WO2019145635A1 - Cuve etanche et thermiquement isolante - Google Patents

Cuve etanche et thermiquement isolante Download PDF

Info

Publication number
WO2019145635A1
WO2019145635A1 PCT/FR2019/050136 FR2019050136W WO2019145635A1 WO 2019145635 A1 WO2019145635 A1 WO 2019145635A1 FR 2019050136 W FR2019050136 W FR 2019050136W WO 2019145635 A1 WO2019145635 A1 WO 2019145635A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
longitudinal direction
recess
panels
vessel
Prior art date
Application number
PCT/FR2019/050136
Other languages
English (en)
Inventor
Antoine PHILIPPE
Cédric Morel
Sébastien DELANOE
Johan Bougault
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to RU2020122819A priority Critical patent/RU2763100C1/ru
Priority to KR1020207024254A priority patent/KR102648632B1/ko
Priority to CN201980009460.1A priority patent/CN111630311B/zh
Publication of WO2019145635A1 publication Critical patent/WO2019145635A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a liquefied gas.
  • Watertight and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at about -163 ° C. These tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • LNG liquefied natural gas
  • the document WO2014096600 discloses a sealed and thermally insulating tank for storing liquefied natural gas arranged in a supporting structure and whose walls have a multilayer structure, namely from the outside to the inside of the tank, an insulated secondary thermal-insulating barrier. against the supporting structure, a secondary waterproofing membrane which is supported by the secondary heat-insulating barrier, a primary heat-insulating barrier which is supported by the secondary waterproofing membrane and a primary waterproofing membrane which is supported by the thermal barrier primary insulation and which is intended to be in contact with the liquefied natural gas stored in the tank.
  • Each thermally insulating barrier comprises a set of insulating panels, respectively primary and secondary, of parallelepiped general shape which are juxtaposed and which thus form a support surface for a respective waterproofing membrane.
  • the primary and secondary waterproofing membranes each comprise a continuous sheet of metal strakes, with raised edges, which are welded on parallel welding supports. L-shaped welding supports are fixed in grooves in the insulating panels of the primary or secondary thermally insulating barrier.
  • Primary and secondary insulation panels are susceptible to deformation, which can create unevenness between adjacent insulation panels in the thickness direction of the vessel wall. Such deformations are particularly likely to occur due to the effects of the movement of the liquid inside the tank (sloshing effect in the English language) and because of the effects of thermal gradients tending to contract the panels. insulators.
  • a minimum gap value must be respected between the adjacent insulating panels, and more particularly between the transverse edges of the panels which are orthogonal to the directions of the welding supports. Indeed, the reduction in the distance between the transverse edges of two adjacent insulating panels leads, due to the differences in level that may be generated between adjacent insulating panels, to increase the angle of deformation of the welding support and the membrane. fixed to said insulating panels which has the effect of increasing the fatigue stresses of the membrane. Also, failing to respect a minimum value of gap, the membrane is likely to suffer damage.
  • Each fatigue strength test has about 2000 cycles. During each cycle, a height difference in the thickness direction of the tank wall of the order of a few millimeters between the adjacent transverse edges of the two insulating panels is generated. Such a test is representative of the life of a ship.
  • the flat median portions of the strakes of the waterproofing membrane are capable of bending and possibly of cracking, thus creating a leakage fault, -
  • the raised edges of the strakes and the junction areas between the raised edges and the flat median portion of the strakes are likely to deform, creating undulations and possibly crack, thereby creating a leak tightness.
  • An idea underlying the invention is to allow a reduction in the width of the interstices between the primary and / or secondary insulating panels adjacent in the longitudinal direction of the welding supports without significantly degrading the fatigue strength of the membrane.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank for storing a liquefied gas comprising a wall having successively, in a thickness direction of the wall, from the outside to the inside of the the vessel, a thermally insulating barrier and a sealing membrane resting against said thermally insulating barrier;
  • the thermally insulating barrier comprising at least two insulating panels each having an upper plate defining a support surface against which the sealing membrane rests, said insulating panels being aligned in a longitudinal direction and each having two transverse edges which are perpendicular to the longitudinal direction;
  • a sealing membrane comprising at least two metal strakes which extend parallel to the longitudinal direction on either side of a welding support, said welding support extending parallel to the longitudinal direction and being retained on the upper plate of the insulating panels, the strakes having a middle portion resting against the support surfaces and two raised edges extending parallel to the longitudinal direction, one of the raised edges of each of the two strakes being welded to the support of welding;
  • At least the upper plate of one of the two insulating panels comprising, along the transverse edge of said insulating panel which faces the other insulating panel, a recess, the recess extending perpendicularly to the longitudinal direction of the insulating panel; one end to the other of the top plate of said insulating panel of such so that the strakes are not supported by the support surface of said insulating panel along said transverse edge of the insulating panel.
  • Such a recess thus makes it possible to limit the angle of deformation of the sealing membrane p to the right of the gap between the transverse edges of the insulating panels when a height difference is generated between the adjacent insulating panels.
  • the deformations of the sealing membrane remain in the elastic range and do not cause irreversible deformations for pressures usually encountered in the tanks. This therefore makes it possible to avoid or limit the deformations by shearing the sealing membrane.
  • the strakes are not supported to the right of the recess.
  • the upper plate of each of the two insulating panels comprises along the transverse edge of said insulating panel facing the other insulating panel a recess, the recess extending perpendicular to the longitudinal direction of a tip. to the other of said insulating panel so that the strakes are not supported by the support surface of said insulating panel along said transverse edge.
  • the recess is arranged so that the top plate is recessed at least in a defined area above a plane which is inclined at an angle of 55 ° with respect to the support surface and which cuts the transverse edge of the insulating panel at a distance, in the thickness direction of the wall, of 6 mm from the support surface.
  • the or each recess is formed by a recess, a bevel cut or a rounded formed in the upper plate, along the transverse edge of the insulating panel.
  • the welding support extends in the longitudinal direction and comprises a welding flange and an anchoring flange inclined relative to the welding flange, the upper plates of the two insulating panels each having a groove in which is mounted the welding support, each groove opening at the support surface and having a return in which is housed the anchoring flange of the welding support, the return gentle in the respective insulating panel, between the return and the support surface, a retaining portion against which the anchor wing is retained so as to retain the solder support on said insulating panel.
  • each groove opens into one of the recesses so that the welding support is not retained at the thermally insulating barrier in the area of said recess.
  • the groove of each of the insulating panels has one end facing the other insulating panel which is extended by a notch opening at the support surface, each being formed at least in the extension, according to the longitudinal direction of said groove and the retaining portion, so that the weld support is not retained at said insulating panel in the area of said notch.
  • the weld support is not retained at the thermally insulating barrier at the notch, the weld support and the sealing membrane have greater flexibility to the gap between the insulating panels which makes it possible to limit the stresses on the welding supports and the waterproofing membrane when a difference in altitude is generated between the adjacent primary insulating panels while allowing the value of the gap to be reduced so as to optimize the performances thermal insulation.
  • the adjacent transverse edges of the insulating panels are spaced apart from one another by a gap which has a width in the longitudinal direction which is less than 5 mm, for example of the order of 1 mm. .
  • the sum of the longitudinal dimension of the recess of each of the two insulating panels and the width of the gap formed between the insulating panels is between 7 and 70 mm.
  • the sum of the longitudinal dimension of the recess of each of the two insulating panels and the width of the gap formed between the insulating panels is between 7 and 25 mm when each groove opens into one recesses through an indentation.
  • the dimension in the longitudinal direction of a recess is for example between 3 and 12 mm.
  • the sum of the longitudinal dimension of the recess of each of the two insulating panels and the width of the gap formed between the insulating panels is between 20 and 70 mm, advantageously between 25 and 45 mm. and more particularly between 30 and 40 mm when each groove opens directly into one of the recesses.
  • the dimension in the longitudinal direction of a recess is for example between 14.5 mm and 29.5 mm.
  • the grooves of the two insulating panels are spaced apart by an interval i whose dimension in the longitudinal direction is between 20 and 70 mm, advantageously between 25 and 45 mm and more particularly between 30 and 40 mm.
  • the dimension of the solder support which is not retained in the insulating panels, in the zone of the gap between the transverse edges of the insulating panels is between 20 and 70 mm, advantageously between 25 and 45 mm. and more particularly between 30 and 40 mm.
  • the or each notch has a dimension n in the longitudinal direction of between 5 mm and 30 mm.
  • the or each notch has a depth p which is equal to and preferably greater than that of the grooves. This makes it possible to limit the stresses exerted on the welding support and the sealing membrane, when the transverse edge of the insulating panel having said notch is raised relative to the adjacent transverse edge of the other insulating panel.
  • the indentation has a bottom and side walls connecting the bottom to the support surface.
  • the bottom of the notch has an inclined slope so that the depth p of the notch decreases in the direction of the groove.
  • the side walls of the notch are connected to the groove by chamfers or fillets. Such chamfers or leave guide the solder support to the groove and thus facilitates the introduction of the weld support in the groove.
  • the side walls of the notch consist of a flat part and are connected to the groove by a cylindrical part.
  • the indentation has a triangular or trapezoidal overall shape which narrows in the direction of the groove.
  • the groove has an inverted T-shaped section.
  • the welding support has an L shape.
  • the upper plate is made of plywood.
  • the upper plate has a thickness of between 9 and 15 mm.
  • the thermally insulating barrier is a primary thermally insulating barrier and the sealing membrane is a primary waterproofing membrane, the wall comprising, successively, from the outside to the inside of the tank, a thermally insulating barrier.
  • secondary insulation anchored to a load-bearing structure, a secondary waterproofing membrane resting against the secondary heat-insulating barrier, the primary heat-insulating barrier and the primary waterproofing membrane.
  • the waterproofing membrane is made of a material chosen from stainless steel, iron and nickel alloys whose coefficient of expansion is between 1, 2.10 6 and 2.10 6 K 1 and alloys of iron and manganese with an expansion coefficient of less than 15.10 6 K 1 .
  • the welding support is made of a material chosen from stainless steel, iron and nickel alloys whose expansion coefficient is between 1, 2.10 6 and 2.10 6 K -1 and the alloys of iron and manganese with an expansion coefficient of less than 15.10 6 K 1 .
  • At least one of the insulating panels comprises a bottom plate, an intermediate plate disposed between the bottom plate and the top plate, a first layer of insulating polymer foam sandwiched between the bottom plate and the intermediate plate and a second layer of insulating polymer foam sandwiched between the intermediate plate and the upper plate.
  • At least one of the insulating panels further comprises a bottom plate and carrying webs extending, in the thickness direction of the vessel wall, between the bottom plate and the plate upper and delimiting a plurality of compartments filled with an insulating liner, such as perlite.
  • the thermally insulating barrier comprises a plurality of insulating panels which each have an upper plate defining a support surface against which the sealing membrane rests, the upper plates each having one or more grooves in which is mounted a welding support, each end of each groove having a notch opening at the support surface and being formed at least in the extension, in the longitudinal direction, of the groove and the retaining portion, so that the support welding is not retained at said panel in the area of said notch.
  • the thermally insulating barrier comprises a plurality of insulating panels which each have a cover plate defining a support surface against which the waterproofing membrane rests, the cover plate of each of the insulating panels comprising, along each of its transverse edges, a recess, the recess extending perpendicularly to the longitudinal direction from one end to the other of said insulating panel so that the strakes are not supported by the support surface along the transverse edges of each insulating panel.
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cryogenic fluid comprises a double shell and a said tank disposed in the double hull.
  • the double shell comprises an inner shell forming the carrying structure of the vessel.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank of the vessel. ship.
  • the invention also provides a transfer system for a fluid, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating or ground storage facility. and a pump for driving fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • FIG. 1 is a cutaway perspective view of a vessel wall.
  • FIG. 2 is a sectional view illustrating a groove in a primary panel, a welding support housed in the groove and strakes that are welded to the weld support.
  • FIG. 3 is a perspective view of a primary panel according to a first embodiment.
  • FIG. 4 is a detailed perspective view illustrating a primary thermally insulating barrier at the junction between two adjacent primary insulating panels according to the first embodiment.
  • FIG. 5 is a detailed view of a notch at a transverse edge of a primary insulating panel according to the first embodiment.
  • FIG. 6 is a schematic sectional view of a groove and a notch.
  • FIG. 7 is a perspective view of a primary insulating panel according to a second embodiment.
  • FIG. 8 is a diagrammatic sectional view illustrating a primary thermally insulating barrier at the junction between two adjacent primary insulating panels according to the second embodiment.
  • FIG. 9 is a schematic sectional view illustrating a primary thermal insulation barrier at the junction between two adjacent primary insulating panels according to a variant of the second embodiment.
  • FIG. 10 is a schematic sectional view illustrating a primary thermally insulating barrier at the junction between two adjacent primary insulating panels according to another variant of the second embodiment.
  • FIG. 11 is a perspective view of a primary insulating panel according to a third embodiment.
  • FIG. 12 is a diagrammatic sectional view illustrating a primary thermally insulating barrier at the junction between two adjacent primary insulating panels according to the third embodiment.
  • - Figure 13 is a schematic cutaway representation of a tank of LNG tanker and a loading / unloading terminal of this tank.
  • a two-dimensional orthonormal coordinate system defined by two x and y axes is used to describe the elements of a wall 1 of the sealed and thermally insulating vessel.
  • the x axis corresponds to the longitudinal direction and the y axis corresponds to the transverse direction.
  • the longitudinal direction corresponds to the direction in which the strakes and weld supports extend.
  • the x axis when the tank is intended to be integrated in the double hull of a ship, the x axis also corresponds to the longitudinal direction of the ship.
  • FIG. 1 there is shown the multilayer structure of a wall 1 of a sealed and thermally insulating tank for storing a liquefied fluid, such as liquefied natural gas (LNG).
  • a liquefied fluid such as liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • Each wall 1 of the tank comprises successively, in the direction of the thickness, from the outside to the inside of the tank, a secondary thermally insulating barrier 2 retained to a bearing structure 3, a secondary sealing membrane 4 resting against the secondary thermally insulating barrier 2, a primary thermally insulating barrier 5 resting against the secondary sealing membrane 4 and a primary sealing membrane 6 intended to be in contact with the liquefied natural gas contained in the tank.
  • LNG liquefied natural gas
  • the supporting structure 3 can in particular be formed by the hull or the double hull of a ship.
  • the supporting structure 3 comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape.
  • the secondary thermally insulating barrier 2 comprises a plurality of secondary insulating panels 7 which are anchored on the support structure 3 by means of anchoring devices, as described for example in the document WO2014096600.
  • the secondary insulating panels 7 have a parallelepipedal general shape and are arranged in parallel rows.
  • each secondary insulating panel 7 comprises three plates, namely a bottom plate 8, an intermediate plate 9 and an upper plate 10 which defines a support surface. for the secondary sealing membrane 4.
  • the bottom plates 8, intermediate 9 and upper 10 are for example made of plywood.
  • Each secondary insulating panel 7 also comprises a first layer of insulating polymer foam 11 sandwiched between the bottom plate 8 and the intermediate plate 9 and a second layer of insulating polymer foam 12 sandwiched between the intermediate plate 9 and the upper plate 10.
  • the first and second insulating polymer foam layers 11, 12 are respectively bonded to the bottom plate 8 and intermediate plate 9 and to the intermediate plate 9 and upper 10.
  • the insulating polymer foam may in particular be a polyurethane-based foam optionally reinforced with fibers.
  • the secondary insulating panels 7 may have another general structure, for example that described in WO2012 / 127141.
  • the secondary insulating panels 7 are then made in the form of a box comprising a bottom plate, an upper plate and carrying webs extending, in the thickness direction of the wall 1 of the tank, between the bottom plate. and the upper plate and delimiting a plurality of compartments filled with an insulating liner, such as perlite, glass wool or rock.
  • the secondary thermally insulating barrier 2 comprises secondary insulating panels 7 having at least two different types of structure, for example the two aforementioned structures, depending on their area of implantation in the tank.
  • the secondary insulating panels 7 have dimensions of the order of 1130 mm ⁇ 1000 mm.
  • the secondary insulating panels 7 are spaced from each other in the transverse direction y by a functional assembly play, for example of the order of 1 mm.
  • the secondary insulating panels 7 are spaced from each other in the longitudinal direction x by a gap having for example a width of the order of 60 mm.
  • an insulating gasket, not shown, such as glass wool or rock wool is positioned in the gap formed between the transverse edges of the secondary insulating panels 7.
  • the secondary waterproofing membrane 4 comprises a continuous sheet of strakes 13, metal, with raised edges which are fixed on the secondary insulating panels 7, as will be detailed later.
  • the primary thermally insulating barrier 5 comprises a plurality of primary insulating panels 14 which are anchored to the supporting structure 3 by means of the aforementioned anchoring devices.
  • the primary insulating panels 14 have a parallelepipedal general shape. Each of the primary insulating panels 14 is positioned in line with one of the secondary insulating panels 7.
  • the primary panels 14 have a length in the longitudinal direction x greater than that of the secondary insulating panels 7, which makes it possible to reduce the dimension of the insulating panel.
  • the gap between the transverse edges of the primary insulating panels 14 has a width, in the longitudinal direction x, which is less than 20 mm, preferably less than 10 mm, by example of the order of 8 mm.
  • the spacing between the primary insulating panels 14 in the transverse direction is identical to that provided between the secondary insulating panels 7 and corresponds to a functional assembly play of the order of 1 mm.
  • the structure of a primary insulating panel 14 is observed according to a first embodiment.
  • the primary insulating panel 14 has a multilayer structure similar to that of the secondary insulating panel 7 described above.
  • the primary insulating panel 14 comprises successively a bottom plate 15, a first layer of insulating polymer foam 16, an intermediate plate 17, a second layer of insulating polymer foam 18 and an upper plate 19.
  • the upper plate 19 defines a surface support member 36 for the primary waterproofing membrane 6.
  • the insulating polymer foam may in particular be a polyurethane-based foam, optionally reinforced with fibers.
  • the upper plate 19 is for example made of plywood. According to one embodiment, the upper plate has a thickness of between 9 and 15 mm.
  • the bottom plate 15 has grooves 20 for receiving the raised edges of the strakes of the secondary sealing membrane 4.
  • the plate upper 19 also has grooves 21 for receiving welding supports for welding the primary waterproofing membrane 6.
  • the primary insulating panel 14 is described above by way of example. Also, in another embodiment, the primary insulating panels 14 may have another general structure, for example that described in WO2012 / 127141. In another embodiment, the primary thermally insulating barrier 5 comprises primary insulating panels 14 having at least two different types of structure, for example the two aforementioned structures, depending on their area of implantation in the tank.
  • the primary waterproofing membrane 6 comprises a continuous ply of metal strakes 22, with raised edges, which extend in the longitudinal direction x.
  • the strakes 22 are welded by their raised edges to weld supports 23 which extend parallel to each other in the longitudinal direction x and which are fixed in the grooves 21 formed on the upper plates 19 of the primary insulating panels 14.
  • the solder support 23 has an L-shaped section and is retained in a groove 21.
  • the groove 21 here has an inverted T-shaped section, but may have an L-shaped section.
  • the T-shaped section is advantageous in that it can be carried out more simply by means of milling operations.
  • the groove has a depth of about 6 mm.
  • the welding support 23 has a welding flange 24 and an anchoring wing 25 which are inclined with respect to each other.
  • the welding wing 24 and the anchor wing 25 are perpendicular to each other so as to form an L.
  • the groove 21 has a portion 26 extending substantially along the thickness direction of the vessel wall 1 and opening at the surface of the support 36 of the upper plate 19 and at least one return 27 which extends in a plane orthogonal to the thickness direction of the wall 1 of the tank.
  • the return 27 thus provides, in the upper plate 19, between the support surface 36 and the return 27 a retaining portion 28.
  • the anchoring wing 25 of the welding support is inserted inside the return 27 of the groove 21 while the welding flange 24 passes through the portion 26 extend in the thickness direction of the wall 1 of tank so as to project inwardly of the vessel, beyond the upper plate 19
  • the anchoring wing 25 is thus retained against the retaining portion 28, which makes it possible to anchor the welding support 23 on the primary insulating panel 14.
  • the grooves 21 of the primary insulating panels 14 are aligned one after the other in the longitudinal direction. Also, a welding support 23 extends in the longitudinal direction x, substantially from one end to the other of the wall 1 of the tank, passing through the grooves 21 aligned with each other of a plurality primary insulation panels 14.
  • the strakes 22 have a medial portion 29 resting against the support surface 36 of the upper plates 19 and two raised edges 30 which extend in the longitudinal direction and protrude from the middle portion 29 towards the inside of the vessel.
  • the raised edges 30 of the two strakes 22 which extend on either side of the welding support 23 are welded to the welding flange 24 of said welding support 23.
  • the sealed seals between the raised edges 30 and the wings of welding 23 are for example made using a welding machine, as described in the applications FR2172837 or FR2140716.
  • the strakes 22 and the welding supports 23 are, for example, made of Invar ®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 6 and 2.10 -6 K 1 , in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 6 K 1 or in a stainless steel.
  • the primary insulating panels 14 are spaced in the longitudinal direction x by a gap 31 having a small width.
  • the width of the gap 31 is less than 20 mm, preferably less than 10 mm and for example of the order of 8 mm.
  • the grooves 21 extend at the transverse edges 32 of the primary insulating panels 14 by notches 33, one of which is shown in detail in Figures 5 and 6.
  • the notch 33 opens out at the support surface 36 and extends in the extension, in the longitudinal direction x, of the groove 21 and the retaining portion 28 so that the anchoring wing 25 of the support welding 23 is not retained at the primary insulation panel 14 in the region of said notch 33.
  • This makes it possible to reduce the stresses exerted on the welding supports 23 and the raised edges 30 of the strakes 22 when a height difference is generated between the adjacent primary insulating panels 14. Therefore, the effects of such an elevation on the fatigue strength of the primary waterproofing membrane 6 and welding supports 23 in the region of the interstices 31 formed between the transverse edges 32 of the primary insulating panels 14 are attenuated.
  • the notch 33 has a bottom 34 and two side walls 35 connecting the bottom 34 to the support surface 36.
  • the notch 33 has a depth p (illustrated in FIG. 6) in the thickness direction of the tank wall 1 which is greater than that of the groove 21.
  • the bottom 34 has a slope which is inclined so that the depth p of the notch 33 decreases from the transverse edge 32 of the primary insulating panel 14 to the groove 21. This limits the stresses exerted on the welding support 23 and the raised edges 30 of the strakes 22, the side of the primary insulating panel 14 which is raised relative to the insulating panel adjacent primer 14 when a height difference is generated between two adjacent primary insulating panels 14.
  • the dimension m, represented in FIG. 6, of the notch 33 in the transverse direction y is greater than or equal to the dimension of the groove 21 in the said transverse direction y.
  • each side wall 35 of the notch 33 is positioned in the transverse direction y, beyond one end of the horizontal portion of the groove 21.
  • the side walls 35 of the notch 33 are each connected to the edges of the groove 21 via a chamfer or a leave 37.
  • the chamfer or fillet 37 is arranged to guide the welding flange 24 of the welding support 23 in the direction of the vertical portion 26 of the groove 21 during sliding assembly of the welding support 23 inside the
  • the side walls have a flat portion and connect the groove 21 by a cylindrical portion 37.
  • the notch 33 has a generally trapezoid or triangle shape which is oriented such that the notch widens away from the groove 21.
  • the dimension n, represented in FIG. 5, of the indentations 33 in the longitudinal direction is advantageously determined as a function of the dimension of the gap 31 formed between the transverse edges 32 of the primary insulating panels 14. It has indeed been found that the length of the zone in which the welding support 23 is not retained at the two adjacent primary insulating panels 14, that is to say corresponding to the dimension of the interval i, shown in FIG. 4, between two grooves 21 successive, should advantageously be between 20 and 70 mm, preferably between 25 and 45 mm and more particularly between 30 and 40 mm.
  • the dimension n of the indentations 14 in the longitudinal direction is between 5 mm and 30 mm.
  • the dimension n is for example of the order of 13 mm when the gap 31 has a width of the order of 8 mm.
  • the gap 31 shown in Figure 8 has a width which is preferably less than 5 mm, for example of the order of 1 mm. Therefore, for a gap 31 having a value of 1 mm, there is no insulating lining positioned between the transverse edges 32 of the primary insulating panels 14. This therefore improves the thermal insulation performance of the barrier thermally insulating primary 5 while simplifying its installation.
  • the upper plate 19 of the primary insulating panels 14 has, in addition to said recesses 33, recesses 38.
  • a recess 38 is formed along each of the transverse edges 32 and extends in a transverse direction from one end to the other of the primary insulating panel 14.
  • the recesses 38 interrupt the surface of support 36 so that the primary waterproofing membrane 6 is not supported in the area of said recess 38. Therefore, as shown in FIG. 8, the length I, in the longitudinal direction, of the zone in which the primary waterproofing membrane 6 is no longer supported is equal to the sum of the dimension, in the longitudinal direction, of the recess 38 of each of the insulated panels primary 14 and the width of the gap 31.
  • the recesses 38 thus have the effect of limiting the angle of deformation of the primary waterproofing membrane 6 to the right of the gap 31 between the transverse edges 32 of the primary insulating panels 14 when an elevation difference is generated between the primary insulating panels 14 adjacent.
  • the deformations of the primary sealing membrane 6 remain in the elastic range and do not cause irreversible deformations of the primary sealing membrane 6 to the right of the interstices 31, for pressures usually encountered in the tanks.
  • the length I that is to say the sum of the longitudinal dimension of the recess 38 of each of the insulating panels adjacent primaries and the width of the gap 31 is between 7 and 25 mm and preferably between 8 and 12 mm. Also, for example, for a gap width 31 of the order of 1 mm, the dimension in the longitudinal direction of a recess 38 is between 3 and 12 mm.
  • the recesses 38 shown in Figure 8 are recesses.
  • the bottom 39 of the recess has a surface parallel to the support surface 36 and is connected to said support surface 36 by a wall which extends substantially in the thickness direction of the wall 1 of the tank.
  • the recess has for example a width of between 3 and 12 mm.
  • the depth of the recess 38 in the thickness direction of the vessel wall is greater than or equal to the depth of the groove 21, i.e., about 6 mm.
  • the depth of the recess 38 is preferably between 8 and 10 mm.
  • notches 33 as described above are formed in the upper plate 19 so that the grooves 21 open into the recesses. 38 through said indentations
  • FIGS. 9 and 10 illustrate alternative embodiments of the second embodiment of FIGS. 7 and 8. These variant embodiments differ from the variant illustrated in FIG. 8 by the shape of the recess 38.
  • the recesses 38 are cut in bevel, in the upper plate 19, along the transverse edges 32 of the primary insulating panels 14.
  • the recesses 38 are each formed by means of a rounding formed in the upper plate 19, along the transverse edges 32 of the primary insulating panels 14.
  • the length I that is to say the sum of the longitudinal dimension of the recess 28 of each of the adjacent primary insulating panels 14 and the width of the gap 31 is between 7 and 25 mm as in the embodiment of Figures 7 and 8.
  • the recess 38 is arranged so that the upper plate 19 is emptied at least in a defined area above a plane which is inclined at an angle of 55 ° [ relative to the support surface 36 and intersecting the transverse edge 32 of the primary insulating panel 14 at a distance, in the thickness direction of the tank, of 6 mm from the plane of the support surface 36.
  • Figures 11 and 12 show a third embodiment.
  • This embodiment differs from the embodiments described above in connection with FIGS. 7 to 10 in that the upper plates 19 of the primary insulating panels 14 are not equipped with indentations 33 formed in the extension of the grooves 21.
  • the grooves 21 open directly into the recesses 38 formed in the upper plate 19, along the transverse edges, 32.
  • the dimension in the longitudinal direction of the recesses 38 is chosen so that the dimension the interval i, in the longitudinal direction, between two successive grooves 21 is advantageously between 20 and 70 mm, advantageously between 25 and 45 mm and more particularly between 30 and 40 mm.
  • the width of the gap 31 formed between the transverse edges 32 of the two adjacent primary insulating panels 14 is of the order of 1 mm while the dimension of the recesses 38 in the longitudinal direction x is between 14.5 mm and 29.5 mm, for example of the order of 24.5 mm.
  • a broken view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 13 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante de stockage d'un gaz liquéfié comprenant un paroi (1) présentant une barrière thermiquement isolante (5) et une membrane d'étanchéité (6) reposant contre ladite barrière thermiquement isolante (5); - la barrière thermiquement isolante (5) comportant au moins deux panneaux isolants (14) qui présentent chacun une plaque supérieure (19) définissant une surface de support (36) contre laquelle repose la membrane d'étanchéité (6), - au moins la plaque supérieure (19) de l'un des deux panneaux isolants (14) comportant, le long du bord transversal (32) dudit panneau isolant (14) qui est en regard de l'autre panneau isolant (14), un évidement (38), l'évidement (38) s'étendant perpendiculairement à la direction longitudinale d'un bout à l'autre dudit panneau isolant (14) de telle sorte que les virures ne sont pas supportées par la surface de support dudit panneau isolant (14) le long dudit bord transversal (32) du panneau isolant (14).

Description

CUVE ETANCHE ET THERMIQUEMENT ISOLANTE
Domaine technique
L’invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu’un gaz liquéfié.
Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -163°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
Le document WO2014096600 divulgue une cuve étanche et thermiquement isolante de stockage de gaz naturel liquéfie agencée dans une structure porteuse et dont les parois présentent une structure multicouche, à savoir de l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire ancrée contre la structure porteuse, une membrane d'étanchéité secondaire qui est supportée par la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire qui est supportée par la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire qui est supportée par la barrière thermiquement isolante primaire et qui est destinée à être en contact avec le gaz naturel liquéfie stocké dans la cuve.
Chaque barrière thermiquement isolante, primaire et secondaire, comporte un ensemble de panneaux isolants, respectivement primaire et secondaire, de forme générale parallélépipédique qui sont juxtaposés et qui forment ainsi une surface de support pour une membrane d’étanchéité respective. Les membranes d’étanchéité, primaire et secondaire, comportent chacune une nappe continue de virures métalliques, à bords relevés, qui sont soudées sur des supports de soudures parallèles. Les supports de soudure en forme de L sont fixés dans des rainures ménagées dans les panneaux isolants de la barrière thermiquement isolante primaire ou secondaire. Les panneaux isolants primaires et secondaires sont susceptibles de se déformer, ce qui peut créer des dénivelés entre les panneaux isolants adjacents selon la direction d’épaisseur de la paroi de cuve. De telles déformations sont notamment susceptibles de se produire en raison des effets du mouvement du liquide à l’intérieur de a cuve (effet de ballotement, appelé « sloshing » en langue anglaise) et en raison des effets des gradients thermiques tendant à contracter les panneaux isolants.
La demanderesse a constaté que, dans une cuve du type précité, une valeur minimum d’interstice doit être respectée entre les panneaux isolants adjacents, et plus particulièrement entre les bords transversaux des panneaux qui sont orthogonaux aux directions des supports de soudure. En effet, la diminution de la distance entre les bords transversaux de deux panneaux isolants adjacents, conduit, en raison des dénivelés susceptibles d’être générés entre les panneaux isolants adjacents, à augmenter l’angle de déformation du support de soudure et de la membrane fixée auxdites panneaux isolants ce qui a pour effet d’augmenter les sollicitations en fatigue de la membrane. Aussi, à défaut de respecter une valeur minimum d’interstice, la membrane est susceptible de subir des dégradations.
En particulier, il a été réalisé des tests de tenue en fatigue des membranes d’étanchéité d’une cuve du type précité lorsque la dimension de l’interstice ménagé entre les bords transversaux adjacents de deux panneaux isolants est inférieure à une valeur minimum.
Chaque test de tenue en fatigue comporte environ 2000 cycles. Lors de chacun des cycles, un dénivelé selon la direction d’épaisseur de la paroi de cuve de l’ordre de quelques millimètres entre les bords transversaux adjacents des deux panneaux isolants est généré. Un tel test est représentatif de la durée de vie d’un navire.
Lors de ces tests, il a été notamment constaté que, dans la zone de l’interstice entre les bords transversaux adjacents des panneaux isolants :
- les portions médiane planes des virures de la membrane d’étanchéité sont susceptibles de se plier et éventuellement de se fissurer, créant ainsi un défaut d’étanchéité, - les bords relevés des virures ainsi que les zones de jonction entre les bords relevés et la portion médiane plane des virures sont susceptibles de se déformer, en créant des ondulations et éventuellement de se fissurer, créant ainsi une fuite d’étanchéité.
Or, le respect de la valeur minimum d’interstice entre les bords transversaux des panneaux isolants dégrade les performances thermiques de la barrière thermiquement isolante.
Résumé
Une idée à la base de l’invention consiste à permettre une diminution de la largeur des interstices entre les panneaux isolants primaires et/ou secondaires adjacents selon la direction longitudinale des supports de soudure sans dégrader considérablement la tenue en fatigue de la membrane.
Une idée à la base de l’invention est de proposer une cuve étanche et thermiquement isolante de stockage d’un gaz liquéfié comprenant un paroi présentant successivement, dans une direction d’épaisseur de la paroi, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante et une membrane d’étanchéité reposant contre ladite barrière thermiquement isolante ;
- la barrière thermiquement isolante comportant au moins deux panneaux isolants qui présentent chacun une plaque supérieure définissant une surface de support contre laquelle repose la membrane d’étanchéité, lesdits panneaux isolants étant alignés selon une direction longitudinale et présentant chacun deux bords transversaux qui sont perpendiculaires à la direction longitudinale;
- une membrane d’étanchéité comportant au moins deux virures métalliques qui s’étendent parallèlement à la direction longitudinale de part et d’autre d’un support de soudure, ledit support de soudure s’étendant parallèlement à la direction longitudinale et étant retenu sur la plaque supérieure des panneaux isolants, les virures présentant une portion médiane reposant contre les surfaces de support et deux bords relevés qui s’étendent parallèlement à la direction longitudinale, l’un des bords relevés de chacune des deux virures étant soudés sur le support de soudure ;
- au moins la plaque supérieure de l’un des deux panneaux isolants comportant, le long du bord transversal dudit panneau isolant qui est en regard de l’autre panneau isolant, un évidement, l’évidement s'étendant perpendiculairement à la direction longitudinale d’un bout à l’autre de la plaque supérieure dudit panneau isolant de telle sorte que les virures ne sont pas supportées par la surface de support dudit panneau isolant le long dudit bord transversal du panneau isolant.
Un tel évidement permet ainsi de limiter l’angle de déformation de la membrane d'étanchéité p au droit de l’interstice entre les bords transversaux des panneaux isolants lorsqu’un dénivelé est généré entre les panneaux isolants adjacents. Ainsi, les déformations de la membrane d’étanchéité restent dans le domaine élastique et n’entraînent pas de déformations irréversibles pour des pressions habituellement rencontrées dans les cuves. Ceci permet donc d’éviter ou de limiter les déformations par cisaillement de la membrane d’étanchéité.
Selon un mode de réalisation, les virures ne sont pas supportées au droit de l’évidement.
Selon un mode de réalisation, la plaque supérieure de chacun des deux panneaux isolants comporte le long du bord transversal dudit panneau isolant en regard de l’autre panneau isolant un évidement, l’évidement s’étendant perpendiculairement à la direction longitudinale d’un bout à l’autre dudit panneau isolant de telle sorte que les virures ne sont pas supportées par la surface de support dudit panneau isolant le long dudit bord transversal.
Selon un mode de réalisation, l’évidement est agencé de sorte que la plaque supérieure est évidée au moins dans une zone définie au-dessus d’un plan qui est incliné d’un angle de 55 ° par rapport à la surface de support et qui coupe le bord transversal du panneau isolant à une distance, selon la direction d’épaisseur de la paroi, de 6 mm par rapport à la surface de support.
Selon un mode de réalisation, le ou chaque évidement est formé par un décrochement, une découpe en biseau ou un arrondi ménagé dans la plaque supérieure, le long du bord transversal du panneau isolant.
Selon un mode de réalisation, le support de soudure s’étend selon la direction longitudinale et comporte une aile de soudure et une aile d’ancrage inclinée par rapport à l’aile de soudure, les plaques supérieures des deux panneaux isolants présentant chacune une rainure dans laquelle est monté le support de soudure, chaque rainure débouchant au niveau de la surface de support et présentant un retour dans lequel est logée l’aile d’ancrage du support de soudure, le retour ménageant dans le panneau isolant respectif, entre le retour et la surface de support, une portion de retenue contre laquelle est retenue l’aile d’ancrage de manière à retenir le support de soudure sur ledit panneau isolant.
Selon un mode de réalisation, chaque rainure débouche dans l’un des évidements de sorte que le support de soudure n’est pas retenu à la barrière thermiquement isolante dans la zone dudit évidement.
Selon un mode de réalisation, la rainure de chacun des panneaux isolants présente une extrémité en regard de l’autre panneau isolant qui se prolonge par une échancrure débouchant au niveau de la surface de support, chaque étant ménagée au moins dans le prolongement, selon la direction longitudinale, de ladite rainure et de la portion de retenue, de sorte que le support de soudure n’est pas retenu audit panneau isolant dans la zone de ladite échancrure.
Ainsi, le support de soudure n’étant pas retenu à la barrière thermiquement isolante au niveau de l’échancrure, le support de soudure ainsi que la membrane d’étanchéité présentent une plus grande souplesse au droit de l’interstice ménagé entre les panneaux isolants ce qui permet de limiter les contraintes s’exerçant sur les supports de soudure et la membrane d’étanchéité lorsqu’un dénivelé est généré entre les panneaux isolants primaires adjacents tout en permettant de diminuer la valeur de l’interstice de manière à optimiser les performances thermiques de l’isolation.
Selon un mode de réalisation, les bords transversaux adjacents des panneaux isolants sont espacés l’un de l’autre d’un interstice qui présente une largeur selon la direction longitudinale qui est inférieure à 5 mm, par exemple de l’ordre de 1 mm.
Selon un mode de réalisation, la somme de la dimension longitudinale de l’évidement de chacun des deux panneaux isolants et de la largeur de l’interstice ménagé entre les panneaux isolants est comprise entre 7 et 70 mm.
Selon un mode de réalisation, la somme de la dimension longitudinale de l’évidement de chacun des deux panneaux isolants et de la largeur de l’interstice ménagé entre les panneaux isolants est comprise entre 7 et 25 mm lorsque chaque rainure débouche dans l’un des évidements au travers d’une échancrure. Dans un tel cas, la dimension selon la direction longitudinale d’un évidement est par exemple comprise entre 3 et 12 mm.
Selon un autre mode de réalisation, la somme de la dimension longitudinale de l’évidement de chacun des deux panneaux isolants et de la largeur de l’interstice ménagé entre les panneaux Isolants est comprise entre 20 et 70 mm, avantageusement entre 25 et 45 mm et plus particulièrement entre 30 et 40 mm lorsque chaque rainure débouche directement dans l’un des évidements. Dans un tel cas, la dimension selon la direction longitudinale d’un évidement est par exemple comprise entre 14,5 mm et 29.5 mm.
Selon un mode de réalisation, les rainures des deux panneaux isolants sont espacées d’un intervalle i dont la dimension selon la direction longitudinale est comprise entre 20 et 70 mm, avantageusement entre 25 et 45 mm et plus particulièrement entre 30 et 40 mm. En d’autres termes, la dimension du support de soudure qui n’est pas retenue aux panneaux isolants, dans la zone de l’interstice entre les bords transversaux des panneaux isolants est comprise entre 20 et 70 mm, avantageusement entre 25 et 45 mm et plus particulièrement entre 30 et 40 mm. Ceci permet, d’une part, de limiter les contraintes susceptibles d’être exercées sur le support de soudure et la membrane d’étanchéité dans une plage acceptable, et, d’autre part, de retenir suffisamment la membrane d’étanchéité aux panneaux isolants pour éviter qu’elle ne s’arrache.
Selon un mode de réalisation, la ou chaque échancrure présente une dimension n selon la direction longitudinale comprise entre 5 mm et 30 mm.
Selon un mode de réalisation, la ou chaque échancrure présente une profondeur p qui est égale et de préférence supérieure à celle des rainures. Ceci permet de limiter les contraintes s’exerçant sur le support de soudure et la membrane d’étanchéité, lorsque le bord transversal du panneau isolant présentant ladite échancrure est surélevé par rapport au bord transversal adjacent de l’autre panneau isolant.
Selon un mode de réalisation, l’échancrure présente un fond et des parois latérales reliant le fond à la surface de support. Selon un mode de réalisation, le fond de l’échancrure présente une pente inclinée de sorte que la profondeur p de l’échancrure diminue en direction de la rainure.
Selon un mode de réalisation, les parois latérales de l’échancrure se raccordent à la rainure par des chanfreins ou des congés. De tels chanfreins ou congés permettent de guider le support de soudure vers la rainure et facilite ainsi la mise en place du support de soudure dans la rainure.
Selon un mode de réalisation, les parois latérales de l’échancrure se composent d’une partie plane et se raccordent à la rainure par une partie cylindrique.
Selon un mode de réalisation, l’échancrure présente une forme globale triangulaire ou trapézoïdale qui se rétrécit en direction de la rainure.
Selon un mode de réalisation, la rainure présente une section en forme de T inversé.
Selon un mode de réalisation, le support de soudure présente une forme de L.
Selon un mode de réalisation, la plaque supérieure est en bois contreplaqué.
Selon un mode de réalisation, la plaque supérieure présente une épaisseur comprise entre 9 et 15 mm.
Selon un mode de réalisation, la barrière thermiquement isolante est une barrière thermiquement isolante primaire et la membrane d'étanchéité est une membrane d'étanchéité primaire, la paroi comportant successivement, de l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire ancrée à une structure porteuse, une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, la barrière thermiquement isolante primaire et la membrane d’étanchéité primaire.
Selon un mode de réalisation, la membrane d’étanchéité est réalisée dans un matériau choisi parmi l’acier inoxydable, les alliages de fer et de nickel dont le coefficient de dilatation est compris entre 1 ,2.106 et 2.106 K 1 et les alliages de fer et de manganèse dont le coefficient de dilatation est inférieur à 15.106 K 1. Selon un mode de réalisation, le support de soudure est réalisé dans un matériau choisi parmi l’acier inoxydable, les alliages de fer et de nickel dont le coefficient de dilatation est compris entre 1 ,2.106 et 2.106 K-1 et les alliages de fer et de manganèse dont le coefficient de dilatation est inférieur à 15.106 K 1.
Selon un mode de réalisation, au moins l’un des panneaux isolants comporte une plaque de fond, une plaque intermédiaire disposée entre la plaque de fond et la plaque supérieure, une première couche de mousse polymère isolante prise en sandwich entre la plaque de fond et la plaque intermédiaire et une deuxième couche de mousse polymère isolante prise en sandwich entre la plaque intermédiaire et la plaque supérieure. Une telle structure est avantageuse en ce qu’elle permet de limiter les efforts de flexion engendrés par la contraction différentielle des matériaux du panneau isolant.
Selon un autre mode de réalisation, au moins l’un des panneaux isolants comporte en outre une plaque de fond et des voiles porteurs s’étendant, dans la direction d’épaisseur de la paroi de cuve, entre le plaque de fond et la plaque supérieure et délimitant une pluralité de compartiments remplis d’une garniture isolante, telle que de la perlite.
Selon un mode de réalisation, la barrière thermiquement isolante comporte une pluralité de panneaux isolants qui présentent chacun une plaque supérieure définissant une surface de support contre laquelle repose la membrane d’étanchéité, les plaques supérieures présentant chacune une ou plusieurs rainures dans lesquelles est monté un support de soudure, chacune des extrémités de chaque rainure présentant une échancrure débouchant au niveau de la surface de support et étant ménagée au moins dans le prolongement, selon la direction longitudinale, de la rainure et de la portion de retenue, de sorte que le support de soudure n’est pas retenu audit panneau dans la zone de ladite échancrure.
Selon un mode de réalisation, la barrière thermiquement isolante comporte une pluralité de panneaux isolants qui présentent chacun une plaque de couvercle définissant une surface de support contre laquelle repose la membrane d’étanchéité, la plaque de couvercle de chacun des panneaux isolants comportant, le long de chacun de ses bords transversaux, un évidement, l’évidement s’étendant perpendiculairement à la direction longitudinale d’un bout à l’autre dudit panneau isolant de telle sorte que les virures ne sont pas supportées par la surface de support le long des bords transversaux de chaque panneau isolant.
Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d’un fluide cryogénique comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, la double coque comporte une coque interne formant la structure porteuse de la cuve.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La figure 1 est une vue en perspective écorchée d’une paroi de cuve. - La figure 2 est une vue en coupe illustrant une rainure ménagée dans un panneau primaire, un support de soudure logé dans la rainure et des virures qui sont soudés sur le support de soudure.
- La figure 3 est un vue en perspective d’un panneau primaire selon un premier mode de réalisation.
- La figure 4 est une vue détaillée en perspective illustrant une barrière thermiquement isolante primaire à la jonction entre deux panneaux isolants primaires adjacents selon le premier mode de réalisation.
- La figure 5 est une vue détaillée d’une échancrure au niveau d’un bord transversal d’un panneau isolant primaire selon le premier mode de réalisation.
- La figure 6 est une vue schématique en coupe d’une rainure et d’une échancrure.
- La figure 7 est une vue en perspective d’un panneau isolant primaire selon un deuxième mode de réalisation.
- La figure 8 est une vue schématique en coupe illustrant une barrière thermiquement isolante primaire à la jonction entre deux panneaux isolants primaires adjacents selon le deuxième mode de réalisation.
- La figure 9 est une vue schématique en coupe illustrant une barrière thermiquement isolante primaire à la jonction entre deux panneaux isolants primaires adjacents selon une variante du deuxième mode de réalisation.
- La figure 10 est une vue schématique en coupe illustrant une barrière thermiquement isolante primaire à la jonction entre deux panneaux isolants primaires adjacents selon une autre variante du deuxième mode de réalisation.
- La figure 11 est une vue en perspective d’un panneau isolant primaire selon un troisième mode de réalisation.
- La figure 12 est une vue schématique en coupe illustrant une barrière thermiquement isolante primaire à la jonction entre deux panneaux isolants primaires adjacents selon le troisième mode de réalisation. - La figure 13 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation
Par convention, dans la description, un repère orthonormé bidimensionnel défini par deux axes x et y est utilisé pour décrire les éléments d’une paroi 1 de la cuve étanche et thermiquement isolante. L’axe x correspond à la direction longitudinale et l'axe y correspond à la direction transversale. La direction longitudinale correspond à la direction selon laquelle les virures et les supports de soudure s’étendent. Selon un mode de réalisation avantageux, lorsque la cuve est destinée à être intégrée dans la double coque d’un navire, l’axe x correspond également à la direction longitudinale du navire.
Sur la figure 1 , on a représenté la structure multicouche d’une paroi 1 d’une cuve étanche et thermiquement isolante de stockage d’un fluide liquéfié, tel que du gaz naturel liquéfié (GNL). Chaque paroi 1 de la cuve comporte successivement, dans le sens de l’épaisseur, depuis l'extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire 2 retenue à une structure porteuse 3, une membrane d’étanchéité secondaire 4 reposant contre la barrière thermiquement isolante secondaire 2, une barrière thermiquement isolante primaire 5 reposant contre la membrane d’étanchéité secondaire 4 et une membrane d’étanchéité primaire 6 destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
La structure porteuse 3 peut notamment être formée par la coque ou la double coque d’un navire. La structure porteuse 3 comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.
La barrière thermiquement isolante secondaire 2 comporte une pluralité de panneaux isolants secondaires 7 qui sont ancrés sur la structure porteuse 3 au moyen de dispositifs d’ancrage, tels que décrits par exemple dans le document WO2014096600. Les panneaux isolants secondaires 7 présentent une forme générale parallélépipédique et sont disposés selon des rangées parallèles.
Dans le mode de réalisation représenté sur la figure 1 , chaque panneau isolant secondaire 7 comporte trois plaques, à savoir une plaque de fond 8, une plaque intermédiaire 9 et une plaque supérieure 10 qui définit une surface de support pour la membrane d’étanchéité secondaire 4. Les plaques de fond 8, intermédiaire 9 et supérieure 10 sont par exemple réalisées en bois contreplaqué. Chaque panneau isolant secondaire 7 comporte également une première couche de mousse polymère isolante 11 prise en sandwich entre la plaque de fond 8 et la plaque intermédiaire 9 et une seconde couche de mousse polymère isolante 12 prise en sandwich entre la plaque intermédiaire 9 et la plaque supérieure 10. La première et la deuxième couches de mousse polymère isolante 11 , 12 sont respectivement collées sur les plaques de fond 8 et intermédiaire 9 et sur les plaques intermédiaire 9 et supérieure 10. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne, optionnellement renforcée par des fibres.
Dans un autre mode de réalisation, les panneaux isolants secondaires 7 sont susceptibles de présenter une autre structure générale, par exemple celle décrite dans le document WO2012/127141. Les panneaux isolants secondaires 7 sont alors réalisés sous la forme d’un caisson comportant une plaque de fond, une plaque supérieure et des voiles porteurs s’étendant, dans la direction d’épaisseur de la paroi 1 de cuve, entre le plaque de fond et la plaque supérieure et délimitant une pluralité de compartiments remplis d’une garniture isolante, telle que de la perlite, de la laine de verre ou de roche.
Dans un autre mode de réalisation, la barrière thermiquement isolante secondaire 2 comporte des panneaux isolants secondaires 7 ayant au moins deux types de structure différents, par exemple les deux structures précitées, en fonction de leur zone d’implantation dans la cuve.
A titre d’exemple, les panneaux isolants secondaires 7 présentent des dimensions de l’ordre de 1130 mm x 1000 mm. Les panneaux isolants secondaires 7 sont espacés les uns des autres selon la direction transversale y par un jeu fonctionnel de montage, par exemple de l’ordre de 1 mm. Par ailleurs, les panneaux isolants secondaires 7 sont espacés les uns des autres selon la direction longitudinale x par un interstice ayant par exemple une largeur de l’ordre de 60 mm. Aussi, une garniture isolante, non représentée, telle que de la laine de verre ou de la laine de roche est positionnée dans l’interstice ménagé entre les bords transversaux des panneaux isolants secondaires 7. La membrane d’étanchéité secondaire 4 comporte une nappe continue de virures 13, métalliques, à bord relevés qui sont fixés sur les panneaux isolants secondaires 7, tel qu’il sera détaillé par la suite.
La barrière thermiquement isolante primaire 5 comporte une pluralité de panneaux isolants primaires 14 qui sont ancrés sur la structure porteuse 3 au moyen des dispositifs d’ancrage précités. Les panneaux isolants primaires 14 présentent une forme générale parallélépipédique. Chacun des panneaux isolants primaires 14 est positionné au droit de l’un des panneaux isolants secondaires 7. Les panneaux primaires 14 présentent une longueur selon la direction longitudinale x supérieure à celle des panneaux isolants secondaires 7, ce qui permet de réduire la dimension de l’interstice ménagé entre les bords transversaux 32 des panneaux isolants primaires 14. L’interstice entre les bords transversaux des panneaux isolants primaires 14 présente une largeur, selon la direction longitudinale x, qui est inférieure à 20 mm, avantageusement inférieure à 10 mm, par exemple de l’ordre de 8 mm. L’espacement entre les panneaux isolants primaires 14 selon la direction transversale y est identique à celui ménagé entre les panneaux isolants secondaires 7 et correspond à un jeu fonctionnel de montage de l’ordre de 1 mm.
En relation avec la figure 3, l’on observe la structure d’un panneau isolant primaire 14 selon un premier mode de réalisation. Le panneau isolant primaire 14 présente une structure multicouche similaire à celle du panneau isolant secondaire 7 décrit ci-dessus. Aussi, le panneau isolant primaire 14 comporte successivement une plaque de fond 15, une première couche de mousse polymère isolante 16, une plaque intermédiaire 17, une deuxième couche de mousse polymère isolante 18 et une plaque supérieure 19. La plaque supérieure 19 définit une surface de support 36 pour la membrane d’étanchéité primaire 6. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne, optionnellement renforcée par des fibres. La plaque supérieure 19 est par exemple réalisée en bois contreplaqué. Selon un mode de réalisation, la plaque supérieure présente une épaisseur comprise entre 9 et 15 mm.
La plaque de fond 15 comporte des rainures 20 destinées à recevoir les bords relevés des virures de la membrane d’étanchéité secondaire 4. La plaque supérieure 19 comporte également des rainures 21 pour recevoir des supports de soudure destinés au soudage de la membrane d’étanchéité primaire 6.
La structure du panneau isolant primaire 14 est décrite ci-dessus à titre d’exemple. Aussi, dans un autre mode de réalisation, les panneaux isolants primaires 14 sont susceptibles de présenter une autre structure générale, par exemple celle décrite dans le document WO2012/127141. Dans un autre mode de réalisation, la barrière thermiquement isolante primaire 5 comporte des panneaux isolants primaires 14 ayant au moins deux types de structure différents, par exemple les deux structures précitées, en fonction de leur zone d’implantation dans la cuve.
En revenant à la figure 1 , l’on observe que la membrane d’étanchéité primaire 6 comporte une nappe continue de virures 22, métalliques, à bord relevés qui s’étendent selon la direction longitudinale x. Les virures 22 sont soudées par leurs bords relevés sur des supports de soudure 23 qui s’étendent parallèlement les uns aux autres selon la direction longitudinale x et qui sont fixés dans les rainures 21 ménagées sur les plaques supérieures 19 des panneaux isolants primaires 14.
En relation avec la figure 2, l’on décrit ci-dessous l’ancrage d’un support de soudure 23 sur la plaque supérieure 19 d’un panneau isolant primaire 14 et la fixation des virures 22 de la membrane d’étanchéité primaire 6 sur ledit support de soudure 23. Notons que l’ancrage de la membrane d’étanchéité secondaire 4 sur les panneaux isolants secondaires 7 est réalisé de manière similaire.
Dans le mode de réalisation représenté, le support de soudure 23 présente une section en forme de L et est retenu dans une rainure 21. La rainure 21 présente ici une section en forme de T inversé, mais peut élément présenter une section en forme de L. La section en forme de T est toutefois avantageuse en ce qu’elle peut être réalisée plus simplement, à l’aide d’opérations de fraisage. A titre d’exemple, la rainure présente une profondeur de l’ordre de 6 mm.
Le support de soudure 23 présente une aile de soudure 24 et une aile d’ancrage 25 qui sont inclinées l’une par rapport à l’autre. Ici, l’aile de soudure 24 et l’aile d’ancrages 25 sont perpendiculaire l’une à l’autre de sorte à former un L.
La rainure 21 présente une portion 26 s’étendant sensiblement selon la direction d’épaisseur de la paroi 1 de cuve et débouchant au niveau de la surface de support 36 de la plaque supérieure 19 et au moins un retour 27 qui s’étend selon un plan orthogonal à la direction d’épaisseur de la paroi 1 de cuve. Le retour 27 ménage ainsi, dans la plaque supérieure 19, entre la surface de support 36 et le retour 27 une portion de retenue 28. L’aile d’ancrage 25 du support de soudure est insérée à l’intérieur du retour 27 de la rainure 21 tandis que l’aile de soudure 24 traverse la portion 26 s’étendent selon la direction d’épaisseur de la paroi 1 de cuve de manière à faire saillie vers l’intérieur de la cuve, au-delà de la plaque supérieure 19. L’aile d’ancrage 25 est ainsi retenue contre la portion de retenue 28, ce qui permet d’ancrer le support de soudure 23 sur le panneau isolant primaire 14.
Les rainures 21 des panneaux isolants primaires 14 sont alignées les unes à la suite des autres selon la direction longitudinale. Aussi, un support de soudure 23 s’étend selon la direction longitudinale x, sensiblement d’un bout à l’autre de la paroi 1 de cuve, en passant au travers des rainures 21 alignées les unes par rapport aux autres d’une pluralité de panneaux isolants primaires 14.
Les virures 22 présentent une portion médiane 29 reposant contre la surface de support 36 des plaques supérieures 19 et deux bords relevés 30 qui s’étendent selon la direction longitudinale et font saillie depuis la portion médiane 29 vers l’intérieur de la cuve. Les bords relevés 30 des deux virures 22 qui s’étendent de part et d’autre du support de soudure 23 sont soudés sur l’aile de soudure 24 dudit support de soudure 23. Les soudures étanches entre les bords relevés 30 et les ailes de soudure 23 sont par exemple réalisées à l’aide d’une machine de soudage, telle que décrite dans les demandes FR2172837 ou FR2140716.
Les virures 22 et les supports de soudure 23 sont, par exemple, réalisés en Invar ® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.106 et 2.10-6 K 1, dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1 ou dans un acier inoxydable.
Comme représenté sur la figure 4, les panneaux isolants primaires 14 sont espacés selon la direction longitudinale x par un interstice 31 présentant une faible largeur. La largeur de l’interstice 31 est inférieure à 20 mm, de préférence inférieure à 10 mm et par exemple de l’ordre de 8 mm. Aussi, afin de limiter les sollicitations mécaniques susceptibles d’agir sur les supports de soudure 23, sur les bords relevés 30 ainsi que sur les soudures entre les supports de soudure 23 et les bords relevés 30 lorsqu’un dénivelé est généré entre deux panneaux isolants primaires 14 adjacents, les rainures 21 se prolongent au niveau des bords transversaux 32 des panneaux isolants primaires 14 par des échancrures 33, dont l’une est représentée de manière détaillée sur les figures 5 et 6.
L’échancrure 33 débouche au niveau de la surface de support 36 et s’étend dans le prolongement, selon la direction longitudinal x, de la rainure 21 et de la portion de retenue 28 de sorte que l’aile d’ancrage 25 du support de soudure 23 n’est pas retenue au panneau isolant primaire 14 dans la zone de ladite échancrure 33. Ceci permet de diminuer les contraintes s’exerçant sur les supports de soudure 23 et les bords relevés 30 des virures 22 lorsqu’un dénivelé est généré entre les panneaux isolants primaires 14 adjacents. Dès lors, les effets d’un tel dénivelé sur la tenue en fatigue de la membrane d’étanchéité primaire 6 et des supports de soudure 23 dans la zone des interstices 31 ménagés entre les bords transversaux 32 des panneaux isolants primaires 14 sont atténués.
L’échancrure 33 présente un fond 34 et deux parois latérales 35 reliant le fond 34 à la surface de support 36. De manière avantageuse, l’échancrure 33 présente une profondeur p (illustrée sur la figure 6) selon la direction d’épaisseur de la paroi 1 de cuve qui est supérieure à celle de la rainure 21. Plus particulièrement, comme représenté sur la figure 5, le fond 34 présente une pente qui est inclinée de sorte que la profondeur p de l’échancrure 33 diminue depuis le bord transversal 32 du panneau isolant primaire 14 vers la rainure 21. Ceci permet de limiter les contraintes s’exerçant sur le support de soudure 23 et les bords relevés 30 des virures 22, du côté du panneau isolant primaire 14 qui est surélevé par rapport au panneau isolant primaire 14 adjacent lorsqu’un dénivelé est généré entre deux panneaux isolants primaires 14 adjacents.
Par ailleurs, de manière avantageuse, la dimension m, représentée sur la figure 6, de l’échancrure 33 selon la direction transversale y est supérieure ou égale à la dimension de la rainure 21 selon ladite direction transversale y. Aussi, chaque paroi latérale 35 de l’échancrure 33 est positionnée, selon la direction transversale y, au-delà d’une extrémité de la portion horizontale de la rainure 21. En outre, les parois latérales 35 de l’échancrure 33 se raccordent chacun aux bords de la rainure 21 par l’intermédiaire d’un chanfrein ou d’un congé 37. Le chanfrein ou le congé 37 est agencé pour guider l’aile de soudure 24 du support de soudure 23 en direction de la portion 26 verticale de la rainure 21 lors du montage par coulissement du support de soudure 23 à l’intérieur de la rainure 21. Ainsi, un tel agencement présente en outre l’avantage de faciliter l’insertion du support de soudure 23 à l’intérieur de la rainure 21.
Plus particulièrement, dans le mode de réalisation représenté, les parois latérales présentent une partie plane et se raccordent la rainure 21 par une partie cylindrique 37.
Dans d’autres modes de réalisation non représentés, l’échancrure 33 présente une forme générale de trapèze ou de triangle qui est orientée de telle sorte que l’échancrure s’élargit en s’éloignant de la rainure 21.
La dimension n, représentée sur la figure 5, des échancrures 33 selon la direction longitudinale est avantageusement déterminée en fonction de la dimension de l’interstice 31 ménagé entre les bords transversaux 32 des panneaux isolants primaires 14. Il a en effet été constaté que la longueur de la zone dans laquelle le support de soudure 23 n’est pas retenu aux deux panneaux isolants primaires 14 adjacents, c’est-à-dire correspondant à la dimension de l’intervalle i, représentée sur la figure 4, entre deux rainures 21 successives, doit avantageusement être comprise entre 20 et 70 mm, avantageusement entre 25 et 45 mm et plus particulièrement entre 30 et 40 mm. Ceci permet, d’une part, de limiter les contraintes susceptibles d’être exercées sur le support de soudure 23 et la membrane d’étanchéité primaire 6 dans une plage acceptable, et, d’autre part, de retenir suffisamment la membrane d’étanchéité primaire 6 aux panneaux isolants primaires 14 pour éviter qu’elle ne s'arrache.
Aussi, à titre d’exemple, la dimension n des échancrures 14 selon la direction longitudinale est comprise entre 5 mm et 30 mm. La dimension n est par exemple de l’ordre de 13 mm lorsque l’interstice 31 présente une largeur de l’ordre de 8 mm. En relation avec les figures 7 et 8, l’on décrit désormais un panneau isolant primaire 14 selon un autre mode de réalisation. Ce mode de réalisation est avantageux en ce qu’il permet de diminuer encore davantage l’interstice 31 ménagé entre les panneaux isolants primaires 14 selon la direction longitudinale x. L’interstice 31 représenté sur la figure 8 présente une largeur qui est avantageusement inférieure à 5 mm, par exemple de l’ordre de 1 mm. Dès lors, pour un interstice 31 présentant une valeur de 1 mm, il n’y a pas de garniture isolante positionnée entre les bords transversaux 32 des panneaux isolants primaires 14. Ceci permet donc d’améliorer les performances d’isolation thermique de la barrière thermiquement isolante primaire 5 tout en simplifiant son installation.
Afin d’éviter des déformations par cisaillement des virures 22 au droit des interstices 31 entre les bords transversaux 32 des panneaux isolants primaires 14 lorsque la largeur de l’interstice 31 est faible, la plaque supérieure 19 des panneaux isolants primaires 14 présente, en sus des échancrures 33 précitées, des évidements 38. Un évidement 38 est ménagé le long de chacun des bords transversaux 32 et s’étend selon une direction transversale d’un bout à l’autre du panneau isolant primaire 14. Les évidements 38 interrompent la surface de support 36 de sorte que la membrane d’étanchéité primaire 6 n’est pas supportée dans la zone dudit évidement 38. Dès lors, comme représenté sur la figure 8, la longueur I, selon la direction longitudinale, de la zone dans laquelle la membrane d’étanchéité primaire 6 n’est plus supportée est égale à la somme de la dimension, selon la direction longitudinale, de l’évidement 38 de chacun des panneaux isolants primaires 14 et de la largeur de l’interstice 31.
Les évidements 38 ont ainsi pour effet de limiter l’angle de déformation de la membrane d’étanchéité primaire 6 au droit de l’interstice 31 entre les bords transversaux 32 des panneaux isolants primaires 14 lorsqu’un dénivelé est généré entre les panneaux isolants primaires 14 adjacents. Ainsi, les déformations de la membrane d’étanchéité primaire 6 restent dans le domaine élastique et n’entraînent pas de déformations irréversibles de la membrane d’étanchéité primaire 6 au droit des interstices 31 , pour des pressions habituellement rencontrées dans les cuves.
De manière avantageuse, la longueur I, c’est-à-dire la somme de la dimension longitudinale de l’évidement 38 de chacun des panneaux isolants primaires adjacents et de la largeur de l’interstice 31 est comprise entre 7 et 25 mm et de préférence entre 8 et 12 mm. Aussi, à titre d’exemple, pour une largeur d’interstice 31 de l’ordre de 1 mm, la dimension selon la direction longitudinale d’un évidement 38 est comprise entre 3 et 12 mm.
Les évidements 38 représentés sur la figure 8 sont des décrochements. Le fond 39 du décrochement présente une surface parallèle à la surface de support 36 et est relié à ladite surface de support 36 par une paroi qui s’étend sensiblement selon la direction d'épaisseur de la paroi 1 de cuve. Le décrochement présente par exemple une largeur comprise entre 3 et 12 mm. La profondeur de l’évidement 38, selon la direction d’épaisseur de la paroi de cuve est supérieure ou égale à la profondeur de la rainure 21 , c’est-à-dire environ 6 mm. La profondeur de l’évidement 38 est de préférence comprise entre 8 et 10 mm.
Notons que, dans ce mode de réalisation, comme dans ceux décrits ci- dessous en réalisation avec les figures 9 et 10, des échancrures 33, telles que décrites précédemment sont ménagées dans la plaque supérieure 19 de sorte que les rainures 21 débouchent dans les évidements 38 au travers desdites échancrures
33.
Les figures 9 et 10 illustrent des variantes de réalisation du second mode de réalisation des figures 7 et 8. Ces variantes de réalisation diffèrent de la variante illustrée sur la figure 8 par la forme de l’évidement 38.
Dans la variante de réalisation illustrée sur la figure 9, les évidements 38 sont découpés en biseau, dans la plaque supérieure 19, le long des bords transversaux 32 des panneaux isolants primaires 14.
Dans la variante de réalisation illustrée sur la figure 10, les évidements 38 sont chacun ménagés à la faveur d’un arrondi ménagé dans la plaque supérieure 19, le long des bords transversaux 32 des panneaux isolants primaires 14.
Pour ces deux variantes de réalisation, la longueur I, c’est-à-dire la somme de la dimension longitudinale de l’évidement 28 de chacun des panneaux isolants primaires 14 adjacents et de la largeur de l’interstice 31 est comprise entre 7 et 25 mm comme dans le mode de réalisation des figures 7 et 8. De manière avantageuse, quelle que soit sa forme, l’évidement 38 est agencé de sorte que la plaque supérieure 19 est é vidée au moins dans une zone définie au-dessus d’un plan qui est incliné d’un angle de 55° [par rapport à la surface de support 36 et qui coupe le bord transversal 32 du panneau isolant primaire 14 à une distance, selon la direction d’épaisseur de la cuve, de 6 mm par rapport au plan de la surface de support 36.
Les figures 11 et 12 représentent un troisième mode de réalisation. Ce mode de réalisation diffère des modes de réalisation décrits ci-dessus en relation avec les figures 7 à 10 en ce que les plaques supérieures 19 des panneaux isolants primaires 14 ne sont pas équipées d’échancrures 33 ménagées dans le prolongement des rainures 21. Aussi, dans ce mode de réalisation, les rainures 21 débouchent directement dans les évidements 38 ménagés dans la plaque supérieure 19, le long des bords transversaux, 32. Aussi, la dimension selon la direction longitudinale des évidements 38 est choisie de telle sorte que la dimension de l'intervalle i, selon la direction longitudinale, entre deux rainures 21 successives, est avantageusement comprise entre 20 et 70 mm, avantageusement entre 25 et 45 mm et plus particulièrement entre 30 et 40 mm.
Aussi, à titre d’exemple, dans le mode de réalisation représenté sur la figure 12, la largueur de l’interstice 31 ménagé entre les bords transversaux 32 des deux panneaux isolants primaires 14 adjacent est de l’ordre de 1 mm tandis que la dimension des évidements 38 selon la direction longitudinale x est comprise entre 14,5 mm et 29.5 mm, par exemple de l’ordre de 24,5 mm.
Notons que dans les modes de réalisation décrits ci-dessus, seuls les panneaux isolants primaires 14 sont équipés d’agencements (échancrures 33 et/ou évidements 38) permettant de limiter les dégradations de la tenue en fatigue de la membrane d’étanchéité primaire 6 puisque les panneaux isolants primaires 14 sont susceptibles d’être soumis à des phénomènes de dénivelés plus importants que les panneaux isolants secondaires 7. Toutefois, de manière alternative ou additionnelle, les panneaux isolants secondaires 7 peuvent également présenter de tels agencements, à savoir des rainures ménagées dans la plaque supérieure qui se prolongent par des échancrures et/ou des évidements ménagés, dans la plaque supérieure, le long des bords transversaux des panneaux isolants secondaires 7. En référence à la figure 13, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 13 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75. Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante de stockage d’un gaz liquéfié comprenant un paroi (1 ) présentant successivement, dans une direction d’épaisseur de la paroi (1 ), depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante (5) et une membrane d’étanchéité (6) reposant contre ladite barrière thermiquement isolante (5) ;
- la barrière thermiquement isolante (5) comportant au moins deux panneaux isolants (14) qui présentent chacun une plaque supérieure (19) définissant une surface de support (36) contre laquelle repose la membrane d’étanchéité (6), lesdits panneaux isolants (14) étant alignés selon une direction longitudinale et présentant chacun deux bords transversaux (32) qui sont perpendiculaires à la direction longitudinale ;
- une membrane d’étanchéité (6) comportant au moins deux virures (22) métalliques qui s’étendent parallèlement à la direction longitudinale de part et d’autre d’un support de soudure (23), ledit support de soudure (23) s’étendant parallèlement à la direction longitudinale et étant retenu sur la plaque supérieure (19) des panneaux isolants (14), les virures (22) présentant une portion médiane (29) reposant contre les surfaces de support (36) et deux bords relevés (30) qui s’étendent parallèlement à la direction longitudinale, l’un des bords relevés (30) de chacune des deux virures (22) étant soudés sur le support de soudure (23) ;
- au moins la plaque supérieure (19) de l’un des deux panneaux isolants (14) comportant, le long du bord transversal (32) dudit panneau isolant (14) qui est en regard de l’autre panneau isolant (14), un évidement (38), l’évidement (38) s’étendant perpendiculairement à la direction longitudinale d’un bout à l’autre de la plaque supérieure (19) dudit panneau isolant (14) de telle sorte que les virures (22) ne sont pas supportées par la surface de support (36) dudit panneau isolant (14) le long dudit bord transversal (32) du panneau isolant (14), les virures (22) n’étant pas supportées au droit de l’évidement (38).
2. Cuve étanche et thermiquement isolante selon la revendication 1 , dans laquelle la plaque supérieure (19) de chacun des deux panneaux isolants (14) comporte le long du bord transversal (32) dudit panneau isolant (14) en regard de l’autre panneau isolant (14) un évidement (38), l’évidement (38) s’étendant perpendiculairement à la direction longitudinale d’un bout à l’autre dudit panneau isolant (14) de telle sorte que les virures (22) ne sont pas supportées par la surface de support (36) dudit panneau isolant (14) le long dudit bord transversal (32).
3. Cuve étanche et thermiquement isolante selon la revendication 1 ou 2, dans lequel le ou chaque évidement (38) est agencé de sorte que la plaque supérieure (19) du panneau isolant (14) est évidée au moins dans une zone définie au-dessus d’un plan qui est incliné d’un angle de 55° par rapport à la surface de support (36) et qui coupe le bord transversal (32) du panneau isolant (14) à une distance, selon la direction d’épaisseur de la paroi, de 6 mm par rapport à la surface de support (36).
4. Cuve étanche et thermiquement isolante selon l’une quelconque des revendications 1 à 3, dans lequel le ou chaque évidement (38) est formé par un décrochement, une découpe en biseau ou un arrondi ménagé dans la plaque supérieure (19), le long du bord transversal (32) du panneau isolant (14).
5. Cuve étanche et thermiquement isolante selon l’une quelconque des revendications 1 à 4, dans lequel le support de soudure (23) s’étend selon la direction longitudinale et comporte une aile de soudure (24) et une aile d’ancrage (25) inclinée par rapport à l'aile de soudure (24), les plaques supérieures (19) des deux panneaux isolants (14) présentant chacune une rainure (21 ) dans laquelle est monté le support de soudure (23), chaque rainure (21 ) débouchant au niveau de la surface de support (36) et présentant un retour (27) dans lequel est logée l’aile d’ancrage (25) du support de soudure (23), le retour (27) ménageant dans le panneau isolant (14) respectif, entre le retour (27) et la surface de support (36), une portion de retenue (28) contre laquelle est retenue l’aile d’ancrage (25) de manière à retenir le support de soudure (23) sur ledit panneau isolant (14).
6. Cuve étanche et thermiquement isolante selon les revendications 2 et 3 prises en combinaison, dans lequel chaque rainure (21 ) débouche dans l’un des évidements (38) de sorte que le support de soudure (23) n’est pas retenu à la barrière thermiquement isolante (5) dans la zone dudit évidement (38).
7. Cuve étanche et thermiquement isolante selon la revendication 4, dans laquelle la rainure (21 ) de chacun des panneaux isolants (14) présente une extrémité en regard de l’autre panneau isolant (14) qui se prolonge par une échancrure (33) débouchant au niveau de la surface de support (36), chaque échancrure (33) étant ménagée au moins dans le prolongement, selon la direction longitudinale, de ladite rainure (21 ) et de la portion de retenue (28), de sorte que le support de soudure (23) n’est pas retenu audit panneau isolant (14) dans la zone de ladite échancrure (33).
8. Cuve étanche et thermiquement isolante selon l’une quelconque des revendications 1 à 7, dans laquelle les bords transversaux (32) adjacents des panneaux isolants (14) sont espacés l’un de l’autre d’un interstice (31 ) qui présente une largeur selon la direction longitudinale qui est inférieure à 5 mm.
9. Cuve étanche et thermiquement isolante selon la revendication 8 prise en combinaison avec la revendication 2, dans laquelle la somme de la dimension longitudinale de l’évidement (38) de chacun des deux panneaux isolants (14) et de la largeur de l’interstice (31) ménagé entre les panneaux isolants (14) est comprise entre 7 et 70 mm.
10. Navire (70) pour le transport d’un fluide, le navire comportant une double coque (72) et une cuve (71 ) selon l’une quelconque des revendications 1 à 9 disposée dans la double coque (72).
11. Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 10, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
12. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 10, dans lequel on achemine un fluide à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
PCT/FR2019/050136 2018-01-23 2019-01-22 Cuve etanche et thermiquement isolante WO2019145635A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2020122819A RU2763100C1 (ru) 2018-01-23 2019-01-22 Герметичный и теплоизоляционный резервуар
KR1020207024254A KR102648632B1 (ko) 2018-01-23 2019-01-22 밀봉되고 단열된 탱크
CN201980009460.1A CN111630311B (zh) 2018-01-23 2019-01-22 密封隔热罐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850532A FR3077116B1 (fr) 2018-01-23 2018-01-23 Cuve etanche et thermiquement isolante
FR1850532 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019145635A1 true WO2019145635A1 (fr) 2019-08-01

Family

ID=62067682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050136 WO2019145635A1 (fr) 2018-01-23 2019-01-22 Cuve etanche et thermiquement isolante

Country Status (5)

Country Link
KR (1) KR102648632B1 (fr)
CN (1) CN111630311B (fr)
FR (1) FR3077116B1 (fr)
RU (1) RU2763100C1 (fr)
WO (1) WO2019145635A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115503269A (zh) * 2022-09-23 2022-12-23 江苏雅克科技股份有限公司 一种lng薄膜舱super+次层绝缘箱的制备工艺
CN117847404B (zh) * 2024-03-07 2024-05-03 中太(苏州)氢能源科技有限公司 一种绝缘模块连接结构和具有该连接结构的储存容器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140716A5 (en) 1971-03-12 1973-01-19 Gaz Transport Electric welding machine with separate transformer - - for welding raised sheet edges
FR2172837A2 (en) 1972-02-24 1973-10-05 Gaz Transport Electric welding machine - for the raised edges of metal plates
FR2413260A1 (fr) * 1977-12-29 1979-07-27 Gaz Transport Cuve etanche et thermiquement isolante integree a la structure porteuse d'un navire
FR2527544A1 (fr) * 1982-06-01 1983-12-02 Gaz Transport Cuve etanche et thermiquement isolante integree a la structure porteuse d'un navire et navire la comportant
WO1989009909A1 (fr) * 1988-04-08 1989-10-19 Gaz-Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire
WO2012127141A1 (fr) 2011-03-23 2012-09-27 Gaztransport Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
WO2014096600A1 (fr) 2012-12-21 2014-06-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520B1 (fr) * 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2798902B1 (fr) * 1999-09-29 2001-11-23 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire et procede de fabrication de caissons isolants destines a etre utilises dans cette cuve
AU2005259146B2 (en) * 2004-07-06 2008-07-31 Shell Internationale Research Maatschappij B.V. Container for storing liquefied gas
KR100499710B1 (ko) * 2004-12-08 2005-07-05 한국가스공사 선박 내부에 설치되는 액화천연가스 저장용 탱크 구조 및 탱크 제조방법
WO2006062271A1 (fr) * 2004-12-08 2006-06-15 Korea Gas Corporation Reservoir de stockage de gnl et procede de fabrication correspondant
FR2911576B1 (fr) * 2007-01-23 2009-03-06 Alstom Sa Procede de realisation d'une paroi isolante et etanche d'une cuve
FR2996520B1 (fr) * 2012-10-09 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une membrane metalique ondulee selon des plis orthogonaux
FR3016619B1 (fr) * 2014-01-17 2016-08-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant des bandes metalliques
FR3023257B1 (fr) * 2014-07-04 2017-12-29 Gaztransport Et Technigaz Cuve etanche et isolante disposee dans une double coque flottante
FR3035174B1 (fr) * 2015-04-15 2017-04-28 Gaztransport Et Technigaz Cuve equipee d'une paroi presentant une zone singuliere au travers de laquelle passe un element traversant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2140716A5 (en) 1971-03-12 1973-01-19 Gaz Transport Electric welding machine with separate transformer - - for welding raised sheet edges
FR2172837A2 (en) 1972-02-24 1973-10-05 Gaz Transport Electric welding machine - for the raised edges of metal plates
FR2413260A1 (fr) * 1977-12-29 1979-07-27 Gaz Transport Cuve etanche et thermiquement isolante integree a la structure porteuse d'un navire
FR2527544A1 (fr) * 1982-06-01 1983-12-02 Gaz Transport Cuve etanche et thermiquement isolante integree a la structure porteuse d'un navire et navire la comportant
WO1989009909A1 (fr) * 1988-04-08 1989-10-19 Gaz-Transport Cuve etanche et thermiquement isolante perfectionnee, integree a la structure porteuse d'un navire
WO2012127141A1 (fr) 2011-03-23 2012-09-27 Gaztransport Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
WO2014096600A1 (fr) 2012-12-21 2014-06-26 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3000042A1 (fr) * 2012-12-21 2014-06-27 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante

Also Published As

Publication number Publication date
FR3077116B1 (fr) 2021-01-08
CN111630311B (zh) 2021-09-10
CN111630311A (zh) 2020-09-04
KR102648632B1 (ko) 2024-03-18
RU2763100C1 (ru) 2021-12-27
FR3077116A1 (fr) 2019-07-26
KR20200110785A (ko) 2020-09-25

Similar Documents

Publication Publication Date Title
EP3198186B1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
WO2020030871A1 (fr) Structure d'angle pour une cuve etanche et thermiquement isolante
EP3803187A2 (fr) Cuve etanche et thermiquement isolante
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
FR3074560A1 (fr) Cuve etanche et thermiquement isolante
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
WO2018024982A1 (fr) Structure de paroi etanche
EP3942219B1 (fr) Cuve étanche et thermiquement isolante
FR3112588A1 (fr) Paroi d'une cuve de stockage d'un gaz liquéfiée
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
FR3064042A1 (fr) Cuve etanche et thermiquement isolante comportant un bouchon isolant de renfort
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
FR3099946A1 (fr) Cuve étanche et thermiquement isolante
WO2022074148A1 (fr) Cuve étanche et thermiquement isolante
WO2021245091A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
WO2019145633A1 (fr) Cuve etanche et thermiquement isolante
WO2020115406A1 (fr) Cuve etanche et thermiquement isolante
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2022233907A1 (fr) Installation de stockage pour gaz liquéfié
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
EP3948055B1 (fr) Installation de stockage pour gaz liquéfié
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19704372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207024254

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020122819

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19704372

Country of ref document: EP

Kind code of ref document: A1