickness of the plate upper 90 equal to the thickness of the metal covering element 15 plus the thickness of the metal anchoring strip 88.
  • the counterbore 91 thus makes it possible to keep a good flatness of the secondary sealing membrane 4, fitting with metal seal 23 and the end strake 87.
  • the end of the support portion 65 thus comes to be placed in the counterbore 91 of the secondary insulating panel 7.
  • the tank comprises a primary corner insulation block 50 which is fixed by two couplers 46 to the first insulating fixing beam 11 and by two couplers 46 to the second insulating fixing beam 111.
  • the metal covering element 15 also comprises fixing holes 64 located in the middle of the flat metal plate 63 between the shear webs 14 so as to allow the couplers 46 to fix the primary corner block 50 to the insulating beams of attachment 11, 111.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (33)

  1. Lageranlage für ein verflüssigtes Gas, eine Tragekonstruktion und einen in der Tragekonstruktion angeordneten, dichten und wärmeisolierenden Tank umfassend, wobei der Tank mindestens eine erste Tankwand (1) umfasst, die auf einer ersten Tragewand (103) der Tragekonstruktion befestigt ist, und eine zweite Tankwand (101), die an einer zweiten Tragewand (103) der Tragekonstruktion befestigt ist, wobei jede Tankwand (1, 101) mindestens eine Abdichtungsmembran (4, 104) und mindestens eine Wärmebarriere (2, 102) umfasst, wobei die Wärmebarriere (2, 102) zwischen der Abdichtungsmembran (4, 104) und der Tragekonstruktion angeordnet ist, und wobei die erste Tragewand (3) mit der zweiten Tragewand (103) entlang einer Kante (100) einen Winkel einschließt und die Abdichtungsmembran (4, 104) der ersten Tragewand (3) eine Vielzahl von Metallplatten (87) umfasst,
    in der die Abdichtungsmembran (24) eine Vielzahl von zu einer Längsrichtung senkrecht auf der genannten Kante (100) parallelen Gängen aufweist, wobei jeder Gang einen ebenen zentralen Bereich aufweist, der auf einer oberer Fläche der Wärmebarriere ruht, und zwei aufwärts gerichtete Ränder, die relativ zum zentralen Bereich ins Innere des Tanks ragen, wobei die Gänge in einem sich wiederholenden Muster nebeneinander angeordnet und in Höhe der aufwärts gerichteten Ränder abdichtend zusammengeschweißt sind,
    in der die Wärmebarriere (2) der ersten Tankwand (1) einen isolierenden Befestigungsbalken (11) umfasst, der an der ersten Tragewand (3) verankert ist und eine Längsrichtung hat, die parallel zur Kante (100) verläuft, wobei der isolierende Befestigungsbalken (11) eine Oberseite (13) aufweist, die durch eine Vielzahl von Scherungsschirmen (14) in einem Abstand von der ersten Tragewand (3) gehalten wird, wobei sich die Scherungsschirme (14) zwischen der Oberseite (13) und der ersten Tragewand (3) befinden und senkrecht zur Kante (100) orientiert sind, wobei der isolierende Befestigungsbalken (11) eine Isoliergarnitur aufweist, die zwischen den Scherungsschirmen (14) angeordnet ist,
    und in der die Tragekonstruktion eine Anschlagvorrichtung (19) aufweist, die von der ersten Tragewand (3) in Richtung des Tankinneren absteht, wobei die Anschlagvorrichtung (19) eine Längsrichtung hat, die parallel zur Kante (100) verläuft, wobei die Anschlagvorrichtung (19) einem Rand des isolierenden Befestigungsbalkens (11), der von der Kante (100) abgewandt ist, entlang angeordnet und dafür eingerichtet ist, einen Anschlag zu bilden, der Verschiebungen des isolierenden Befestigungsbalkens (11) in einer sich von der zweiten Tankwand (101) entfernenden Richtung einschränkt,
    dadurch gekennzeichnet, dass der Tank einen Winkelisolationsblock umfasst, der sich im Bereich der Kante in der Verlängerung der Wärmebarriere der ersten Tankwand und der Wärmebarriere der zweiten Tankwand befindet, wobei der Winkelisolationsblock dafür eingerichtet ist, die Kontinuität der Wärmebarriere der ersten Tankwand und der Wärmebarriere der zweiten Tankwand im Bereich der Kante der Tragekonstruktion sicherzustellen,
    der isolierende Befestigungsbalken an den Winkelisolationsblock anschließt,
    und der isolierende Befestigungsbalken (11) ebenfalls ein metallisches Abdeckteil (15) aufweist, das einen ebenen Teil (16) umfasst, der die Oberseite (13) bildet, wobei ein Endrand der Abdichtungsmembran (4) der ersten Tankwand (1) an den ebenen Teil (16) des metallischen Abdeckteils (15) geschweißt ist.
  2. Lageranlage nach Patentanspruch 1, in der das metallische Abdeckteil (15) eine ebene Metallplatte (63) umfasst, die einen Stützteil (65) aufweist, der von den Scherungsschirmen (14) in Richtung der Abdichtungsmembran (4, 104) und in einer Orientierung weg von der Kante (100) absteht, derart, dass ein Ende des Stützteils (65) auf einer an den isolierenden Befestigungsbalken (11, 111) anschließenden Isolierplatte (7) der Wärmebarriere (2, 102) ruht.
  3. Lageranlage nach Patentanspruch 2, in der die ebene Metallplatte (63) eine Abmessung in der Richtung der Kante (100) aufweist, die dem Abstand zwischen zwei aufeinanderfolgenden Scherungsschirmen (14) gleich ist, und derart eingerichtet ist, dass sie sich zwischen den beiden aufeinanderfolgenden Scherungsschirmen (14) erstreckt.
  4. Lageranlage nach einem der Patentansprüche 1 bis 3, in der die Scherungsschirme (14) aus einem Verbundwerkstoff gefertigt sind, der ein Polymerharz und Fasern (99) aufweist.
  5. Lageranlage nach einem der Patentansprüche 1 bis 4, in der der isolierende Befestigungsbalken (11, 111) ein Befestigungsprofil (67) umfasst, das einen ersten Profilflügel (68) und einen mit dem ersten Profilflügel (68) verbundenen zweiten Profilflügel (69) aufweist, wobei der zweite Profilflügel (69) an einem der Scherungsschirme (14) befestigt ist und der erste Profilflügel (68) an das metallische Abdeckteil (15) geschweißt ist.
  6. Lageranlage nach einem der Patentansprüche 1 bis 4, in der der isolierende Befestigungsbalken (11, 111) ein Befestigungsprofil (67) umfasst, das einen ersten Profilflügel (68) und einen mit dem ersten Profilflügel (68) verbundenen zweiten Profilflügel (69) aufweist, wobei der zweite Profilflügel (69) an einem der Scherungsschirme (14) befestigt ist und der erste Profilflügel (68) mindestens eine Befestigungsöffnung (64) aufweist, die mit einer Befestigungsöffnung (64) des metallischen Abdeckteils (15) zusammenfällt, um den ersten Profilflügel (68) mit Hilfe einer Befestigungsvorrichtung (47), die die Befestigungsöffnung (64) des metallischen Abdeckteils (15) und die Befestigungsöffnung (64) des ersten Profilflügels (68) durchquert, an der ebenen Metallplatte (63) zu befestigen.
  7. Lageranlage nach einem der Patentansprüche 1 bis 6, in der der isolierende Befestigungsbalken (11, 111) ein Tragstück (83) aufweist, das an einer Seite des Scherungsschirmes (14) senkrecht zur Kante (100) befestigt ist und sich parallel zum metallischen Abdeckteil (15) erstreckt, wobei das Tragstück (83) einen Hauptteil (84), eine obere Verlängerung (85) und eine untere Verlängerung (86) aufweist, wobei der Hauptteil (84), die obere Verlängerung (85) und die untere Verlängerung (86) am Scherungsschirm (14) befestigt sind, und in dem das Tragstück (83) mit Hilfe von Verankerungsstiften (92) an der Tragekonstruktion befestigt ist, die über eine Länge des Tragstückes (83) verteilt sind, wobei die Verankerungsstifte (92) eine Klemmkraft auf eine Oberseite des Hauptteils (84) des Tragstückes (83) ausüben.
  8. Lageranlage nach Patentanspruch 7, in der die obere Verlängerung (85) derart angefast ist, dass sie vom Hauptteil (84) sich entfernend eine sich verringernde Dicke aufweist.
  9. Lageranlage nach einem der Patentansprüche 1 bis 8, in der die Anschlagvorrichtung (19) eine Anschlagstange (30) aufweist, wobei sich die Anschlagstange (30) ununterbrochen parallel zur Kante (100) entlang dem von der Kante (100) angewandten Rand des isolierenden Befestigungsbalkens (11) erstreckt.
  10. Lageranlage nach einem der Patentansprüche 1 bis 8, in der die Anschlagvorrichtung (19) mehrere Anschlagstücke (32) aufweist, wobei die Anschlagstücke (32) entlang dem von der Kante (100) abgewandten Rand des isolierenden Befestigungsbalkens (11) regelmäßig beabstandet sind.
  11. Lageranlage nach einem der Patentansprüche 1 bis 10, in der der isolierende Befestigungsbalken (11) ein inneres Kippschutzteil (22) aufweist, das die Scherungsschirme (14) in einer von der Kante (100) abgewandten Richtung und sich auf einen Teil der Abmessung erstreckend verlängert, die die erste Tragewand (3) vom metallischen Abdeckteil (15) trennt, wobei das innere Kippschutzteil (22) durch mindestens ein Befestigungsorgan (19, 47) an der ersten Tragewand (3) befestigt ist, und in dem die Anschlagvorrichtung (19) eine Vorrichtung aufweist, die einen Haken bildet und dafür gestaltet ist, das innere Kippschutzteil (22) an der ersten Tragewand (3) zu befestigen.
  12. Lageranlage nach einem der Patentansprüche 1 bis 11, in der der isolierende Befestigungsbalken (11) ein äußeres Kippschutzteil (21) aufweist, das die Scherungsschirme (14) in Richtung der Kante (100) und sich auf einen Teil der Abmessung erstreckend verlängert, die die erste Tragewand (3) vom metallischen Abdeckteil (15) trennt, wobei das äußere Kippschutzteil (21) durch ein Befestigungsorgan (47) an der ersten Tragewand (3) befestigt ist.
  13. Lageranlage nach Patentanspruch 11 oder 12, in der das Befestigungsorgan (47) einen Bolzen aufweist, der das äußere Kippschutzteil (21) oder das innere Kippschutzteil (22) an der Tragekonstruktion befestigt, derart, dass ein erstes Ende des Bolzens an der Tragekonstruktion verankert ist und ein dem ersten Ende entgegengesetztes zweites Ende des Bolzens mit einer Mutter versehen ist, die auf das äußere Kippschutzteil (21) oder das innere Kippschutzteil (22) drückt.
  14. Lageranlage nach einem der Patentansprüche 1 bis 13, in der die Tragekonstruktion eine zusätzliche Anschlagvorrichtung (20) aufweist, die von der ersten Tragewand (3) in Richtung des Tankinneren absteht, wobei die zusätzliche Anschlagvorrichtung (20) eine Längsrichtung hat, die parallel zur Kante (100) verläuft, wobei die zusätzliche Anschlagvorrichtung (20) einem der Kante (100) nächstgelegenen Rand des isolierenden Befestigungsbalkens (11) entlang angeordnet und dafür eingerichtet ist, einen Anschlag zu bilden, der Verschiebungen des isolierenden Befestigungsbalkens (11) in einer der Richtung der Anschlagvorrichtung (19) entgegengesetzten Richtung einschränkt.
  15. Lageranlage nach Patentanspruch 14, in der die zusätzliche Anschlagvorrichtung (20) eine zusätzliche Anschlagstange (31) aufweist, wobei sich die zusätzliche Anschlagstange (31) parallel zur Kante (100) entlang dem von der Kante (100) abgewandten Rand des isolierenden Befestigungsbalkens (11) ununterbrochen erstreckt.
  16. Lageranlage nach Patentanspruch 14, in der die zusätzliche Anschlagvorrichtung (20) mehrere zusätzliche Anschlagstücke (33) aufweist, wobei die zusätzlichen Anschlagstücke (33) entlang dem von der Kante (100) abgewandten Rand des isolierenden Befestigungsbalkens (11) regelmäßig beabstandet sind.
  17. Lageranlage nach Patentanspruch 11 oder Patentanspruch 12, in der mindestens entweder das äußere Kippschutzteil (21) oder das innere Kippschutzteil (22) von Verlängerungsteilen (43) der Scherungsschirme (14) gebildet wird.
  18. Lageranlage nach Patentanspruch 11 und Patentanspruch 12 in Kombination, in der das äußere Kippschutzteil (21) eine erste seitliche Stange (44) umfasst, die sich parallel zur Kante (100) erstreckt, wobei die erste seitliche Stange (44) eine Wand aufweist, die an eine Seitenfläche der Scherungsschirme (14) angelegt ist, und das innere Kippschutzteil (22) eine zweite seitliche Stange (45) umfasst, die sich parallel zur Kante (100) erstreckt, wobei die zweite seitliche Stange (45) eine Wand aufweist, die an eine andere Seitenfläche der Scherungsschirme (14) angelegt ist, indem die erste seitliche Stange (44) und die zweite seitliche Stange (45) die Scherungsschirme (14) einrahmen.
  19. Lageranlage nach einem der Patentansprüche 1 bis 18, in der das metallische Abdeckteil (15) des isolierenden Befestigungsbalkens (11) einen ersten Seitenflügel (17) umfasst, der sich senkrecht zu den Scherungsschirmen (14) und in Richtung der ersten Tragewand (3) erstreckt, wobei der erste Seitenflügel (17) mit der Anschlagvorrichtung (19) die Scherungsschirme (14) umklammert, um die Scherkräfte aufzunehmen, die von der Abdichtungsmembran (4, 104) ausgeübt werden.
  20. Lageranlage nach Patentanspruch 19, in der das metallische Abdeckteil (15) des isolierenden Befestigungsbalkens (11) einen zweiten Seitenflügel (18) umfasst, der sich senkrecht zu den Scherungsschirmen (14) und in Richtung der ersten Tragewand (3) erstreckt, derart, dass der erste Seitenflügel (17) und der zweite Seitenflügel (18) die Scherungsschirme (14) einrahmen, wobei der erste Seitenflügel (17) sich der Kante (100) näher befindet, als der zweite Seitenflügel (18).
  21. Lageranlage nach einem der Patentansprüche 1 bis 20, in der der Tank eine gewellte Dichtung (23) umfasst, die eine erste Seitenfläche und eine zweite Seitenfläche, die mit der ersten Seitenfläche einen Winkel einschließt, umfasst, wobei die erste Seitenfläche abdichtend an die Abdichtungsmembran (4) der ersten Tankwand (1) geschweißt ist und die zweite Seitenfläche abdichtend an die Abdichtungsmembran (104) der zweiten Tankwand (101) geschweißt ist, wobei die gewellte Dichtung (23) dafür gestaltet ist, die Abdichtungsmembran (4) der ersten Tankwand (1) und die Abdichtungsmembran (104) der zweiten Tankwand (101) abdichtend zu verbinden.
  22. Lageranlage nach Patentanspruch 21, in der die Abdichtungsmembran (4, 104) ein metallisches Verankerungsband (88) aufweist, das an das metallische Abdeckteil (15) geschweißt ist, wobei eine der Metallplatten (87) abdichtend auf einen Teil des metallischen Verankerungsbandes (88) geschweißt ist und die metallische Dichtung (23) abdichtend auf einen anderen Teil des metallischen Verankerungsbandes (88) geschweißt ist.
  23. Lageranlage nach Patentanspruch 22, in der die sekundäre Isolierplatte (7), die an den isolierenden Befestigungsbalken (11, 111) anschließt, eine obere Platte (90) aufweist, die mit einer Senkung (91) versehen ist, die in Richtung der Kante (100) verläuft und am der Kante (100) nächstgelegenen Ende der oberen Platte (90) befindet, wobei ein Ende des metallischen Abdeckteils (15) in der Senkung (91) angeordnet ist, um eine ebene Trageoberfläche für die Abdichtungsmembran (4, 104) zu erzielen.
  24. Lageranlage nach einem der Patentansprüche 1 bis 23, in der die Wärmebarriere (2) der ersten Tankwand (1) oder die Wärmebarriere (102) der zweiten Tankwand (101) eine Vielzahl von Isolierplatten (7, 107) umfasst, die eine untere Wand nahe der ersten Tragewand (3) bzw. der zweiten Tragewand (103) aufweisen, eine obere Wand und eine strukturelle Isoliergarnitur, die die obere Wand von der unteren Wand beabstandet hält, wobei die Isoliergarnitur aus faserverstärktem Polymerschaum besteht.
  25. Lageranlage nach einem der Patentansprüche 1 bis 24, in der die Wärmebarriere eine sekundäre Wärmebarriere (2, 102) ist und die Abdichtungsmembran eine sekundäre Abdichtungsmembran (4, 104) ist, und in der die erste Tankwand (1) und die zweite Tankwand (101) außerdem in einer Dickenrichtung von außen zum Inneren des Tanks eine primäre Wärmebarriere (5, 105) aufweisen, die von der sekundären Abdichtungsmembran (4, 104) getragen wird, und eine primäre Abdichtungsmembran (6, 106), die von der primären Wärmebarriere (5, 105) getragen wird.
  26. Lageranlage nach Patentanspruch 25, in der die primäre Abdichtungsmembran (6, 106) eine Vielzahl gewellter Metallbleche aufweist, wobei die gewellten Metallbleche in einem sich wiederholenden Muster nebeneinander angeordnet und abdichtend zusammengeschweißt sind.
  27. Lageranlage nach einem der Patentansprüche 1 bis 26, in der die Scherungsschirme (14) einen mittleren Bereich (51) aufweisen, der senkrecht zur Kante (100) orientiert ist, und zwei periphere Bereiche (52), die senkrecht zum mittleren Bereich (51) verlaufen, wobei die peripheren Bereiche (52) zueinander parallel sind und den mittleren Bereich (51) einrahmen.
  28. Lageranlage nach einem der Patentansprüche 1 bis 27, in der der isolierende Befestigungsbalken (11) ein Bodenteil (53) umfasst, das einen ebenen Bereich (54) aufweist, der auf der ersten Tragewand (3) ruht, und zwei Seitenflügel (55), die die Scherungsschirme (14) einrahmen und parallel zu den Scherungsschirmen (14) in Richtung des metallischen Abdeckteils (15) verlaufen, wobei die Seitenflügel (55) durch ein Verankerungsorgan an einem mittleren Bereich (51) von Endscherungsschirmen (56) befestigt sind, wobei die Endscherungsschirme (56) zwei Scherungsschirme (14) sind, die an den Enden des isolierenden Befestigungsbalkens (11) in Richtung der Kante (100) ausgebildet sind.
  29. Lageranlage nach Patentanspruch 28, in der das Bodenteil (53) mindestens ein Stützelement (57) umfasst, das an einem der Seitenflügel (55) befestigt ist, wobei das Stützelement (57) von einem der Endscherungsschirme (56) absteht, wobei das Verankerungsorgan eine Vorrichtung umfasst, die einen Haken bildet, der sich am Stützelement (57) befindet und dafür gestaltet ist, den isolierenden Befestigungsbalken (11) an der ersten Tragewand (3) zu befestigen.
  30. Lageranlage nach einem der Patentansprüche 1 bis 29, in der der isolierende Befestigungsbalken ein erster isolierender Befestigungsbalken (11) ist, die Anschlagvorrichtung eine erste Anschlagvorrichtung (19) ist und die Abdichtungsmembran (104) der zweiten Tragewand (103) eine Vielzahl von Metallplatten aufweist oder eine Vielzahl von Gängen parallel zu einer Längsrichtung senkrecht oder schräg zur genannten Kante (100), wobei jeder Gang einen ebenen zentralen Bereich aufweist, der auf einer oberen Fläche der Wärmebarriere (102) ruht, und zwei aufwärts gerichtete Ränder, die relativ zum zentralen Bereich ins Innere des Tanks ragen, wobei die Gänge in einem sich wiederholenden Muster nebeneinander angeordnet und abdichtend in Höhe der aufwärts gerichteten Ränder zusammengeschweißt sind, und die Wärmebarriere (102) der zweiten Tankwand (101) einen zweiten isolierenden Befestigungsbalken (111) umfasst, der eine Oberseite (13) aufweist, die durch eine Vielzahl von Scherungsschirmen (14) in einem Abstand von der zweiten Tragewand (103) gehalten wird, wobei sich die Scherungsschirme (14) zwischen der Oberseite (13) und der zweiten Tragewand (103) befinden und senkrecht zur Kante (100) orientiert sind, wobei der zweite isolierende Befestigungsbalken (111) eine Isoliergarnitur trägt, die zwischen den Scherungsschirmen (14) angeordnet ist, und der zweite isolierende Befestigungsbalken (111) ebenfalls ein metallisches Abdeckteil (15) aufweist, das einen ebenen Teil (16) umfasst, der die Oberseite (13) bildet, wobei ein Endrand der Abdichtungsmembran (104) der zweiten Tankwand (101) an den ebenen Teil (16) des metallischen Abdeckteils (15) geschweißt ist, und in der die Tragekonstruktion eine zweite Anschlagvorrichtung (119) aufweist, die von der zweiten Tragewand (103) in Richtung des Tankinneren absteht, wobei die zweite Anschlagvorrichtung (119) eine Längsrichtung hat, die parallel zur Kante (100) verläuft, wobei die zweite Anschlagvorrichtung (119) einem Rand des zweiten isolierenden Befestigungsbalkens (11), der von der Kante (100) abgewandt ist, entlang angeordnet und dafür eingerichtet ist, einen Anschlag zu bilden, der Verschiebungen des zweiten isolierenden Befestigungsbalkens (111) in einer sich von der ersten Tankwand (1) entfernenden Richtung einschränkt.
  31. Schiff (70) für den Transport einer kalten flüssigen Substanz, wobei das Schiff einen doppelten Rumpf (72) und eine Lageranlage (71) nach irgendeinem der Patentansprüche 1 bis 30 aufweist, wobei ein Teil des doppelten Rumpfes die Tragekonstruktion der Lageranlage bildet.
  32. System zur Überleitung einer kalten flüssigen Substanz, wobei das System ein Schiff (70) nach Patentanspruch 31 umfasst, isolierte Leitungen (73, 79, 76, 81), die dafür angeordnet sind, den im Rumpf des Schiffes eingebauten Tank (71) mit einer schwimmenden oder terrestrischen Lageranlage (77) zu verbinden, und eine Pumpe, um einen Strom kalter flüssiger Substanz durch die isolierten Leitungen aus der oder in die schwimmende oder terrestrische Lageranlage in den oder aus dem Tank des Schiffes zu fördern.
  33. Verfahren zum Laden oder Löschen eines Schiffes (70) nach Patentanspruch 31, in dem eine kalte flüssige Substanz durch die isolierten Leitungen (73, 79, 76, 81) aus der oder in die schwimmende oder terrestrische Lageranlage (77) in den oder aus dem Tank des Schiffes (71) gefördert wird.
EP20713893.4A 2019-03-26 2020-03-25 Lagereinrichtung für flüssiggas Active EP3948055B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1903164A FR3094452B1 (fr) 2019-03-26 2019-03-26 Installation de stockage pour gaz liquéfié
FR1915199A FR3094453B1 (fr) 2019-03-26 2019-12-20 Installation de stockage pour gaz liquéfié
PCT/EP2020/058416 WO2020193653A1 (fr) 2019-03-26 2020-03-25 Installation de stockage pour gaz liquéfié

Publications (3)

Publication Number Publication Date
EP3948055A1 EP3948055A1 (de) 2022-02-09
EP3948055B1 true EP3948055B1 (de) 2023-08-23
EP3948055C0 EP3948055C0 (de) 2023-08-23

Family

ID=69960656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20713893.4A Active EP3948055B1 (de) 2019-03-26 2020-03-25 Lagereinrichtung für flüssiggas

Country Status (4)

Country Link
EP (1) EP3948055B1 (de)
JP (1) JP2022536572A (de)
CN (1) CN114761727A (de)
WO (1) WO2020193653A1 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549575B1 (fr) 1983-07-18 1985-11-08 Gaz Transport Cuve de navire etanche et isotherme, notamment pour le transport de gaz naturel liquefie
FR2798358B1 (fr) 1999-09-14 2001-11-02 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee
FR2867831B1 (fr) * 2004-03-17 2006-05-19 Gaz Transport & Technigaz Caisse autoporteuse en bois convenant pour le soutien et l'isolation thermique d'une membrane de cuve etanche
GB2466965A (en) * 2009-01-15 2010-07-21 Cappelen Skovholt As Liquefied gas storage tank with curved sidewall
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2013169076A1 (ko) * 2012-05-11 2013-11-14 대우조선해양 주식회사 이중구조의 액화천연가스 저장용기
FR2994245B1 (fr) * 2012-08-03 2015-05-29 Gaztransp Et Technigaz Paroi de cuve etanche et thermiquement isolante comportant des elements porteurs espaces
FR3008765B1 (fr) * 2013-07-19 2017-05-19 Gaztransport Et Technigaz Structure d'angle pour cuve isolante et etanche
US20170175952A1 (en) * 2014-07-04 2017-06-22 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas storage tank and insulating wall for liquefied natural gas storage tank
FR3042253B1 (fr) * 2015-10-13 2018-05-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3052227B1 (fr) * 2016-06-01 2018-12-07 Gaztransport Et Technigaz Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
KR101875328B1 (ko) * 2017-06-01 2018-07-05 가즈트랑스포르 에 떼끄니가즈 밀봉 및 단열 탱크, 상기 탱크를 포함하는 선박, 상기 선박의 적재 또는 하역 방법, 및 상기 선박을 포함하는 이송 시스템
FR3068763B1 (fr) * 2017-07-04 2020-10-02 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant une corniere.
FR3068762B1 (fr) * 2017-07-04 2019-08-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3069043B1 (fr) * 2017-07-13 2020-10-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a bande de support incurvee

Also Published As

Publication number Publication date
EP3948055C0 (de) 2023-08-23
EP3948055A1 (de) 2022-02-09
JP2022536572A (ja) 2022-08-18
CN114761727A (zh) 2022-07-15
WO2020193653A1 (fr) 2020-10-01

Similar Documents

Publication Publication Date Title
EP3362732B1 (de) Abgedichteter und wärmeisolierender tank
WO2014096600A1 (fr) Cuve etanche et thermiquement isolante
EP3473915B1 (de) Dichter und wärmeisolierter tank
WO2019110894A1 (fr) Cuve étanche et thermiquement isolante
WO2017207938A1 (fr) Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP3803187A2 (de) Wärmeisolierender abgedichteter tank
WO2021074435A1 (fr) Cuve étanche et thermiquement isolante
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
EP3425261B1 (de) Dichter und wärmeisolierter tank
FR3068763A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere.
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
WO2017174938A1 (fr) Cuve étanche et thermiquement isolante
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
EP3948055B1 (de) Lagereinrichtung für flüssiggas
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
FR3094453A1 (fr) Installation de stockage pour gaz liquéfié
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
WO2022233907A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante
WO2023227551A1 (fr) Cuve etanche et thermiquement isolante integree dans une structure porteuse
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2022053320A1 (fr) Cuve étanche et thermiquement isolante
WO2022152794A1 (fr) Installation de stockage pour gaz liquefie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020016254

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230908

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230914

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823