EP3164654B1 - Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable - Google Patents

Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable Download PDF

Info

Publication number
EP3164654B1
EP3164654B1 EP15735849.0A EP15735849A EP3164654B1 EP 3164654 B1 EP3164654 B1 EP 3164654B1 EP 15735849 A EP15735849 A EP 15735849A EP 3164654 B1 EP3164654 B1 EP 3164654B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
compressed
compressor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15735849.0A
Other languages
German (de)
English (en)
Other versions
EP3164654A1 (fr
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3164654A1 publication Critical patent/EP3164654A1/fr
Application granted granted Critical
Publication of EP3164654B1 publication Critical patent/EP3164654B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to a method and a device for the variable extraction of a compressed gas product by means of low-temperature separation of air.
  • the distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double-column system), or as a three- or more-column system.
  • it can have further devices for obtaining highly pure products and / or other air components, in particular noble gases, for example argon extraction and / or krypton-xenon extraction.
  • a liquid product stream which is brought under pressure is vaporized against a heat transfer medium and finally obtained as an internally compressed compressed gas product.
  • This method is also known as internal compression. It is used to obtain gaseous printed products.
  • the product stream is then "pseudo-evaporated".
  • the product stream can be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction chamber of a main condenser, via which the high-pressure column and low-pressure column are in heat-exchanging connection
  • a heat carrier under high pressure is liquefied against the (pseudo) evaporating product stream (or pseudo-liquefied if it is under supercritical pressure).
  • the heat transfer medium is often by part of the Air formed, in the present case from the "second partial flow" of the compressed feed air.
  • DE 102010052545 A1 shows a stationary internal compression process, in which an air flow in the main heat exchanger is warmed up and returned to the main air compressor.
  • the invention relates in particular to systems in which the total feed air is at a pressure which is clearly above the highest distillation pressure which prevails inside the columns of the distillation column system (this is normally the high-pressure column pressure.
  • the "first pressure” is between 17 and 25 bar, for example.
  • the main air compressor is regularly the only machine powered by external energy to compress air.
  • a "single machine” is understood here to mean a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in are housed in the same housing or connected to the same gearbox.
  • MAC-BAC processes in which the air in the main air compressor is compressed to a relatively low total air pressure, for example to the operating pressure of the high pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in a booster air compressor driven by external energy (BAC).
  • BAC external energy
  • This task can be accomplished relatively well with a conventional MAC-BAC method, since both compressors (MAC and BAC) are responsible for functionally separate tasks.
  • the main air compressor only supplies the feed air for disassembly; the air post-compressor supplies energy for internal compression (GOXIV, GANIV) and for liquid production. Both machines can usually be controlled relatively easily between 70% and 100%.
  • the invention is based on the object of specifying a method and a corresponding device which combine the advantages of HAP methods with flexibility such as is known in a similar way to MAC-BAC methods.
  • “Flexibility” is understood here in particular to mean that the system can be operated not only with low energy in a certain production quantity of internally compressed product, but also in a relatively wide load range with approximately constant low specific energy consumption. In particular, the production of other air separation products should remain the same, or at least change less than the product quantity of the internal compression product.
  • part of the quantity of feed air is bypassed the entire distillation column system. This quantity then does not take part in the generation of the first product stream, but can nevertheless be directed through the first turbine in order to produce enough cold or to supply the system with enough energy to be able to maintain or at least reduce the liquid production relatively less than the amount of the first print production.
  • the excess air is not fed into the distillation column system, but is fed back into the heat exchanger immediately after expansion in the turbine and then fed to a suitable point (for example after the second or third stage) of the main air compressor without throttling.
  • a suitable point for example after the second or third stage of the main air compressor without throttling.
  • Another possibility is to guide and separate the excess air into the distillation column system. This other possibility is not part of the invention claimed here.
  • the argon present in this amount of air can be obtained.
  • the excess amount of oxygen can be taken as low-pressure oxygen from the low-pressure column and fed to the UN2 stream. In principle, you only lose the separation work to obtain additional oxygen molecules, but at the same time significantly more argon is produced.
  • an oxygen gas stream can be taken from the lower region of the low-pressure column, mixed with a nitrogen-enriched stream from the upper region of the low-pressure column, and the mixture can be warmed in the main heat exchanger.
  • Electricity from the upper area of the low pressure column is mixed and the mixture is warmed up in the main heat exchanger.
  • a second air turbine can be used, a third partial stream of the feed air compressed in the main air compressor being cooled to an intermediate temperature in a main heat exchanger and relaxed in the second air turbine in a work-performing manner, and at least a first part of the third partial stream being relaxed in the work Distillation column system is initiated.
  • the second partial flow of the feed air compressed in the main air compressor can be cooled to an intermediate temperature in the main heat exchanger, can be post-compressed in a second post-compressor, which is operated as a cold compressor and driven by the second turbine, to a third pressure which is higher than the first pressure.
  • a second post-compressor which is operated as a cold compressor and driven by the second turbine, to a third pressure which is higher than the first pressure.
  • cooled in the main heat exchanger (pseudo) liquefied and then expanded and introduced into the distillation column system.
  • the pressure of the second partial stream can be increased further without using external energy.
  • a correspondingly higher internal compression pressure can be achieved.
  • a fourth partial flow of the air compressed in the main air compressor can be cooled under the first pressure in the main heat exchanger and then expanded and introduced into the distillation column system.
  • the heat exchange process in the main heat exchanger is further optimized by such a second throttle flow.
  • the amount of air used in the cold box is "artificially" increased, which means that more air is driven into the low-temperature part of the system than is necessary to obtain the pressurized oxygen products specified for this operating case. If the feed air is run in "excess", the pressure at the compressor outlet can be reduced, since the energy supply for the (pseudo) evaporation of the GOXIV product is then not with the air pressure, but with the amount of air.
  • the first partial flow of the feed air compressed in the main air compressor is recompressed upstream of its introduction into the main heat exchanger in a first post-compressor which is operated in the warm state and is driven by the first turbine.
  • the inlet pressure of the first turbine is significantly higher than the first pressure to which the total air is compressed.
  • the air for the second turbine for example, is not post-compressed, i.e. its inlet pressure is at the lower level of the first pressure.
  • the second turbine on the other hand, is not recompressed, for example, which means that its inlet pressure is at the lower level of the first pressure.
  • the invention also relates to a device according to claim 8.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the "means for switching between a first and a second operating mode" are complex regulating and control devices which, in cooperation, enable an at least partially automatic switching between the two operating modes, for example by means of an appropriately programmed operating control system.
  • Atmospheric air is drawn in by a main air compressor 2 via a filter 1.
  • the main air compressor has five stages and compresses the total air flow to a "first pressure" of, for example, 22 bar.
  • the total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4.
  • the pre-cooled total air flow 5 is cleaned in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorbers.
  • the cleaned total air flow 7 becomes a first part 8 in a hot air post-compressor 9 with after-cooler 10 to a second pressure of 28 bar, for example, and then divided into a "first partial flow” 11 (first turbine air flow) and a "second partial flow” 12 (first throttle flow).
  • the first partial flow 11 is cooled in a main heat exchanger 13 to a first intermediate temperature.
  • the cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar in a work-performing manner.
  • the first air turbine 15 drives the warm air post-compressor 9.
  • the first partial stream 16, which is relaxed in terms of work, is introduced into a separator (phase separator) 17.
  • the liquid portion 18 is introduced via lines 19 and 20 into the low pressure column 22 of the distillation column system.
  • the distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon recovery 24 with crude argon column 25 and pure argon column 26.
  • the main condenser 23 is designed as a condenser-evaporator, in the specific example as a cascade evaporator.
  • the operating pressure at the top of the high pressure column is 5.3 bar in the example, that at the top of the low pressure column is 1.35 bar.
  • the second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, is fed via line 27 to a cold compressor 28 and there is further compressed to a "third pressure" of approximately 40 bar.
  • the post-compressed second partial flow 29 is introduced again into the main heat exchanger 13 at a third intermediate temperature, which is higher than the second intermediate temperature, and is cooled there to the cold end.
  • the cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32.
  • a part 33 is removed again, cooled in a subcooling countercurrent 34 and fed via lines 35 and 20 into the low-pressure column 22.
  • a "third partial flow" 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and is cooled there to a fourth intermediate temperature, which in the example is somewhat lower than the first intermediate temperature.
  • the cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to approximately high-pressure column pressure while performing work.
  • the second Air turbine 38 drives cold compressor 28.
  • the third partial stream 39 which is relaxed in terms of work, is fed via line 40 to the high-pressure column 21 at the bottom.
  • a "fourth partial flow” 41 (second throttle flow) flows through the main heat exchanger 13 from the warm to the cold end under the first pressure.
  • the cold fourth partial flow 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32.
  • the oxygen-enriched bottom liquid of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced into the optional argon recovery 24 via line 45. Vapor 46 generated therefrom and remaining liquid 47 are fed into the low-pressure column 22.
  • a first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction chamber of the main condenser 23 against liquid oxygen evaporating in the evaporation chamber from the sump of the low-pressure column.
  • a first part 51 of the liquid nitrogen 50 produced in the process is fed as a return to the high-pressure column 21.
  • a second part 52 is cooled in the subcooling countercurrent 34 and fed into the low-pressure column 22 via line 53. At least a part of the liquid low-pressure nitrogen 53 serves as a return in the low-pressure column 21; another part 54 can be obtained as a liquid nitrogen product (LIN).
  • Gaseous low-pressure nitrogen 55 is drawn off from the top of the low-pressure column 22 and heated in the supercooling countercurrent 34 and in the main heat exchanger 13.
  • the warm low-pressure nitrogen 56 is compressed in a two-section nitrogen product compressor (57, 59) with intermediate and after-cooling (58, 60) to the desired product pressure, which in the example is 12 bar.
  • the first section 57 of the nitrogen product compressor consists, for example, of two or three stages with associated aftercoolers; the second section 59 has at least one stage and is preferably also intercooled and postcooled.
  • Gaseous impure nitrogen 61 is drawn off from an intermediate point of the low-pressure column 22 and in the supercooling counterflow 34 and in the main heat exchanger 13 warmed up.
  • the warm impure nitrogen 62 can be blown off (63) into the atmosphere (ATM) and / or used as regeneration gas 64 for the cleaning device 6.
  • the lines 67 and 68 connect the low-pressure column 22 to the crude argon column 25 of the argon extraction 24.
  • a first portion 70 of the liquid oxygen 69 from the bottom of the low pressure column 22 is withdrawn as a "first product stream", brought to a "first product pressure” of, for example, 37 bar in an oxygen pump 71 and evaporated under the first product pressure in the main heat exchanger 13 and finally via line 72 as the "first pressurized gas product” (GOX IC - internally compressed gaseous oxygen).
  • a second part 73 of the liquid oxygen 69 from the bottom of the low-pressure column 22 is optionally cooled in the supercooling countercurrent 34 and obtained as a liquid oxygen product (LOX) via line 74.
  • LOX liquid oxygen product
  • a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 or the main condenser 23 is also subjected to an internal compression by bringing it to a second product pressure of, for example, 37 bar in a nitrogen pump 76, under the second product pressure in the main heat exchanger 13 pseudo evaporated and finally obtained via line 77 as an internally compressed gaseous nitrogen pressure product (GAN IC).
  • GAN IC internally compressed gaseous nitrogen pressure product
  • a second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is heated in the main heat exchanger and either obtained via line 79 as a gaseous medium-pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the process pumps shown.
  • a lower oxygen production (for example 75%) can then be regarded as a "second operating mode".
  • part of the gaseous portion 17 of the first partial stream 16 relaxed as a "second process stream" via the lines 65, 66 through the main heat exchanger to an intermediate stage of the main air compressor 2.
  • the recycle stream is admixed to the feed air between the second and third stages or between the third and fourth stages of the main air compressor. (This feed air represents the "first process stream”.)
  • the amount of air through the turbine 15 can be kept relatively high and an unchanged - or at least a less reduced - amount of nitrogen and liquid products can be obtained.
  • a 95% mode of operation could just as well be regarded as the "first mode of operation".
  • a "second operating mode” is then achieved, for example, with an oxygen production of 90% of the design value.
  • the return quantity in the table relates to the current air quantity through filter 1. All percentages here and in the rest of the text refer to molar quantities, unless otherwise stated.
  • gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column.
  • the mixing takes place downstream of the supercooling counterflow 34 in the example.
  • line 181 is closed, or less gas is conducted via line 181.
  • the corresponding amount of nitrogen 180 from the high pressure column is not condensed in the main condenser 23 and is not introduced into the low pressure column. As a result, it does not take part in the rectification in the low-pressure column (neither indirectly via the evaporation of the bottoms oxygen, nor directly through use as a return liquid) and thereby enables the reduction in oxygen production. At the same time, the same amount of air (or only slightly less) is available for cold production and nitrogen generation.
  • gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column.
  • the mixing takes place downstream of the supercooling counterflow 34 in the example.
  • line 181 is closed, or less gas is conducted via line 181.
  • the amount of nitrogen through line 180 relates to the amount of air through filter 1 in the design case.
  • Figure 3 differs from Figure 1 through a third inductor current.
  • the second turbine 38 is operated with a relatively high outlet pressure and a relatively high outlet temperature.
  • Turbine flow 339 which has been relieved of work, then has a pressure which is at least 1 bar, in particular 4 to 11 bar, above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 20 to 60 K, above the inlet temperature of low-pressure nitrogen flows 55 , 61 is at the cold end of the main heat exchanger.
  • This stream is then further cooled in the cold part of the main heat exchanger.
  • the further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to approximately high-pressure column pressure and introduced into the high-pressure column via line 32. This allows the heat exchange process in the main heat exchanger to be further optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (8)

  1. Procédé pour l'obtention variable d'un produit gazeux sous pression (72 ; 77) au moyen d'un fractionnement de l'air à basse température dans un système de colonnes de distillation, qui présente une colonne haute pression (21) et une colonne basse pression (22), dans lequel
    - la totalité de l'air d'alimentation est comprimée dans un compresseur d'air principal (2) à une première pression, qui est supérieure d'au moins 4 bar à la pression de service de la colonne haute pression (21),
    - un premier flux partiel (8, 11, 14) de l'air d'alimentation (7) comprimé dans le compresseur d'air principal (2) est refroidi à une température intermédiaire dans un échangeur de chaleur principal (13) et détendu avec production de travail dans une première turbine à air (15),
    - au moins une première partie du premier flux partiel (16) détendu avec production de travail est introduite dans le système de colonnes de distillation (40 ; 18, 19, 20),
    - un deuxième flux partiel (12, 27, 29, 30) de l'air d'alimentation comprimé dans le compresseur d'air principal (2) est comprimé ultérieurement dans un premier post-compresseur (9), lequel est opéré à chaud et entraîné par la première turbine (15), à une deuxième pression, qui est supérieure à la première pression, refroidi dans l'échangeur de chaleur principal (13) et ensuite détendu (31) et introduit dans le système de colonnes de distillation,
    - un premier flux de produit (69 ; 75) est prélevé sous forme liquide du système de colonnes de distillation et soumis à une augmentation de pression (71 ; 76) à une première pression de produit,
    - le premier flux de produit à la première pression de produit est évaporé ou pseudo-évaporé et chauffé dans l'échangeur de chaleur principal (13),
    - le premier flux de produit chauffé (72, 77) est obtenu comme premier produit gazeux sous pression (GOX IC ; GAN IC),
    - un premier flux de traitement, qui contient au moins 78 % en mole d'azote, est comprimé dans un compresseur à plusieurs niveaux (2) d'une pression d'entrée à une pression finale,
    - le compresseur à plusieurs niveaux étant formé par le compresseur d'air principal (2) et
    - le premier flux de traitement étant formé par la totalité de l'air d'alimentation.
    - au moins temporairement un deuxième flux de traitement (65), qui contient au moins 78 % en mole d'azote, est mélangé avec le premier flux de traitement en aval du premier niveau du compresseur à plusieurs niveaux (2), le deuxième flux de traitement étant formé par une partie (65) du premier flux partiel (16) de l'air d'alimentation détendu avec production de travail,
    - dans un premier mode de fonctionnement, une première quantité d'un premier produit gazeux sous pression est obtenue,
    - dans un deuxième mode de fonctionnement, une deuxième quantité d'un premier produit gazeux sous pression est obtenue, laquelle est inférieure à la première quantité,
    - dans le premier mode de fonctionnement, une première quantité du deuxième flux de traitement (65), qui peut aussi être nulle, est comprimée dans le compresseur à plusieurs niveaux (2),
    - dans le deuxième mode de fonctionnement, une deuxième quantité du deuxième flux de traitement (65) est comprimée dans le compresseur à plusieurs niveaux (2), laquelle est supérieure à la première quantité du deuxième flux de traitement,
    caractérisé en ce que
    - dans le premier mode de fonctionnement une première quantité de l'air d'alimentation est comprimée dans le compresseur d'air principal (2) et
    - dans le deuxième mode de fonctionnement une deuxième quantité de l'air d'alimentation est comprimée dans le compresseur d'air principal (2), laquelle est inférieure à la première quantité de l'air d'alimentation,
    - le rapport de la deuxième quantité d'air d'alimentation à la première quantité d'air d'alimentation étant supérieur, en particulier de plus de 3 % supérieur, au rapport entre la deuxième quantité du premier produit gazeux sous pression et la première quantité du premier produit gazeux sous pression.
  2. Procédé selon la revendication 1, caractérisé en ce que
    - un troisième flux de traitement est comprimé dans un compresseur de produits azotés d'une pression d'entrée à une pression finale et
    - au moins temporairement un quatrième flux de traitement est mélangé avec le troisième flux de traitement en aval du premier niveau du compresseur de produits azotés,
    - le troisième flux de traitement étant formé par un premier flux d'azote gazeux de la colonne basse pression et
    - le quatrième flux de traitement étant formé par un premier flux d'azote gazeux de la colonne
    haute pression.
  3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que dans le deuxième mode de fonctionnement, un flux d'oxygène gazeux (181), prélevé de la zone inférieure de la colonne basse pression (22), est mélangé avec un flux (61) enrichi en azote de la zone supérieure de la colonne basse pression (22) et le mélange est chauffé dans l'échangeur de chaleur principal (13).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que
    - un troisième flux partiel (36, 37) de l'air d'alimentation (7) comprimé dans le compresseur d'air principal (2) est refroidi à une température intermédiaire dans l'échangeur de chaleur principal (13) et détendu avec production de travail dans une deuxième turbine à air (38) et
    - au moins une première partie du troisième flux partiel (39) détendu avec production de travail est introduite dans le système de colonnes de distillation (40),
    - la pression à l'entrée de turbine de la deuxième turbine à air étant en particulier égale à la première pression.
  5. Procédé selon la revendication 4, caractérisé en ce que
    - le deuxième flux partiel (12, 27, 29, 30) de l'air d'alimentation (7) comprimé dans le compresseur d'air principal (2) est refroidi à une température intermédiaire dans l'échangeur de chaleur principal (13) en aval du premier post-compresseur (9), est comprimé ultérieurement dans un deuxième post-compresseur (28), lequel est opéré comme un compresseur à froid et entraîné par la deuxième turbine (38), à une troisième pression, qui est supérieure à la première pression, refroidi dans l'échangeur de chaleur principal (13) et ensuite détendu (31) et introduit (32) dans le système de colonnes de distillation.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'un quatrième flux partiel (41, 42) de l'air (7) comprimé dans le compresseur d'air principal (2) est refroidi sous la première pression dans l'échangeur de chaleur principal (13) et ensuite détendu (43) et introduit dans le système de colonnes de distillation.
  7. Procédé selon la revendication 4 ou 5 ou selon la revendication 6 se référant à l'une quelconque des revendications 4 ou 5, caractérisé en ce que
    - le troisième flux partiel (37, 339) est détendu dans la deuxième turbine à air (38) à une pression, qui est supérieure d'au moins 1 bar à la pression de service de la colonne haute pression (21) et
    - le troisième flux partiel (339) détendu avec production de travail est refroidi encore dans l'échangeur de chaleur principal (13) et ensuite détendu (341) et introduit dans le système de colonnes de distillation.
  8. Dispositif pour l'obtention variable d'un produit gazeux sous pression (72 ; 73) au moyen d'un fractionnement de l'air à basse température comprenant
    - un système de colonnes de distillation qui comprend une colonne haute pression (21) et une colonne basse pression (22),
    - un compresseur d'air principal (2) pour la compression de la totalité de l'air d'alimentation à une première pression qui est supérieure d'au moins 4 bar à la pression de service de la colonne haute pression (21),
    - des moyens pour le refroidissement d'un premier flux partiel (8, 11, 14) de l'air d'alimentation (7) comprimé dans le compresseur d'air principal (2) à une température intermédiaire dans un échangeur de chaleur principal (13),
    - une première turbine à air (15) pour la détente avec production de travail du premier flux partiel refroidi,
    - des moyens pour l'introduction (40 ; 18, 19, 20) du premier flux partiel (16) détendu avec production de travail dans le système de colonnes de distillations,
    - un premier post-compresseur (9) pour la compression ultérieure d'un deuxième flux partiel (12, 27, 29, 30) de l'air d'alimentation comprimé dans le compresseur d'air principal (2) à une deuxième pression, qui est supérieure à la première pression, le post-compresseur (9) pouvant être opéré à chaud et étant entraîné par la première turbine (15), - des moyens pour le refroidissement du deuxième flux partiel comprimé ultérieurement dans l'échanger de chaleur principal (13),
    - des moyens pour la détente (31) et l'introduction dans le système de colonnes de distillation du deuxième flux partiel refroidi,
    - des moyens pour le prélèvement sous forme liquide d'un premier flux de produit (69 ; 75) du système de colonnes de distillation et pour l'augmentation de la pression (71 ; 76) du premier flux de produit liquide à une première pression de produit,
    - des moyens pour l'évaporation ou la pseudo-évaporation et le chauffage du premier flux de produit sous la première pression de produit dans l'échangeur de chaleur principal (13),
    - des moyens pour l'obtention du premier flux de produit (72 ; 77) chauffé comme premier produit gazeux sous pression (GOX IC ; GAN IC),
    - un compresseur à plusieurs niveaux (2) pour la compression d'un premier flux de traitement, qui contient au moins 78 % en mole d'azote, d'une pression d'entrée à une pression finale,
    - le compresseur à plusieurs niveaux étant formé par le compresseur d'air principal (2) et
    - le premier flux de traitement étant formé par la totalité de l'air d'alimentation,
    - des moyens pour le mélange d'un deuxième flux de traitement (65), lequel contient au moins 78 % en mole d'azote, avec le premier flux de traitement en aval du premier niveau du compresseur à plusieurs niveaux (2 ; 57/59), le deuxième flux de traitement (180) étant formé par une partie (65) du premier flux partiel (16) de l'air d'alimentation détendu avec production de travail,
    - des moyens pour la commutation entre un premier et un deuxième mode de fonctionnement,
    - dans le premier mode de fonctionnement, une première quantité du premier produit gazeux sous pression étant obtenue,
    - dans un deuxième mode de fonctionnement, une deuxième quantité d'un premier produit gazeux sous pression étant obtenue, laquelle est inférieure à la première quantité et
    - les moyens pour la commutation entre le premier et le deuxième mode de fonctionnement étant conçus de telle façon que
    - dans le premier mode de fonctionnement, une première quantité du deuxième flux de traitement (65), qui peut aussi être nulle, est comprimée dans le compresseur à plusieurs niveaux (2) d'une pression d'entrée à une pression finale,
    - dans le deuxième mode de fonctionnement, une deuxième quantité du deuxième flux de traitement (65 ; 180) est comprimée dans le compresseur à plusieurs niveaux (2 ; 57/59), laquelle est supérieure à la première quantité du deuxième flux de traitement,
    caractérisé en ce que les moyens pour la commutation entre le premier et le deuxième mode de fonctionnement sont conçus de telle façon que
    - dans le premier mode de fonctionnement une première quantité de l'air d'alimentation est comprimée dans le compresseur d'air principal (2) et
    - dans le deuxième mode de fonctionnement une deuxième quantité de l'air d'alimentation est comprimée dans le compresseur d'air principal (2), laquelle est inférieure à la première quantité de l'air d'alimentation,
    - le rapport de la deuxième quantité d'air d'alimentation à la première quantité d'air d'alimentation étant supérieur, en particulier de plus de 3 % supérieur, au rapport entre la deuxième quantité du premier produit gazeux sous pression et la première quantité du premier produit gazeux sous pression.
EP15735849.0A 2014-07-05 2015-06-25 Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable Active EP3164654B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14002307.8A EP2963367A1 (fr) 2014-07-05 2014-07-05 Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
PCT/EP2015/001284 WO2016005030A1 (fr) 2014-07-05 2015-06-25 Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Publications (2)

Publication Number Publication Date
EP3164654A1 EP3164654A1 (fr) 2017-05-10
EP3164654B1 true EP3164654B1 (fr) 2020-07-29

Family

ID=51176034

Family Applications (3)

Application Number Title Priority Date Filing Date
EP14002307.8A Withdrawn EP2963367A1 (fr) 2014-07-05 2014-07-05 Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP15733625.6A Withdrawn EP3164653A1 (fr) 2014-07-05 2015-06-25 Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
EP15735849.0A Active EP3164654B1 (fr) 2014-07-05 2015-06-25 Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP14002307.8A Withdrawn EP2963367A1 (fr) 2014-07-05 2014-07-05 Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP15733625.6A Withdrawn EP3164653A1 (fr) 2014-07-05 2015-06-25 Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Country Status (6)

Country Link
US (2) US10458702B2 (fr)
EP (3) EP2963367A1 (fr)
CN (2) CN106489059B (fr)
RU (2) RU2690550C2 (fr)
TW (2) TW201607598A (fr)
WO (2) WO2016005031A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963367A1 (fr) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
JP6750120B2 (ja) * 2016-08-30 2020-09-02 8 リバーズ キャピタル,エルエルシー 高圧酸素を生成するための深冷空気分離方法
EP3312533A1 (fr) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
DE102017010001A1 (de) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102016015292A1 (de) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Verfahren zur Bereitstellung eines oder mehrerer Luftprodukte mit einer Luftzerlegungsanlage
EP3343158A1 (fr) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Procédé de production d'un ou plusieurs produits pneumatiques et unité de fractionnement d'air
US10359231B2 (en) * 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
FR3062197B3 (fr) * 2017-05-24 2019-05-10 Air Liquide Procede et appareil pour la separation de l'air par distillation cryogenique
WO2018219501A1 (fr) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Procédé pour produire un ou plusieurs produits formés à partir d'air et installation de séparation d'air
PL3410050T3 (pl) * 2017-06-02 2019-10-31 Linde Ag Sposób do pozyskiwania jednego lub wielu produktów powietrza i instalacja do separacji powietrza
FR3072451B1 (fr) * 2017-10-13 2022-01-21 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US11578916B2 (en) * 2017-12-29 2023-02-14 L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude Method and device for producing air product based on cryogenic rectification
WO2019214847A1 (fr) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Procédé pour produire un ou plusieurs produit(s) formés à partir d'air et installation de séparation d'air
EP3620739A1 (fr) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
US20220026145A1 (en) 2018-10-09 2022-01-27 Linde Gmbh Method for obtaining one or more air products and air separation system
EP3870916B1 (fr) 2018-10-26 2023-07-12 Linde GmbH Procédé de production d'un produit ou d'une pluralité de produits de l'air et installation de séparation de l'air
DE202018005045U1 (de) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP3671085A1 (fr) 2018-12-18 2020-06-24 Linde GmbH Dispositif et procédé de récupération de la chaleur de compression à partir de l'air comprimé et traité dans une installation de traitement de l'air
DE102019000335A1 (de) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Verfahren zur Bereitstellung von Luftprodukten und Luftzerlegungsanlage
EP3696486A1 (fr) 2019-02-13 2020-08-19 Linde GmbH Procédé et installation de fourniture d'un ou d'une pluralité de produits dérivés de l'air gazeux, riches en oxygène
EP3699535A1 (fr) 2019-02-19 2020-08-26 Linde GmbH Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression
EP3699534A1 (fr) 2019-02-19 2020-08-26 Linde GmbH Procédé et installation de séparation d'air permettant de fournir de manière variable un produit dérivé de l'air gazeux sous pression
WO2022053172A1 (fr) 2020-09-08 2022-03-17 Linde Gmbh Procédé d'obtention d'un ou de plusieurs produits à base d'air, et installation de fractionnement d'air
WO2022053173A1 (fr) 2020-09-08 2022-03-17 Linde Gmbh Procédé et installation de fractionnement d'air cryogénique
US20240003620A1 (en) 2020-11-24 2024-01-04 Linde Gmbh Process and plant for cryogenic separation of air
EP4356052A1 (fr) 2021-06-17 2024-04-24 Linde GmbH Procédé et installation permettant de fournir un produit à base d'air gazeux sous pression riche en oxygène
DE202021002439U1 (de) 2021-07-17 2021-10-20 Linde Gmbh Verdichter
TW202326047A (zh) 2021-09-02 2023-07-01 德商林德有限公司 獲取一種或數種空氣產物的方法及空氣分離設備
DE202021002895U1 (de) 2021-09-07 2022-02-09 Linde GmbH Anlage zur Tieftemperaturzerlegung von Luft
CN117940727A (zh) 2021-09-29 2024-04-26 林德有限责任公司 用于低温分离空气的方法和空气分离设备
CN114674112A (zh) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 一种液化装置氧氮自动转换方法

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
DE1229561B (de) 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE1501722A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung zur Erzeugung von hochverdichtetem gasfoermigem und/oder fluessigem Sauerstoff
DE2535132C3 (de) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
SU787829A1 (ru) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Способ получени жидких и газообразных компонентов воздуха
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
EP0093448B1 (fr) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
DE3738559A1 (de) 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
EP0383994A3 (fr) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
RU2054609C1 (ru) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Способ разделения воздуха
DE4109945A1 (de) 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
FR2689224B1 (fr) 1992-03-24 1994-05-06 Lair Liquide Procede et installation de production d'azote sous haute pression et d'oxygene.
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
DE4443190A1 (de) 1994-12-05 1996-06-13 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19526785C1 (de) 1995-07-21 1997-02-20 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
DE19529681C2 (de) 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
DE19732887A1 (de) 1997-07-30 1999-02-04 Linde Ag Verfahren zur Luftzerlegung
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19815885A1 (de) 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
EP0955509B1 (fr) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Procédé et appareil pour la production d'oxygène à haute pureté
DE19908451A1 (de) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP1031804B1 (fr) 1999-02-26 2004-02-04 Linde AG Procédé de séparation des gaz de l'air avec recyclage d'azote
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
US6116052A (en) * 1999-04-09 2000-09-12 Air Liquide Process And Construction Cryogenic air separation process and installation
EP1067345B1 (fr) 1999-07-05 2004-06-16 Linde Aktiengesellschaft Procédé et dispositif pour la séparation cryogénique des constituants de l'air
DE19936816A1 (de) 1999-08-05 2001-02-08 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE19954593B4 (de) 1999-11-12 2008-04-10 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013075A1 (de) 2000-03-17 2001-09-20 Linde Ag Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE10015602A1 (de) 2000-03-29 2001-10-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10018200A1 (de) 2000-04-12 2001-10-18 Linde Gas Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10021081A1 (de) 2000-04-28 2002-01-03 Linde Ag Verfahren und Vorrichtung zum Wärmeaustausch
DE10060678A1 (de) 2000-12-06 2002-06-13 Linde Ag Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10153252A1 (de) 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
FR2831249A1 (fr) * 2002-01-21 2003-04-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
DE10217091A1 (de) 2002-04-17 2003-11-06 Linde Ag Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
US7857975B2 (en) 2002-12-19 2010-12-28 Kfi Intellectual Properties, L.L.C. System for liquid extraction, and methods
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (fr) 2003-12-20 2005-06-22 Linde AG Procédé et dispositif pour la séparation cryogénique d'air
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666823A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP1666824A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2007033838A1 (fr) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Procede et dispositif pour analyser la temperature de l'air
DE102006012241A1 (de) 2006-03-15 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1845323A1 (fr) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
EP1892490A1 (fr) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Procédé et dispositif de production variable d'un produit comprimé par séparation cryogénique d'un gaz
US8020408B2 (en) * 2006-12-06 2011-09-20 Praxair Technology, Inc. Separation method and apparatus
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2026024A1 (fr) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Procédé et dispositif pour la production d'argon par séparation cryogénique d'air
JP5425100B2 (ja) 2008-01-28 2014-02-26 リンデ アクチエンゲゼルシャフト 低温空気分離方法及び装置
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) * 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2600090B1 (fr) * 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
EP2963367A1 (fr) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106489059B (zh) 2019-11-05
TW201607599A (zh) 2016-03-01
RU2017103099A3 (fr) 2018-12-20
RU2691210C2 (ru) 2019-06-11
EP2963367A1 (fr) 2016-01-06
US10458702B2 (en) 2019-10-29
EP3164653A1 (fr) 2017-05-10
TW201607598A (zh) 2016-03-01
RU2690550C2 (ru) 2019-06-04
US20170131028A1 (en) 2017-05-11
CN106489059A (zh) 2017-03-08
WO2016005030A1 (fr) 2016-01-14
CN106662394A (zh) 2017-05-10
EP3164654A1 (fr) 2017-05-10
RU2017103309A3 (fr) 2018-12-18
RU2017103309A (ru) 2018-08-06
US20170153058A1 (en) 2017-06-01
CN106662394B (zh) 2019-11-05
WO2016005031A1 (fr) 2016-01-14
RU2017103099A (ru) 2018-08-06
US10215489B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
EP3164654B1 (fr) Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
EP2963370B1 (fr) Procede et dispositif cryogeniques de separation d'air
WO2007104449A1 (fr) Procédé et dispositif de décomposition de l'air à basse température
EP2015012A2 (fr) Procédé pour la séparation cryogénique d'air
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP3410050B1 (fr) Procédé de production d'un ou de plusieurs produits pneumatiques et installation de séparation d'air
EP3290843A2 (fr) Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
EP2979051B1 (fr) Procédé et dispositif permettant de produire avec une consommation d'énergie variable de l'oxygène sous pression sous forme gazeuse
EP2963369B1 (fr) Procede et dispositif cryogeniques de separation d'air
WO2014146779A2 (fr) Procédé et dispositif de production d'azote gazeux sous pression
EP2053331A1 (fr) Procédé et dispositif de séparation de l'air à basse température
DE19537913A1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
EP4065910A1 (fr) Procédé et installation pour fractionnement à basse température de l'air
WO2020244801A1 (fr) Procédé et installation de décomposition d'air à basse température
EP3924677A1 (fr) Procédé et installation pour fournir un ou plusieurs produits présents dans l'air, gazeux et à teneur élevée en oxygène
WO2014102014A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE102007042462A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1750074A1 (fr) Procédé et dispositif pour la séparation cryogénique d'air
EP2963371B1 (fr) Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2011110301A2 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2600090B1 (fr) Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102004016931A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft
EP1199532A1 (fr) Système de séparation d'air cryogénique à trois colonnes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013119

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013119

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240617

Year of fee payment: 10