EP2963371B1 - Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air - Google Patents

Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air Download PDF

Info

Publication number
EP2963371B1
EP2963371B1 EP15001884.4A EP15001884A EP2963371B1 EP 2963371 B1 EP2963371 B1 EP 2963371B1 EP 15001884 A EP15001884 A EP 15001884A EP 2963371 B1 EP2963371 B1 EP 2963371B1
Authority
EP
European Patent Office
Prior art keywords
pressure
partial flow
air
heat exchanger
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15001884.4A
Other languages
German (de)
English (en)
Other versions
EP2963371A1 (fr
Inventor
Dimitri Goloubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51176035&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2963371(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP15001884.4A priority Critical patent/EP2963371B1/fr
Publication of EP2963371A1 publication Critical patent/EP2963371A1/fr
Application granted granted Critical
Publication of EP2963371B1 publication Critical patent/EP2963371B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to a method and apparatus for variable recovery of a compressed gas product by cryogenic separation of air.
  • the distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining highly pure products and / or other air components, in particular of noble gases have, for example, an argon production and / or a krypton-xenon recovery.
  • condenser-evaporator refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream.
  • Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages.
  • the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space the evaporation of the second fluid flow.
  • Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
  • the evaporation space of a condenser-evaporator can be designed as a bath evaporator, falling-film evaporator or forced-flow evaporator.
  • a liquid product placed under pressure is vaporized against a heat transfer medium and finally recovered as an internally compressed compressed gas product.
  • This method is also called internal compression. It serves to obtain gaseous printed product.
  • the product stream is then "pseudo-evaporated".
  • the product stream may be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction space of a main condenser via which the high-pressure column and low-pressure column are in heat-exchanging connection
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • the invention relates to systems in which the total feed air is compressed to a pressure well above the highest distillation pressure prevailing inside the columns of the distillation column system (this is normally the high pressure column pressure).
  • HAP processes HAP - high air pressure
  • This is the "first pressure”, ie the outlet pressure of the main air compressor (MAC main air compressor), in which the total air is compressed, for example, more than 4 bar, in particular 6 to 16 bar above the highest distillation pressure.
  • the "first pressure” is between 17 and 25 bar.
  • the main air compressor is regularly the only external energy driven machine for compressing air.
  • a “single machine” is understood to mean a single stage or multi-stage compressor whose stages are all connected to the same drive, with all stages in housed in the same housing or connected to the same gear.
  • MAC-BAC processes in which the air in the main air compressor is compressed to a relatively low total air pressure, for example the operating pressure of the high-pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in an external energy driven air booster (BAC).
  • BAC external energy driven air booster
  • This higher pressure air component (often called the choke flow) provides the majority of the heat required for (pseudo) evaporation of the internally compressed product in the main heat exchanger. It is depressurised downstream of the main air compressor in a throttle valve or in a liquid turbine (DLE) to the pressure required in the distillation column system.
  • DLE liquid turbine
  • One of the two turbine streams or both can be recompressed together with the second partial flow in the first booster to the second pressure, as described in the claims 3 and 4.
  • the third partial flow can remain without recompression; it is then introduced under the first pressure in the second air turbine.
  • the stream at least partially condensed in the evaporation space of the bottom evaporator of the high-pressure column is then preferably fed to the high-pressure column at an intermediate point.
  • FIGS. 1 and 2 illustrated schematically embodiments.
  • atmospheric air is sucked through a filter 1 from a main air compressor 2.
  • the main air compressor has five stages in the example and compresses the total air flow to a "first pressure", for example 19.7 bar.
  • the total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4.
  • the pre-cooled total air flow 5 is purified in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorber.
  • the purified total air flow 7 is recompressed to a first part 8 in a hot air compressor 9 with aftercooler 10 to a "second pressure" of for example 24 bar and then into a "first partial flow” 11 (first turbine air flow) and a "second partial flow”.
  • Divided 12 first inductor current).
  • the first substream 11 is cooled in a main heat exchanger 13 to a first intermediate temperature of about 135K.
  • the cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar to perform work.
  • the first air turbine 15 drives the warm air compressor 9.
  • the work-performing relaxed first partial flow 16 is introduced into a separator (phase separator) 17.
  • the liquid portion 18 is introduced via lines 19 and 20 into the low-pressure column 22 of the distillation column system.
  • the distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon production 24 with crude argon column 25 and pure argon column 26.
  • the main condenser 23 is designed as a condenser-evaporator, in the concrete example as a cascade evaporator.
  • the operating pressure at the top of the high pressure column is in the example 5.3 bar, the one at the top of the low pressure column 1.35 bar.
  • the second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, fed via line 27 to a cold compressor 28 and there recompressed to a "third pressure" of about 35 bar.
  • the recompressed second partial stream 29 is at a third intermediate temperature, which is higher than the second intermediate temperature, again introduced into the main heat exchanger 13 and cooled there to the cold end.
  • the cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • a part 33 is removed again, cooled in a supercooling countercurrent 34 and fed via the lines 35 and 20 in the low-pressure column 22.
  • a "third substream" 436 of the feed air is introduced under the second pressure into the main heat exchanger 13 and cooled there to a fourth intermediate temperature, which in the example is slightly higher than the first intermediate temperature.
  • the cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to perform work.
  • the work-expanded turbine stream 339 has a pressure which is at least 1 bar, in particular 4 to 10 bar above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 15 to 40 K above the inlet temperature of the low-pressure nitrogen streams 55, 61 is located at the cold end of the main heat exchanger. This stream is then further cooled in the cold part of the main heat exchanger.
  • the further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to about high-pressure column pressure and introduced via line 32 into the high-pressure column.
  • the heat exchange process in the main heat exchanger can be further optimized, in particular in the case of relatively low GAN-IC pressures of for example 7 to 15 bar, in particular about 12 bar.
  • the second air turbine 38 drives the cold compressor 28.
  • the working expanded third partial flow 339 is supplied via line 40 of the high-pressure column 21 at the bottom.
  • a "fourth partial flow” 41 (second throttle flow) flows through the main heat exchanger 13 from the hot to the cold end under the first pressure.
  • the cold fourth partial stream 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • the oxygen-enriched bottom liquid 44 of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced via line 45 into the optional argon recovery 24. Resulting vapor 46 and remaining liquid 47 are fed into the low-pressure column 22.
  • a first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction space of the main condenser 23 against liquid oxygen evaporating in the evaporation space from the bottom of the low-pressure column.
  • a first part 51 of the liquid nitrogen 50 produced in the process is introduced as reflux to the high-pressure column 21.
  • a second part 52 is cooled in the subcooling countercurrent 34, fed via line 53 into the low pressure column 22. At least a portion of the liquid low pressure nitrogen 53 serves as reflux in the low pressure column 21; another part 54 can be obtained as liquid nitrogen product (LIN).
  • gaseous impurity nitrogen 61 is withdrawn, warmed in the supercooling countercurrent 34 and in the main heat exchanger 13.
  • the warm impure nitrogen 62 may be vented (63) into the atmosphere (ATM) and / or used as the regeneration gas 64 for the purifier 6.
  • Gaseous nitrogen 55 from the top of the low pressure column 22 is also heated in the subcooling countercurrent 34 and main heat exchanger 13 and withdrawn via line 56 as low pressure nitrogen product (GAN).
  • the lines 67 and 68 connect the low-pressure column 21 with the crude argon column 25 of argon recovery 24th
  • a first portion 70 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is withdrawn as the "first product stream", brought to a "first product pressure” of, for example, 37 bar in an oxygen pump 71 and vaporized under the first product pressure in the main heat exchanger 13 and finally via line 72 as "first compressed gas product” (GOX IC - compressed gas internal oxygen) won.
  • a second portion 73 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is optionally cooled in the subcooling countercurrent 34 and recovered via line 74 as a liquid oxygen product (LOX).
  • LOX liquid oxygen product
  • a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 and the main condenser 23 is also subjected to internal compression by being brought in a nitrogen pump 76 to a second product pressure of 12 bar, for example, under the second product pressure in the main heat exchanger 13 pseudo and finally recovered via line 77 as internally compressed gaseous nitrogen pressure product (GAN IC).
  • GAN IC internally compressed gaseous nitrogen pressure product
  • a second part 78 of the gaseous top nitrogen 48 of the high pressure column 21 is warmed in the main heat exchanger and recovered via line 79 either as a gaseous medium pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the illustrated process pumps.
  • FIG. 2 differs from FIG. 1 in that the third partial flow 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and the second turbine 38 thus has a correspondingly lower inlet pressure.
  • the high-pressure column has a sump evaporator 351. This is used in particular when at least temporarily a particularly low liquid production or even pure gas operation is desired.
  • the turbine 38 of the previous embodiments can not be driven with their maximum throughput, because otherwise too much air would have to be driven as a third partial flow through the cold end of the main heat exchanger and the operation of the main heat exchanger would be less efficient.
  • FIG. 3 can now be passed at a particularly low liquid production part 350 of the third partial flow from the turbine 38 on the main heat exchanger.
  • the turbine 38 (and thus the coupled cold compressor) can now be operated at full throughput, without burdening the heat exchange process in the main heat exchanger.
  • the stream 350 is at least partially condensed in the evaporation space of the bottom evaporator 351 and then via line 352 of High-pressure column fed at an intermediate point. He intensifies the distillation in the lower part of the high-pressure column.
  • the stream 350 can also be cooled to the dew state before it is introduced into the bottom evaporator in the main heat exchanger. This can be done in a separate passage, but also by intermediate removal at a suitable location and appropriate Umspeisung.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (8)

  1. Procédé d'obtention d'un produit (72; 73) de gaz comprimé par décomposition d'air à basse température dans un système à colonnes de distillation qui présente une colonne (21) à haute pression et une colonne (22) à basse pression et dans lequel
    la totalité de l'air consommé est comprimée dans un compresseur principal (2) d'air à une première pression supérieure d'au moins 4 bars à la pression de service de la colonne (21) à haute pression,
    un premier écoulement partiel (8, 11, 14) d'air consommé (7) comprimé dans le compresseur principal (2) d'air est refroidi dans un échangeur de chaleur principal (13) à une température intermédiaire et est détendu dans une première turbine (15) à air en produisant un travail,
    au moins une première partie du premier écoulement partiel (16) détendu avec production d'un travail est introduite dans le système (40; 18, 19, 20) de colonnes de distillation,
    un deuxième écoulement partiel (12, 27, 29, 30) d'air consommé comprimé dans le compresseur principal (2) d'air est post-comprimé dans un premier post-compresseur (9) entraîné en particulier par la première turbine (15) à air à une deuxième pression supérieure à la première pression, est refroidi dans l'échangeur de chaleur principal (13) à une température intermédiaire, est post-comprimé dans un deuxième post-compresseur (28) conduit comme compresseur à froid et entraîné en particulier par une deuxième turbine (38) à air à une troisième pression supérieure à la deuxième pression, est refroidi dans l'échangeur de chaleur principal (13) et ensuite détendu (31) avant d'être introduit dans le système (32) de colonnes de distillation,
    un troisième écoulement partiel (436, 37) d'air consommé (7) comprimé dans compresseur principal (2) d'air est refroidi dans l'échangeur de chaleur principal (13) à une température intermédiaire et est ensuite détendu dans la deuxième turbine (38) à air en produisant un travail et
    au moins une première partie (339) du troisième écoulement partiel détendu en produisant un travail est introduite (340) dans le système de colonnes de distillation,
    un premier écoulement de produit (69, 75) est prélevé à l'état liquide dans le système de colonnes de distillation et subit une augmentation de pression (71, 76) jusqu'à une première pression de produit,
    le premier écoulement de produit est vaporisé ou pseudo-vaporisé et chauffé dans l'échangeur de chaleur principal (13) à la première pression de produit,
    le premier écoulement de produit (72; 77) chauffé est récupéré comme premier produit (GOX IC; GAN IC) de gaz sous pression,
    la pression d'entrée dans la première turbine (15) à air est d'au moins 1 bar inférieure à la troisième pression,
    caractérisé en ce que
    le troisième écoulement partiel (37) est détendu dans la deuxième turbine (38) à air à une pression d'au moins 1 bar supérieure à la pression de service de la colonne (21) à haute pression et
    en ce qu'au moins une première partie (339) du troisième écoulement partiel détendu en produisant un travail est refroidie et liquéfiée dans l'échangeur de chaleur principal (13) pour ensuite être détendue (341) et introduite dans le système de colonnes de distillation.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un quatrième écoulement partiel (41, 42) d'air (7) comprimé dans le compresseur principal (2) d'air est refroidi en dessous de la première pression dans l'échangeur de chaleur principal (13) et ensuite détendu (43) avant d'être introduit dans le système de colonnes de distillation.
  3. Procédé selon les revendications 1 ou 2, caractérisé en ce que le premier écoulement partiel est amené en même temps que le deuxième écoulement partiel à la deuxième pression dans le premier post-compresseur (9) et est introduit à la deuxième pression dans la première turbine (15) à air.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le troisième écoulement partiel est amené en même temps que le deuxième écoulement partiel et éventuellement que le premier écoulement partiel dans le premier post-compresseur (9) à la deuxième pression et est introduit dans la deuxième turbine (38) à air en dessous de la deuxième pression.
  5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le troisième écoulement partiel est introduit dans la deuxième turbine (38) à air en dessous de la première pression.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'au moins une partie du temps, une deuxième partie (350) du troisième écoulement partiel détendu en produisant un travail n'est pas envoyée dans l'échangeur de chaleur principal (13) mais dans l'espace de liquéfaction d'un évaporateur de pied (351) de la colonne à haute pression configuré comme évaporateur-condenseur.
  7. Procédé selon la revendication 6, caractérisé en ce que l'écoulement (352) de la colonne à haute pression, condensé au moins en partie dans l'espace d'évaporation de l'évaporateur de pied (351) de la colonne à haute pression, est amené en un emplacement intermédiaire.
  8. Ensemble d'obtention d'un produit (72; 73) de gaz comprimé par décomposition d'air à basse température dans
    un système à colonnes de distillation qui présente une colonne (21) à haute pression et une colonne (22) à basse pression et dans lequel
    un compresseur principal (2) d'air qui comprime la totalité de l'air consommé à une première pression supérieure d'au moins 4 bars à la pression de service de la colonne (21) à haute pression,
    des moyens pour refroidir à une température intermédiaire dans un échangeur de chaleur principal (13) un premier écoulement partiel (8, 11, 14) d'air (7) comprimé dans le compresseur principal (2) d'air,
    des moyens pour introduire le premier écoulement partiel refroidi à une température intermédiaire dans une première turbine (15) à air,
    des moyens (40; 18, 19, 20) pour introduire dans le système de colonnes de distillation le premier écoulement partiel (16) détendu dans la première turbine (15) à air avec production d'un travail,
    un premier post-compresseur (9) entraîné en particulier par la première turbine (15) à air, qui post-comprime à une deuxième pression supérieure à la première pression un deuxième écoulement partiel (12, 27, 29, 30) d'air consommé comprimé dans le compresseur principal (2) d'air,
    des moyens pour refroidir à une température intermédiaire dans l'échangeur de chaleur principal (13) le deuxième écoulement partiel post-comprimé,
    un deuxième post-compresseur (28) conduit comme compresseur à froid et entraîné en particulier par une deuxième turbine (38) à air, pour post-comprimer le deuxième écoulement partiel à une troisième pression supérieure à la deuxième pression,
    des moyens pour refroidir dans l'échangeur de chaleur principal (13) le deuxième écoulement partiel post-comprimé en plus et ensuite le détendre (31) avant de l'introduire (32) est introduit dans le système de colonnes de distillation,
    des moyens pour refroidir à une température intermédiaire dans l'échangeur de chaleur principal (13) un troisième écoulement partiel (436, 37) d'air consommé (7) comprimé dans compresseur principal (2) d'air,
    une deuxième turbine (38) à air qui détend en produisant un travail le troisième écoulement partiel refroidi,
    des moyens pour introduire (340) dans le système de colonnes de distillation le troisième écoulement partiel détendu en produisant un travail,
    des moyens pour prélever un premier écoulement de produit (69; 75) à l'état liquide dans le système de colonnes de distillation,
    des moyens pour augmenter (71; 76) la pression jusqu'à une première pression de produit,
    des moyens pour vaporiser et pseudo-vaporiser le premier écoulement de produit dans l'échangeur de chaleur principal (13) à la première pression de produit,
    des moyens pour récupérer le premier écoulement de produit (72; 77) chauffé comme premier produit (GOX IC; GAN IC) de gaz sous pression,
    des moyens pour introduire le premier écoulement partiel dans la première turbine (15) à gaz à une pression d'entrée d'au moins 1 bar inférieure à la troisième pression,
    caractérisé par
    des moyens de régulation qui ajustent la pression de sortie de la deuxième turbine (38) à air à une pression inférieure d'au moins 1 bar à la pression de service de la colonne (21) à haute pression,
    des moyens pour introduire le troisième écoulement partiel (399) détendu en produisant un travail dans l'échangeur de chaleur principal (13) pour être refroidi et liquéfié et
    des moyens de détente (341) et d'introduction du troisième écoulement partiel liquéfié dans le système de colonnes de distillation.
EP15001884.4A 2014-07-05 2015-06-25 Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air Active EP2963371B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15001884.4A EP2963371B1 (fr) 2014-07-05 2015-06-25 Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14002308 2014-07-05
EP15001884.4A EP2963371B1 (fr) 2014-07-05 2015-06-25 Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air

Publications (2)

Publication Number Publication Date
EP2963371A1 EP2963371A1 (fr) 2016-01-06
EP2963371B1 true EP2963371B1 (fr) 2018-05-02

Family

ID=51176035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15001884.4A Active EP2963371B1 (fr) 2014-07-05 2015-06-25 Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air

Country Status (6)

Country Link
US (1) US10995983B2 (fr)
EP (1) EP2963371B1 (fr)
CN (1) CN105241178B (fr)
RU (1) RU2696846C2 (fr)
TR (1) TR201808162T4 (fr)
TW (1) TWI691356B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022111850A1 (fr) * 2020-11-24 2022-06-02 Linde Gmbh Procédé et installation de séparation cryogénique d'air

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475980A (en) 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2776760A1 (fr) 1998-03-31 1999-10-01 Air Liquide Procede et appareil de separation d'air par distillation cryogenique

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
DE1229561B (de) 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE1501722A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung zur Erzeugung von hochverdichtetem gasfoermigem und/oder fluessigem Sauerstoff
DE2535132C3 (de) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Herstellung von Drucksauerstoff durch zweistufige Tieftemperaturrektifikation von Luft
SU787829A1 (ru) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Способ получени жидких и газообразных компонентов воздуха
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0383994A3 (fr) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
RU2054609C1 (ru) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Способ разделения воздуха
DE4109945A1 (de) 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
GB9326168D0 (en) * 1993-12-22 1994-02-23 Bicc Group The Plc Air separation
DE4443190A1 (de) 1994-12-05 1996-06-13 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19526785C1 (de) 1995-07-21 1997-02-20 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung eines gasförmigen Druckprodukts
DE19529681C2 (de) 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
DE19732887A1 (de) 1997-07-30 1999-02-04 Linde Ag Verfahren zur Luftzerlegung
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19815885A1 (de) 1998-04-08 1999-10-14 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
EP0955509B1 (fr) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Procédé et appareil pour la production d'oxygène à haute pureté
DE19908451A1 (de) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP1031804B1 (fr) 1999-02-26 2004-02-04 Linde AG Procédé de séparation des gaz de l'air avec recyclage d'azote
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
ATE269526T1 (de) 1999-07-05 2004-07-15 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE19936816A1 (de) 1999-08-05 2001-02-08 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE19954593B4 (de) 1999-11-12 2008-04-10 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013075A1 (de) 2000-03-17 2001-09-20 Linde Ag Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE10015602A1 (de) 2000-03-29 2001-10-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10018200A1 (de) 2000-04-12 2001-10-18 Linde Gas Ag Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10021081A1 (de) 2000-04-28 2002-01-03 Linde Ag Verfahren und Vorrichtung zum Wärmeaustausch
DE10060678A1 (de) 2000-12-06 2002-06-13 Linde Ag Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
DE10139727A1 (de) 2001-08-13 2003-02-27 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10153252A1 (de) 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
DE10217091A1 (de) 2002-04-17 2003-11-06 Linde Ag Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
US7857975B2 (en) 2002-12-19 2010-12-28 Kfi Intellectual Properties, L.L.C. System for liquid extraction, and methods
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1544559A1 (fr) 2003-12-20 2005-06-22 Linde AG Procédé et dispositif pour la séparation cryogénique d'air
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
EP1666823A1 (fr) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2007033838A1 (fr) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Procede et dispositif pour analyser la temperature de l'air
DE102006012241A1 (de) * 2006-03-15 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1845323A1 (fr) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit sous haute pression par séparation cryogénique d'air
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
EP1892490A1 (fr) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Procédé et dispositif de production variable d'un produit comprimé par séparation cryogénique d'un gaz
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2026024A1 (fr) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Procédé et dispositif pour la production d'argon par séparation cryogénique d'air
BRPI0721931A2 (pt) * 2007-08-10 2014-03-18 Air Liquide Processo de aparelho para a separação de ar por destilação criogênica
JP5425100B2 (ja) 2008-01-28 2014-02-26 リンデ アクチエンゲゼルシャフト 低温空気分離方法及び装置
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2312247A1 (fr) * 2009-10-09 2011-04-20 Linde AG Procédé et dispositif de production d'azote liquide par décomposition de l'air à basse température
DE102010056560A1 (de) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) * 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010055448A1 (de) 2010-12-21 2012-06-21 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
FR2973485B1 (fr) * 2011-03-29 2017-11-24 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'air par distillation cryogenique
FR2973487B1 (fr) * 2011-03-31 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de production d'un gaz de l'air sous pression par distillation cryogenique
FR2976485B1 (fr) * 2011-06-20 2013-10-11 Oreal Utilisation comme agent anti-transpirant d'un polymere hydrodispersible floculant comportant des groupements amines non quaternises
EP2634517B1 (fr) * 2012-02-29 2018-04-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et appareil pour la séparation d'air par distillation cryogénique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475980A (en) 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2776760A1 (fr) 1998-03-31 1999-10-01 Air Liquide Procede et appareil de separation d'air par distillation cryogenique

Also Published As

Publication number Publication date
RU2015126528A (ru) 2017-01-13
CN105241178B (zh) 2020-03-06
TW201615255A (zh) 2016-05-01
TWI691356B (zh) 2020-04-21
TR201808162T4 (tr) 2018-07-23
CN105241178A (zh) 2016-01-13
US20160187059A1 (en) 2016-06-30
RU2696846C2 (ru) 2019-08-06
US10995983B2 (en) 2021-05-04
EP2963371A1 (fr) 2016-01-06
RU2015126528A3 (fr) 2019-02-01

Similar Documents

Publication Publication Date Title
EP3164654B1 (fr) Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
EP2235460B1 (fr) Procédé et installation pour la séparation cryogénique d'air
EP2015012A2 (fr) Procédé pour la séparation cryogénique d'air
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2963370B1 (fr) Procede et dispositif cryogeniques de separation d'air
EP3410050B1 (fr) Procédé de production d'un ou de plusieurs produits pneumatiques et installation de séparation d'air
EP3343158A1 (fr) Procédé de production d'un ou plusieurs produits pneumatiques et unité de fractionnement d'air
EP2520886A1 (fr) Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2236964A1 (fr) Procédé et dispositif de séparation de l'air à basse température
WO2020169257A1 (fr) Procédé et installation de décomposition d'air à basse température
EP2963369B1 (fr) Procede et dispositif cryogeniques de separation d'air
EP2489968A1 (fr) Procédé et dispositif destinés à la décomposition à basse température d'air
EP2053331A1 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
EP3980705A1 (fr) Procédé et installation de décomposition d'air à basse température
EP4065910A1 (fr) Procédé et installation pour fractionnement à basse température de l'air
EP3394536A1 (fr) Procédé et dispositif de production d'azote pur et d'oxygène pur par séparation cryogénique d'air
EP2767787A1 (fr) Procédé de production d'oxygène gazeux par décomposition à basse température de l'air
EP2963371B1 (fr) Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
DE102007042462A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19933558B4 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
WO2011110301A2 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2600090B1 (fr) Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
EP4133227A2 (fr) Procédé de séparation d'air à basse température, installation de séparation d'air et ensemble composé d'au moins deux installations de séparation d'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004065

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015004065

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

26 Opposition filed

Opponent name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EX

Effective date: 20190201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015004065

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

Effective date: 20190201

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502015004065

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20220419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 9

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230609

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230619

Year of fee payment: 9

Ref country code: AT

Payment date: 20230616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 9