EP3268455B1 - Verfahren zur herstellung von polyharnstoff-verdickten schmierfetten auf basis von lignin-derivaten, derartige schmierfette und deren verwendung - Google Patents
Verfahren zur herstellung von polyharnstoff-verdickten schmierfetten auf basis von lignin-derivaten, derartige schmierfette und deren verwendung Download PDFInfo
- Publication number
- EP3268455B1 EP3268455B1 EP16717236.0A EP16717236A EP3268455B1 EP 3268455 B1 EP3268455 B1 EP 3268455B1 EP 16717236 A EP16717236 A EP 16717236A EP 3268455 B1 EP3268455 B1 EP 3268455B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lignin
- weight percent
- base oil
- lignin derivative
- isocyanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920005610 lignin Polymers 0.000 title claims description 121
- 238000000034 method Methods 0.000 title claims description 47
- 230000001050 lubricating effect Effects 0.000 title claims description 26
- 239000000314 lubricant Substances 0.000 title claims description 16
- 230000008569 process Effects 0.000 title description 22
- 238000002360 preparation method Methods 0.000 title description 8
- 239000002562 thickening agent Substances 0.000 claims description 64
- 239000002199 base oil Substances 0.000 claims description 55
- 239000012948 isocyanate Substances 0.000 claims description 50
- 239000004519 grease Substances 0.000 claims description 49
- 150000002513 isocyanates Chemical class 0.000 claims description 48
- 229920002396 Polyurea Polymers 0.000 claims description 45
- 150000001412 amines Chemical class 0.000 claims description 43
- 239000000654 additive Substances 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 34
- 229920001732 Lignosulfonate Polymers 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000002585 base Substances 0.000 claims description 20
- -1 isocyanate compounds Chemical class 0.000 claims description 20
- 239000011575 calcium Substances 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 15
- 239000000344 soap Substances 0.000 claims description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 8
- 229920000570 polyether Polymers 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000012990 dithiocarbamate Substances 0.000 claims description 7
- 229920005611 kraft lignin Polymers 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 5
- 239000003963 antioxidant agent Substances 0.000 claims description 5
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 5
- 239000000194 fatty acid Substances 0.000 claims description 5
- 229930195729 fatty acid Natural products 0.000 claims description 5
- 229920001228 polyisocyanate Polymers 0.000 claims description 5
- 239000005056 polyisocyanate Substances 0.000 claims description 5
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 claims description 5
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 claims description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229920000193 polymethacrylate Polymers 0.000 claims description 4
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229920002367 Polyisobutene Polymers 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 3
- 125000000743 hydrocarbylene group Chemical group 0.000 claims description 3
- 239000006078 metal deactivator Substances 0.000 claims description 3
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 3
- 229920005862 polyol Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- MBBWTVUFIXOUBE-UHFFFAOYSA-L zinc;dicarbamodithioate Chemical compound [Zn+2].NC([S-])=S.NC([S-])=S MBBWTVUFIXOUBE-UHFFFAOYSA-L 0.000 claims description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000010775 animal oil Substances 0.000 claims description 2
- 150000004982 aromatic amines Chemical class 0.000 claims description 2
- 239000000440 bentonite Substances 0.000 claims description 2
- 229910000278 bentonite Inorganic materials 0.000 claims description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 2
- 239000012964 benzotriazole Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- 235000010216 calcium carbonate Nutrition 0.000 claims description 2
- 239000001506 calcium phosphate Substances 0.000 claims description 2
- 235000011010 calcium phosphates Nutrition 0.000 claims description 2
- WDNQRCVBPNOTNV-UHFFFAOYSA-N dinonylnaphthylsulfonic acid Chemical compound C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 WDNQRCVBPNOTNV-UHFFFAOYSA-N 0.000 claims description 2
- 229920001002 functional polymer Polymers 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000003607 modifier Substances 0.000 claims description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 2
- 150000004045 organic chlorine compounds Chemical class 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 150000002989 phenols Chemical class 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 235000010288 sodium nitrite Nutrition 0.000 claims description 2
- 239000001488 sodium phosphate Substances 0.000 claims description 2
- 235000011008 sodium phosphates Nutrition 0.000 claims description 2
- 150000004763 sulfides Chemical class 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 claims 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical compound C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 claims 1
- 238000003756 stirring Methods 0.000 description 29
- 239000003925 fat Substances 0.000 description 25
- 238000005461 lubrication Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 12
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 11
- 229920005551 calcium lignosulfonate Polymers 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 10
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 description 10
- 239000004202 carbamide Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 235000019198 oils Nutrition 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 230000008719 thickening Effects 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 8
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000012467 final product Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000806 elastomer Substances 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 238000004566 IR spectroscopy Methods 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000011122 softwood Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 239000003039 volatile agent Substances 0.000 description 5
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 4
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methyl-N-phenylamine Natural products CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 4
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000011121 hardwood Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 229920005552 sodium lignosulfonate Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 3
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- LVGQIQHJMRUCRM-UHFFFAOYSA-L calcium bisulfite Chemical compound [Ca+2].OS([O-])=O.OS([O-])=O LVGQIQHJMRUCRM-UHFFFAOYSA-L 0.000 description 2
- 235000010260 calcium hydrogen sulphite Nutrition 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- JMFRWRFFLBVWSI-NSCUHMNNSA-N coniferol Chemical compound COC1=CC(\C=C\CO)=CC=C1O JMFRWRFFLBVWSI-NSCUHMNNSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002293 monolignol group Chemical group 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000010701 perfluoropolyalkylether Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229960001866 silicon dioxide Drugs 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- LZFOPEXOUVTGJS-ONEGZZNKSA-N trans-sinapyl alcohol Chemical compound COC1=CC(\C=C\CO)=CC(OC)=C1O LZFOPEXOUVTGJS-ONEGZZNKSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- FGHOOJSIEHYJFQ-UHFFFAOYSA-N (2,4-ditert-butylphenyl) dihydrogen phosphite Chemical compound CC(C)(C)C1=CC=C(OP(O)O)C(C(C)(C)C)=C1 FGHOOJSIEHYJFQ-UHFFFAOYSA-N 0.000 description 1
- XMKLTEGSALONPH-UHFFFAOYSA-N 1,2,4,5-tetrazinane-3,6-dione Chemical compound O=C1NNC(=O)NN1 XMKLTEGSALONPH-UHFFFAOYSA-N 0.000 description 1
- RWYKESRENLAKMN-UHFFFAOYSA-N 1-[4-[1-[4-[2-[4-[5-(1,2-dihydroxypropyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy]-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propoxy]-3-hydroxy-5-methoxyphenyl]-3-hydroxy-2-[4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-1,3,3a,4,6, Chemical compound O1C=2C(OC)=CC(C(O)C(C)O)=CC=2C(CO)C1C(C=C1OC)=CC=C1OC(CO)C(C=1C=C(OC)C(O)=CC=1)OC(C(=C1)OC)=C(O)C=C1C(C(CO)OC=1C(=CC(=CC=1)C1C2COCC2C(O1)C=1C=C(OC)C(O)=C(OC)C=1)OC)OC(C(=C1)OC)=CC=C1C(O)C(CO)OC1=CC=C(C=CCO)C=C1OC RWYKESRENLAKMN-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- IHBLBMDDUQOYLA-UHFFFAOYSA-N 1-octadecyl-3-[4-[[4-(octadecylcarbamoylamino)phenyl]methyl]phenyl]urea Chemical compound C1=CC(NC(=O)NCCCCCCCCCCCCCCCCCC)=CC=C1CC1=CC=C(NC(=O)NCCCCCCCCCCCCCCCCCC)C=C1 IHBLBMDDUQOYLA-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- AIBRSVLEQRWAEG-UHFFFAOYSA-N 3,9-bis(2,4-ditert-butylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP1OCC2(COP(OC=3C(=CC(=CC=3)C(C)(C)C)C(C)(C)C)OC2)CO1 AIBRSVLEQRWAEG-UHFFFAOYSA-N 0.000 description 1
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- ZMWAXVAETNTVAT-UHFFFAOYSA-N 7-n,8-n,5-triphenylphenazin-5-ium-2,3,7,8-tetramine;chloride Chemical compound [Cl-].C=1C=CC=CC=1NC=1C=C2[N+](C=3C=CC=CC=3)=C3C=C(N)C(N)=CC3=NC2=CC=1NC1=CC=CC=C1 ZMWAXVAETNTVAT-UHFFFAOYSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- WNFDFOPVGKYQOF-UHFFFAOYSA-N C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)P(O)(O)O Chemical compound C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)P(O)(O)O WNFDFOPVGKYQOF-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- FZQSLXQPHPOTHG-UHFFFAOYSA-N [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 Chemical compound [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 FZQSLXQPHPOTHG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001622 bismuth compounds Chemical class 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- LZFOPEXOUVTGJS-UHFFFAOYSA-N cis-sinapyl alcohol Natural products COC1=CC(C=CCO)=CC(OC)=C1O LZFOPEXOUVTGJS-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229940119526 coniferyl alcohol Drugs 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- DGVMNQYBHPSIJS-UHFFFAOYSA-N dimagnesium;2,2,6,6-tetraoxido-1,3,5,7-tetraoxa-2,4,6-trisilaspiro[3.3]heptane;hydrate Chemical compound O.[Mg+2].[Mg+2].O1[Si]([O-])([O-])O[Si]21O[Si]([O-])([O-])O2 DGVMNQYBHPSIJS-UHFFFAOYSA-N 0.000 description 1
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UWPIIXSHQWKCTC-UHFFFAOYSA-N ethyl carbamate urea Chemical compound NC(N)=O.CCOC(N)=O.CCOC(N)=O UWPIIXSHQWKCTC-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010101 extrusion blow moulding Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000010102 injection blow moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000002029 lignocellulosic biomass Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- ZQKXQUJXLSSJCH-UHFFFAOYSA-N melamine cyanurate Chemical compound NC1=NC(N)=NC(N)=N1.O=C1NC(=O)NC(=O)N1 ZQKXQUJXLSSJCH-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000006198 methoxylation reaction Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 229930014251 monolignol Natural products 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000569 multi-angle light scattering Methods 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- ZKZAYPCZGZAZAG-UHFFFAOYSA-J n,n-dibutylcarbamodithioate;molybdenum(4+) Chemical compound [Mo+4].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC ZKZAYPCZGZAZAG-UHFFFAOYSA-J 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- 229940113162 oleylamide Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000162 poly(ureaurethane) Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920003226 polyurethane urea Polymers 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical group CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- FNXKBSAUKFCXIK-UHFFFAOYSA-M sodium;hydrogen carbonate;8-hydroxy-7-iodoquinoline-5-sulfonic acid Chemical class [Na+].OC([O-])=O.C1=CN=C2C(O)=C(I)C=C(S(O)(=O)=O)C2=C1 FNXKBSAUKFCXIK-UHFFFAOYSA-M 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical class [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 125000002130 sulfonic acid ester group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920006344 thermoplastic copolyester Polymers 0.000 description 1
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- PTNLHDGQWUGONS-UHFFFAOYSA-N trans-p-coumaric alcohol Natural products OCC=CC1=CC=C(O)C=C1 PTNLHDGQWUGONS-UHFFFAOYSA-N 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/06—Mixtures of thickeners and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M115/00—Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
- C10M115/08—Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M119/00—Lubricating compositions characterised by the thickener being a macromolecular compound
- C10M119/24—Lubricating compositions characterised by the thickener being a macromolecular compound containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M151/00—Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M151/00—Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
- C10M151/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/02—Mixtures of base-materials and thickeners
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/12—Polysaccharides, e.g. cellulose, biopolymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
- C10M2215/1023—Ureas; Semicarbazides; Allophanates used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
- C10M2215/1026—Ureas; Semicarbazides; Allophanates used as thickening material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/045—Polyureas; Polyurethanes
- C10M2217/0456—Polyureas; Polyurethanes used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2221/041—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Definitions
- the invention relates to a process for the preparation of lubricating greases based on lignin derivatives thickened by a polyurea thickener, lubricating greases produced in this way and the use of such greases u.a. in gearboxes, constant velocity universal joint shafts and sealed rolling bearings.
- the US 3249537 describes sodium lignosulfonate as a grease thickener in the presence of acetic acid, sodium hydroxide and / or lithium hydroxide, a longer chain fatty acid, a base oil and an amine additive.
- the grease obtained with this composition is water-soluble or not sufficiently resistant to water for many applications.
- the capsule material often makes the movements of the mutually moving parts or at least absorbs vibrations. This requires mobility and, in most cases, elasticity of the material, which must not be adversely affected by contact or interaction with the grease.
- Calcium lignosulfonates as part of greases are also from the US 2011/0190177 A1 and the WO 2011/095155 A1 known.
- the latter relates to a complex fat and the use in constant velocity universal joint shafts encapsulated by, inter alia, TPE bellows.
- the former discloses the use of different thickening agents for calcium lignosulfonates, including polyureas.
- the WO 2014046202 A1 describes a grease containing 1-20 wt% lignophenol derivatives, e.g. The structure: in the base oil. Polyurethane or polyurea thickeners are not mentioned.
- the US 2013 / 0338049A1 discloses a grease composition containing lignin derivatives and various thickening agents, including polyurea thickeners in a mixture of base oils and additives.
- the lignin derivatives are added to an already prepared polyurea grease.
- lignin derivatives have considerable amounts of water, such as lignosulfonates 4 to 8 wt.%. This can lead to insufficient thermal stability of the lignin derivative-containing greases by evaporation of water and other volatile or easily decomposable components at higher application temperatures. In sealed or encapsulated grease points, this leads to an overpressure build-up, which can lead to damage of the seal or encapsulation or to a grease escape or to a water and dirt entry.
- Tribochemically acting EP / AW additives used in today's polyurea and polyurethane fats account for a not inconsiderable share of the formulation costs and are thus often the price-driving factor for greases.
- Many of these additives are prepared by elaborate multi-step synthesis procedures and their use is limited by their toxicological side effect, which occurs in many cases, both in the way they are used and in their use concentration in the final formulation. In some applications, for example in constant velocity universal joint shafts or in slow-moving and heavily loaded roller bearings, it is not possible to avoid insufficient lubrication conditions or contact of the friction partners with liquid lubricants by liquid additives.
- solid lubricants based on inorganic compounds eg boron nitride, carbonates, phosphates or hydrogen phosphates
- plastic powders eg PTFE
- metal sulfides eg MoS 2
- the greases should be thermally inert and the lignin derivatives should be distributed in these as a solid and homogeneous with small particle sizes.
- the variant B2 is preferred.
- the particular advantage of the variants B.1 and B.2 is that when working with an initial isocyanate excess, due to the multistage initially a complete Aminin reduction can be achieved and then at elevated temperature and in the presence of the lignin derivative time delay and the Abretician Excess isocyanate groups is possible.
- the greases according to the invention have unexpectedly good properties when used as lubricating grease in plain and roller bearings, gearboxes, constant velocity joints and are well applied by means of lubrication systems and centralized lubrication systems to let.
- the greases of the invention differ significantly from conventional fats.
- the lubricating greases according to the invention are distinguished by a particular thermal stability, described by an evaporation loss according to DIN 58397-1 of ⁇ 8% after 48 hours at 150 ° C.
- the greases of the invention are further characterized by a water content of less than 100 ppm, based on the amount of added lignin derivative, determined according to DIN 51777-1.
- the lubricating greases according to the invention furthermore exhibit a particularly fine and homogeneous particle distribution, even if they were not treated with homogenizing processes customary in industrial production processes, such as tooth colloid mills and high-pressure homogenizers. If no step of heating the lignin derivative to over 120 ° C, on average, larger particles occur.
- the size of the particles can be determined eg with a grindometer according to Hegman ISO 1524 .
- the greases of the invention are characterized by an improved low temperature behavior, described by a flow pressure according to DIN 51805 at - 40 ° C, which is up to 25% lower than comparable lubricating greases, in which the lignosulfonate not miterhitzt in the presence of polyurea thickener or excess isocyanate has been.
- the greases according to the invention are distinguished by improved conveyability and filtration properties. Both are important criteria for applications of greases in greasing systems or centralized lubrication systems.
- the conveyability can be described by the shear viscosity (flow resistance) according to DIN 51810-1. It has been observed that this is about 10% lower at the same test temperature than comparable greases of comparable consistency in which the lignosulfonate in the presence of polyurea thickener or excess isocyanate was not heated to temperatures greater than 110 ° C.
- the maximum particle size is usually smaller by more than 30% when tested by Grindometer according to Hegman ISO 1524.
- the invention relates to a method in which according to the embodiment (B), or (B.1) and (B.2), lignin derivative and polyurea thickener or its starting materials, amine and isocyanate, together in the base oil temperatures of greater than 120 ° C for 30 min and longer, preferably greater than 170 ° C or even greater than 180 ° C, are exposed, in particular.
- the polyurea thickener is prepared in the presence of the lignin derivative by reacting a mixture of isocyanates and amines (plus any alcohols) in the presence of the lignin derivative with each other and then by heating Temperatures greater than 120 ° C for 30 min and longer, more preferably greater than 170 ° C or even greater than 180 ° C, exposed, in particular for 30 min and longer.
- the lignin derivative is added after the polyurea thickener from the isocyanate and the amine component (containing optionally also alcohols) is prepared completely or partially.
- the amine component containing optionally also alcohols
- the polyurea thickener is heated to a temperature of greater than 120 ° C for 30 min and longer, more preferably greater than 170 ° C or even greater than 180 ° C. especially for 30 minutes and longer.
- the isocyanate excess is greater than 0.1%, preferably greater than 0.5%.
- This is intended to bring about or promote a reaction with the lignin derivative by subsequent heating, in particular a reaction with the OH groups or other isocyanate-reactive functional groups of the lignin derivative.
- the isocyanates are completely reacted with the amines, alcohols, reactive components of the lignin derivatives and optionally with any excess water.
- post-crosslinking of the lubricating greases after production is prevented / reduced in use.
- the heating process of the lignin derivative in the presence of the polyurea thickener surprisingly found that lignin derivative is then present in a more homogeneous distribution.
- the isocyanate based on the molar amount of the amines or alcohols used for forming the polyurea fat, is added thereto in a molar excess, so that complete conversion of the amines and alcohols is ensured first, followed by residual isocyanate with reactive groups of the lignin -Derivats reacts. This is intended to achieve an additional thickening effect and a good aging stability of the greases.
- diisocyanates are suitable for reacting with lignin derivatives
- MDI was heated together with lignin sulfonate and thickened. This proves that the diisocyanates are able to crosslink lignin derivatives.
- the reaction product of isocyanate and lignin derivative acts in addition to the polyurea thickener as an additional thickener for the grease.
- the conversion to base grease takes place in a heated reactor, which can also be designed as an autoclave, in the base oil.
- a heated reactor which can also be designed as an autoclave, in the base oil.
- further constituents such as additives and / or additional base oil, are added to set the desired consistency or property profile.
- the second step may be carried out in the reactor of the first step, but preferably the base grease from the reactor is transferred to one or more separate stirred tanks for cooling and mixing in the optionally further constituents.
- the resulting grease is homogenized, and / or filtered and / or vented.
- the lignin derivatives crosslink themselves by the heating process with the functional groups located in the lignin derivative and thereby escape volatile components such as hydroxyl-containing groups or CO 2, etc. This would explain the experimentally observed difference between evaporative loss and dehydration because the reduction in evaporation loss is greater than the amount of dehydration that would be expected, even if there is no excess of isocyanate.
- Lignin is a complex polymer based on phenylpropane units, which are interlinked with each other with a range of different chemical bonds. Lignin occurs in plant cells together with cellulose and hemicellulose. Lignin itself is a cross-linked macromolecule. As monomer components of lignin, it is possible to identify essentially three types of monolignol monomers which differ from each other in their degree of methoxylation. These are p-cumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These lignols are incorporated into the lignin structure in the form of hydroxyphenyl (H), guaiacyl (G), and syn-ring (S) units. Naked plants (gymnosperms) such as pine trees contain mostly G-units and small amounts of H-units.
- H hydroxyphenyl
- G guaiacyl
- S syn-ring
- lignins contain small amounts of incomplete or modified monolignols.
- the primary function of lignins in plants is to provide mechanical stability by cross-linking the plant polysaccharides.
- Lignin derivatives for the purposes of the present invention are degradation products or reaction products of lignin, which make the lignin isolated accessible or cleave and insofar typical products, such as those produced in papermaking.
- lignin derivatives to be used according to the invention it is furthermore possible to distinguish between lignin obtainable from softwood or hardwood.
- lignin derivatives obtainable from softwood are preferred. These have higher molecular weights and tend to result in drive shafts to greases with better life.
- Sulfur-containing and sulfur-free processes are used to extract or digest lignins from lignocellulosic biomass.
- Sulfur-containing processes are divided into the sulfite process and the sulfate process (Kraft process), in which the lignin derivatives are extracted from hardwoods or softwoods.
- Lignosulfonate is a by-product of papermaking in the sulfite process .
- comminuted wood chips are heated under pressure (5 to 7 bar) for wood chips for about 7 to 15 hours in the presence of calcium hydrogen sulfite solution and then the lignosulfonic acid in the form of calcium lignosulfonate is removed from the lignocellulose by a washing and precipitation process.
- calcium hydrogen sulfite it is also possible to use magnesium, sodium or ammonium sulfite bases, which leads to the corresponding magnesium, sodium and ammonium salts of lignin sulfonic acid. Evaporation of the wash liquor yields the commercially available powdered lignosulfonates which can be used in the context of the present invention.
- lignosulfonates are preferably calcium and / or sodium lignosulfonate or mixtures thereof are used.
- Particularly suitable as lignin sulfonate are lignosulfonates having a molecular weight (M w, weight average) of preferably greater than 10,000, in particular greater than 12,000 or even greater than 15,000 g / mol, preferably used, for example greater than 10,000 to 65,000 / mol or 15,000-65,000 g / mol, which in particular 2 to 12% by weight, in particular 4 to 10% by weight, of sulfur (calculated as elemental sulfur) and / or 5 to 15% by weight, in particular 8 to 15% by weight of calcium (calculated Ca).
- M w molecular weight
- alkali or alkaline earth lignosulfonates or mixtures thereof may additionally be used.
- Suitable calcium lignosulfonates are e.g. the commercially available products Norlig 11 D and Borrement Ca 120 from Borregard Ligno Tech or Starlig CP from von Ligno Star.
- Suitable sodium lignosulfonates are Borrement NA 220 from Borregard Ligno Tech or Starlig N95P from Ligno Star.
- sulfate or Kraftclar heated wood chips or shredded plant stems in pressure vessels for three to six hours at elevated pressure (7 to 10 bar) with essentially sodium hydroxide, sodium sulfide and sodium sulfate.
- the lignin is cleaved by a nucleophilic attack of the sulfide anion and goes into so-called.
- Black liquor soluble alkali lignin
- suitable kraft lignins are Indulin AT from MWV Specialty Chemicals or Diwatex 30 FK, Diwatex 40 or Lignosol SD-60 from Borregard Ligno Tech (USA).
- the power process is currently used in about 90% of world pulp production.
- Kraft lignins are often further derivatized by sulfonation and amination.
- a sub-variant of the force process is the Ligno Boost process .
- the sulfate lignin is precipitated from a concentrated black liquor by lowering the pH or by stepwise introduction of carbon dioxide and addition of sulfuric acid ( P. Tomani & P Axegard, ILI 8th Formu Rome 2007 ).
- the Organosolv process yields lignins and lignin derivatives from hardwoods and softwoods.
- the commercially most commonly used Organosolv processes are based on digestion of the lignins with an alcohol-water mixture (ethanol-water) or with acetic acid mixed with other mineral acids. Also methods with phenol digestion and monoethanolamine digestion are known.
- Organosolv lignins are often highly pure and insoluble in water, readily soluble in organic solvents and thus can be used even better as lignosulfonates or kraft lignins in lubricant formulations.
- Suitable Organosolv lignins (CAS number 8068-03-9) are e.g. available from Sigma Aldrich.
- soda lignins especially from annuals, such as agricultural residues such as bagasse or straw by digestion with sodium hydroxide solution. They are soluble in alkaline-aqueous media.
- a lignin derivative suitable as a lubricant component is also Desilube AEP (pH 3.4 with sulfur-based acid groups) from Desilube Technology, Inc.
- both soda and organosolv lignins have no sulfonate groups and lower ash content. They are thus even more suitable for chemical reaction with grease thickener components such as isocyanate.
- a particular aspect of Organosolv lignins is that they have many phenolic OH groups with simultaneously low ash content and absence of sulfonate groups and thus are easier to implement with isocyanates than the other lignin derivatives.
- alkali or alkaline earth metal hydroxides such as calcium hydroxide can be used to neutralize the acid groups of the lignin derivatives and thus provide an additional thickening effect and improved aging stability and elastomer compatibility.
- the lignin derivative is acidic, Ca (OH) 2 , NaOH or amines may additionally be added to the lubricating grease.
- Lignin derivatives are effective ingredients in greases and are now used to improve anti-wear and scuffing properties.
- the lignin derivatives can be multifunctional components. Due to their high number of polar groups and aromatic structures, their polymeric structure and low solubility in all types of lubricating oils, powdered lignins and / or lignosulfonates are also suitable as solid lubricants in greases and lubricating pastes.
- the phenolic hydroxyl groups contained in lignin and lignosulfonates provide an age-inhibiting effect.
- the sulfur content in lignosulfonates promotes the EP / AW action in greases.
- the weight average molecular weight is determined, for example, by size exclusion chromatography.
- a suitable method is the SEC-MALLS method as described in the article of GE Fredheim, SM Braaten and BE Christensen, "Comparison of molecular weight and molecular weight distribution of softwood and hardwood lignosulfonates” published in "Journal of Wood Chemistry and Technology", Vol.23, No.2, pages 197-215, 2003 and the article "Molecular Weight Determination of Lignosulfonates by Size Exclusion Chromatography and Multi-angle Laser Scattering" by the same authors, published in Journal of Chromatography A, Volume 942, Issue 1-2, January 4, 2002, pages 191-199 (Mobile phase: phosphate-DMSO-SDS, stationary phase: Jordi-glucose DVB as described under 2.5).
- the polyurea thickeners are composed of urea bonds and possibly polyurethane bonds. These are obtainable by reacting an amine component with an isocyanate component. The corresponding fats are then referred to as Polyharnstofffette.
- the amine component comprises monoaminohydrocarbyl, di- or polyaminohydrocarbylene compounds, besides optionally other isocyanate-reactive groups, in particular monohydroxycarbyl, di- or polyhydroxyhydrocarbylene or aminohydroxyhydrocarbylene.
- the hydrocarbyl or hydrocarbylene groups preferably each have 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms.
- the hydrocarbylene group preferably has aliphatic groups. Suitable representatives are for example in the EP 0508115 A1 called.
- the isocyanate component comprises mono- or polyisocyanates, wherein the polyisocyanates are preferably hydrocarbons having two or more isocyanate groups.
- the isocyanates have 5 to 20, preferably 6 to 15 carbons and preferably contain aromatic groups.
- Either the amine component is difunctional or polyfunctional or the isocyanate component or both.
- the polyurea thickeners are the reaction product of diisocyanates with C6 to C20 hydrocarbyl (mono) amines or a mixture with hydrocarbyl (mono) alcohols.
- the reaction products are with respect to the ureas e.g. obtainable from the reaction of C6 to C20 hydrocarbylamines and a disocyanate.
- the latter are also referred to as polyurea-polyurethane fats, which are included in the term polyurea fats in the context of the present invention.
- reaction products of mono-isocyanates plus, if appropriate, including diisocyanates, with diamines and optionally additionally alcohols are also possible.
- the polyurea thickeners are typically not polymeric in character but are e.g. Dimers, trimers or tetramers.
- diureas based on 4,4'-diphenylmethane diisocyanate (MDI) or m-tolylene diisocyanate (TDI) and aliphatic, aromatic and cyclic amines or tetraureas based on MDI or TDI and aliphatic, aromatic and cyclic mono- and diamines.
- MDI 4,4'-diphenylmethane diisocyanate
- TDI m-tolylene diisocyanate
- R-NCO monoisocyanate
- the monoisocyanates are preferably added along with the lignin derivative during grease manufacture when thickening according to the polyurea or polyurea-polyurethane components is completed to react with functional groups of the lignin derivative to additionally thickening components.
- addition of R-NCO and lignin and / or lignin sulfonate is also possible prior to the addition of the polyurea or polyurea polyurethane components.
- bentonites such as montmorillonite (whose sodium ions are optionally exchanged or partially exchanged by organically modified ammonium ions), aluminosilicates, clays, hydrophobic and hydrophilic silicic acid, oil-soluble polymers (eg polyolefins, poly (meth) acrylates, polyisobutylenes, Polybutenes or polystyrene copolymers) can be used as co-thickener.
- the bentonites, aluminosilicates, clays, silicic acid and / or oil-soluble polymers may be added to make the base fat or added later as an additive in the second step.
- Simple, mixed or complex soaps based on Li, Na, Mg, Ca, Al, Ti salts.
- Carboxylic acids or sulfonic acids may be added during base grease manufacture or later as an additive. Alternatively, these soaps can be formed in situ during the production of the fats.
- compositions according to the invention optionally further contain additives as additives.
- additives for the purposes of the invention are antioxidants, anti-wear agents, corrosion inhibitors, detergents, dyes, lubricity improvers, adhesion promoters, viscosity additives, friction reducers, high-pressure additives and metal deactivators.
- lignin derivatives it is beneficial for the distribution and effect of lignin derivatives, if they are chemically or mechanically integrated during or immediately after the reaction phase as an additional structural element in situ in the thickener structure.
- the grease compositions of this invention contain conventional anti-corrosive, oxidative, and anti-metallope additives which act as chelates, radical scavengers, UV transducers, reaction layer formers, and the like. Also additives which improve the hydrolysis resistance of ester base oils, e.g. Carbodiimides or epoxides can be added.
- solid lubricants may, for example, polymer powder such as polyamides, polyimides or PTFE, melamine cyanurate, graphite, metal oxides, boron nitride, silicates, eg magnesium silicate hydrate (talc), sodium tetraborate, potassium tetraborate, metal sulfides such.
- polymer powder such as polyamides, polyimides or PTFE, melamine cyanurate, graphite, metal oxides, boron nitride, silicates, eg magnesium silicate hydrate (talc), sodium tetraborate, potassium tetraborate, metal sulfides such.
- molybdenum disulfide tungsten disulfide or mixed sulfides based on tungsten, molybdenum, bismuth, tin and zinc
- inorganic salts of alkali and alkaline earth metals such as calcium carbonate, sodium and calcium phosphates
- the desired advantageous lubrication properties can be adjusted by the use of lignin derivatives, without having to use solid lubricants. In many cases, these can be dispensed with completely or at least can be significantly minimized. As far as solid lubricants are used, graphite is advantageously used.
- Suitable base oils are customary lubricating oils which are liquid at room temperature.
- the base oil preferably has a kinematic viscosity of 20 to 2500 mm 2 / s, in particular 40 to 500 mm 2 / s at 40 ° C.
- the base oils can be classified as mineral oils or synthetic oils.
- mineral oils are considered to be naphthenic and paraffinic mineral oils as defined by API Group I.
- synthetic oils include polyethers, esters, polyesters, polyalphaolefins, polyethers, perfluoropolyalkylethers (PFPAE), alkylated naphthalenes, and alkylaromatics and mixtures thereof.
- the polyether compound may have free hydroxyl groups, but may also be fully etherified or end groups esterified and / or prepared from a starting compound having one or more hydroxy and / or carboxyl groups (-COOH).
- polyphenyl ethers optionally alkylated, as sole components or even better as mixed components.
- esters of an aromatic di-, tri- or tetracarboxylic acid with one or more C2 to C22 alcohols present in the mixture, esters of adipic acid, sebacic acid, trimethylolpropane, neopentyl glycol, pentaerythritol or dipentaerythritol with aliphatic branched or unbranched, saturated or unsaturated C2 to C22 carboxylic acids, C18 dimer acid esters with C2 to C22 alcohols, complex esters, as individual components or in any desired mixture.
- the base grease for the preparation of the base grease to temperatures of about 110 ° C, in particular heated above 120 ° C or better greater than 170 ° C.
- the conversion to the base fat takes place in a heated reactor, which can also be designed as an autoclave or vacuum reactor.
- a second step by cooling the formation of the thickener structure is completed and, if appropriate, further constituents, such as additives and / or base oil, are added to set the desired consistency or the desired property profile.
- the second step may be carried out in the reactor of the first step, but preferably the base grease from the reactor is transferred to a separate stirred tank for cooling and mixing in the optional further constituents.
- the resulting grease is homogenized, filtered and / or vented.
- a high process temperature of greater than 120 ° C, in particular greater than 170 ° C is additionally ensured that the still registered in the lignosulfonate residual moisture is completely evaporated from the reaction medium.
- the greases of the invention are particularly suitable for use in or for constant velocity universal joint, plain bearings, bearings and gearbox. It is a particular aspect of the present invention to arrive at cost optimized grease formulations for highly loaded lubrication points such as, in particular, constant velocity joints which have good compatibility with bellows constructed of e.g. thermoplastic polyetherester (TPE) and chloroprene (CR), while high efficiency, low wear and long life.
- TPE thermoplastic polyetherester
- CR chloroprene
- the bellows material including capsule materials which are in contact with the lubricant, according to a further embodiment of the invention is a polyester, preferably a thermoplastic copolyester elastomer comprising hard segments with crystalline properties and a melting point above 100 ° C and soft segments having a glass transition temperature of less than 20 ° C, preferably less than 0 ° C, have.
- a polyester preferably a thermoplastic copolyester elastomer comprising hard segments with crystalline properties and a melting point above 100 ° C and soft segments having a glass transition temperature of less than 20 ° C, preferably less than 0 ° C, have.
- TPE polychloroprene rubber and thermoplastic polyesters
- TEEE topographical ether-ester-elastomer
- the latter are commercially available under the trade names Arnitel® from DSM, Hytrel® from DuPont and PIBI-Flex® from P-Group.
- WO 85/05421 A1 describes such a suitable polyetherester material for bellows, based on polyether esters. Also, a bellows body as an injection molded part of a thermoplastic polyester elastomer is in the DE 35 08 718 A called.
- the hard segments are derived, for example, from at least one aliphatic diol or polyol and at least one aromatic di- or polycarboxylic acid, the soft segments having elastic properties, for example from ether polymers such as polyalkylene oxide glycols or non-aromatic dicarboxylic acids and aliphatic diols. Such compounds are referred to, for example, as Copolyetherester.
- Copolyetherester compositions are used in components, for example, when the component made therefrom is subjected to frequent deformation or vibration.
- Very well known applications in this context are bellows or bellows for the protection of drive shafts and transmission shafts, joint columns and suspension units as well as sealing rings. In such applications, the material also frequently or continuously comes into contact with lubricants such as greases.
- the bellows is produced by injection blow molding, injection extrusion or extrusion blow molding, with annular rubber parts possibly being placed in the mold at the two future clamping points.
- the resistance of the copolyetherester composition to the effects of oils and fats is one of the reasons for their wide use in addition to their ease of processing into relatively complex geometries.
- Another particular aspect of the invention is the use of lubricating greases in rolling bearings, including those with high load bearing and high operating temperatures.
- the requirements for these greases are described inter alia in DIN 51825 and in ISO 12924.
- a method for testing the wear protection effect of lubricating greases in roller bearings is described by DIN 51819-2.
- Methods for testing the service life of greases at a selected application temperature are described, for example, in accordance with DIN 51806, DIN 51821-2, ASTM D3527, ASTM D3336, ASTM D4290, and IP 168, and by the ROF test method of SKF.
- lubricating greases have a good service life at 150 ° C if they pass the test according to DIN 51821-2 at 150 ° C with a 50% test bearing failure probability of greater than 100 hours at 150 ° C.
- the batch was heated to 180 ° C with stirring and the volatiles evaporated. The temperature of 180 ° C was maintained for 30 minutes. It was tested by IR spectroscopy for complete conversion of the isocyanate by observation of the NCO band between 2250 and 2300 cm -1 . It was then cooled. In the cooling phase, the batch was mixed with additives at 80 ° C. After adjusting the batch to the desired consistency by adding the remaining amount of base oil provided, the final product was homogenized.
- the lignin derivative (7.0 wt% calcium lignin sulfonate) was transferred to the reactor and stirred.
- the batch was heated to 180 ° C with stirring and the volatiles were evaporated. The temperature of 180 ° C was maintained for 30 min.
- IR spectroscopic reaction control during the heating and holding time can be demonstrated that the isocyanate excess is gradually reacted and completely disappeared after the end of the hold time at 180 ° C.
- the amine / base oil mixture from the separate stirred tank was added to the reactor and the mixture was heated with stirring to 110 ° C in the IR spectrum at 110 ° C, the isocyanate band between 2250 and 2300 cm -1 completely disappeared.
- the batch was heated to 180 ° C with stirring. The temperature of 180 ° C was maintained for 30 minutes.
- Example A2 is somewhat softer compared to Example A1 (penetration value higher), but shows a worse wear and load bearing capacity (SRV increase run, Table 5). Also, the oil separation is higher.
- reaction time was heated to 140 ° C and 7.1 wt.% Calciumligninsulfonat added, heated to 180 ° C and held for 30 min at this temperature and the volatiles evaporated and by IR spectroscopy for complete conversion of the isocyanate by observation the NCO band between 2250 and 2300 cm -1 tested.
- the batch was cooled and additives were added at 80 ° C. After adjusting the batch to the desired consistency by adding the remaining base oil, the final product was homogenized.
- the temperature of 180 ° C was maintained for 30 min and was checked by IR spectroscopy for complete conversion of the isocyanate by observation of the NCO band between 2250 and 2300 cm -1 . It was then cooled.
- 5.53 wt.% Calcium lignosulfonate were heated to 120 ° C in 1/6 of the intended base oil quantity with stirring and the water contained evaporated for 2 h.
- the Calciumligninsulfonat / base oil mixture from the separate container was added in the cooling phase at 80 ° C in the reactor produced in the di-urea at 80 ° C. Subsequently, additives were added. After adjusting the batch to the desired consistency by adding the remaining base oil, the final product was homogenized.
- a 250 ml graduated cylinder with a fine graduation is filled with 100 ml of the grease to be tested and placed in a drying oven for 3 h at 150 ° C. Stored residual water (evaporating substances) causes the fat to rise. The percentage rise of the grease in the graduated cylinder is noted after 3 hours in 5% increments.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16717236T PL3268455T3 (pl) | 2015-03-09 | 2016-03-09 | Sposób wytwarzania zagęszczonych polimocznikiem smarów stałych na bazie pochodnych ligniny, takie smary stałe i ich zastosowanie |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015103440.9A DE102015103440A1 (de) | 2015-03-09 | 2015-03-09 | Verfahren zur Herstellung von Polyharnstoff-verdickten Schmierfetten auf Basis von Lignin-Derivaten, derartige Schmierfette und deren Verwendung |
PCT/DE2016/000100 WO2016141911A1 (de) | 2015-03-09 | 2016-03-09 | Verfahren zur herstellung von polyharnstoff-verdickten schmierfetten auf basis von lignin-derivaten, derartige schmierfette und deren verwendung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3268455A1 EP3268455A1 (de) | 2018-01-17 |
EP3268455B1 true EP3268455B1 (de) | 2019-10-16 |
Family
ID=55794829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16717236.0A Active EP3268455B1 (de) | 2015-03-09 | 2016-03-09 | Verfahren zur herstellung von polyharnstoff-verdickten schmierfetten auf basis von lignin-derivaten, derartige schmierfette und deren verwendung |
Country Status (16)
Country | Link |
---|---|
US (1) | US10604721B2 (es) |
EP (1) | EP3268455B1 (es) |
JP (1) | JP6710698B2 (es) |
KR (1) | KR102675037B1 (es) |
CN (1) | CN107429192B (es) |
AU (1) | AU2016228615B2 (es) |
BR (1) | BR112017019392B1 (es) |
CA (1) | CA2978121C (es) |
DE (1) | DE102015103440A1 (es) |
ES (1) | ES2765670T3 (es) |
HK (1) | HK1246821A1 (es) |
MX (1) | MX2017011566A (es) |
PL (1) | PL3268455T3 (es) |
PT (1) | PT3268455T (es) |
RU (1) | RU2712238C2 (es) |
WO (1) | WO2016141911A1 (es) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200199481A1 (en) * | 2018-12-19 | 2020-06-25 | Exxonmobil Research And Engineering Company | Grease compositions having calcium sulfonate and polyurea thickeners |
RU2713451C1 (ru) * | 2019-10-11 | 2020-02-05 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Низкотемпературная экологичная пластичная смазка и способ ее получения |
WO2021133583A1 (en) * | 2019-12-23 | 2021-07-01 | Exxonmobil Research And Engineering Company | Method and apparatus for the continuous production of polyurea grease |
CN112375607B (zh) * | 2020-11-25 | 2022-09-23 | 青岛中科润美润滑材料技术有限公司 | 一种四脲润滑脂组合物及其制备方法 |
CN113355148B (zh) * | 2021-05-28 | 2022-12-20 | 中国石油化工股份有限公司 | 一种用于汽车驱动轴轮毂轴承结合面的润滑剂及其制法 |
CN113563944A (zh) * | 2021-07-27 | 2021-10-29 | 新协同(宁波)油脂有限公司 | 一种蜗轮蜗杆专用润滑脂及其制备方法 |
US20230097718A1 (en) * | 2021-09-15 | 2023-03-30 | Ingevity South Carolina, Llc | Biobased extreme pressure additive for lubricating compositions and associated methods |
DE102023108177A1 (de) * | 2023-03-30 | 2024-10-02 | Fuchs SE | Herstellung polyharnstoffverdickter Schmierfette mit verbesserten Schmierungseigenschaften und Alterungsstabilität |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3249537A (en) | 1963-05-16 | 1966-05-03 | Exxon Research Engineering Co | Lignosulfonate lubricants |
DE2121078C3 (de) * | 1971-04-29 | 1980-11-27 | Deutsche Bp Ag, 2000 Hamburg | Verfahren zur Herstellung von Schmierfetten |
JPS60193620A (ja) | 1984-03-15 | 1985-10-02 | Toyo Tire & Rubber Co Ltd | 熱可塑性ポリエステルエラストマ−のジヨイントブ−ツ成形体 |
DE3417708A1 (de) | 1984-05-12 | 1985-11-14 | Feldmühle AG, 4000 Düsseldorf | Faltenbalg fuer festgelenke |
DE69004550T2 (de) | 1989-12-27 | 1994-05-11 | Nissan Motor | Schmierfett für homokinetische Kupplung. |
JP2799634B2 (ja) * | 1991-03-07 | 1998-09-21 | 日本石油株式会社 | 等速ジョイント用グリース組成物 |
JPH07197072A (ja) | 1993-12-29 | 1995-08-01 | Showa Shell Sekiyu Kk | 等速ジョイント用グリース組成物 |
US6172013B1 (en) | 1997-09-17 | 2001-01-09 | Exxon Chemical Patents Inc | Lubricating oil composition comprising trinuclear molybdenum compound and diester |
KR20010037197A (ko) * | 1999-10-14 | 2001-05-07 | 이계안 | 그리스 조성물 |
CN101479494B (zh) * | 2006-06-30 | 2011-06-15 | Ntn株式会社 | 万向联轴器及其制造方法 |
WO2008040383A1 (en) | 2006-10-07 | 2008-04-10 | Gkn Driveline International Gmbh | Grease composition for use in constant velocity joints comprising at least one tri-nuclear molybdenum compound and a urea derivative thickener |
DE102010006745A1 (de) * | 2010-02-02 | 2011-08-04 | Fuchs Petrolub AG, 68169 | Schmierfette enthaltend Ligninsulfonat, deren Herstellung und Verwendung |
US8507421B2 (en) | 2010-02-02 | 2013-08-13 | Fuchs Lubricants Co. | Lubricating greases and process for their production |
US20130338049A1 (en) | 2011-04-27 | 2013-12-19 | James King | novel lignin based composition |
DE102011108575A1 (de) * | 2011-07-27 | 2013-01-31 | Fuchs Petrolub Ag | Schmierfette enthaltend Ligninsulfonat, deren Herstellung und Verwendung, insbesondere in Gleichlaufgelenkwellen |
CN102585970B (zh) * | 2011-12-20 | 2014-01-15 | 长沙众城石油化工有限责任公司 | 一种高机械安定性聚脲基润滑脂及其制备方法 |
WO2014046202A1 (ja) | 2012-09-21 | 2014-03-27 | 住鉱潤滑剤株式会社 | 潤滑剤組成物 |
JP5704574B2 (ja) * | 2012-09-24 | 2015-04-22 | 住鉱潤滑剤株式会社 | 潤滑剤組成物 |
JP5916654B2 (ja) | 2013-03-28 | 2016-05-11 | 住鉱潤滑剤株式会社 | 等速ジョイント用グリース組成物、並びに等速ジョイント |
JP5889823B2 (ja) * | 2013-03-28 | 2016-03-22 | 住鉱潤滑剤株式会社 | 等速ジョイント用グリース組成物、並びに等速ジョイント |
RU2552997C1 (ru) * | 2014-01-09 | 2015-06-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) | Использование сульфидированного лигнина в качестве противозадирной присадки в смазочных композициях для тяжелонагруженных узлов трения |
-
2015
- 2015-03-09 DE DE102015103440.9A patent/DE102015103440A1/de not_active Ceased
-
2016
- 2016-03-09 CN CN201680015119.3A patent/CN107429192B/zh active Active
- 2016-03-09 US US15/556,602 patent/US10604721B2/en active Active
- 2016-03-09 JP JP2017547577A patent/JP6710698B2/ja active Active
- 2016-03-09 CA CA2978121A patent/CA2978121C/en active Active
- 2016-03-09 WO PCT/DE2016/000100 patent/WO2016141911A1/de active Application Filing
- 2016-03-09 PL PL16717236T patent/PL3268455T3/pl unknown
- 2016-03-09 EP EP16717236.0A patent/EP3268455B1/de active Active
- 2016-03-09 AU AU2016228615A patent/AU2016228615B2/en active Active
- 2016-03-09 KR KR1020177028506A patent/KR102675037B1/ko active IP Right Grant
- 2016-03-09 RU RU2017133625A patent/RU2712238C2/ru active
- 2016-03-09 ES ES16717236T patent/ES2765670T3/es active Active
- 2016-03-09 MX MX2017011566A patent/MX2017011566A/es active IP Right Grant
- 2016-03-09 BR BR112017019392-2A patent/BR112017019392B1/pt active IP Right Grant
- 2016-03-09 PT PT167172360T patent/PT3268455T/pt unknown
-
2018
- 2018-05-18 HK HK18106523.3A patent/HK1246821A1/zh unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
RU2712238C2 (ru) | 2020-01-27 |
BR112017019392A2 (pt) | 2018-04-24 |
PT3268455T (pt) | 2020-01-22 |
KR102675037B1 (ko) | 2024-06-14 |
RU2017133625A (ru) | 2019-04-09 |
JP2018507948A (ja) | 2018-03-22 |
WO2016141911A1 (de) | 2016-09-15 |
EP3268455A1 (de) | 2018-01-17 |
BR112017019392B1 (pt) | 2021-12-14 |
ES2765670T3 (es) | 2020-06-10 |
JP6710698B2 (ja) | 2020-06-17 |
DE102015103440A1 (de) | 2016-09-15 |
CN107429192B (zh) | 2020-10-16 |
US20180258368A1 (en) | 2018-09-13 |
PL3268455T3 (pl) | 2020-06-01 |
WO2016141911A8 (de) | 2016-11-03 |
AU2016228615A1 (en) | 2017-10-26 |
US10604721B2 (en) | 2020-03-31 |
KR20170133374A (ko) | 2017-12-05 |
CN107429192A (zh) | 2017-12-01 |
MX2017011566A (es) | 2018-05-11 |
WO2016141911A9 (de) | 2016-12-29 |
CA2978121C (en) | 2023-03-14 |
CA2978121A1 (en) | 2016-09-15 |
HK1246821A1 (zh) | 2018-09-14 |
RU2017133625A3 (es) | 2019-07-17 |
AU2016228615B2 (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3268455B1 (de) | Verfahren zur herstellung von polyharnstoff-verdickten schmierfetten auf basis von lignin-derivaten, derartige schmierfette und deren verwendung | |
EP2531587B9 (de) | Schmierfette enthaltend ligninsulfonat, deren herstellung und verwendung | |
EP2154229B1 (de) | Calcium/Lithium -Komplexfette, gekapseltes Gleichlaufgelenk enthaltend derartige Schmierfette, deren Verwendung und Verfahren zu deren Herstellung | |
EP3372659B1 (de) | Hochtemperaturschmierstoffe | |
EP1626061A1 (de) | Verfahren zur Herstellung pulverförmiger (Poly)harnstoffe | |
DE102011108575A1 (de) | Schmierfette enthaltend Ligninsulfonat, deren Herstellung und Verwendung, insbesondere in Gleichlaufgelenkwellen | |
EP4176027B1 (de) | Polyharnstoff-schmierfette enthaltend carbonate und deren verwendung | |
WO1984003100A1 (en) | Oil composition, production and utilization thereof | |
DE102023004246A1 (de) | Herstellung polyharnstoffverdickter Schmierfette mit verbesserten Schmierungseigenschaften und Alterungsstabilität | |
WO2024200526A1 (de) | Herstellung polyharnstoffverdickter schmierfette mit verbesserten schmierungseigenschaften und alterungsstabilität | |
US11473032B2 (en) | Constant velocity joint having a boot | |
DE102020008047A1 (de) | Polyharnstoff-Schmierfette enthaltend Carbonate und deren Verwendung | |
EP0557839B1 (de) | Nieder- und hochmolekulare Korrosionsschutzadditive auf Basis von Epoxiden | |
DE102018133586A1 (de) | Mineralölfreies Schmiermittel und Verfahren zur Herstellung eines mineralölfreien Schmiermittels | |
DE102004044876A1 (de) | Verfahren zur Herstellung pulverförmiger Polyharnstoffe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170928 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502016007119 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C10M0159120000 Ipc: C10M0119240000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 169/04 20060101ALI20190211BHEP Ipc: C10M 169/02 20060101ALI20190211BHEP Ipc: C10M 159/12 20060101ALI20190211BHEP Ipc: C10M 163/00 20060101ALI20190211BHEP Ipc: C10M 119/24 20060101AFI20190211BHEP Ipc: C10M 169/06 20060101ALI20190211BHEP Ipc: C10M 115/08 20060101ALI20190211BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190325 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20190910 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016007119 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1191251 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3268455 Country of ref document: PT Date of ref document: 20200122 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 33333 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2765670 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016007119 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
26N | No opposition filed |
Effective date: 20200717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200309 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240318 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240229 Year of fee payment: 9 Ref country code: HU Payment date: 20240312 Year of fee payment: 9 Ref country code: CZ Payment date: 20240226 Year of fee payment: 9 Ref country code: GB Payment date: 20240322 Year of fee payment: 9 Ref country code: PT Payment date: 20240227 Year of fee payment: 9 Ref country code: SK Payment date: 20240301 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240227 Year of fee payment: 9 Ref country code: SE Payment date: 20240321 Year of fee payment: 9 Ref country code: PL Payment date: 20240227 Year of fee payment: 9 Ref country code: IT Payment date: 20240329 Year of fee payment: 9 Ref country code: FR Payment date: 20240320 Year of fee payment: 9 Ref country code: BE Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240517 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240417 Year of fee payment: 9 |