EP0093448B1 - Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée - Google Patents

Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée Download PDF

Info

Publication number
EP0093448B1
EP0093448B1 EP83104318A EP83104318A EP0093448B1 EP 0093448 B1 EP0093448 B1 EP 0093448B1 EP 83104318 A EP83104318 A EP 83104318A EP 83104318 A EP83104318 A EP 83104318A EP 0093448 B1 EP0093448 B1 EP 0093448B1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
exchange device
gas stream
stream
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83104318A
Other languages
German (de)
English (en)
Other versions
EP0093448A3 (en
EP0093448A2 (fr
Inventor
Werner Dipl.-Ing. Skolaude
Gunnar Dr. Rer.Nar. Eggendorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19823216510 external-priority patent/DE3216510A1/de
Priority claimed from DE19823216502 external-priority patent/DE3216502A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT83104318T priority Critical patent/ATE22991T1/de
Publication of EP0093448A2 publication Critical patent/EP0093448A2/fr
Publication of EP0093448A3 publication Critical patent/EP0093448A3/de
Application granted granted Critical
Publication of EP0093448B1 publication Critical patent/EP0093448B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the invention relates to a process for the production of gaseous oxygen under elevated pressure by low-temperature rectification of air, in which a first gas stream formed by air to be separated is compressed, cleaned and at least partially cooled in a first heat exchange device in heat exchange with the decomposition product and fed to the rectification , while a second gas stream is compressed to a higher pressure, cooled in a second heat exchange device in heat exchange with decomposition product, decompressed and also fed to the rectification, and in which oxygen is removed from the rectification in liquid form, pumped to the desired pressure and in heat exchange with the second gas stream compressed to the higher pressure is evaporated and heated, and a device for carrying out the method.
  • the invention has for its object to develop a method of the type mentioned, in which the energy consumption in oxygen production is reduced.
  • a third gas stream which is formed by a partial stream of the air to be separated or by a gas stream removed from the rectification, is cooled in the heat exchange with the decomposition product.
  • a part of the compressed, purified air is cooled in the first heat exchange device as a third gas stream, at least partially removed from it at an intermediate point and expanded to perform work, and heat is transferred from an intermediate point of the second heat exchange device to an intermediate point of the first heat exchange device .
  • the excess heat which is available at the cold end of the second heat exchange device, is used to generate cold.
  • the temperature difference at the cold end is reduced by the removal of heat at an intermediate point of the second heat exchange device.
  • the amount of heat removed is fed to the first heat exchange device, so that less air is required for heating in the cold part.
  • This saved part of the entering air is removed from the first heat exchange device before it has cooled down.
  • This partial air flow referred to as the third gas flow, is expanded while performing work, with cooling being generated.
  • the inlet temperature during expansion is determined by the narrowest temperature difference in the second heat exchange device.
  • the provision of additional heat according to the invention in the first heat exchange device can result in a larger amount of gas there in favor of a smaller amount of gas in the are passed through the second heat exchange device so that the amount of the second gas flow in the second heat exchange device, which is compressed to a relatively high pressure, can also be reduced.
  • the energy losses at the warm end of the second heat exchange device are reduced by reducing the volume flows.
  • the third gas stream is further compressed before it cools down.
  • the further compression results in a greater pressure drop and thus the same cooling capacity with a lower gas volume, so that the main compressor for the incoming air can be reduced.
  • a lower final temperature is reached during the expansion, so that the yield of the rectification is improved.
  • the third gas stream is expediently introduced into the rectification and / or into the nitrogen withdrawn from the rectification after it has expanded.
  • the third Gas flow essentially taken from the first heat exchange device at the point at which the heat is supplied.
  • the relaxation during work offers the advantage that less air has to be compressed on the main air compressor.
  • the additional generation of cold associated with the work-performing relaxation can be used to make the temperature difference at the warm and thus at the cold end of the first and / or second heat exchange device larger, so that the amount of the second gas flow can be reduced.
  • a portion of the compressed second gas stream is cooled in heat exchange with a portion of a gas stream to be heated in the first heat exchange device from the rectification before the end of its cooling.
  • the heat-releasing second partial flow is either fed to the remaining part of the second gas flow, preferably after leaving the second heat exchange device, or is fed to the rectification separately from the latter.
  • the heat-absorbing gas stream is conducted at an intermediate point into the first heat exchange device and heated either together with the remaining gas stream from which it was taken or separately from it.
  • the compression of the second gas stream is carried out in two stages, a partial stream being branched off between the two stages, cooled in the second heat exchange device and relaxed before the end of the heat exchange and carried out for rectification.
  • the splitting of the second gas stream has the advantage that the inlet pressures on the expansion machines can be optimized in each case when the two partial streams of the second gas stream are depressurized.
  • a portion of the second gas stream compressed to its final pressure is branched off before the end of the heat exchange, expanded to perform work and fed to the rectification.
  • the branched partial stream is expanded at a higher inlet temperature than the rest of the second gas stream removed at the cold end of the second heat exchange device. This increases the cooling capacity, and the wet steam area is avoided during relaxation. As an additional advantage, small temperature differences occur at the cold end of the second heat exchange device.
  • the second gas flow is a partial flow of the air to be separated or a gas flow from the pressure stage.
  • the second gas flow is branched off in front of the first heat exchange device.
  • a gas stream is taken from the pressure stage, the nitrogen content of which is equal to or greater than that of air, heated in one of the two or in parallel in both heat exchange devices and then compressed.
  • a partial stream of the second gas stream is used as the third gas stream, the second gas stream being split into two partial streams which are cooled separately from one another at different pressures in the second heat exchange device, and in that the: partial stream with the lower pressure at a higher temperature than the partial flow with the higher pressure is removed from the heat exchange device, relaxed during work and passed into the rectification.
  • the high-pressure gas stream which is used to evaporate the oxygen is divided into two sub-streams of different pressure, which are passed separately through the heat exchange device.
  • This measure allows the quantities and pressures of the two partial flows to be varied without a significant change in the compression energy.
  • the pressure and quantity of the partial flow with the lower pressure can be selected such that its work-relieving relaxation takes place under optimal conditions depending on the inlet temperature into the expansion machine determined by the oxygen delivery pressure, ie in a pressure range in which the maximum power is.
  • the premature removal of the partial flow with the lower pressure according to the invention reduces the excess heat which prevails at the cold end of the second heat exchange device and thus the energy loss.
  • the pressure of the higher compressed partial flow is in can be varied within wide limits, which means that the oxygen delivery pressure can also be varied within wide limits.
  • the partial flow at a higher pressure is relieved of work after it has cooled.
  • the compression energy is used optimally.
  • the high cooling capacity due to the separate expansion of the two partial flows enables relatively large temperature differences at the warm ends of the heat exchange devices, as a result of which the necessary amount of compressed air can be kept low.
  • there is no compression of additional air for cooling i.e. the total amount of air becomes a minimum depending on the desired decomposition products.
  • the main air compressor and cleaning stage are dimensioned as small as possible.
  • the partial stream with the lower pressure after leaving the first compressor stage is post-compressed before it cools down.
  • the purpose of this is to optimally use the energy released during relaxation and thus to keep the energy required for compression to the selected pressure low.
  • the other of the two partial flows, which according to the invention is led through the heat exchange device at a higher pressure, is further compressed in the following compressor stage.
  • Pressure and flow rates can be set on the compressors so that the compressors can be operated at the optimum operating point because air and oxygen are only indirectly linked to one another. This advantage applies especially in part-load operation with an unchanged high oxygen delivery pressure.
  • the pressure of the partial flow with the lower pressure is between 10 bar and 60 bar.
  • the preferred pressure range is between 20 and 40 bar.
  • the respective pressure depends on the pressure of the oxygen.
  • the partial flow with the lower pressure in the region of the lowest temperature difference between the partial flow with the higher pressure and the oxygen is removed from the second heat exchange device.
  • the temperature difference at the end of the second heat exchange device is relatively large and assumes a minimum at an intermediate point of the heat exchange device. This is the preferred point of withdrawal for the lower compressed partial flow. By withdrawing the warm gas, the temperature difference at the cold end of the heat exchange device decreases and thus the energy requirement of the process.
  • the work performed in relieving the pressure on one of the two and / or both partial flows is used for post-compression of the one or both partial flows. Coupling one or both expansion machines with one or both post-compressors reduces energy consumption.
  • heat is transferred from an intermediate point of one to an intermediate point of the other heat exchange device.
  • the heat exchange takes place either indirectly or by direct transfer of a gas flow from one to the other heat exchange device. This measure proves to be very effective in order to optimize the temperature differences at the heat exchange devices.
  • a portion of the compressed, purified air be branched off at an intermediate point of the first heat exchange device, relaxed in order to perform work, and passed to the rectification. This increases the cooling capacity if the cooling capacity from the expansion of the medium and high pressure flow is insufficient.
  • the second gas stream is preferably a partial stream of the incoming air.
  • the second gas stream is removed from the pressure stage and warmed and compressed before it is split up.
  • This gas stream is either a gas stream from the lower region of the pressure stage with a composition such as air, or a nitrogen-rich gas stream from the upper region of the pressure stage.
  • a part of the second gas stream is post-compressed before it is compressed, cooled in one of the heat exchange devices, removed from it at an intermediate point, relaxed in a work-performing manner and passed into the rectification.
  • An apparatus for performing the method according to the invention comprises an air main compressor, a two-stage rectification column and two heat exchange devices, the air main compressor being connected to the pressure stage of the rectification column via the first heat exchange device, while a second gas line is assigned to a second gas line, which is connected via the second heat exchange device and a relaxation machine with the pressure stage is connected, with an oxygen extraction line from the low pressure stage via a pump through the second heat exchange device and is characterized in that the second gas line opens into two separate flow cross sections of the second heat exchange device, at least one of which contains a further compressor, while the other is on an intermediate point out of the second heat exchange device and connected to a relaxation machine, the output of which is connected to the rectification column.
  • the second heat exchange device has a plurality of heat exchanger blocks which are separate from one another, of which one heat exchanger block has flow cross sections for oxygen and the higher compressed part of the second gas flow, a second heat exchanger block has flow cross sections for a partial flow of the higher compressed part of the second gas flow and one Nitrogen stream from the rectification column, and a third heat exchanger block contains flow cross sections for the nitrogen stream from the second heat exchanger block and the lower compressed part of the second gas stream.
  • This arrangement has the advantage that the gas flows led through the second heat exchange device are largely decoupled from one another in terms of process, so that the temperature conditions in the individual heat exchanger blocks can be influenced. In this way, compressors, expansion machines and temperature differences on the heat exchangers can be optimized almost independently of one another.
  • air 1 is turned into oxygen in a two-stage rectification column with a pressure stage 7 which is operated at a pressure of approximately 6 bar and a low pressure stage 15 which is operated at a pressure of approximately 1.5 bar. which is withdrawn in liquid form with a purity of about 99.5% via a line 16, impure nitrogen 17 from the top of the low pressure stage 15 and pure nitrogen 18 from the top of the pressure stage 7.
  • the two decomposition stages are connected to one another by a common condenser-evaporator and by connecting lines 19, 20.
  • the oxygen is brought to the desired delivery pressure, e.g. 70 bar, compressed.
  • the air 1 is first compressed in an air main compressor 2 to about 6 to 7 bar, cooled in a spray zone cooler 3 and freed of CO 2 and H 2 0 in a pair of switchable molecular sieve adsorbers 4.
  • the air is then broken down into three partial flows: the first and largest partial flow 5 is exchanged in a first heat exchange device 6 in heat exchange with pure nitrogen 18 and with impure nitrogen 17, which has previously been preheated in heat exchange with the pre-separation products 19, 20 (heat exchanger 22, 23) cooled to about 100 K and fed to pressure stage 7.
  • a second partial flow 8 is further compressed in a compressor 9 to a pressure of approximately 75 bar and, after the compression heat has been removed, is cooled in a second heat exchange device 10 in heat exchange with evaporating product oxygen 16.
  • the pressure of the second partial stream 8 depends on the pressure of the oxygen to be evaporated.
  • part of the impure nitrogen 17 is heated in addition to the oxygen in the second heat exchange device 10.
  • the second partial flow 8 is then expanded to the pressure of the pressure stage in a turbine 11 and also passed into the pressure stage 7.
  • a part of the cleaned air in a compressor 13 to a pressure of approximately 8 to 10 bar is used as the third partial flow 12 post-compressed and cooled after removal of the compression heat in the first heat exchange device 6.
  • a part of the third partial flow is removed at an intermediate point from the first heat exchange device 6 at a temperature of approximately 140 to 150 K, relaxed during work (turbine 14) and introduced entirely or partially into the low-pressure stage 15 to improve the rectification.
  • the compressor 13 is coupled to the turbine 14 for the transmission of the turbine power.
  • the remaining part of the turbine stream is mixed with the impure nitrogen 17.
  • the addition takes place, as shown in the figure, after the heat exchangers 22, 23, but can also be carried out before or between these heat exchangers if necessary. Under certain conditions, it may also be more favorable to mix the entire turbine stream with the impure nitrogen 17.
  • the heat transfer enables the withdrawal of the third partial flow 12 for cooling in turbine 14, the withdrawal taking place approximately at the location of the first heat exchange device 6 at which the heat is supplied.
  • the first heat exchange device 6 there are large temperature differences at the ends and small ones in the middle with an excess of heated flows 17, 18.
  • the increased heating of decomposition products in the first heat exchange device 6 further reduces the amount of air to be compressed in the compressor 9.
  • an indirect heat transfer is used between the two heat exchange devices 6, 10 Heat exchange carried out in a heat exchanger 25.
  • a partial flow 26 of the second air flow is removed and brought into heat exchange with a partial flow 27 of nitrogen 17, which is then fed to the first heat exchange device 6 at an intermediate point.
  • the partial flow 26 is fed back to the remaining second air flow 8 before it is released or led (not shown) directly into the pressure stage 7.
  • the partial flow 27 is mixed with the nitrogen 17 and conducted together or (not shown) separately from the latter to the warm end of the heat exchange device 6.
  • FIG. 3 shows an embodiment of the method according to the invention, in which, as in FIG. 1, direct heat transfer takes place through line 24.
  • the second gas stream is compressed in two stages (compressors 9a and 9b).
  • the pressure after the compressor 9a is approx. 30 to 40 bar, after the compressor 9b approx. 75 bar.
  • a partial flow 28 is branched off between the compressors 9a, 9b, passed through part of the second heat exchange device 10 and removed therefrom at an intermediate point in the lower third.
  • This partial flow is expanded in a turbine 29 in a work-performing manner and, together with the higher compressed rest of the second air flow relaxed in the turbine 11, or (not shown) separately from this into the pressure stage 7.
  • the turbine 29 operates at a higher inlet temperature than the turbine 11. It therefore has a better cooling capacity and, moreover, does not work in the wet steam area.
  • the temperature differences at the cold end of the second heat exchange device 10 decrease, so that the energy losses during heat exchange are low.
  • FIG. 4 differs from the method according to FIG. 1 in that a part of the second air flow is expanded from the full final pressure of the compressor 9 instead of an intermediate pressure - as in FIG. 3.
  • a partial flow 30 is branched off from the second air flow at an intermediate point of the second heat exchange device 10 and expanded in a turbine 31 while performing work. This partial flow is then introduced into the pressure stage 7 together with the remainder of the second air flow, which is relaxed in the turbine 11 or (not shown).
  • the second gas stream compressed to higher pressure is a nitrogen-rich gas stream 32 which is taken from the upper region of pressure stage 7.
  • the nitrogen 32 is in each case partially heated in the two heat exchanger devices 6, 10 and then the two partial streams are compressed together (compressor 9) and in Cooled heat exchange with liquid oxygen in the heat exchange device 10, relaxed work performed (turbine 11) and, above the tapping point, returned to the pressure stage 7.
  • heat is in turn transferred from the second to the first heat exchange device, specifically through a nitrogen flow 33 which branches off at an intermediate point of the heat exchange device 10 from the partial flow of nitrogen 32 passed through this heat exchange device and mixes with the partial flow of nitrogen 32 passed through the heat exchange device 6 becomes.
  • the stream 33 can also be conducted to the warm end of the heat exchange device 6 independently of the partial stream 32.
  • Another nitrogen stream 36 is taken from the upper region of the low-pressure stage 15 and heated in the first heat exchange device 6.
  • the method according to FIG. 6 is analogous to that according to FIG. 2, but here, too, the second gas stream is a nitrogen stream 32 from the pressure stage 7.
  • the heat transfer according to the invention from the second heat exchange device 10 to the first heat exchange device 6 takes place by indirect heat exchange in a heat exchanger 25.
  • a partial flow 34 of the compressed nitrogen 33 is branched off, cooled in the heat exchanger 25 and mixed with the rest of the nitrogen 33 emerging at the cold end of the heat exchange device 10.
  • the partial flow 34 can also be expanded independently of the rest of the nitrogen 33 and passed to the pressure stage 7.
  • a part 35 is branched off, which absorbs heat from the partial flow 34 in the heat exchanger 25 and then supplies the part of the nitrogen 33 passed through the heat exchanger 6 at an intermediate point.
  • the partial flow 35 can instead (not shown) be conducted separately to the warm end of the heat exchange device 6.
  • FIG. 7 shows a variant of the method according to the invention, in which, in contrast to the method according to FIG. 2, the entire third partial stream 12 is expanded in the turbine 14.
  • the nitrogen 17 is led from the head of the low-pressure stage 15 only through the first heat exchange device 6, part of the nitrogen 17 being branched off in front of the heat exchange device 6 and fed to the heat exchange device 6 at an intermediate point after heat absorption in the heat exchanger 25 and together with the rest of nitrogen 17 is further heated.
  • the stream 27 can (not shown) also be conducted separately from the nitrogen 17 to the warm end of the heat exchange device 6.
  • the method according to FIG. 8 differs from that according to FIG. 7 only in that the second gas stream is nitrogen 32 from pressure stage 7.
  • the second gas stream is compressed in two compressor stages 9a and 9b.
  • air 101 is compressed to approximately 6 bar in an air main compressor 102, cooled in a spray zone cooler 103 and freed of CO 2 and H 2 O in switchable molecular sieve adsorbers 104.
  • the cleaned air is then divided into two air flows 105, 106.
  • the larger airflow 105 is cooled in a first heat exchange device 107 in heat exchange with nitrogen 119, 120 from the rectification and introduced into the pressure stage 108 of a two-stage rectification column.
  • the second air stream 106 is compressed to a higher pressure (approx.
  • the two stages of the rectification column are connected to one another by connecting lines 115, 116, nitrogen 119 from the top of the low-pressure stage is heated in heat exchangers 117, 118 in heat exchange with the pre-separation products 115, 116, which are simultaneously supercooled.
  • the nitrogen 119 is partly passed through the two heat exchangers 107, 111 and heated.
  • Nitrogen 120 from the top of the pressure stage 108 is heated in the heat exchange device 107.
  • the second air flow 106 is divided into two partial flows 121, 122 of different pressures.
  • the first partial flow 122 is the air flow which has already been mentioned and is compressed in the compressor 110.
  • the second partial flow 121 is formed by an air flow which is branched off between the two compressors 109, 110.
  • the air flow 121 is compressed in a compressor 123 from approximately 25 bar to a lower pressure than the air flow 122 compressed in the compressor 110 (approx. 33 bar) and cooled in the second heat exchange device 111.
  • the air flow 121 is removed from the heat exchange device 111, relaxed in a turbine 124 and passed together with the air flow 105 in the pressure stage 108.
  • the removal takes place below the point at which the smallest temperature difference between the cold and warm flows prevails in the second heat exchange device 111.
  • the temperature at the inlet of the turbine 124 is, for example, 149 K, at the turbine 112, for example, 103 K.
  • the turbine 124 transfers its power to the compressor 123.
  • the cooling capacity of the turbine 124 covers approximately 80 to 90% of the cooling requirement of the system, that of the turbine 112 the rest.
  • part of the nitrogen 119 is branched off from the heat exchange device 111 at an intermediate point and fed to the nitrogen passed through the heat exchange device 107 at an intermediate point (line 125). With this measure, heat is transferred from the second to the first heat exchange device.
  • the method according to FIG. 10 differs from that according to FIG. 9 in the routing of the two air streams 121 and 122.
  • the same reference numerals as in FIG. 9 were used for the other analog components.
  • the second partial air flow which was compressed to about 52 bar in the compressor 109, is partly (Air flow 121) cooled at this pressure in the second heat exchange device 111, removed from it at an intermediate point and relaxed in a turbine 124 to the pressure of the pressure stage 108, into which it is subsequently introduced together with the air flow 105.
  • the second partial flow 122 is compressed to a higher pressure (approx. 65 bar) in a compressor 110 and cooled in the second heat exchange device 111. At its cold end, the air flow 122 is removed, expanded in the turbine 112 to the pressure of the pressure stage 108 and introduced into it.
  • Turbine 124 is coupled to compressor 110.
  • FIG. 11 shows an embodiment of the method according to the invention in which a recycle gas is provided as the second gas stream.
  • a gas stream 126 is taken from the rectification as the cycle gas.
  • the removal takes place in the lower region of pressure stage 108, i.e. the second gas stream has a composition similar to air.
  • a nitrogen-rich gas from the upper region of the pressure stage 108 as the recycle gas (dashed line).
  • the recycle gas 126 is warmed to approximately ambient temperature in the first heat exchange device 107, compressed in two compressors 109, 110, cooled in heat exchange with evaporating oxygen in the second heat exchange device 111, then expanded in the turbine 112 to perform work and passed into the pressure stage 108.
  • a portion 127 of the second gas stream is branched off upstream of the compressor 109, compressed to a pressure of approximately 6 to 10 bar in a compressor 128 and cooled in a portion of the first heat exchange device 107.
  • This gas flow is withdrawn at an intermediate point, expanded to the pressure of the low-pressure stage 113 in a turbine 129 coupled to the compressor 128 and introduced into the latter.
  • the gas flow 127 is used for cooling.
  • a partial flow 121 is branched off between the two compressors 109, 110, post-compressed in a compressor 123 and cooled in part of the second heat exchange device 111.
  • the partial flow 121 is removed at a temperature prevailing over the cold end of the second heat exchange device 111, expanded to the pressure of the pressure stage in a turbine 124, which is coupled to the compressor 123, and admixed to the cycle gas 126.
  • FIG. 12 shows a method similar to that according to FIG. 9, in which the second heat exchange device is formed by three separate heat exchanger blocks 130, 131, 132. As a further difference, the connecting line 125 has been omitted.
  • the higher compressed partial flow 122 is cooled in the heat exchanger block 130 in heat exchange with evaporating oxygen.
  • a portion 133 of the stream 122 is removed at an intermediate point of the heat exchanger block 130 and cooled in the heat exchanger block 131 in heat exchange with a portion of the nitrogen 119 from the top of the low pressure stage 113, then together with the rest of the partial stream 122 cooled in the heat exchanger block 130 in the turbine 112 relaxed while working and passed to pressure stage 108.
  • the partial flow 121 branched off between the two compressors 109, 110 is cooled after being compressed in the compressor 123 in the heat exchanger block 132 in heat exchange with the partial flow of the nitrogen 119 preheated in the heat exchanger block 131, then expanded in the turbine 124 to perform work and passed to the pressure stage 108.
  • the air expanded in the turbine 124 can instead be directed to the low pressure stage 113 (dashed line).
  • the division of the heat exchange device 111 into three separate heat exchanger blocks 130, 131, 132 makes it possible to vary the pressures, quantities and temperatures of the air streams 121, 122 largely decoupled from one another at a predetermined oxygen delivery pressure and thus to select the optimal operating points of the compressors and turbine.
  • the inlet temperature to the turbine 124 is independent of the temperature difference that is maintained to evaporate the oxygen must be selectable.
  • Figure 12 also shows in dash-dotted lines an additional embodiment of the method according to the invention, in which a part 134 of the compressed purified air 101 is compressed again in a compressor 135, branched off at an intermediate point from the first heat exchange device 107, relaxed in a turbine 136 and into the work Low pressure stage 113 is passed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (26)

1.- Procédé pour obtenir de l'oxygène gazeux sous une pression relativement élevée par rectification de l'air, dans lequel on comprime et purifie un premier courant d'air gazeux à séparer par fractionnement qu'on refroidit au moins partiellement dans un premier dispositif échangeur de chaleur par échange thermique avec un produit du fractionnement pour le diriger ensuite vers la zone de rectification, cependant qu'on comprime un second courant gazeux à une pression plus élevée pour le refroidir ensuite dans un second dispositif échangeur de chaleur par échange thermique avec un produit de fractionnement, et pour le détendre et le diriger également vers la zone de rectification, et dans lequel on retire de la zone de rectification de l'oxygène à l'état liquide, on le porte à la pression voulue par pompage et on le vaporise et le réchauffe par échange thermique avec le second courant de gaz comprimé à une pression supérieure, caractérisé en ce qu'on refroidit par échange thermique avec un produit du fractionnement un troisième courant gazeux formé ou bien d'un courant partiel de l'air à séparer par fractionnement, ou bien d'un courant gazeux retiré-de la zone de rectification.
2.- Procédé selon la revendication 1, caractérisé en ce que ledit troisième courant gazeux (12) est constitué par une partie de l'air comprimé et purifié (1) que l'on refroidit dans le premier dispositif d'échange thermique (6) et que l'on retire au moins partiellement de ce dispositif en un point intermédiaire pour le détendre avec fourniture de travail (14), et en ce qu'on transmet de la chaleur d'un point intermédiaire du deuxième dispositif d'échange thermique (10) à un point intermédiaire du premier dispositif d'échange thermique (6).
3.- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on soumet le troisième courant gazeux (12) à une compression supplémentaire (13) avant de le refroidir.
4.- Procédé selon la revendication 2 ou 3, caractérisé en ce qu'après avoir détendu (14) le troisième courant gazeux (12), on introduit celui-ci dans la zone de rectification et/ou dans de l'azote en voie d'évacuation (17) à partir de la zone de rectification.
5.- Procédé selon une quelconque des revendications 1 à 4, caractérisé en ce qu'on retire le troisième courant gazeux (12) du premier dispositif d'échange thermique (6) sensiblement au point auquel s'effectue la transmission de chaleur.
6.- Procédé selon une quelconque des revendications 1 à 5, caractérisé en ce que l'on détend (11) le second courant gazeux (8, 32) dans des conditions de fourniture de travail.
7.- Procédé selon une quelconque des revendications 2 à 6, caractérisé en ce qu'on effectue la transmission de chaleur en refroidissant une partie du second courant gazeux (8) comprimé, avant l'achèvement de son refroidissement, par une partie (27, 34) d'un courant gazeux provenant de la zone de rectification et destiné à être réchauffé dans le premier dispositif d'échange thermique (6).
8.- Procédé selon une quelconque des revendications 1 à 7, caractérisé en ce que la compression du second courant gazeux (8) est effectuée en deux étapes (9a, 9b), cependant qu'on retire entre ces deux étapes un courant partiel (28) que l'on refroidit dans le deuxième dispositif d'échange thermique (10) et que l'on détend avec fourniture de travail (29) avant l'achèvement de l'échange thermique, pour le diriger ensuite vers la zone de rectification.
9.- Procédé selon une quelconque des revendications 1 à 7, caractérisé en ce qu'une partie (30) du second courant gazeux (8) comprimé à sa pression finale est dérivée avant l'achèvement de l'échange thermique, puis détendue avec fourniture de travail (31) et ensuite dirigée vers la zone de rectification.
10.- Procédé selon une quelconque des revendications 1 à 9, caractérisé en ce qu'on fait passer des parties de l'azote (17) provenant de la zone de rectification à travers les premier et deuxième dispositifs d'échange thermique, respectivement, et qu'on amène à un point intermédiaire du premier dispositif d'échange thermique (6) une partie (24) de l'azote prélevé en un point intermédiaire du deuxième dispositif d'échange thermique (10).
11.- Procédé selon une quelconque des revendications 1 à 10, caractérisé en ce que le second courant gazeux est un courant partiel (8) de l'air à séparer par fractionnement ou bien un courant gazeux (32) provenant de l'étage de haute pression (7).
12.- Procédé selon une quelconque des revendications 2 à 11, caractérisé en ce qu'on utilise pour la post-compression du second et/ou du troisième courant gazeux le travail fourni lors de sa détente.
13.- Procédé selon la revendication 1, caractérisé en ce qu'on utilise comme troisième courant gazeux une partie (courant partiel) du second courant gazeux (106, 126), ce dernier étant divisé en ceux courants partiels (121, 122) que l'on refroidit séparément dans le deuxième dispositif d'échange thermique (111) sous des pressions différentes et on retire du dispositif d'échange thermique (111) le courant partiel (121) présentant une pression relativement basse à une température plus élevée que celle du courant partiel (122) à pression relativement élevée, on le détend avec fourniture de travail (124) et on le dirige vers la zone de rectification.
14.- Procédé selon la revendication 13, caractérisé en ce que le courant partiel (122) à haute pression est soumis à une détente avec fourniture de travail (112) après son refroidissement.
15.- Procédé selon la revendication 13 ou 14, caractérisé en ce que le courant partiel (121) à basse pression est soumis à une post- compression après sa sortie du premier étage de compression (109) et avant son refroidissement.
16.- Procédé selon une quelconque des revendications 13 à 15, caractérisé en ce que la pression du courant partiel (121) à basse pression est comprise entre 10 et 60 bars.
17.- Procédé selon une quelconque des revendications 13 à 16, caractérisé en ce que le courant partiel (121) à basse pression est retiré du deuxième dispositif d'échange thermique, dans la zone de différence minimum entre les températures respectives du courant partiel (122) à haute pression et de l'oxygène provenant du deuxième dispositif d'échange thermique (111).
18.- Procédé selon une quelconque des revendications 13 à 17, caractérisé en ce que le travail fourni lors de la détente (112, 124) de l'un et/ou de l'autre des deux courants partiels (121, 122) est utilisé pour effectuer une post- compression de l'un et/ou de l'autre de ces courants partiels.
19.- Procédé selon une quelconque des revendications 13 à 18, caractérisé en ce qu'on transmet de la chaleur d'un point intermédiaire d'un des dispositifs d'échange thermique à un point intermédiaire de l'autre dispositif d'échange thermique.
20.- Procédé selon une quelconque des revendications 13 à 19, caractérisé en ce qu'une partie (134) de l'air comprimé et purifié (101) est dérivée en un point intermédiaire du premier dispositif d'échange thermique (107), puis détendue et dirigée vers la zone de rectification.
21.- Procédé selon la revendication 20, caractérisé en ce qu'on soumet la partie d'air dérivée à une post-compression avant la détente.
22.- Procédé selon une quelconque des revendications 13 à 21, caractérisé en ce que le second courant gazeux (106) est constitué par un courant partiel de l'air entrant.
23.- Procédé selon une quelconque des revendications 13 à 22, caractérisé en ce qu'on retire le second courant gazeux (126) de l'étage de haute pression (108), on le réchauffe avant son fractionnement et on le comprime.
24.- Procédé selon la revendication 23, caractérisé en ce qu'une partie (127) du second courant gazeux (126) est soumise à une postcompression (128) avant sa compression, puis refroidie dans un des dispositifs d'échange thermique (107, 111), retirée en un point intermédiaire de celui-ci, soumise à une détente avec fourniture de travail (129) et ensuite dirigée vers la zone de rectification.
25.- Installation pour la mise en oeuvre du procédé selon la revendication 13, comportant un compresseur à air principal, une colonne de rectification à deux étages et deux dispositifs d'échange thermique, ledit compresseur à air principal étant relié par l'intermédiaire du premier dispositif d'échange thermique à l'étage de pression de ladite colonne de rectification, cependant qu'un deuxième compresseur est associé à un second conduit de gaz et relié par l'intermédiaire du deuxiéme dispositif d'échange thermique et d'une machine de détente à l'étage de pression, et qu'un conduit d'évacuation d'oxygène part de l'étage de basse pression et passe par une pompe et par le deuxième dispositif d'échange thermique, cette installation étant caractérisée en ce que le second conduit de gaz (106, 126) débouche dans deux branches d'écoulement séparées du deuxième dispositif d'échange thermique (111) dont l'une au moins comporte un compresseur supplémentaire (110, 123), cependant que l'autre branche d'écoulement part d'un point intermédiaire du deuxième dispositif d'échange thermique (111) et est relié à une machine de détente (124) dont la sortie communique avec la colonne de rectification.
26.- Installation selon la revendication 25, caractérisée en ce que ledit deuxième dispositif d'échange thermique (111) comporte une pluralité de blocs séparés d'échange thermique (130, 131, 132), un premier bloc d'échange thermique (130) comprenant des sections d'écoulement pour l'oxygène (114) et la partie fortement comprimée (122) du second courant gazeux, un deuxième bloc d'échange thermique (131) comprenant des sections d'écoulement pour un courant partiel (133) de la partie fortement comprimée (122) du second courant gazeux et pour un courant d'azote (119) provenant de la colonne de rectification, et un troisième bloc d'échange thermique (132) comprenant des sections d'écoulement pour le courant d'azote (119) provenant du deuxième bloc d'échange thermique (131) et pour la partie faiblement comprimée (121) du second courant gazeux.
EP83104318A 1982-05-03 1983-05-02 Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée Expired EP0093448B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83104318T ATE22991T1 (de) 1982-05-03 1983-05-02 Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19823216510 DE3216510A1 (de) 1982-05-03 1982-05-03 Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
DE19823216502 DE3216502A1 (de) 1982-05-03 1982-05-03 Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
DE3216510 1982-05-03
DE3216502 1982-05-03

Publications (3)

Publication Number Publication Date
EP0093448A2 EP0093448A2 (fr) 1983-11-09
EP0093448A3 EP0093448A3 (en) 1984-12-19
EP0093448B1 true EP0093448B1 (fr) 1986-10-15

Family

ID=25801526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83104318A Expired EP0093448B1 (fr) 1982-05-03 1983-05-02 Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée

Country Status (4)

Country Link
US (1) US4555256A (fr)
EP (1) EP0093448B1 (fr)
CA (1) CA1212038A (fr)
DE (1) DE3367023D1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529681A1 (de) * 1995-08-11 1997-02-13 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655809A (en) * 1986-01-10 1987-04-07 Air Products And Chemicals, Inc. Air separation process with single distillation column with segregated heat pump cycle
DE3738559A1 (de) * 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
US5074898A (en) * 1990-04-03 1991-12-24 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation method for the production of oxygen and medium pressure nitrogen
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
JP2909678B2 (ja) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 圧力下のガス状酸素の製造方法及び製造装置
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
DE4443190A1 (de) * 1994-12-05 1996-06-13 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
FR2776057B1 (fr) * 1998-03-11 2000-06-23 Air Liquide Procede et installation de separation d'air par distillation cryogenique
EP1031804B1 (fr) * 1999-02-26 2004-02-04 Linde AG Procédé de séparation des gaz de l'air avec recyclage d'azote
DE19908451A1 (de) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh Zweisäulensystem zur Tieftemperaturzerlegung von Luft
JP3715497B2 (ja) * 2000-02-23 2005-11-09 株式会社神戸製鋼所 酸素の製造方法
FR2880418B1 (fr) * 2004-12-30 2007-04-27 Air Liquide Ensemble d'echangeurs de chaleur, appareil de distillation cryogenique incorporant un tel ensemble et procede de distillation cryogenique utilisant un tel ensemble
DE102005010051A1 (de) * 2005-03-04 2006-09-07 Linde Ag Verfahren zum Verdampfen eines Kohlenwasserstoff-reichen Stromes
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
AU2011274240A1 (en) * 2010-06-30 2013-01-17 D. Wilson Investments Pty Ltd Novel heat exchange processes
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
US11578916B2 (en) * 2017-12-29 2023-02-14 L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude Method and device for producing air product based on cryogenic rectification
US11054182B2 (en) 2018-05-31 2021-07-06 Air Products And Chemicals, Inc. Process and apparatus for separating air using a split heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557453A1 (de) * 1975-12-19 1977-06-30 Linde Ag Verfahren zur zerlegung von luft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1112997B (de) * 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1551621A1 (de) * 1967-07-13 1972-02-24 Sp Kt Bjuro Kislorodnogo Kompr Verfahren zur Gewinnung von Sauerstoff aus der Luft
GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557453A1 (de) * 1975-12-19 1977-06-30 Linde Ag Verfahren zur zerlegung von luft

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529681A1 (de) * 1995-08-11 1997-02-13 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable

Also Published As

Publication number Publication date
DE3367023D1 (en) 1986-11-20
EP0093448A3 (en) 1984-12-19
US4555256A (en) 1985-11-26
CA1212038A (fr) 1986-09-30
EP0093448A2 (fr) 1983-11-09

Similar Documents

Publication Publication Date Title
EP0093448B1 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
DE3146335C2 (de) Verfahren zum Erzeugen von Sauerstoff-Produktgas
EP0384483B1 (fr) Procédé et dispositif de rectification d'air
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP0316768B1 (fr) Procédé de séparation d'air par rectification à basse température
DE69205424T2 (de) Verfahren und Vorrichtung für die Luftzerlegung durch Rektifikation.
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1150082A1 (fr) Procédé et dispositif d'échange de chaleur
EP2313724A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE69209835T2 (de) Einsäulenluftzerlegungszyklus und dessen Integration in Gasturbinen
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE3216510A1 (de) Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
EP0795727A1 (fr) Procédé et dispositif pour la liquéfaction d'un gaz à bas point d'ébullition
DE3834793A1 (de) Verfahren zur gewinnung von rohargon
DE1159971B (de) Verfahren zur Gewinnung von gasfoermigem und unter Druck stehendem Sauerstoff durch Zerlegung von Luft
DE3035844A1 (de) Verfahren und vorrichtung zur gewinnung von sauerstoff mittlerer reinheit
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE3216502A1 (de) Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote
DE10147047A1 (de) Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts
EP0559117B1 (fr) Procédé et dispositif pour la séparation d'un mélange de gaz
DE2518557A1 (de) Verfahren zur luftzerlegung durch tieftemperaturrektifikation nach dem niederdruckverfahren mit fluessigkeitserzeugung
DE2548222C2 (de) Verfahren und Vorrichtung zur Luftzerlegung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19841030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 22991

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3367023

Country of ref document: DE

Date of ref document: 19861120

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910628

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 83104318.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980511

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980515

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980603

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990502

EUG Se: european patent has lapsed

Ref document number: 83104318.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST