EP1666824A1 - Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air - Google Patents

Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air Download PDF

Info

Publication number
EP1666824A1
EP1666824A1 EP04028684A EP04028684A EP1666824A1 EP 1666824 A1 EP1666824 A1 EP 1666824A1 EP 04028684 A EP04028684 A EP 04028684A EP 04028684 A EP04028684 A EP 04028684A EP 1666824 A1 EP1666824 A1 EP 1666824A1
Authority
EP
European Patent Office
Prior art keywords
column
oxygen
fraction
pressure
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04028684A
Other languages
German (de)
English (en)
Inventor
Christian Kunz
Dietrich Rottmann
Wolfgang Wetzelsperger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP04028684A priority Critical patent/EP1666824A1/fr
Publication of EP1666824A1 publication Critical patent/EP1666824A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention relates to a process for the recovery of argon by cryogenic separation of air in a distillation system comprising a distillation column system for nitrogen-oxygen separation with a low pressure column and a mixing column and a crude argon rectification, with the method steps in the preamble of claim 1 are called.
  • a mixed column method is particularly suitable for the recovery of gaseous impure oxygen.
  • impure oxygen here is a mixture having an oxygen content of 99.5 mol% or less, in particular from 70 to 99.5 mol%, for example from 80 to 95 mol% referred to.
  • nitrogen-oxygen separation of the mixing column pressure may be less than or greater than the operating pressure of the high pressure column or equal to the high pressure column pressure and for example at 2 to 16 bar, preferably at about 3 to 12 bar lie.
  • the printed product can be further compressed if required in the gaseous state.
  • the distillation column system for nitrogen-oxygen separation of the invention may be designed as a two-column system, for example as a classic double-column system, but also as a three-column or multi-column system.
  • the low pressure column of the distillation column system for nitrogen-oxygen separation is operated in many cases just above atmospheric pressure; However, the invention is also averted to systems with increased operating pressure, in which the low-pressure column pressure is much higher.
  • other devices may be used to recover other air components, particularly noble gases (eg, krypton, xenon, and / or argon).
  • the first oxygen-rich fraction used as the insert for the mixing column has an oxygen concentration higher than that of air and is, for example, 70 to 99.5 mol%, preferably 90 to 98 mol%.
  • mixing column is meant a countercurrent contact column in which a more volatile gaseous fraction is sent towards a less volatile liquid.
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable and are characterized in particular by a particularly high argon yield.
  • a second oxygen-rich fraction is withdrawn in the liquid state from the low-pressure column and introduced into the mixing column.
  • the second oxygen-rich fraction is thereby taken from the low-pressure column at least one theoretical or practical bottom below the first oxygen-containing fraction and at least one theoretical or practical bottom above the feed of the first oxygen-containing fraction applied to the mixing column.
  • the mixing column operates as a stripping column with respect to oxygen (that is, the oxygen content increases from bottom to top), in the invention it appears to operate on the argon as the rectification column, that is, the argon concentration decreases despite the difference in boiling point to oxygen up to down.
  • argon is washed from the rising vapor into the downflowing liquid, flows downwardly with the liquid within the mixing column and is finally withdrawn from the bottom of the mixing column with the first liquid fraction. With this liquid, it is returned to the distillation column system for nitrogen-oxygen separation and thus remains available for argon recovery in the crude argon rectification.
  • the argon content in the impure oxygen fraction is in a specific example of about 2.6 mol% (with only one feed in the mixing column according to the prior art) to 1.4 mol% (in inventive double feed) back.
  • the corresponding amount of argon remains in the mixing column and is returned with the liquid from the lower region and optionally with an intermediate liquid of the mixing column back into the distillation column system for nitrogen-oxygen separation.
  • the argon yield increases accordingly and can reach in the invention up to 30 mol%, preferably up to 50 mol%.
  • the argon yield is in the inventive method, for example, between 30 and 50 mol%.
  • the argon yield can be increased in a mixed column process to about three times without much effort. This effect increases with increasing mixing column pressure.
  • the mixing column is regularly operated at a higher pressure than the low pressure column. Therefore, the first and the second oxygen-rich fraction are preferably brought liquid to an elevated pressure before being fed into the mixing column, in particular to about the operating pressure of the mixing column.
  • the liquid fraction from the bottom of the mixing column may in principle be introduced into each of the columns of the nitrogen-oxygen separation distillation column system, for example into a high pressure or medium pressure column. Often, however, it is particularly advantageous if the liquid fraction from the lower region of the mixing column is introduced into the low-pressure column, for example together with a fraction from the high-pressure column or completely separately.
  • a second liquid fraction is withdrawn from an intermediate region of the mixing column and introduced into the distillation column system for nitrogen-oxygen separation, in particular in the low-pressure column, wherein the intermediate point below the feed of the first oxygen-rich fraction and above the withdrawal of the first liquid is.
  • the heat transfer stream is often formed by a second feed air stream. This can be compressed separately from the first feed air stream or at least partially together with the first feed air stream. It may be advantageous if the second feed air stream is compressed together with the first feed air stream to a pressure which is below the operating pressure, and is then recompressed separately from the first feed air stream to about the operating pressure of the mixing column.
  • the pressure to which the two streams are compressed together is approximately equal to the highest pressure in the distillation column system for nitrogen-oxygen separation, for example, the pressure in a high-pressure column. Compared to a process in which the entire air is compressed to a higher mixing column pressure and the first feed air stream is then relaxed again, there is a reduced energy consumption.
  • the invention also relates to a device for the cryogenic separation of air according to claim 7.
  • a first feed air stream 1 is cooled in a main heat exchanger 2 to about dew point.
  • the cold air 3 is introduced into the high-pressure column 4 of a distillation column system for nitrogen-oxygen separation.
  • the operating pressure of the high-pressure column 4 is in the example 5.6 bar.
  • the distillation column system for nitrogen-oxygen separation also has a low-pressure column 5, which is operated under, for example, 1.4 bar.
  • the head of the high-pressure column and the bottom of the low-pressure column 5 are connected via a common condenser-evaporator, the main condenser 6 in heat exchanging connection.
  • the first feed air stream 1 Before entering the main heat exchanger 2, the first feed air stream 1 is compressed to a pressure (not shown) which is equal to the operating pressure of the high-pressure column plus line losses.
  • Oxygen-enriched bottoms liquid 7 of the high-pressure column 4 is cooled in a first supercooling countercurrent 8, expanded to a first part 9 in a throttle valve 10 to approximately low-pressure column pressure and fed via line 11 to the low-pressure column 5 at a first intermediate point.
  • Gaseous nitrogen 12 from the top of the high-pressure column 4 is fed to the main condenser 6 via line 13 at least to a first part, where it is essentially completely condensed.
  • the liquid nitrogen 14 from the main condenser serves as a reflux 15 for the high pressure column and optionally as a liquid product 16.
  • Some bottoms below the top of the high pressure column 4 liquid impure nitrogen 17 is withdrawn, flows through the first supercooling countercurrent 8, via line 18 and through Throttle valve 19 and is finally abandoned as reflux to the low pressure column 5.
  • Gaseous impure nitrogen 27 is withdrawn from the top of the low-pressure column 5, warmed in the first supercooling countercurrent 8 and in the main heat exchanger 2 and discharged via line 28 below about ambient temperature as a pressureless gaseous residual or regeneration gas.
  • a first oxygen-rich fraction 29 is withdrawn liquid and brought in a pump 30 liquid pressure, namely on a relative to the withdrawal from the low pressure column 5 increased pressure (usually equal to the mixing column pressure plus line losses and static Print).
  • the first oxygen-rich fraction under the increased pressure via line 31, passed through a second supercooling countercurrent 32 and via line 33 to the mixing column 39 and fed there at an intermediate point in.
  • the mixing column can be operated at the same pressure as the high-pressure column 4, that is to say at least one point within the mixing column is at the same pressure as at at least one point of the high-pressure column.
  • the operating pressure of the mixing column is about 5.6 bar at the top at a top pressure of 5.6 bar in the high pressure column.
  • a second feed air stream 40, 41, 42 is injected as a heat transfer stream, which is preferably under the same pressure as the first feed air stream 1 and was compacted together with this (not shown).
  • the second feed air stream 40 is cooled in the main heat exchanger 2, removed again shortly before the cold end and fed via line 41 to the second subcooling countercurrent 32. From there it flows via line 42 to the sump of the mixing column 39.
  • the bottoms liquid 43-44 and an intermediate liquid 45-46 of the mixing column 39 are respectively subcooled in the second subcooling countercurrent 32 and throttled into the low pressure column 5 at the positions corresponding to their composition.
  • the mixing column 39 When the mixing column 39 is operated at a lower pressure than the high-pressure column 4, the second feed air stream 40, 41, 42 in a throttle valve 80 is correspondingly expanded.
  • This valve is arranged, for example, as shown in the drawing, in the warm; more expensive, but procedurally cheaper would be an arrangement in one of the cold lines 41 or 42.
  • a impure oxygen fraction 47 is withdrawn, heated in the main heat exchanger 2 to about ambient temperature and recovered as impure pressure oxygen product 48.
  • a second oxygen-rich fraction below the deduction of the first oxygen-containing fraction 29 is withdrawn, in the example directly from the bottom of the low-pressure column 5 via line 34.
  • the second oxygen-containing fraction is brought in a further pump 35 to at least mixed column pressure and flows through the lines 36th , 37, 38 through the second supercooling countercurrent 32 to a position of the mixing column 29 which is above the feed 33 of the first oxygen-containing fraction; in the example, it is applied directly to the head of the mixing column 29.
  • the oxygen fractions have the following oxygen or argon contents: First oxygen-containing fraction 29-31-33 95.82 mol% O 2 ; 4.18 mol% Ar Second oxygen-containing fraction 34-36-37-38 99.50 mol% O 2 ; 0.50 mol% Ar Impure Oxygen Product 47-48 95.00 mol% O 2 ; 1.34 mol% Ar
  • a second part 50 of the pressurized liquid oxygen 36 in the pump 35 can be recovered as a pure product 51 by internal compression by vaporized in the main heat exchanger 2 (or pseudo-vaporized at supercritical pressure) and warmed to ambient temperature.
  • a liquid oxygen product 52 can also be obtained.
  • gaseous pressure nitrogen 55, 56 can be deducted directly from the head of the high-pressure column 4.
  • an argon-containing fraction 60 is withdrawn from the low-pressure column 5 and introduced into a crude argon rectification, which in the example is formed by a one-piece crude argon column 61.
  • the argon transition is above the withdrawal of the first oxygen-rich liquid 29 to the mixing column and below the feeds 44, 46 of the two liquids which are introduced from the mixing column 39 into the low-pressure column 5.
  • the ascending vapor is enriched in argon by countercurrent mass transfer and depleted in oxygen.
  • Top gas 62 of the crude argon column 61 is partially liquefied in a crude argon condenser 63.
  • the liquefied portion 64 of the top fraction is returned as reflux to the crude argon column 61, while the remaining gas 65 is discharged as a crude argon fraction.
  • the crude argon fraction can also be taken directly from the crude argon column 61 and / or in liquid form.
  • the recovered crude argon 65 can be further processed, for example, in a pure argon rectification, which is not shown in FIG.
  • the bottom liquid 66 of the crude argon rectification 61 is returned to the low pressure column.
  • the three feed air streams 1, 40, 70 are compressed together to something above the operating pressure of the high pressure column and cleaned (not shown).
  • the mixing column 39 is operated here under approximately the same pressure as the high-pressure column 6 for nitrogen-oxygen separation.
  • Figure 2 differs from this by an increased pressure in the mixing column 39, which is for example at 6 to 20 bar, preferably at 8 to 15 bar. In this way it is possible to recover the impure oxygen fraction 47, 48 under a correspondingly high product pressure without having to use an oxygen compressor.
  • the second feed air stream 40 used as the heat transfer stream must here be compressed correspondingly high.
  • a secondary compressor 201 with aftercooler 202 is used.
  • pumps 30 and 35 must also bring the two application liquids for the mixing column to a higher pressure than in FIG.
  • the inventive method can also be carried out without internal compression, that is, without the recovery of a part 50, 51 of the oxygen product in pure form. This is shown in FIG. 3, which does not otherwise differ from FIG.
  • the mixing column can be operated analogously to Figure 1 under about high-pressure column pressure.
  • the additional compressor 201 for the second feed air stream and its aftercooler 202 is omitted.
  • FIG. 4 differs from FIG. 1 by a further externally driven secondary compressor 401 for the third feed air stream 70 with aftercooler 402 (and also by dispensing with the internal compression analogous to FIG. 3).
  • the compressor 401 has a pressure ratio of, for example, 1.2 to 4, preferably 1.5 to 2.5 on.
  • the mixing column can be operated at higher than high-pressure column pressure when the second feed air stream 40 is further compressed as shown in Figure 2.
  • the working expanded third feed air stream 674 can also be introduced into the high-pressure column 6 (603). This is carried out in FIGS. 6 and 7.
  • the second feed air flow in the booster 401 or 703 must be compressed.
  • the inlet pressure of the expansion machine is here, for example, at 10 to 30 bar, preferably 15 to 20 bar.
  • a Reinargon then be followed, in which by means of a pure argon column remaining nitrogen is removed from the crude argon, optionally after removal of oxygen in a deoxo plant.
EP04028684A 2004-12-03 2004-12-03 Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air Withdrawn EP1666824A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04028684A EP1666824A1 (fr) 2004-12-03 2004-12-03 Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04028684A EP1666824A1 (fr) 2004-12-03 2004-12-03 Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air

Publications (1)

Publication Number Publication Date
EP1666824A1 true EP1666824A1 (fr) 2006-06-07

Family

ID=34927640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04028684A Withdrawn EP1666824A1 (fr) 2004-12-03 2004-12-03 Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air

Country Status (1)

Country Link
EP (1) EP1666824A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211131A1 (fr) * 2009-01-21 2010-07-28 Linde AG Procédé destiné au fonctionnement d'une installation de séparation de l'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
DE102010012920A1 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2011116981A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour la décomposition à basse température d'air
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2503269A1 (fr) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Dispositif de décomposition à basse température de l'air
EP2505947A1 (fr) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Procédé et dispositif destinés à la production de verre flotté
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2703757A1 (fr) * 2012-09-04 2014-03-05 Linde Aktiengesellschaft Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air
DE102012021694A1 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179187A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air
CN112414003A (zh) * 2020-11-24 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
US5865041A (en) * 1998-05-01 1999-02-02 Air Products And Chemicals, Inc. Distillation process using a mixing column to produce at least two oxygen-rich gaseous streams having different oxygen purities
DE19951521A1 (de) * 1999-10-26 2001-05-03 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1376037A1 (fr) * 2002-06-24 2004-01-02 Linde Aktiengesellschaft Procédé et dispositif de séparation d'air avec une colonne de mélange et récupération de krypton et xénon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531182A1 (fr) * 1991-08-07 1993-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air, et application a l'alimentation en gaz d'une aciérie
US5865041A (en) * 1998-05-01 1999-02-02 Air Products And Chemicals, Inc. Distillation process using a mixing column to produce at least two oxygen-rich gaseous streams having different oxygen purities
DE19951521A1 (de) * 1999-10-26 2001-05-03 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1376037A1 (fr) * 2002-06-24 2004-01-02 Linde Aktiengesellschaft Procédé et dispositif de séparation d'air avec une colonne de mélange et récupération de krypton et xénon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"AIR SEPARATION LOW PURITY OXYGEN PRODUCTION", RESEARCH DISCLOSURE, KENNETH MASON PUBLICATIONS, HAMPSHIRE, GB, no. 393, 1997, pages 63 - 65, XP000693707, ISSN: 0374-4353 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211131A1 (fr) * 2009-01-21 2010-07-28 Linde AG Procédé destiné au fonctionnement d'une installation de séparation de l'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
DE102010012920A1 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2011116871A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour le fractionnement cryogénique de l'air
WO2011116981A2 (fr) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Dispositif pour la décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
US9228778B2 (en) 2011-03-25 2016-01-05 Linde Aktiengesellschaft Device for the low-temperature separation of air
EP2503269A1 (fr) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Dispositif de décomposition à basse température de l'air
DE102011015233A1 (de) 2011-03-25 2012-09-27 Linde Ag Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2505947A1 (fr) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Procédé et dispositif destinés à la production de verre flotté
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
DE102011015430A1 (de) 2011-03-29 2012-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Flachgas
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2703757A1 (fr) * 2012-09-04 2014-03-05 Linde Aktiengesellschaft Procédé et installation destinés à générer des produits à base d'oxygène liquides et gazeux par décomposition à basse température de l'air
DE102012021694A1 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
WO2014067662A2 (fr) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179187A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procédé de production d'un produit comprime riche en oxygène, gazeux et liquide dans une installation de décomposition de l'air et installation de décomposition de l'air
EP3179186A1 (fr) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Procede de production d'un produit comprime riche en oxygene, gazeux et liquide dans une installation de decomposition de l'air et installation de decomposition de l'air
CN112414003A (zh) * 2020-11-24 2021-02-26 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备
CN112414003B (zh) * 2020-11-24 2022-06-21 乔治洛德方法研究和开发液化空气有限公司 一种基于深冷精馏生产空气产品的方法及设备

Similar Documents

Publication Publication Date Title
EP1666824A1 (fr) Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
EP2235460B1 (fr) Procédé et installation pour la séparation cryogénique d'air
EP3164654B1 (fr) Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
EP1376037B1 (fr) Procédé et dispositif de séparation d'air avec une colonne de mélange et récupération de krypton et xénon
DE102007014643A1 (de) Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE10153252A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10217091A1 (de) Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
WO1998019122A1 (fr) Procede et dispositif de production d'azote comprime
WO2014146779A2 (fr) Procédé et dispositif de production d'azote gazeux sous pression
WO2020169257A1 (fr) Procédé et installation de décomposition d'air à basse température
DE10103968A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
DE19537913A1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP3207320A1 (fr) Procédé et dispositif de récupération variable d'argon par fractionnement à basse température
EP1006326A1 (fr) Procédé et dispositif pour la production d'oxygène sous pression et de krypton/xenon par séparation cryogénique d'air
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP3557166A1 (fr) Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
DE202009004099U1 (de) Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE10052180A1 (de) Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
WO2020187449A1 (fr) Procédé et installation de décomposition d'air à basse température
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE102010056569A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10248656A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1837614A1 (fr) Procédé et dispositif pour la vaporisation d'un liquide enrichi en oxygène et procédé et dispositif pour la séparation cryogénique d'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061208

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566