EP2235460B1 - Process and device for the cryogenic separation of air - Google Patents

Process and device for the cryogenic separation of air Download PDF

Info

Publication number
EP2235460B1
EP2235460B1 EP09706751.6A EP09706751A EP2235460B1 EP 2235460 B1 EP2235460 B1 EP 2235460B1 EP 09706751 A EP09706751 A EP 09706751A EP 2235460 B1 EP2235460 B1 EP 2235460B1
Authority
EP
European Patent Office
Prior art keywords
pressure
feed air
precolumn
column
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09706751.6A
Other languages
German (de)
French (fr)
Other versions
EP2235460A2 (en
Inventor
Alexander Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP09706751.6A priority Critical patent/EP2235460B1/en
Priority to PL09706751T priority patent/PL2235460T3/en
Publication of EP2235460A2 publication Critical patent/EP2235460A2/en
Application granted granted Critical
Publication of EP2235460B1 publication Critical patent/EP2235460B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04442Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with a high pressure pre-rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

Definitions

  • the invention relates to a method and apparatus for cryogenic separation of air.
  • a method or such a device are made WO 00/60294 known.
  • This document discloses in the embodiment according to drawing 16, a method or system for cryogenic separation of air with a first and a second air separation unit, wherein the first unit comprises a double column and the second unit comprises a single column.
  • methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.
  • the distillation column system of the invention comprises a two-column system (for example, a classic Linde double column system) for nitrogen-oxygen separation with a high pressure column and a low pressure column in heat exchange relationship with each other.
  • the heat exchange relationship between high pressure column and low pressure column is usually realized by a main condenser, is liquefied in the head gas of the high pressure column against evaporating bottom liquid of the low pressure column.
  • the distillation column system may include other devices, for example, for recovering other air components, particularly noble gases, for example, argon recovery comprising at least one crude argon column or krypton-xenon recovery.
  • the distillation column system also includes the heat exchangers directly assigned to them, which are generally designed as condenser-evaporators.
  • the majority of modern air separation plants are built on the basis of the so-called double column. This system of two coupled columns with different working pressures not only allows the extraction of gaseous oxygen, argon and nitrogen containing products, but also liquid fractions. These liquids can be taken as liquid end products from the air separation plant or internally compressed (brought in a pump to the higher pressure and warmed), so that they are then available as gaseous pressure products.
  • the pre-liquefied air only slightly participates in rectification operations in the double column (compared with gaseous air). Therefore, the pre-liquefaction has a negative influence on the rectification processes in the double column. As the air pre-liquefaction increases, the oxygen yield (as well as the argon yield if the system produces argon) decreases. The efficiency and economy of the air separation plant are reduced.
  • the object of the invention is the oxygen yield (and argon yield, if argon is obtained) of an air separation plant even in the case of a high pre-liquefaction (for example, over 30 mol%, especially over 40 mol% of the total feed air) without Increase the use of additional machinery and heat exchangers.
  • an additional third column of the conventional double column upstream. At least a portion of the gaseous air (the “first substream”) is first passed into this third column and (similar to the high pressure column of the double column) split into liquid nitrogen fractions and crude oxygen.
  • This upstream column is cooled by means of a top condenser (usually placed above the column) with pre-liquefied air (the "second substream”).
  • This liquid air is vaporized and fed into the distillation column system, preferably in the high-pressure column, in gaseous form.
  • the third column is operated at a pressure which is higher than the pressure of the high pressure column of the double column, so that the air which evaporates in the top condenser, can be introduced into the high pressure column.
  • the pressure ratio between the precolumn and the high-pressure column (measured at the head in each case) is preferably at least 1.4 and is in particular between 1.4 and 1.8, preferably between 1.5 and 1.7.
  • Liquid nitrogen from the precolumn (or from the condensation space of its top condenser) is then fed into the high-pressure column, liquid crude oxygen from the lower region of the precolumn in the high-pressure column and / or in the low-pressure column, or alternatively or additionally in the argon part, if any ,
  • the invention also relates to a device for cryogenic separation of air according to claim 12.
  • the distillation column system here comprises a precolumn 10, a high-pressure column 11 and a low-pressure column 12 and the associated condenser-evaporator, the main condenser 13 and the top condenser 14 of the pre-column.
  • the distillation column system may additionally comprise an argon part 15 which contains in particular at least one crude argon column and its overhead condenser;
  • the argon part may have a pure argon column for argon-nitrogen separation.
  • a first partial flow 1 of the feed air comes in gaseous form from the cold end of the main heat exchanger (not shown) or from a turbine. It is under a pressure which is just above the operating pressure of the precolumn 13 and is introduced immediately above the sump.
  • the guard column 10 has a top condenser 14, in the evaporation space, a second partial flow of the air is introduced in the liquid state.
  • This "second partial flow” is formed in the example by two sub-streams 2a, 2b.
  • Underflow 2a originates from the exit of a VS-Claude turbine
  • Underflow 2b originates from the cold end of the main heat exchanger (not shown) and was condensed against a liquid withdrawn from the distillation column system and subsequently brought to liquid pressure or pseudo at supercritical pressure -condensed.
  • the second partial flow 2a, 2b consists essentially (to 85 to 95 mol%) of liquid. Its liquid portion comprises 30 to 50 mol% of the total feed air.
  • the remaining feed air is introduced in gaseous form into the distillation column system.
  • the gaseous introduction takes place - except for possible gaseous fractions in the streams 2 a and 2 b and the turbine stream 3 - completely via the first partial stream 1 into the interior of the precolumn 10.
  • an additional liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.
  • the entire bottom liquid 5 of the precolumn is introduced here into the high-pressure column 11, directly to the bottom thereof.
  • the bottom liquid 5 of the precolumn or a part thereof - after cooling in the subcooling countercurrent 37, the low pressure column 12 and / or the argon part 15 can be fed (not shown in the drawing).
  • the liquid 6 produced in the condensation space of the top condenser 14 from a part 31 of the top nitrogen 30 of the pre-column 10 becomes a first part as a head return 7 into the pre-column 10 fed and led to a second part 8 to the head of the high-pressure column 11.
  • a nitrogen enriched impure fraction 9 may be passed from the precolumn to the high pressure column; this impurity fraction 9 is taken at an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical trays below the head, and the high-pressure column 11 fed at an intermediate point.
  • the vaporized fraction 16 formed in the evaporation space of the top condenser is led via line 17 to the bottom of the high-pressure column, together with a third partial stream 3, 18 of the feed air, which originates from the outlet of an HDS-Claude turbine.
  • the rinsing liquid 32 from the top condenser 14 of the pre-column 10 is fed to the high-pressure column 11 at an intermediate point in the lower region.
  • another liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.
  • the double column 11/12/13 and the optional argon part 15 function in the well-known manner.
  • liquid crude oxygen 33 at the bottom From the high-pressure column 11, liquid crude oxygen 33 at the bottom, a liquid air fraction 34 at the intermediate point at which the flushing liquid 32 is introduced, impure nitrogen 35 from an intermediate point above and liquid pure oxygen from the condensation space of the main condenser 13 in a supercooling Countercurrent 37 cooled in indirect heat exchange with return streams and introduced via the lines 38, 39, 40 and 41 at the appropriate locations in the low-pressure column 12.
  • gaseous air 42 from a Lachmann turbine and / or liquid air 43 from an HDS-Claude turbine can be fed to the low-pressure column 12.
  • the system may or may not produce all of these products simultaneously.
  • the gaseous product streams are heated in a main heat exchanger, not shown, in indirect heat exchange with feed air.
  • the main heat exchanger may consist of one block or of two or more blocks connected in parallel and / or in series.
  • the liquid oxygen can be recovered as a liquid product; Alternatively or additionally, at least a portion of the liquid withdrawn liquid from the low pressure column is liquidly pressurized and then vaporized in the main heat exchanger or (at supercritical pressure) pseudo-vaporized and warmed and then withdrawn as a gaseous pressure product (so-called internal compression).
  • the system includes an argon portion 15 for obtaining liquid pure argon (LAR) 54.
  • the argon portion contains one or more argon-oxygen separation argon columns and an argon-nitrogen separation purge column operated in the well-known manner.
  • the lower end of the crude argon column communicates via the lines 61 and 62 with an intermediate region of the low pressure column 12.
  • the liquid crude oxygen from the high pressure column 11 is passed in this case via the line 33A in the argon part and in particular at least partially in the top condenser of the crude argon column ( n) at least partially evaporated (not shown).
  • the at least partially gaseous raw oxygen is fed via line 38A into the low-pressure column 12. From the argon part 15, a gaseous residual stream (Waste) 55 is also deducted.
  • FIG. 2 shows a drawing showing the main heat exchanger 260 and a VS Claude turbine 261 as the only expansion machine.
  • the turbine may be braked either by means of an oil brake 262 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow 2b (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed and at least partially liquefied air 263 is introduced into a phase separator 264.
  • the liquid portion 264 is introduced into the evaporation space of the top condenser 14 of the pre-column 10.
  • the gaseous fraction 270 is combined with the gaseous air from the main heat exchanger 260 and fed via line 1 into the precolumn 10.
  • FIG. 2 is also the recovery of gaseous pressure oxygen 293, 294 shown by internal compression (internal compression).
  • internal compression internal compression
  • IC-LOX portion of the liquid oxygen 50 from the bottom of the low-pressure column 12 via line 290 of an oxygen pump 291, where it is brought to an elevated pressure and evaporated at least to a first part under this increased pressure in the main heat exchanger 260 or pseudo- evaporated and withdrawn as high pressure product 294.
  • Another part can be reduced in pressure (292) and evaporated under this reduced pressure in the main heat exchanger 260 or pseudo-evaporated and finally withdrawn as medium-pressure product 293.
  • one or two nitrogen products 296, 297 of very high pressure can be obtained in an analogous manner by internal compression by the high pressure liquid nitrogen 52 in a nitrogen pump 295 brought to a correspondingly high pressure and under this pressure (and optionally partially under a slightly lower intermediate pressure ) in the main heat exchanger 260 (pseudo) is evaporated and warmed.
  • the embodiment of FIG. 3 is different from this FIG. 2 in that the total gaseous feed air (the "first partial flow") 301 originates from the VS Claude turbine 361.
  • FIG. 4 shows a fourth embodiment with a HDS-Claude turbine 465 as the only expansion machine.
  • the turbine may be braked either by means of an oil brake 466 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed and at least partially liquefied air 467 is introduced into a phase separator 468.
  • the liquid fraction 469 is introduced via line 471 into the low-pressure column 12.
  • the gaseous fraction 470 is combined with the gaseous air 16 from the top condenser of the pre-column 10 and fed via line 417 into the high-pressure column 11.
  • FIG. 5 forms a Lachmann turbine as the only relaxation machine.
  • the turbine may be braked either by means of an oil brake 562 or by means of a generator or by means of a postcompressor which compresses the turbine flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260).
  • the turbine-relaxed gaseous air 563 is fed to the low-pressure column 12.
  • FIG. 6 a variant of the method according to the invention is shown, which is particularly suitable for Unreininsauerstoff pointedung. Here, the total air is compressed to well above pre-column pressure. Otherwise, this variant largely corresponds to that of FIG. 3 ; However, argon recovery is generally not useful here.
  • the feed air is brought here in a main air compressor 601 to a pressure of, for example, 5.5 to 24 bar, under this pressure a pre-cooling 602 and further a pre-cleaning 603, which is designed for example as Molsiebadsorber station supplied.
  • the entire purified feed air is then further compressed in a booster compressor 604 to a pressure of, for example, up to 40 bar.
  • the resulting high pressure air 605 is split into a first branch stream 606 and a second branch stream 607.
  • the first branch stream 606 is brought to an even higher pressure in a further secondary compressor 661, which is driven by the VS Claude turbine 361, and serves as a throttle flow 2b.
  • the second branch stream 607 is introduced into the main heat exchanger 260 under the discharge pressure of the after-compressor 604 and expanded in the VS Claude turbine 361.
  • the columns may be equipped with sieve trays, structured packing or non-structured packing, or may also contain combinations of the above types of mass transfer elements.
  • the main condenser can be designed as a falling film or bath evaporator. In the case of a bath evaporator, it may be single-storey or multi-storey (cascade condenser).
  • the top condenser of the pre-column is preferably designed as a bath condenser.
  • Some streams or column sections may be missing in the actual circuit. In terms of process technology, this means that the amount of the corresponding stream is equal to zero or the number of theoretical plates in the relevant section is zero. With regard to the device, this means on a regular basis that the corresponding line or the corresponding column section is missing.
  • the main heat exchanger can be executed either integrated or split, the drawings show only the basic function of the exchanger - warm streams are cooled by cold.
  • no pump is used to transport a liquid from one column to another column.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Tieftemperaturzerlegung von Luft. Ein solches Verfahren beziehungsweise eine solche Vorrichtung sind aus WO 00/60294 bekannt. Diese Druckschrift offenbart in dem Ausführungsbeispiel gemäß Zeichnung 16 ein Verfahren beziehungsweise Anlage zur Tieftemperaturzerlegung von Luft mit einer ersten und einer zweiten Luftzerlegungseinheit, wobei die erste Einheit eine Doppelsäule und die zweite Einheit eine Einzelsäule umfasst. Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.The invention relates to a method and apparatus for cryogenic separation of air. Such a method or such a device are made WO 00/60294 known. This document discloses in the embodiment according to drawing 16, a method or system for cryogenic separation of air with a first and a second air separation unit, wherein the first unit comprises a double column and the second unit comprises a single column. For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung umfasst ein Zweisäulensystem (zum Beispiel ein klassisches Linde-Doppelsäulensystem) zur Stickstoff-Sauerstoff-Trennung mit einer Hochdrucksäule und einer Niederdrucksäule, die miteinander in Wärmeaustauschbeziehung stehen. Die Wärmeaustauschbeziehung zwischen Hochdrucksäule und Niederdrucksäule wird im Regelfall durch einen Hauptkondensator realisiert, in dem Kopfgas der Hochdrucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule verflüssigt wird. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung kann das Destilliersäulen-System weitere Vorrichtungen zum Beispiel zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung, die mindestens eine Rohargonsäule umfasst, oder eine Krypton-Xenon-Gewinnung. Das Destilliersäulen-System umfasst neben den Destilliersäulen auch die diesen unmittelbar zugeordneten Wärmetauscher, die in der Regel als Kondensator-Verdampfer ausgebildet sind.
Die Mehrheit von modernen Luftzerlegungsanlagen ist auf der Basis der so genannten Doppelsäule gebaut. Dieses System aus zwei gekoppelten Säulen mit unterschiedlichen Arbeitsdrücken ermöglicht nicht nur Gewinnung von gasförmigen sauerstoff-, argon- und stickstoffhaltigen Produkten, sondern auch von flüssigen Fraktionen. Diese Flüssigkeiten können als flüssige Endprodukte aus der Luftzerlegungsanlage entnommen werden oder innenverdichtet (in einer Pumpe auf den höheren Druck gebracht und angewärmt), so dass diese dann als gasförmige Druck-Produkte zur Verfügung stehen.
The distillation column system of the invention comprises a two-column system (for example, a classic Linde double column system) for nitrogen-oxygen separation with a high pressure column and a low pressure column in heat exchange relationship with each other. The heat exchange relationship between high pressure column and low pressure column is usually realized by a main condenser, is liquefied in the head gas of the high pressure column against evaporating bottom liquid of the low pressure column. In addition to the nitrogen-oxygen separation columns, the distillation column system may include other devices, for example, for recovering other air components, particularly noble gases, for example, argon recovery comprising at least one crude argon column or krypton-xenon recovery. In addition to the distillation columns, the distillation column system also includes the heat exchangers directly assigned to them, which are generally designed as condenser-evaporators.
The majority of modern air separation plants are built on the basis of the so-called double column. This system of two coupled columns with different working pressures not only allows the extraction of gaseous oxygen, argon and nitrogen containing products, but also liquid fractions. These liquids can be taken as liquid end products from the air separation plant or internally compressed (brought in a pump to the higher pressure and warmed), so that they are then available as gaseous pressure products.

Werden solche flüssige Fraktionen aus dem Doppelsäulensystem entnommen, muss eine entsprechende Menge an Luft vor der Einspeisung in die Doppelsäule vorverflüssigt werden, das heißt ein Teil der Luft wird gasförmig (Einsatzluft zur Hochdrucksäule und z. B. Luft von der Lachmann-Turbine, die direkt in die Niederdrucksäule eingespeist wird) und ein Teil der Luft wird flüssig (Drosselstrom und Flüssigluft von Claude-Turbine, falls vorhanden) in das Doppelsäulensystem geleitet. Werden viele Produkte flüssig entnommen, steigt der Anteil vorverflüssigter Luft entsprechend.If such liquid fractions are withdrawn from the double column system, a corresponding amount of air must be pre-liquefied before feeding into the double column, that is part of the air is gaseous (feed air to the high pressure column and eg air from the Lachmann turbine directly fed into the low pressure column) and a portion of the air is passed in liquid form (choke flow and liquid air from Claude turbine, if any) into the double column system. If many products are removed liquid, the proportion of pre-liquefied air increases accordingly.

Da nur untere Abschnitte beider Säulen mit Flüssigluft beaufschlagt werden, nimmt die vorverflüssigte Luft nur wenig an Rektifiziervorgängen in der Doppelkolonne teil (verglichen mit gasförmiger Luft). Daher hat die Vorverflüssigung einen negativen Einfluss auf die Rektifiziervorgänge in der Doppelsäule. Mit steigender Luft-Vorverflüssigung sinkt die Sauerstoff-Ausbeute (sowie die Argon-Ausbeute, falls das System Argon produziert). Die Effizienz und die Wirtschaftlichkeit der Luftzerlegungsanlage verringern sich.Since only lower sections of both columns are supplied with liquid air, the pre-liquefied air only slightly participates in rectification operations in the double column (compared with gaseous air). Therefore, the pre-liquefaction has a negative influence on the rectification processes in the double column. As the air pre-liquefaction increases, the oxygen yield (as well as the argon yield if the system produces argon) decreases. The efficiency and economy of the air separation plant are reduced.

Um die Rektifikation (insbesondere in den oberen Abschnitten beider Kolonnen) zu intensivieren, greift man zu Maßnahmen wie einem so genannten "Feed-Compressor" (welcher einen Teil des Produktes aus dem oberen Teil der Niederdrucksäule auf den Druck der Hochdrucksäule verdichtet, dieses wird in die Hochdrucksäule eingespeist) und/oder versucht, einen so genannten Stickstoff-Kreislauf zur Kälteerzeugung zu verwenden (die Luft wird dabei nicht vor der Doppelkolonne sondern innerhalb der Drucksäule durch Flüssigstickstoff verflüssigt). Diese Maßnahmen bedeuten jedoch einen höheren Energieverbrauch und verteuern die Gesamtanlage durch höhere Anzahl von Wärmetauscher und/oder Maschinen.In order to intensify the rectification (especially in the upper sections of both columns), measures such as a so-called "feed compressor" (which compresses a portion of the product from the upper part of the low-pressure column to the pressure of the high-pressure column, this is in fed the high pressure column) and / or attempts to use a so-called nitrogen cycle for cooling (the air is not liquefied before the double column but within the pressure column by liquid nitrogen). However, these measures mean a higher energy consumption and make the overall system more expensive by increasing the number of heat exchangers and / or machines.

Die Aufgabe der Erfindung besteht darin, die Sauerstoff-Ausbeute (und Argon-Ausbeute, falls Argon gewonnen wird) einer Luftzerlegungsanlage auch im Falle einer hohen Vorverflüssigung (zum Beispiel über 30 mol-%, insbesondere über 40 mol-% der gesamten Einsatzluft) ohne Einsatz von zusätzlichen Maschinen und Wärmetauschern zu erhöhen.The object of the invention is the oxygen yield (and argon yield, if argon is obtained) of an air separation plant even in the case of a high pre-liquefaction (for example, over 30 mol%, especially over 40 mol% of the total feed air) without Increase the use of additional machinery and heat exchangers.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Dabei wird eine zusätzliche dritte Kolonne ("Vorsäule") der konventionellen Doppelkolonne vorgeschaltet. Wenigstens ein Teil der gasförmigen Luft (der "erste Teilstrom") wird zuerst in diese dritte Säule geleitet und (ähnlich wie in der Hochdrucksäule der Doppelkolonne) in Flüssigstickstoff-Fraktionen und Rohsauerstoff zerlegt. Diese vorgeschaltete Kolonne wird mit Hilfe eines Kopfkondensators (in der Regel oberhalb der Kolonne platziert) mit vorverflüssigter Luft (dem "zweiten Teilstrom") gekühlt. Diese Flüssigluft wird dabei verdampft und in das Destilliersäulen-System, vorzugsweise in die Hochdrucksäule, gasförmig eingespeist.This object is solved by the features of patent claim 1. In this case, an additional third column ("pre-column") of the conventional double column upstream. At least a portion of the gaseous air (the "first substream") is first passed into this third column and (similar to the high pressure column of the double column) split into liquid nitrogen fractions and crude oxygen. This upstream column is cooled by means of a top condenser (usually placed above the column) with pre-liquefied air (the "second substream"). This liquid air is vaporized and fed into the distillation column system, preferably in the high-pressure column, in gaseous form.

Die dritte Kolonne wird bei einem Druck betrieben, der höher als der Druck der Hochdrucksäule der Doppelkolonne liegt, damit die Luft, die im Kopfkondensator verdampft, in die Hochdrucksäule eingeleitet werden kann.The third column is operated at a pressure which is higher than the pressure of the high pressure column of the double column, so that the air which evaporates in the top condenser, can be introduced into the high pressure column.

Vorzugsweise beträgt das Druckverhältnis zwischen Vorsäule und Hochdrucksäule (jeweils am Kopf gemessen) mindestens 1,4 und liegt insbesondere zwischen 1,4 und 1,8, vorzugsweise zwischen 1,5 und 1,7.The pressure ratio between the precolumn and the high-pressure column (measured at the head in each case) is preferably at least 1.4 and is in particular between 1.4 and 1.8, preferably between 1.5 and 1.7.

Flüssiger Stickstoff aus der Vorsäule (beziehungsweise aus dem Kondensationsraum ihres Kopfkondensators) wird dann in die Hochdrucksäule eingespeist, flüssiger Rohsauerstoff aus dem unteren Bereich der Vorsäule in die Hochdrucksäule und/oder in die Niederdrucksäule, beziehungsweise alternativ oder zusätzlich in den Argon-Teil, falls vorhanden.Liquid nitrogen from the precolumn (or from the condensation space of its top condenser) is then fed into the high-pressure column, liquid crude oxygen from the lower region of the precolumn in the high-pressure column and / or in the low-pressure column, or alternatively or additionally in the argon part, if any ,

Durch diese Schaltung werden die folgenden Vorteile erzielt:

  • Die vorverflüssigte Luft wird im Kopfkondensator der Vorsäule verdampft und gasförmig in die Doppelsäule geleitet. So wird der negative Effekt der Vorverflüssigung deutlich gemildert.
  • Die Rektifikation in der Doppelkolonne kann durch die Einspeisung von einer oder mehrerer Wasch-LIN-Fraktion(en) aus der Vorsäule beziehungsweise ihrem Kopfkondensator, verbessert werden.
  • Die Sauerstoff-Ausbeute steigt deutlich, so dass übliche Ausbeuten auch bei der Vorverflüssigung von mehr als 50% erreicht werden können. Dasselbe gilt für die Argon-Ausbeute, falls die Anlage zusätzlich Argon erzeugt.
  • Die Abmessungen von Kolonnen, speziell der Hochdrucksäule und der Vorsäule, sind relativ gering.
  • Aus der Vorsäule kann man Druckstickstoff (VHPGAN - very high pressure gaseous nitrogen) bei einem Druck beziehen, der höher als der Druck der Hochdrucksäule der Doppelkolonne ist.
  • Zur Kälteerzeugung kann man die Luft in einer Turbine nicht nur auf den Druck der Niederdrucksäule (Lachmann-Turbine) oder Druck der Hochdrucksäule (HDS-Claude-Turbine) entspannen, sondern auch auf den Druck der Vorsäule beziehungsweise ihres Kopfkondensators (VS-Claude-Turbine).
This circuit provides the following advantages:
  • The pre-liquefied air is vaporized in the top condenser of the guard column and passed in gaseous form into the double column. Thus, the negative effect of the pre-liquefaction is significantly mitigated.
  • The rectification in the double column can be improved by the introduction of one or more wash LIN fraction (s) from the precolumn or their overhead condenser.
  • The oxygen yield increases significantly, so that usual yields can be achieved in the pre-liquefaction of more than 50%. The same applies to the argon yield if the plant additionally produces argon.
  • The dimensions of columns, especially the high pressure column and the precolumn, are relatively small.
  • From the precolumn one can obtain high pressure nitrogen (VHPGAN) at a pressure higher than the pressure of the high pressure column of the double column.
  • For cooling, one can relax the air in a turbine not only to the pressure of the low-pressure column (Lachmann turbine) or pressure of the high-pressure column (HDS Claude turbine), but also to the pressure of the guard column or its top condenser (VS Claude turbine ).

Gemäß einer grundlegenden Idee der Erfindung werden möglichst alle unter hohem Druck verfügbaren Prozessströme, die zur Kühlung der Vorsäule geeignet sind, zu deren Kühlung verwendet. (Dies schließt allerdings nicht aus, dass im Einzelfall ein Teil dieser Prozessströme an anderer Stell in das Destilliersäulen-System eingeleitet wird.) Insbesondere wird vorzugsweise die gesamte vorverflüssigte Luft, jedenfalls mehr als 80 mol-% beziehungsweise mehr als 90 mol-% der vorverflüssigten Luft in den Verdampfungsraum des Kopfkondensators der Vorsäule eingeleitet.According to a basic idea of the invention, as far as possible all process streams available under high pressure which are suitable for cooling the precolumn are used for their cooling. (However, this does not exclude that in some cases a part of these process streams is introduced at another position in the distillation column system.) In particular, preferably the total pre-liquefied air, in any case more than 80 mol% or more than 90 mol% of the pre-liquefied Air introduced into the evaporation space of the head capacitor of the precolumn.

Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß Patentanspruch 12.The invention also relates to a device for cryogenic separation of air according to claim 12.

Folgende Varianten sind im Rahmen der Erfindung möglich und können gegebenenfalls auch untereinander kombiniert werden:

  1. 1. Vorsäule neben Doppelsäule (Hochdrucksäule und Niederdrucksäule übereinander).
  2. 2. Alle drei Säulen nebeneinander.
  3. 3. Drei Säulen mit VS-Claude-Turbine, die gasförmige Luft in die Vorsäule und flüssige Luft in den Kopfkondensator der Vorsäule entspannt.
  4. 4. Anwendung bei Verfahren mit Verdichtung der gesamten Luft auf deutlich über Vorsäulendruck; hierbei wird regelmäßig ein Teil im Rahmen einer so genannten Innenverdichtung verflüssigt oder (bei überkritischem Druck) pseudoverflüssigt und anschließend drosselentspannt; der Rest wird in einer oder mehreren Turbinen arbeitsleistend entspannt, insbesondere auf den Druck der Vorsäule beziehungsweise ihres Kopfkondensators.
  5. 5. Drei Säulen mit HDS-Claude-Turbine, die Luft in die Hochdrucksäule entspannt.
  6. 6. Drei Säulen mit Lachmann-Turbine, die Luft in die Niederdrucksäule entspannt.
  7. 7. Drei Säulen in Kombination mit zwei Turbinen (VS-Claude- mit HDS-Claude-Turbine, VS-Claude- mit Lachmann- Turbine, HDS-Claude- mit Lachmann-Turbine).
  8. 8. Drei Säulen mit drei Turbinen (VS-Claude-, HDS-Claude- und Lachmann-Turbine.
  9. 9. Mit oder ohne Argongewinnung.
  10. 10. Die Wärmetauscher können gesplittet oder integriert sein.
The following variants are possible within the scope of the invention and may optionally also be combined with one another:
  1. 1. precolumn next to double column (high-pressure column and low-pressure column one above the other).
  2. 2. All three columns next to each other.
  3. 3. Three columns with VS-Claude turbine, which relaxes gaseous air into the precolumn and liquid air into the head condenser of the precolumn.
  4. 4. Application in processes with compression of the entire air to well above pre-column pressure; In this case, a part is liquefied regularly in the context of a so-called internal compression or (at supercritical pressure) pseudo-liquefied and then throttled; the remainder is released in one or more turbines to perform work, in particular to the pressure of the guard column or its top condenser.
  5. 5. Three columns with HDS-Claude turbine, which relaxes air into the high-pressure column.
  6. 6. Three columns with Lachmann turbine, which relaxes air in the low-pressure column.
  7. 7. Three columns in combination with two turbines (VS-Claude- with HDS-Claude turbine, VS-Claude- with Lachmann turbine, HDS-Claude- with Lachmann turbine).
  8. 8. Three columns with three turbines (VS Claude, HDS Claude and Lachmann turbine.
  9. 9. With or without argon recovery.
  10. 10. The heat exchangers can be split or integrated.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens,
Figur 2
ein zweites Ausführungsbeispiel mit Darstellung des Hauptwärmetauschers und einer VS-Claude-Turbine als einziger Entspannungsmaschine,
Figur 3
eine Abwandlung von Figur 2, bei der die gesamte gasförmige Einsatzluft (erster Teilstrom) aus der VS-Claude-Turbine stammt,
Figur 4
ein viertes Ausführungsbeispiel mit einer HDS-Claude-Turbine als einziger Entspannungsmaschine,
Figur 5
ein fünftes Ausführungsbeispiel mit einer Lachmann-Turbine als einziger Entspannungsmaschine und
Figur 6
ein fünftes Ausführungsbeispiel zur Unreinsauerstoff-Gewinnung mit Verdichtung der Gesamtluft auf deutlich über Vorsäulendruck.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments illustrated in the drawings. Hereby show:
FIG. 1
a first embodiment of the method according to the invention,
FIG. 2
A second embodiment showing the main heat exchanger and a VS-Claude turbine as the only expansion machine,
FIG. 3
a modification of FIG. 2 in which the entire gaseous feed air (first partial flow) comes from the VS Claude turbine,
FIG. 4
A fourth embodiment with an HDS Claude turbine as the only expansion machine,
FIG. 5
a fifth embodiment with a Lachmann turbine as the only expansion machine and
FIG. 6
a fifth embodiment for the oxygen extraction Unreininsluft with compression of the total air to well above pre-column pressure.

In Figur 1 ist die Verdichtung, Reinigung und Abkühlung der Einsatzluft nicht dargestellt. Das Destilliersäulen-System umfasst hier eine Vorsäule 10, eine Hochdrucksäule 11 und eine Niederdrucksäule 12 sowie die damit verknüpften Kondensator-Verdampfer, den Hauptkondensator 13 und den Kopfkondensator 14 der Vorsäule. Fakultativ kann das Destilliersäulen-System zusätzlich einen Argon-Teil 15 aufweisen, der insbesondere mindestens eine Rohargonsäule und deren Kopfkondensator enthält; zusätzlich kann der Argon-Teil eine Reinargonsäule zur Argon-Stickstoff-Trennung aufweisen.In FIG. 1 the compression, cleaning and cooling of the feed air is not shown. The distillation column system here comprises a precolumn 10, a high-pressure column 11 and a low-pressure column 12 and the associated condenser-evaporator, the main condenser 13 and the top condenser 14 of the pre-column. Optionally, the distillation column system may additionally comprise an argon part 15 which contains in particular at least one crude argon column and its overhead condenser; In addition, the argon part may have a pure argon column for argon-nitrogen separation.

Die Trennsäulen zur Stickstoff-Sauerstoff-Trennung weisen in dem Beispiel folgende Betriebsdrücke auf (jeweils am Kopf):

Vorsäule 10
7,5 bis12 bar,
Hochdrucksäule 11
5,0 bis 6,5 bar,
Niederdrucksäule 12
1,3 bis 1,6 bar.
The separation columns for nitrogen-oxygen separation have the following operating pressures in the example (in each case at the top):
Guard column 10
7.5 to 12 bar,
High pressure column 11
5.0 to 6.5 bar,
Low-pressure column 12
1.3 to 1.6 bar.

Ein erster Teilstrom 1 der Einsatzluft kommt gasförmig vom kalten Ende des Hauptwärmetauschers (nicht dargestellt) oder aus einer Turbine. Er steht unter einem Druck, der knapp über dem Betriebsdruck der Vorsäule 13 liegt und wird ummittelbar oberhalb des Sumpfes eingeleitet.A first partial flow 1 of the feed air comes in gaseous form from the cold end of the main heat exchanger (not shown) or from a turbine. It is under a pressure which is just above the operating pressure of the precolumn 13 and is introduced immediately above the sump.

Die Vorsäule 10 weist einen Kopfkondensator 14 auf, in dessen Verdampfungsraum ein zweiter Teilstrom der Luft in flüssigem Zustand eingeleitet wird. Dieser "zweite Teilstrom" wird in dem Beispiel durch zwei Unterströme 2a, 2b gebildet. Unterstrom 2a stammt vom Austritt einer VS-Claude-Turbine, Unterstrom 2b stammt vom kalten Ende des Hauptwärmetauschers (nicht dargestellt) und wurde gegen einen flüssig aus dem Destilliersäulen-System entnommenen und anschließend flüssig auf Druck gebrachten Strom kondensiert beziehungsweise (bei überkritischem Druck) pseudo-kondensiert. Bei der Einleitung in den Verdampfungsraum des Kopfkondensators 14 besteht der zweite Teilstrom 2a, 2b im Wesentlichen (zu 85 bis 95 mol-%) aus Flüssigkeit. Sein flüssiger Anteil umfasst 30 bis 50 mol-% der Gesamteinsatzluft. Die übrige Einsatzluft wird gasförmig in das Destilliersäulensystem eingeleitet. Die gasförmige Einleitung erfolgt - bis auf mögliche gasförmige Anteile in den Strömen 2a und 2b und den Turbinenstrom 3 - vollständig über den ersten Teilstrom 1 ins Innere der Vorsäule 10.The guard column 10 has a top condenser 14, in the evaporation space, a second partial flow of the air is introduced in the liquid state. This "second partial flow" is formed in the example by two sub-streams 2a, 2b. Underflow 2a originates from the exit of a VS-Claude turbine, underflow 2b originates from the cold end of the main heat exchanger (not shown) and was condensed against a liquid withdrawn from the distillation column system and subsequently brought to liquid pressure or pseudo at supercritical pressure -condensed. When introduced into the evaporation space of the top condenser 14, the second partial flow 2a, 2b consists essentially (to 85 to 95 mol%) of liquid. Its liquid portion comprises 30 to 50 mol% of the total feed air. The remaining feed air is introduced in gaseous form into the distillation column system. The gaseous introduction takes place - except for possible gaseous fractions in the streams 2 a and 2 b and the turbine stream 3 - completely via the first partial stream 1 into the interior of the precolumn 10.

In dem Beispiel wird außerdem ein zusätzlicher flüssiger Strom 4 in den Verdampfungsraum des Kopfkondensators 14 geleitet. Dieser stammt von einer Zwischenstelle der Vorsäule 10, die etwa 8 bis 16 theoretische beziehungsweise praktische Böden oberhalb des Sumpfs angeordnet ist.In the example, an additional liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.

Die gesamte Sumpfflüssigkeit 5 der Vorsäule wird hier in die Hochdrucksäule 11 eingeleitet, und zwar unmittelbar an deren Sumpf. Alternativ oder zusätzlich kann die Sumpfflüssigkeit 5 der Vorsäule oder ein Teil davon - nach Abkühlung im Unterkühlungs-Gegenströmer 37, in die Niederdrucksäule 12 und/oder den Argon-Teil 15 eingespeist werden (in der Zeichnung nicht dargestellt). Die im Kondensationsraum des Kopfkondensators 14 aus einem Teil 31 des Kopfstickstoffs 30 der Vorsäule 10 erzeugte Flüssigkeit 6 wird zu einem ersten Teil als Kopf-Rücklauf 7 in die Vorsäule 10 eingespeist und zu einem zweiten Teil 8 zum Kopf der Hochdrucksäule 11 geführt. Zusätzlich kann eine stickstoffangereicherte Unrein-Fraktion 9 aus der Vorsäule in die Hochdrucksäule geleitet werden; diese Unrein-Fraktion 9 wird an einer Zwischenstelle der Vorsäule 10 entnommen, die etwa 8 bis 16 theoretische beziehungsweise praktische Böden unterhalb des Kopfs angeordnet ist, und der Hochdrucksäule 11 an einer Zwischenstelle zugeleitet.The entire bottom liquid 5 of the precolumn is introduced here into the high-pressure column 11, directly to the bottom thereof. Alternatively or additionally, the bottom liquid 5 of the precolumn or a part thereof - after cooling in the subcooling countercurrent 37, the low pressure column 12 and / or the argon part 15 can be fed (not shown in the drawing). The liquid 6 produced in the condensation space of the top condenser 14 from a part 31 of the top nitrogen 30 of the pre-column 10 becomes a first part as a head return 7 into the pre-column 10 fed and led to a second part 8 to the head of the high-pressure column 11. In addition, a nitrogen enriched impure fraction 9 may be passed from the precolumn to the high pressure column; this impurity fraction 9 is taken at an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical trays below the head, and the high-pressure column 11 fed at an intermediate point.

Die im Verdampfungsraum des Kopfkondensators gebildete verdampfte Fraktion 16 wird über Leitung 17 zum Sumpf der Hochdrucksäule geführt, gemeinsam mit einem dritten Teilstrom 3, 18 der Einsatzluft, der vom Austritt einer HDS-Claude-Turbine stammt. Die Spülflüssigkeit 32 aus dem Kopfkondensator 14 der Vorsäule 10 wird der Hochdrucksäule 11 an einer Zwischenstelle im unteren Bereich zugeführt.The vaporized fraction 16 formed in the evaporation space of the top condenser is led via line 17 to the bottom of the high-pressure column, together with a third partial stream 3, 18 of the feed air, which originates from the outlet of an HDS-Claude turbine. The rinsing liquid 32 from the top condenser 14 of the pre-column 10 is fed to the high-pressure column 11 at an intermediate point in the lower region.

In dem Beispiel wird außerdem ein weiterer flüssiger Strom 4 in den Verdampfungsraum des Kopfkondensators 14 geleitet. Dieser stammt von einer Zwischenstelle der Vorsäule 10, die etwa 8 bis 16 theoretische beziehungsweise praktische Böden oberhalb des Sumpfs angeordnet ist.In the example, another liquid stream 4 is also passed into the evaporation space of the top condenser 14. This comes from an intermediate point of the precolumn 10, which is arranged about 8 to 16 theoretical or practical soils above the sump.

Im Übrigen funktionieren die Doppelsäule 11/12/13 und der fakultative Argonteil 15 auf die allgemein bekannte Weise.Incidentally, the double column 11/12/13 and the optional argon part 15 function in the well-known manner.

Aus der Hochdrucksäule 11 werden flüssiger Rohsauerstoff 33 am Sumpf, eine flüssige Luftfraktion 34 an der Zwischenstelle, an der die Spülflüssigkeit 32 eingeleitet wird, Unrein-Stickstoff 35 von einer weiter oben gelegenen Zwischenstelle und flüssiger Reinsauerstoff aus dem Kondensationsraum des Hauptkondensators 13 in einem Unterkühlungs-Gegenströmer 37 in indirektem Wärmeaustausch mit Rückströmen abgekühlt und über die Leitungen 38, 39, 40 beziehungsweise 41 an den geeigneten Stellen in die Niederdrucksäule 12 eingeleitet. Außerdem kann gasförmige Luft 42 von einer Lachmann-Turbine und/oder flüssige Luft 43 von einer HDS-Claude-Turbine in die Niederdrucksäule 12 eingespeist werden.From the high-pressure column 11, liquid crude oxygen 33 at the bottom, a liquid air fraction 34 at the intermediate point at which the flushing liquid 32 is introduced, impure nitrogen 35 from an intermediate point above and liquid pure oxygen from the condensation space of the main condenser 13 in a supercooling Countercurrent 37 cooled in indirect heat exchange with return streams and introduced via the lines 38, 39, 40 and 41 at the appropriate locations in the low-pressure column 12. In addition, gaseous air 42 from a Lachmann turbine and / or liquid air 43 from an HDS-Claude turbine can be fed to the low-pressure column 12.

Weist die Anlage keinen Argon-Teil auf, so können die folgenden Produkte abgezogen werden:

  • gasförmiger Stickstoff (GAN) 44, 45 vom Kopf der Niederdrucksäule 12
  • flüssiger Stickstoff (LIN) 46 vom Kopf der Niederdrucksäule 12
  • gasförmiger Unrein-Stickstoff (UN2) 47, 48 von einer Zwischenstelle im oberen Bereich der Niederdrucksäule 12
  • gasförmiger Sauerstoff (GOX) 49 unmittelbar oberhalb des Sumpfs der Niederdrucksäule 12
  • flüssiger Sauerstoff (LOX) 50 vom Sumpf der Niederdrucksäule 12
  • gasförmiger Druckstickstoff (HPGAN) 51 vom Kopf der Hochdrucksäule 11
  • flüssiger Druckstickstoff (HP-LIN) 52 aus dem Kondensationsraum des Hauptkondensators 13 oder aus der Hochdrucksäule 11
  • gasförmiger Stickstoff besonders hohen Drucks (VHPGAN) 53 vom Kopf der Vorsäule 10
If the system does not contain any argon part, the following products can be withdrawn:
  • gaseous nitrogen (GAN) 44, 45 from the top of the low-pressure column 12
  • liquid nitrogen (LIN) 46 from the top of the low pressure column 12
  • gaseous impure nitrogen (UN2) 47, 48 from an intermediate point in the upper region of the low-pressure column 12
  • gaseous oxygen (GOX) 49 immediately above the bottom of the low-pressure column 12th
  • liquid oxygen (LOX) 50 from the bottom of the low-pressure column 12
  • gaseous pressurized nitrogen (HPGAN) 51 from the top of the high-pressure column 11
  • liquid pressure nitrogen (HP-LIN) 52 from the condensation space of the main condenser 13 or from the high-pressure column eleventh
  • gaseous nitrogen of particularly high pressure (VHPGAN) 53 from the head of the precolumn 10

Die Anlage kann, muss aber nicht alle diese Produkte gleichzeitig erzeugen.The system may or may not produce all of these products simultaneously.

Die gasförmigen Produktströme werden in einem nicht dargestellten Hauptwärmetauscher in indirektem Wärmeaustausch mit Einsatzluft angewärmt. Der Hauptwärmetauscher kann aus einem Block oder aus zwei oder mehreren parallel und/oder seriell verbundenen Blöcken bestehen. Der flüssige Sauerstoff kann als Flüssigprodukt gewonnen werden; Alternativ oder zusätzlich wird mindestens ein Teil des flüssig aus der Niederdrucksäule abgezogenen Sauerstoffs flüssig auf Druck gebracht und anschließend in dem Hauptwärmetauscher verdampft oder (bei überkritischem Druck) pseudo-verdampft und angewärmt und anschließend als gasförmiges Druckprodukt abgezogen werden (so genannte Innenverdichtung).The gaseous product streams are heated in a main heat exchanger, not shown, in indirect heat exchange with feed air. The main heat exchanger may consist of one block or of two or more blocks connected in parallel and / or in series. The liquid oxygen can be recovered as a liquid product; Alternatively or additionally, at least a portion of the liquid withdrawn liquid from the low pressure column is liquidly pressurized and then vaporized in the main heat exchanger or (at supercritical pressure) pseudo-vaporized and warmed and then withdrawn as a gaseous pressure product (so-called internal compression).

In einer Variante des Ausführungsbeispiels der Figur 1 weist das System einen Argon-Teil 15 zur Gewinnung von flüssigem Reinargon (LAR) 54 auf. Der Argon-Teil enthält eine oder mehrere Rohargonsäulen zur Argon-Sauerstoff-Trennung und eine Reinargonsäule zur Argon-Stickstofftrennung, die auf die allgemein bekannte Weise betrieben werden. Das untere Ende der Rohargonsäule kommuniziert über die Leitungen 61 und 62 mit einem Zwischenbereich der Niederdrucksäule 12. Der flüssige Rohsauerstoff aus der Hochdrucksäule 11 wird in diesem Fall über die Leitung 33A in den Argon-Teil geleitet und insbesondere mindestens teilweise in dem Kopfkondensator der Rohargonsäule(n) mindestens teilweise verdampft (nicht dargestellt). Der mindestens teilweise gasförmige Rohsauerstoff wird über Leitung 38A in die Niederdrucksäule 12 eingespeist. Aus dem Argon-Teil 15 wird außerdem ein gasförmiger Reststrom (Waste) 55 abgezogen.In a variant of the embodiment of FIG. 1 For example, the system includes an argon portion 15 for obtaining liquid pure argon (LAR) 54. The argon portion contains one or more argon-oxygen separation argon columns and an argon-nitrogen separation purge column operated in the well-known manner. The lower end of the crude argon column communicates via the lines 61 and 62 with an intermediate region of the low pressure column 12. The liquid crude oxygen from the high pressure column 11 is passed in this case via the line 33A in the argon part and in particular at least partially in the top condenser of the crude argon column ( n) at least partially evaporated (not shown). The at least partially gaseous raw oxygen is fed via line 38A into the low-pressure column 12. From the argon part 15, a gaseous residual stream (Waste) 55 is also deducted.

Aus dem Ausführungsbeispiel der Figur 1 können folgende, von der Zeichnung abweichende Varianten abgeleitet werden:

  • Die Leitung 4 kann weggelassen werden oder außer Betrieb bleiben. Der Kopfkondensator 14 wird dann ausschließlich durch verflüssigte Luft 2a, 2b gekühlt.
  • Die Sumpfflüssigkeit 5 der Vorsäule 10 kann teilweise oder vollständig statt in die Hochdrucksäule 11 nach Unterkühlung in 37 in die Niederdrucksäule 12 eingeleitet werden. Falls Argon gewonnen wird, kann ein Teil oder die gesamte unterkühlte Flüssigkeit vor ihrer Einleitung in die Niederdrucksäule zur Kühlung des Kopfkondensators der Rohargonsäule eingesetzt werden.
From the embodiment of FIG. 1 the following variants deviating from the drawing can be derived:
  • Line 4 may be omitted or left out of service. The top condenser 14 is then cooled exclusively by liquified air 2a, 2b.
  • The bottom liquid 5 of the pre-column 10 can be partially or completely introduced into the low-pressure column 12 instead of into the high-pressure column 11 after subcooling in 37. If argon is recovered, some or all of the supercooled liquid may be used to cool the top condenser of the crude argon column prior to its introduction into the low pressure column.

Figur 2 zeigt eine Zeichnung mit Darstellung des Hauptwärmetauschers 260 und einer VS-Claude-Turbine 261 als einziger Entspannungsmaschine. Die Turbine kann entweder mittels einer Ölbremse 262 oder mittels eines Generators oder mittels eines Nachverdichters gebremst werden, welcher entweder den Turbinenstrom oder Drosselstrom 2b (stromaufwärts seiner [Pseudo-]Verflüssigung im Hauptwärmetauscher 260) komprimiert. Die turbinenentspannte und mindestens teilweise verflüssigte Luft 263 wird in eine Phasentrenneinrichtung 264 eingeleitet. Der flüssige Anteil 264 wird in den Verdampfungsraum des Kopfkondensators 14 der Vorsäule 10 eingeleitet. Der gasförmige Anteil 270 wird mit der gasförmigen Luft aus dem Hauptwärmetauscher 260 vereinigt und über Leitung 1 in die Vorsäule 10 eingespeist. FIG. 2 shows a drawing showing the main heat exchanger 260 and a VS Claude turbine 261 as the only expansion machine. The turbine may be braked either by means of an oil brake 262 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow 2b (upstream of its [pseudo] liquefaction in the main heat exchanger 260). The turbine-relaxed and at least partially liquefied air 263 is introduced into a phase separator 264. The liquid portion 264 is introduced into the evaporation space of the top condenser 14 of the pre-column 10. The gaseous fraction 270 is combined with the gaseous air from the main heat exchanger 260 and fed via line 1 into the precolumn 10.

In Figur 2 ist auch die Gewinnung gasförmigen Drucksauerstoffs 293, 294 durch Innenverdichtung (internal compression) dargestellt. Dabei wird mindestens ein Teil (IC-LOX) des flüssigen Sauerstoffs 50 vom Sumpf der Niederdrucksäule 12 über Leitung 290 einer Sauerstoffpumpe 291 zugeführt, dort auf einen erhöhten Druck gebracht und mindestens zu einem ersten Teil unter diesem erhöhten Druck im Hauptwärmetauscher 260 verdampft beziehungsweise pseudo-verdampft und als Hochdruckprodukt 294 abgezogen. Ein anderer Teil kann im Druck vermindert (292) und unter diesem verminderten Druck im Hauptwärmetauscher 260 verdampft beziehungsweise pseudo-verdampft und schließlich als Mitteldruckprodukt 293 abgezogen werden.In FIG. 2 is also the recovery of gaseous pressure oxygen 293, 294 shown by internal compression (internal compression). In this case, at least a portion (IC-LOX) of the liquid oxygen 50 from the bottom of the low-pressure column 12 via line 290 of an oxygen pump 291, where it is brought to an elevated pressure and evaporated at least to a first part under this increased pressure in the main heat exchanger 260 or pseudo- evaporated and withdrawn as high pressure product 294. Another part can be reduced in pressure (292) and evaporated under this reduced pressure in the main heat exchanger 260 or pseudo-evaporated and finally withdrawn as medium-pressure product 293.

Zusätzlich oder alternativ können ein oder zwei Stickstoffprodukte 296, 297 sehr hohen Drucks in analoger Weise durch Innenverdichtung gewonnen werden, indem der flüssige Hochdruckstickstoff 52 in einer Stickstoffpumpe 295 auf einen entsprechend hohen Druck gebracht und unter diesem Druck (und gegebenenfalls teilweise unter einem etwas niedrigeren Zwischendruck) im Hauptwärmetauscher 260 (pseudo-) verdampft und angewärmt wird.
Das Ausführungsbeispiel der Figur 3 unterscheidet sich dadurch von Figur 2, dass die gesamte gasförmige Einsatzluft (der "erste Teilstrom") 301 aus der VS-Claude-Turbine 361 stammt.
Figur 4 zeigt ein viertes Ausführungsbeispiel mit einer HDS-Claude-Turbine 465 als einzige Entspannungsmaschine. Die Turbine kann entweder mittels einer Ölbremse 466 oder mittels eines Generators oder mittels eines Nachverdichters gebremst werden, welcher entweder den Turbinenstrom oder Drosselstrom (stromaufwärts seiner [Pseudo-]Verflüssigung im Hauptwärmetauscher 260) komprimiert. Die turbinenentspannte und mindestens teilweise verflüssigte Luft 467 wird in eine Phasentrenneinrichtung 468 eingeleitet. Der flüssige Anteil 469 wird über Leitung 471 in die Niederdrucksäule 12 eingeleitet. Der gasförmige Anteil 470 wird mit der gasförmigen Luft 16 aus dem Kopfkondensator der Vorsäule 10 vereinigt und über Leitung 417 in die Hochdrucksäule 11 eingespeist.
Additionally or alternatively, one or two nitrogen products 296, 297 of very high pressure can be obtained in an analogous manner by internal compression by the high pressure liquid nitrogen 52 in a nitrogen pump 295 brought to a correspondingly high pressure and under this pressure (and optionally partially under a slightly lower intermediate pressure ) in the main heat exchanger 260 (pseudo) is evaporated and warmed.
The embodiment of FIG. 3 is different from this FIG. 2 in that the total gaseous feed air (the "first partial flow") 301 originates from the VS Claude turbine 361.
FIG. 4 shows a fourth embodiment with a HDS-Claude turbine 465 as the only expansion machine. The turbine may be braked either by means of an oil brake 466 or by means of a generator or by means of a postcompressor which either compresses the turbine or choke flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260). The turbine-relaxed and at least partially liquefied air 467 is introduced into a phase separator 468. The liquid fraction 469 is introduced via line 471 into the low-pressure column 12. The gaseous fraction 470 is combined with the gaseous air 16 from the top condenser of the pre-column 10 and fed via line 417 into the high-pressure column 11.

Bei dem Ausführungsbeispiel der Figur 5 bildet eine Lachmann-Turbine als einzige Entspannungsmaschine. Die Turbine kann entweder mittels einer Ölbremse 562 oder mittels eines Generators oder mittels eines Nachverdichters gebremst werden, welcher den Turbinenstrom (stromaufwärts seiner [Pseudo-]Verflüssigung im Hauptwärmetauscher 260) komprimiert. Die turbinenentspannte gasförmige Luft 563 wird in die Niederdrucksäule 12 eingespeist.
In Figur 6 ist eine Variante des erfindungsgemäßen Verfahrens dargestellt, die insbesondere zur Unreinsauerstoff-Gewinnung geeignet ist. Hier wird die Gesamtluft auf deutlich über Vorsäulendruck verdichtet. Ansonsten entspricht diese Variante weitgehend derjenigen der Figur 3; eine Argongewinnung ist hier allerdings im Allgemeinen nicht sinnvoll.
In the embodiment of the FIG. 5 forms a Lachmann turbine as the only relaxation machine. The turbine may be braked either by means of an oil brake 562 or by means of a generator or by means of a postcompressor which compresses the turbine flow (upstream of its [pseudo] liquefaction in the main heat exchanger 260). The turbine-relaxed gaseous air 563 is fed to the low-pressure column 12.
In FIG. 6 a variant of the method according to the invention is shown, which is particularly suitable for Unreininsauerstoffgewinnung. Here, the total air is compressed to well above pre-column pressure. Otherwise, this variant largely corresponds to that of FIG. 3 ; However, argon recovery is generally not useful here.

Die Einsatzluft wird hier in einem Hauptluftverdichter 601 auf einen Druck von beispielsweise 5,5 bis 24 bar gebracht, unter diesem Druck einer Vorkühlung 602 und weiter einer Vorreinigung 603, die beispielsweise als Molsiebadsorber-Station ausgebildet ist, zugeführt. Die gesamte gereinigte Einsatzluft wird anschließend in einem Nachverdichter 604 auf einen Druck von beispielsweise bis zu 40 bar weiterverdichtet. Die daraus resultierende Hochdruckluft 605 wird in einen ersten Zweigstrom 606 und einen zweiten Zweigstrom 607 aufgeteilt.The feed air is brought here in a main air compressor 601 to a pressure of, for example, 5.5 to 24 bar, under this pressure a pre-cooling 602 and further a pre-cleaning 603, which is designed for example as Molsiebadsorber station supplied. The entire purified feed air is then further compressed in a booster compressor 604 to a pressure of, for example, up to 40 bar. The resulting high pressure air 605 is split into a first branch stream 606 and a second branch stream 607.

Der erste Zweigstrom 606 wird in einem weiteren Nachverdichter 661, der von der VS-Claude-Turbine 361 angetrieben wird auf einen noch höheren Druck gebracht und dient als Drosselstrom 2b. Der zweite Zweigstrom 607 wird unter dem Austrittsdruck des Nachverdichters 604 in den Hauptwärmetauscher 260 eingeleitet und in der VS-Claude-Turbine 361 entspannt.The first branch stream 606 is brought to an even higher pressure in a further secondary compressor 661, which is driven by the VS Claude turbine 361, and serves as a throttle flow 2b. The second branch stream 607 is introduced into the main heat exchanger 260 under the discharge pressure of the after-compressor 604 and expanded in the VS Claude turbine 361.

Alle dargestellten Prozesse und Anlagen sind beispielhaft zu verstehen. Die Zeichnungen sollen vor Allem die funktionellen Zusammenhänge illustrieren. Hochdrucksäule und Niederdrucksäule sind zwar übereinander und mit integriertem Hauptkondensator dargestellt, im Rahmen der Erfindung ist jedoch auch jede andere bekannte Anordnung der Säulen und Kondensatoren möglich.All processes and plants are to be understood as examples. The drawings should above all illustrate the functional relationships. Although the high-pressure column and the low-pressure column are shown above one another and with an integrated main capacitor, any other known arrangement of the columns and capacitors is also possible within the scope of the invention.

Die Säulen können mit Siebböden, Packungen (structured packing) oder nichtregulären Füllungen (non-structured packing) ausgerüstet werden oder auch Kombinationen der genannten Typen von Stoffaustauschelemente enthalten.The columns may be equipped with sieve trays, structured packing or non-structured packing, or may also contain combinations of the above types of mass transfer elements.

Der Hauptkondensator kann als Fallfilm- oder Badverdampfer ausgeführt werden. Im Falle eines Badverdampfers kann er einstöckig oder mehrstöckig (Kaskadenkondensator) ausgebildet sein. Der Kopfkondensator der Vorsäule ist vorzugsweise als Badkondensator ausgebildet.The main condenser can be designed as a falling film or bath evaporator. In the case of a bath evaporator, it may be single-storey or multi-storey (cascade condenser). The top condenser of the pre-column is preferably designed as a bath condenser.

Manche Ströme oder Säulenabschnitte können in der tatsächlichen Schaltung fehlen. Verfahrenstechnisch bedeute dies, dass die Menge des entsprechenden Stroms gleich Null ist oder die Anzahl von theoretischen Böden im betreffenden Abschnitt gleich Null ist. Hinsichtlich der Vorrichtung bedeutet dies regelmäßig, dass die entsprechende Leitung beziehungsweise der entsprechende Säulenabschnitt fehlt.Some streams or column sections may be missing in the actual circuit. In terms of process technology, this means that the amount of the corresponding stream is equal to zero or the number of theoretical plates in the relevant section is zero. With regard to the device, this means on a regular basis that the corresponding line or the corresponding column section is missing.

Der Hauptwärmetauscher kann jeweils integriert oder gesplittet ausgeführt werden, die Zeichnungen zeigen nur die Grundfunktion des Tauschers - warme Ströme werden durch kalte gekühlt.The main heat exchanger can be executed either integrated or split, the drawings show only the basic function of the exchanger - warm streams are cooled by cold.

Bei allen Ausführungsbeispielen der Erfindung wird keine Pumpe eingesetzt, um eine Flüssigkeit von einer Säule zu einer anderen Säule zu transportieren.In all embodiments of the invention, no pump is used to transport a liquid from one column to another column.

Claims (13)

  1. Method for the low-temperature separation of air in a distillation column system which comprises at least one high-pressure column (11) and one low-pressure column (12) and in which
    - feed air is introduced into the distillation column system, wherein
    - a first part of the feed air is introduced in the gaseous state into the distillation column system and
    - a second part of the feed air is introduced in the liquid state into the distillation column system and
    - the second part comprises at least 30 mol% of the total feed air amount,
    - the distillation column system in addition comprises a precolumn (10), the operating pressure of which is higher than the operating pressure of the high-pressure column (11),
    - a first substream (1; 301) of the feed air is introduced into the precolumn (10),
    - the precolumn (10) comprises a top condenser (14) which is constructed as a condenser-evaporator having a condensation compartment and an evaporation compartment,
    - a gaseous fraction (30, 31) from the upper region of the precolumn (10) is introduced into the condensation compartment of the top condenser (14),
    - liquid (6) formed in the condensation compartment is applied at least in part as reflux (7) to the precolumn (10), and in that
    - a second substream (2a; 2b) of the feed air is introduced at least in part in the liquid state into the evaporation compartment of the top condenser (14).
  2. Method according to Claim 1, in which the liquid fraction of the second substream (2a; 2b) during the introduction of the feed air into the evaporation compartment of the top condenser (14) comprises more than 30 mol%, in particular more than 35 mol%, in particular more than 40 mol%, of the total feed air amount.
  3. Method according to Claim 1 or 2, characterized in that the second part of the feed air comprises more than 35 mol%, in particular more than 40 mol%, of the feed air amount.
  4. Method according to any one of Claims 1 to 3, characterized in that at least one end product stream (46; 50; 52) is taken off in the liquid state from the distillation column system and produced as a liquid product.
  5. Method according to any one of Claims 1 to 4, characterized in that at least one liquid product stream (50, 290; 52) is taken off from the distillation column system, brought in the liquid state to an elevated pressure (291; 295) and at this elevated pressure is vaporized or pseudo-vaporized by indirect heat exchange (206) and finally is withdrawn as a gaseous product stream (293; 294; 296; 297).
  6. Method according to any one of Claims 1 to 5, characterized in that the entire feed air is compressed in one or more air compressors (601, 604) to a first pressure which is at least 1 bar above the operating pressure of the high-pressure column.
  7. Method according to any one of Claims 1 to 6, characterized in that at least a part of the vaporized fraction (16) formed in the vaporization compartment of the top condenser (14) is introduced into the distillation column system, in particular into the high-pressure column (11), downstream of the vaporization compartment of the top condenser of the precolumn (10).
  8. Method according to any one of Claims 1 to 7, characterized in that at least a part (8) of the liquid (6) formed in the condensation compartment of the top condenser (14) of the precolumn (10) is fed into the high-pressure column and/or the low-pressure column.
  9. Method according to any one of Claims 1 to 8, characterized in that a nitrogen product having a nitrogen content of at least 99 mol%, in particular more than 99.95 mol%, is generated in the low-pressure column.
  10. Method according to any one of Claims 1 to 9, characterized in that an argon-containing stream (61) from the low-pressure column (12) is introduced into an argon part (15) which comprises at least one crude argon column and an argon product (LAR) is taken off from the argon part (15) .
  11. Method according to any one of Claims 1 to 10, characterized in that the second substream (2a; 2b) of the feed air, during the introduction into the vaporization compartment of the top condenser (14), comprises a liquid fraction of 80 to 100%, in particular 85 to 95 mol%.
  12. Device for low-temperature separation of air
    - having a distillation column system which comprises at least one high-pressure column (11) and one low-pressure column (12),
    - having control means,
    - having means for introducing feed air into the distillation column system,
    - wherein the distillation column system comprises in addition a precolumn (10), the operating pressure of which during operation of the device is higher than the operating pressure of the high-pressure column (11),
    - having means for introducing a first substream (1; 301) of the feed air into the precolumn (10),
    - wherein the precolumn (10) comprises a top condenser (14) which is constructed as a condenser-evaporator having a condensation compartment and an evaporation compartment,
    - having means for introducing a gaseous fraction (30, 31) from the upper region of the precolumn (10) into the condensation compartment of the top condenser (14),
    - having means for feeding in liquid (6) formed in the condensation compartment as reflux (7) into the precolumn (10) and having
    - means for introducing a second substream (2a; 2b) of the feed air at least in part in the liquid state into the evaporation compartment of the top condenser (14),
    - wherein the control means are constructed in such a manner that, on operation of the device,
    - at least 30 mol% of the total feed air amount is introduced in the liquid state into the distillation column system.
  13. Device according to Claim 12, characterized in that the control means are constructed in such a manner that, on operation of the device, the liquid fraction of the second substream (2a; 2b) of the feed air during the introduction into the evaporation compartment of the top condenser (14) comprises more than 30 mol% of the total feed air amount.
EP09706751.6A 2008-01-28 2009-01-23 Process and device for the cryogenic separation of air Not-in-force EP2235460B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09706751.6A EP2235460B1 (en) 2008-01-28 2009-01-23 Process and device for the cryogenic separation of air
PL09706751T PL2235460T3 (en) 2008-01-28 2009-01-23 Process and device for the cryogenic separation of air

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102008006431 2008-01-28
EP08009400 2008-06-19
EP09706751.6A EP2235460B1 (en) 2008-01-28 2009-01-23 Process and device for the cryogenic separation of air
PCT/EP2009/000431 WO2009095188A2 (en) 2008-01-28 2009-01-23 Method and device for low-temperature air separation

Publications (2)

Publication Number Publication Date
EP2235460A2 EP2235460A2 (en) 2010-10-06
EP2235460B1 true EP2235460B1 (en) 2018-06-20

Family

ID=40913326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09706751.6A Not-in-force EP2235460B1 (en) 2008-01-28 2009-01-23 Process and device for the cryogenic separation of air

Country Status (7)

Country Link
US (1) US8826692B2 (en)
EP (1) EP2235460B1 (en)
JP (1) JP5425100B2 (en)
KR (1) KR101541742B1 (en)
CN (1) CN101925790B (en)
PL (1) PL2235460T3 (en)
WO (1) WO2009095188A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312247A1 (en) * 2009-10-09 2011-04-20 Linde AG Method and device for generating liquid nitrogen from low temperature air separation
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
US10443931B2 (en) * 2011-09-20 2019-10-15 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2600090B1 (en) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102012006746A1 (en) 2012-04-03 2013-10-10 Linde Aktiengesellschaft Method and device for generating electrical energy
US8647409B2 (en) 2012-05-24 2014-02-11 Praxair Technology, Inc. Air compression system and method
AU2013369596A1 (en) * 2012-12-27 2015-07-02 Linde Aktiengesellschaft Method and device for low-temperature air separation
EP2770286B1 (en) * 2013-02-21 2017-05-24 Linde Aktiengesellschaft Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
CN105452790B (en) * 2013-03-19 2017-10-31 林德股份公司 Method and apparatus for producing gaseous compressed nitrogen
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
PL2963370T3 (en) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963369B1 (en) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963371B1 (en) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
US10066871B2 (en) * 2015-07-31 2018-09-04 Praxair Technology, Inc. Method and apparatus for argon rejection and recovery
EP3696486A1 (en) * 2019-02-13 2020-08-19 Linde GmbH Method and apparatus for providing one or more gaseous oxygen rich air products
EP3771873A1 (en) * 2019-08-01 2021-02-03 Linde GmbH Method and system for cryoseparation of air
WO2023110142A1 (en) 2021-12-13 2023-06-22 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1145649B (en) 1959-11-17 1963-03-21 Linde Eismasch Ag Process for low-temperature gas separation with high cooling requirements
DE19537913A1 (en) * 1995-10-11 1997-04-17 Linde Ag Triple column process for the low temperature separation of air
ES2273675T3 (en) 1999-04-05 2007-05-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND SEPARATION PROCESS FOR VARIABLE CAPACITY FLUID MIXING.
DE19933558C5 (en) 1999-07-16 2010-04-15 Linde Ag Three-column process and apparatus for the cryogenic separation of air
DE10113790A1 (en) * 2001-03-21 2002-09-26 Linde Ag Three-column system for low-temperature air separation
FR2831250A1 (en) 2002-02-25 2003-04-25 Air Liquide Air separation by cryogenic distillation using high, intermediate and low pressure columns where some of the compressed and purified feed air is sent to the intermediate pressure column
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8826692B2 (en) 2014-09-09
CN101925790A (en) 2010-12-22
EP2235460A2 (en) 2010-10-06
WO2009095188A2 (en) 2009-08-06
JP2011511246A (en) 2011-04-07
PL2235460T3 (en) 2018-12-31
CN101925790B (en) 2015-10-21
JP5425100B2 (en) 2014-02-26
WO2009095188A3 (en) 2010-06-10
KR101541742B1 (en) 2015-08-04
US20110023540A1 (en) 2011-02-03
KR20100107042A (en) 2010-10-04

Similar Documents

Publication Publication Date Title
EP2235460B1 (en) Process and device for the cryogenic separation of air
EP1308680B1 (en) Process and system for production of krypton and/or xenon by cryogenic air separation
EP1357342B1 (en) Cryogenic triple column air separation system with argon recovery
EP1482266B1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP1243882B1 (en) Production of argon using a triple pressure air separation system with an argon column
EP1666824A1 (en) Process and device for the recovery of Argon by cryogenic separation of air
DE19954593B4 (en) Method and apparatus for the cryogenic separation of air
EP2236964A1 (en) Method and device for low-temperature air separation
EP1376037A1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
WO2014146779A2 (en) Method and device for generating gaseous compressed nitrogen.
WO2020169257A1 (en) Method and system for low-temperature air separation
DE10103968A1 (en) Three-pillar system for the low-temperature separation of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP4065910A1 (en) Process and plant for low-temperature fractionation of air
EP3394536A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
EP2938952A2 (en) Method and device for low-temperature air separation
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
DE102017010001A1 (en) Process and installation for the cryogenic separation of air
EP2914913A2 (en) Process for the low-temperature separation of air in an air separation plant and air separation plant
EP3343159A1 (en) Method and device for creating gaseous oxygen and gaseous pressurised nitrogen
EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
WO2021078405A1 (en) Method and system for low-temperature air separation
WO2020244801A1 (en) Method and system for low-temperature air separation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170818

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180130

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015036

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015036

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009015036

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200127

Year of fee payment: 12

Ref country code: PL

Payment date: 20200113

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200123

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123