EP2235460B1 - Procédé et installation pour la séparation cryogénique d'air - Google Patents

Procédé et installation pour la séparation cryogénique d'air Download PDF

Info

Publication number
EP2235460B1
EP2235460B1 EP09706751.6A EP09706751A EP2235460B1 EP 2235460 B1 EP2235460 B1 EP 2235460B1 EP 09706751 A EP09706751 A EP 09706751A EP 2235460 B1 EP2235460 B1 EP 2235460B1
Authority
EP
European Patent Office
Prior art keywords
pressure
feed air
precolumn
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09706751.6A
Other languages
German (de)
English (en)
Other versions
EP2235460A2 (fr
Inventor
Alexander Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL09706751T priority Critical patent/PL2235460T3/pl
Priority to EP09706751.6A priority patent/EP2235460B1/fr
Publication of EP2235460A2 publication Critical patent/EP2235460A2/fr
Application granted granted Critical
Publication of EP2235460B1 publication Critical patent/EP2235460B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04442Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with a high pressure pre-rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

Definitions

  • the invention relates to a method and apparatus for cryogenic separation of air.
  • a method or such a device are made WO 00/60294 known.
  • This document discloses in the embodiment according to drawing 16, a method or system for cryogenic separation of air with a first and a second air separation unit, wherein the first unit comprises a double column and the second unit comprises a single column.
  • methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.
  • the distillation column system of the invention comprises a two-column system (for example, a classic Linde double column system) for nitrogen-oxygen separation with a high pressure column and a low pressure column in heat exchange relationship with each other.
  • the heat exchange relationship between high pressure column and low pressure column is usually realized by a main condenser, is liquefied in the head gas of the high pressure column against evaporating bottom liquid of the low pressure column.
  • the distillation column system may include other devices, for example, for recovering other air components, particularly noble gases, for example, argon recovery comprising at least one crude argon column or krypton-xenon recovery.
  • the distillation column system also includes the heat exchangers directly assigned to them, which are generally designed as condenser-evaporators.
  • the majority of modern air separation plants are built on the basis of the so-called double column. This system of two coupled columns with different working pressures not only allows the extraction of gaseous oxygen, argon and nitrogen containing products, but also liquid fractions. These liquids can be taken as liquid end products from the air separation plant or internally compressed (brought in a pump to the higher pressure and warmed), so that they are then available as gaseous pressure products.
  • the pre-liquefied air only slightly participates in rectification operations in the double column (compared with gaseous air). Therefore, the pre-liquefaction has a negative influence on the rectification processes in the double column. As the air pre-liquefaction increases, the oxygen yield (as well as the argon yield if the system produces argon) decreases. The efficiency and economy of the air separation plant are reduced.
  • the object of the invention is the oxygen yield (and argon yield, if argon is obtained) of an air separation plant even in the case of a high pre-liquefaction (for example, over 30 mol%, especially over 40 mol% of the total feed air) without Increase the use of additional machinery and heat exchangers.
  • an additional third column of the conventional double column upstream. At least a portion of the gaseous air (the “first substream”) is first passed into this third column and (similar to the high pressure column of the double column) split into liquid nitrogen fractions and crude oxygen.
  • This upstream column is cooled by means of a top condenser (usually placed above the column) with pre-liquefied air (the "second substream”).
  • This liquid air is vaporized and fed into the distillation column system, preferably in the high-pressure column, in gaseous form.
  • the third column is operated at a pressure which is higher than the pressure of the high pressure column of the double column, so that the air which evaporates in the top condenser, can be introduced into the high pressure column.
  • the pressure ratio between the precolumn and the high-pressure column (measured at the head in each case) is preferably at least 1.4 and is in particular between 1.4 and 1.8, preferably between 1.5 and 1.7.
  • Liquid nitrogen from the precolumn (or from the condensation space of its top condenser) is then fed into the high-pressure column, liquid crude oxygen from the lower region of the precolumn in the high-pressure column and / or in the low-pressure column, or alternatively or additionally in the argon part, if any ,
  • the invention also relates to a device for cryogenic separation of air according to claim 12.
  • the distillation column system here comprises a precolumn 10, a high-pressure column 11 and a low-pressure column 12 and the associated condenser-evaporator, the main condenser 13 and the top condenser 14 of the pre-column.
  • the distillation column system may additionally comprise an argon part 15 which contains in particular at least one crude argon column and its overhead condenser;
  • the argon part may have a pure argon column for argon-nitrogen separation.
  • a first partial flow 1 of the feed air comes in gaseous form from the cold end of the main heat exchanger (not shown) or from a turbine. It is under a pressure which is just above the operating pressure of the precolumn 13 and is introduced immediately above the sump.
  • the guard column 10 has a top condenser 14, in the evaporation space, a second partial flow of the air is introduced in the liquid state.
  • This "second partial flow” is formed in the example by two sub-streams 2a, 2b.
  • Underflow 2a originates from the exit of a VS-Claude turbine
  • Underflow 2b originates from the cold end of the main heat exchanger (not shown) and was condensed against a liquid withdrawn from the distillation column system and subsequently brought to liquid pressure or pseudo at supercritical pressure -condensed.
  • the second partial flow 2a, 2b consists essentially (to 85 to 95 mol%) of liquid. Its liquid portion comprises 30 to 50 mol% of the total feed air.
  • the remaining feed air is introduced in gaseous form into the distillation column system.
  • the gaseous introduction takes place - except for possible gaseous fractions in the streams 2 a and 2 b and the turbine stream 3 - completely via the first partial stream 1 into the interior of the precolumn 10.
  • an additional liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.
  • the entire bottom liquid 5 of the precolumn is introduced here into the high-pressure column 11, directly to the bottom thereof.
  • the bottom liquid 5 of the precolumn or a part thereof - after cooling in the subcooling countercurrent 37, the low pressure column 12 and / or the argon part 15 can be fed (not shown in the drawing).
  • the liquid 6 produced in the condensation space of the top condenser 14 from a part 31 of the top nitrogen 30 of the pre-column 10 becomes a first part as a head return 7 into the pre-column 10 fed and led to a second part 8 to the head of the high-pressure column 11.
  • a nitrogen enriched impure fraction 9 may be passed from the precolumn to the high pressure column; this impurity fraction 9 is taken at an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical trays below the head, and the high-pressure column 11 fed at an intermediate point.
  • the vaporized fraction 16 formed in the evaporation space of the top condenser is led via line 17 to the bottom of the high-pressure column, together with a third partial stream 3, 18 of the feed air, which originates from the outlet of an HDS-Claude turbine.
  • the rinsing liquid 32 from the top condenser 14 of the pre-column 10 is fed to the high-pressure column 11 at an intermediate point in the lower region.
  • another liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.
  • the double column 11/12/13 and the optional argon part 15 function in the well-known manner.
  • liquid crude oxygen 33 at the bottom From the high-pressure column 11, liquid crude oxygen 33 at the bottom, a liquid air fraction 34 at the intermediate point at which the flushing liquid 32 is introduced, impure nitrogen 35 from an intermediate point above and liquid pure oxygen from the condensation space of the main condenser 13 in a supercooling Countercurrent 37 cooled in indirect heat exchange with return streams and introduced via the lines 38, 39, 40 and 41 at the appropriate locations in the low-pressure column 12.
  • gaseous air 42 from a Lachmann turbine and / or liquid air 43 from an HDS-Claude turbine can be fed to the low-pressure column 12.
  • the system may or may not produce all of these products simultaneously.
  • the gaseous product streams are heated in a main heat exchanger, not shown, in indirect heat exchange with feed air.
  • the main heat exchanger may consist of one block or of two or more blocks connected in parallel and / or in series.
  • the liquid oxygen can be recovered as a liquid product; Alternatively or additionally, at least a portion of the liquid withdrawn liquid from the low pressure column is liquidly pressurized and then vaporized in the main heat exchanger or (at supercritical pressure) pseudo-vaporized and warmed and then withdrawn as a gaseous pressure product (so-called internal compression).
  • the system includes an argon portion 15 for obtaining liquid pure argon (LAR) 54.
  • the argon portion contains one or more argon-oxygen separation argon columns and an argon-nitrogen separation purge column operated in the well-known manner.
  • the lower end of the crude argon column communicates via the lines 61 and 62 with an intermediate region of the low pressure column 12.
  • the liquid crude oxygen from the high pressure column 11 is passed in this case via the line 33A in the argon part and in particular at least partially in the top condenser of the crude argon column ( n) at least partially evaporated (not shown).
  • the at least partially gaseous raw oxygen is fed via line 38A into the low-pressure column 12. From the argon part 15, a gaseous residual stream (Waste) 55 is also deducted.
  • FIG. 2 shows a drawing showing the main heat exchanger 260 and a VS Claude turbine 261 as the only expansion machine.
  • the turbine may be braked either by means of an oil brake 262 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow 2b (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed and at least partially liquefied air 263 is introduced into a phase separator 264.
  • the liquid portion 264 is introduced into the evaporation space of the top condenser 14 of the pre-column 10.
  • the gaseous fraction 270 is combined with the gaseous air from the main heat exchanger 260 and fed via line 1 into the precolumn 10.
  • FIG. 2 is also the recovery of gaseous pressure oxygen 293, 294 shown by internal compression (internal compression).
  • internal compression internal compression
  • IC-LOX portion of the liquid oxygen 50 from the bottom of the low-pressure column 12 via line 290 of an oxygen pump 291, where it is brought to an elevated pressure and evaporated at least to a first part under this increased pressure in the main heat exchanger 260 or pseudo- evaporated and withdrawn as high pressure product 294.
  • Another part can be reduced in pressure (292) and evaporated under this reduced pressure in the main heat exchanger 260 or pseudo-evaporated and finally withdrawn as medium-pressure product 293.
  • one or two nitrogen products 296, 297 of very high pressure can be obtained in an analogous manner by internal compression by the high pressure liquid nitrogen 52 in a nitrogen pump 295 brought to a correspondingly high pressure and under this pressure (and optionally partially under a slightly lower intermediate pressure ) in the main heat exchanger 260 (pseudo) is evaporated and warmed.
  • the embodiment of FIG. 3 is different from this FIG. 2 in that the total gaseous feed air (the "first partial flow") 301 originates from the VS Claude turbine 361.
  • FIG. 4 shows a fourth embodiment with a HDS-Claude turbine 465 as the only expansion machine.
  • the turbine may be braked either by means of an oil brake 466 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed and at least partially liquefied air 467 is introduced into a phase separator 468.
  • the liquid fraction 469 is introduced via line 471 into the low-pressure column 12.
  • the gaseous fraction 470 is combined with the gaseous air 16 from the top condenser of the pre-column 10 and fed via line 417 into the high-pressure column 11.
  • FIG. 5 forms a Lachmann turbine as the only relaxation machine.
  • the turbine may be braked either by means of an oil brake 562 or by means of a generator or by means of a postcompressor which compresses the turbine flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed gaseous air 563 is fed to the low-pressure column 12.
  • FIG. 6 a variant of the method according to the invention is shown, which is particularly suitable for Unreininsauerstoff pointedung. Here, the total air is compressed to well above pre-column pressure. Otherwise, this variant largely corresponds to that of FIG. 3 ; However, argon recovery is generally not useful here.
  • the feed air is brought here in a main air compressor 601 to a pressure of, for example, 5.5 to 24 bar, under this pressure a pre-cooling 602 and further a pre-cleaning 603, which is designed for example as Molsiebadsorber station supplied.
  • the entire purified feed air is then further compressed in a booster compressor 604 to a pressure of, for example, up to 40 bar.
  • the resulting high pressure air 605 is split into a first branch stream 606 and a second branch stream 607.
  • the first branch stream 606 is brought to an even higher pressure in a further secondary compressor 661, which is driven by the VS Claude turbine 361, and serves as a throttle flow 2b.
  • the second branch stream 607 is introduced into the main heat exchanger 260 under the discharge pressure of the after-compressor 604 and expanded in the VS Claude turbine 361.
  • the columns may be equipped with sieve trays, structured packing or non-structured packing, or may also contain combinations of the above types of mass transfer elements.
  • the main condenser can be designed as a falling film or bath evaporator. In the case of a bath evaporator, it may be single-storey or multi-storey (cascade condenser).
  • the top condenser of the pre-column is preferably designed as a bath condenser.
  • Some streams or column sections may be missing in the actual circuit. In terms of process technology, this means that the amount of the corresponding stream is equal to zero or the number of theoretical plates in the relevant section is zero. With regard to the device, this means on a regular basis that the corresponding line or the corresponding column section is missing.
  • the main heat exchanger can be executed either integrated or split, the drawings show only the basic function of the exchanger - warm streams are cooled by cold.
  • no pump is used to transport a liquid from one column to another column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (13)

  1. Procédé pour la séparation cryogénique de l'air dans un système de colonnes de distillation, qui présente au moins une colonne à haute pression (11) et une colonne à basse pression (12) et dans lequel
    - on introduit de l'air de charge dans le système de colonnes de distillation, dans lequel
    - on introduit une première partie de l'air de charge sous forme gazeuse dans le système de colonnes de distillation et
    - on introduit une seconde partie de l'air de charge à l'état liquide dans le système de colonnes de distillation et
    - la seconde partie comprend au moins 30 % molaires de la quantité totale d'air de charge,
    caractérisé en ce que
    - le système de colonnes de distillation présente par ailleurs une précolonne (10), dont la pression de fonctionnement est plus élevée que la pression de fonctionnement de la colonne à haute pression (11),
    - on introduit un premier courant partiel (1; 301) de l'air de charge dans la précolonne (10),
    - la précolonne (10) présente un condenseur de tête (14), qui est réalisé sous forme de condenseur-évaporateur avec une chambre de condensation et une chambre d'évaporation,
    - on introduit une fraction gazeuse (30, 31) provenant de la région supérieure de la précolonne (10) dans la chambre de condensation du condenseur de tête (14),
    - on verse du liquide (6) formé dans la chambre de condensation au moins en partie comme retour (7) sur la précolonne (10), et en ce que
    - on introduit un second courant partiel (2a; 2b) de l'air de charge au moins partiellement à l'état liquide dans la chambre d'évaporation du condenseur de tête (14).
  2. Procédé selon la revendication 1, dans lequel la fraction liquide du second courant partiel (2a; 2b) de l'air de charge comprend, lors de l'introduction dans la chambre d'évaporation du condenseur de tête (14), plus de 30 % molaires, en particulier plus de 35 % molaires, en particulier plus de 40 % molaires de la quantité totale d'air de charge.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la seconde partie de l'air de charge comprend plus de 35 % molaires, en particulier plus de 40 % molaires de la quantité d'air de charge.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on prélève au moins un courant de produit final (46; 50; 52) sous forme liquide hors du système de colonnes de distillation, et on le recueille comme produit liquide.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on prélève au moins un courant de produit liquide (50, 290; 52) hors du système de colonnes de distillation, on le porte à l'état liquide à une pression accrue (291; 295) et sous cette pression accrue on l'évapore ou on le pseudo-évapore par échange de chaleur indirect (206) et finalement on le récupère sous forme de courant de produit gazeux (293; 294; 296; 297).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'on comprime tout l'air de charge dans un ou plusieurs compresseur(s) d'air (601, 604) à une première pression, qui se situe au moins 1 bar au-dessus de la pression de fonctionnement de la colonne à haute pression.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on introduit au moins une partie de la fraction évaporée (16) formée dans la chambre d'évaporation du condenseur de tête (14) en aval de la chambre d'évaporation du condenseur de tête de la précolonne (10) dans le système de colonnes de distillation, en particulier dans la colonne à haute pression (11).
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'on introduit au moins une partie (8) du liquide (6) formé dans la chambre de condensation du condenseur de tête (14) de la précolonne (10) dans la colonne à haute pression et/ou dans la colonne à basse pression.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on produit dans la colonne à basse pression un produit d'azote présentant une teneur en azote d'au moins 99 % molaires, en particulier de plus de 99,95 % molaires.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'on introduit un courant (61) contenant de l'argon provenant de la colonne à basse pression (12) dans une partie d'argon (15), qui présente au moins une colonne d'argon brut et on prélève hors de la partie d'argon (15) un produit d'argon (LAR).
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le second courant partiel (2a; 2b) de l'air de charge présente, lors de l'introduction dans la chambre d'évaporation du condenseur de tête (14), une proportion de liquide de 80 à 100 %, en particulier de 85 à 95 % molaires.
  12. Dispositif pour la séparation cryogénique de l'air,
    - avec un système de colonnes de distillation, qui présente au moins une colonne à haute pression (11) et une colonne à basse pression (12),
    - avec des moyens de régulation,
    - avec des moyens pour introduire de l'air de charge dans le système de colonnes de distillation,
    - dans lequel le système de colonnes de distillation présente par ailleurs une précolonne (10), dont la pression de fonctionnement lors du fonctionnement du dispositif est plus élevée que la pression de fonctionnement de la colonne à haute pression (11),
    - avec des moyens pour introduire un premier courant partiel (1; 301) de l'air de charge dans la précolonne (10),
    - dans lequel la précolonne (10) présente un condenseur de tête (14), qui est réalisé sous forme de condenseur-évaporateur avec une chambre de condensation et une chambre d'évaporation,
    - avec des moyens pour introduire une fraction gazeuse (30, 31) provenant de la région supérieure de la précolonne (10) dans la chambre de condensation du condenseur de tête (14),
    - avec des moyens pour introduire du liquide (6) formé dans la chambre d'évaporation comme retour (7) dans la précolonne (10), et
    - avec des moyens pour introduire un second courant partiel (2a; 2b) de l'air de charge au moins partiellement à l'état liquide dans la chambre d'évaporation du condenseur de tête (14),
    - dans lequel les moyens de régulation sont configurés de telle manière que lors du fonctionnement du dispositif
    - au moins 30 % molaires de toute la quantité d'air de charge soient introduits à l'état liquide dans le système de colonnes de distillation.
  13. Dispositif selon la revendication 12, caractérisé en ce que les moyens de régulation sont configurés de telle manière que lors du fonctionnement du dispositif la fraction liquide du second courant partiel (2a; 2b) de l'air de charge comprenne, lors de l'introduction dans la chambre d'évaporation du condenseur de tête (14)), plus de 30 % molaires de la quantité totale d'air de charge.
EP09706751.6A 2008-01-28 2009-01-23 Procédé et installation pour la séparation cryogénique d'air Not-in-force EP2235460B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09706751T PL2235460T3 (pl) 2008-01-28 2009-01-23 Sposób i urządzenie do niskotemperaturowego rozkładu powietrza
EP09706751.6A EP2235460B1 (fr) 2008-01-28 2009-01-23 Procédé et installation pour la séparation cryogénique d'air

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008006431 2008-01-28
EP08009400 2008-06-19
PCT/EP2009/000431 WO2009095188A2 (fr) 2008-01-28 2009-01-23 Procédé et dispositif de séparation de l'air à basse température
EP09706751.6A EP2235460B1 (fr) 2008-01-28 2009-01-23 Procédé et installation pour la séparation cryogénique d'air

Publications (2)

Publication Number Publication Date
EP2235460A2 EP2235460A2 (fr) 2010-10-06
EP2235460B1 true EP2235460B1 (fr) 2018-06-20

Family

ID=40913326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09706751.6A Not-in-force EP2235460B1 (fr) 2008-01-28 2009-01-23 Procédé et installation pour la séparation cryogénique d'air

Country Status (7)

Country Link
US (1) US8826692B2 (fr)
EP (1) EP2235460B1 (fr)
JP (1) JP5425100B2 (fr)
KR (1) KR101541742B1 (fr)
CN (1) CN101925790B (fr)
PL (1) PL2235460T3 (fr)
WO (1) WO2009095188A2 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312247A1 (fr) * 2009-10-09 2011-04-20 Linde AG Procédé et dispositif de production d'azote liquide par décomposition de l'air à basse température
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
AU2012311959B2 (en) * 2011-09-20 2016-09-08 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2600090B1 (fr) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012006746A1 (de) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
US8647409B2 (en) 2012-05-24 2014-02-11 Praxair Technology, Inc. Air compression system and method
WO2014102014A2 (fr) 2012-12-27 2014-07-03 Linde Aktiengesellschaft Procédé et dispositif de séparation de l'air à basse température
PL2770286T3 (pl) * 2013-02-21 2017-10-31 Linde Ag Sposób i urządzenie do pozyskiwania tlenu pod wysokim ciśnieniem i azotu pod wysokim ciśnieniem
WO2014146779A2 (fr) * 2013-03-19 2014-09-25 Linde Aktiengesellschaft Procédé et dispositif de production d'azote gazeux sous pression
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371B1 (fr) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
PL2963370T3 (pl) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
EP2963369B1 (fr) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
US10066871B2 (en) * 2015-07-31 2018-09-04 Praxair Technology, Inc. Method and apparatus for argon rejection and recovery
EP3696486A1 (fr) * 2019-02-13 2020-08-19 Linde GmbH Procédé et installation de fourniture d'un ou d'une pluralité de produits dérivés de l'air gazeux, riches en oxygène
EP3771873A1 (fr) * 2019-08-01 2021-02-03 Linde GmbH Procédé et installation de séparation d'air à basse température
WO2023110142A1 (fr) 2021-12-13 2023-06-22 Linde Gmbh Procédé de séparation cryogénique de l'air et installation de séparation d'air
WO2024104613A2 (fr) 2022-11-17 2024-05-23 Linde Gmbh Procédé de séparation cryogénique d'air et système de séparation d'air

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1145649B (de) * 1959-11-17 1963-03-21 Linde Eismasch Ag Verfahren zur Tieftemperaturgaszerlegung mit grossem Kaeltebedarf
DE19537913A1 (de) * 1995-10-11 1997-04-17 Linde Ag Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
US6666048B1 (en) * 1999-04-05 2003-12-23 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Variable capacity fluid mixture separation apparatus and process
DE19933558C5 (de) * 1999-07-16 2010-04-15 Linde Ag Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE10113790A1 (de) * 2001-03-21 2002-09-26 Linde Ag Drei-Säulen-System zur Tieftemperatur-Luftzerlegung
FR2831250A1 (fr) * 2002-02-25 2003-04-25 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20110023540A1 (en) 2011-02-03
PL2235460T3 (pl) 2018-12-31
KR101541742B1 (ko) 2015-08-04
JP5425100B2 (ja) 2014-02-26
CN101925790B (zh) 2015-10-21
KR20100107042A (ko) 2010-10-04
WO2009095188A2 (fr) 2009-08-06
WO2009095188A3 (fr) 2010-06-10
US8826692B2 (en) 2014-09-09
CN101925790A (zh) 2010-12-22
JP2011511246A (ja) 2011-04-07
EP2235460A2 (fr) 2010-10-06

Similar Documents

Publication Publication Date Title
EP2235460B1 (fr) Procédé et installation pour la séparation cryogénique d'air
EP1308680B1 (fr) Procédé et dispositif de production de krypton et/ou xénon par distillation cryogénique de l'air
EP1357342B1 (fr) Système de séparation d'air cryogénique à trois colonnes avec production d'argon
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
EP1482266B1 (fr) Procédé et dispositif pour la récupération de Krypton et/ou Xénon par séparation cryogénique d'air
EP1666824A1 (fr) Procédé et dispositif pour la récupération d'Argon par séparation cryogénique d'air
DE19954593B4 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2236964A1 (fr) Procédé et dispositif de séparation de l'air à basse température
EP1376037A1 (fr) Procédé et dispositif de séparation d'air avec une colonne de mélange et récupération de krypton et xénon
WO2020169257A1 (fr) Procédé et installation de décomposition d'air à basse température
EP3290843A2 (fr) Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
WO2014146779A2 (fr) Procédé et dispositif de production d'azote gazeux sous pression
DE10103968A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
EP4065910A1 (fr) Procédé et installation pour fractionnement à basse température de l'air
WO2021078405A1 (fr) Procédé et système pour la séparation d'air à basse température
EP3980705A1 (fr) Procédé et installation de décomposition d'air à basse température
EP3394536A1 (fr) Procédé et dispositif de production d'azote pur et d'oxygène pur par séparation cryogénique d'air
EP2938952A2 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2600090B1 (fr) Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
EP2914913A2 (fr) Procédé de séparation d'air à basse température dans une installation de séparation d'air et installation de séparation d'air
EP3343159A1 (fr) Procédé et dispositif de production d'oxygène gazeux et azote comprimé gazeux
EP4133227A2 (fr) Procédé de séparation d'air à basse température, installation de séparation d'air et ensemble composé d'au moins deux installations de séparation d'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170818

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015036

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015036

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009015036

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200127

Year of fee payment: 12

Ref country code: PL

Payment date: 20200113

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200123

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123