EP0316768B1 - Procédé de séparation d'air par rectification à basse température - Google Patents

Procédé de séparation d'air par rectification à basse température Download PDF

Info

Publication number
EP0316768B1
EP0316768B1 EP88118753A EP88118753A EP0316768B1 EP 0316768 B1 EP0316768 B1 EP 0316768B1 EP 88118753 A EP88118753 A EP 88118753A EP 88118753 A EP88118753 A EP 88118753A EP 0316768 B1 EP0316768 B1 EP 0316768B1
Authority
EP
European Patent Office
Prior art keywords
stream
sub
expansion
stage
streams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP88118753A
Other languages
German (de)
English (en)
Other versions
EP0316768A2 (fr
EP0316768A3 (en
Inventor
Werner Dipl.-Ing. Skolaude
Gunnar Dr. Eggendorfer
Horst Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6340422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0316768(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0316768A2 publication Critical patent/EP0316768A2/fr
Publication of EP0316768A3 publication Critical patent/EP0316768A3/de
Application granted granted Critical
Publication of EP0316768B1 publication Critical patent/EP0316768B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the invention relates to a method for air separation by low-temperature rectification, in which the stream of gases involved in the air separation is passed through a cooling stage in which process cooling is produced by compression and expansion of at least part of this gas stream, the gas stream being compressed in the cooling stage and in two Partial streams is divided, which are at least partially cooled and relieved of work, the relaxation of the first partial stream being carried out at a higher temperature and that of the second partial stream being carried out at a lower temperature, in which at least one partial stream is further compressed before the expansion using the work obtained in the expansion is, and in which at least one of the two substreams is at least partially fed to the rectification.
  • This method has the disadvantage that the proportion of the mechanical energy recovered during the expansion processes is unsatisfactory when using the expansion turbines which are usually used.
  • the object of the present invention is to develop a method with a cooling stage mentioned at the outset which works particularly economically in terms of energy.
  • This object is achieved in that the post-compression of the second partial stream is carried out in two stages and that the work obtained in the expansion of the two partial streams is used in the two stages for post-compression of the second partial stream.
  • the procedure according to the invention causes a high pressure difference between the point of branching in the two partial flows and the entry of the second partial flow into the expansion process.
  • the pressure and thus also the enthalpy difference is high on the expansion device operating at a lower temperature, and a high proportion of the mechanical energy of the highly compressed partial flow can be obtained as work during the expansion and fed back into the process.
  • the pressure at the branching point can be chosen to be low and energy saved from outside for compression can thus be saved.
  • the work which is obtained in the expansion of the first partial flow is used in the second stage of the post-compression of the second partial flow.
  • the first partial stream is expanded to perform the work without post-compression.
  • the pressure difference between the inlet and outlet of the expansion device operating at a higher temperature is therefore relatively small, which is why the expansion process can be carried out with high efficiency. This means that a high proportion of the energy released during relaxation can be obtained as work and returned to the process.
  • both partial flows are fed completely to the rectification.
  • the outlay on equipment can thus be kept lower than in the version with a circuit.
  • At least some of the partial flows are cooled by heat exchange with an external coolant.
  • cold can additionally be introduced into the process from the outside in a particularly economical manner.
  • the heat exchange with the external coolant is carried out to a temperature which is greater than or equal to the temperature at which the expansion of the first partial stream begins.
  • This cold can be supplied particularly cheaply if the temperature difference between the inlet and outlet is particularly high during heat exchange with the external coolant.
  • the maximum of this difference is essentially that Difference between ambient temperature and inlet temperature in the relaxation device operating at a higher temperature. This temperature is particularly low if, according to an inventive feature mentioned above, the pressure difference when the expansion of the first partial flow is chosen to be low.
  • pre-compressed and pre-cleaned air is used as the working gas for the cooling stage.
  • This version proves to be particularly favorable if a small part of the products, based on the broken down air volume, is to be obtained in the liquid state.
  • nitrogen-rich gas which is removed from the rectification is used as the working gas for the cooling stage. If a larger proportion of the products is removed in the liquid state, this version of the method is particularly useful.
  • air to be broken down is fed via a line 1 to a compressor 2, in which it is compressed to a pressure of 6 to 7 bar, preferably 6.4 bar.
  • the compressed air is passed via an aftercooler 3 to a molecular sieve adsorber 4 in order to separate water vapor and carbon dioxide therefrom.
  • the air stream is then passed into the cooling stage, where it is compressed to a pressure of 28 to 32 bar in a compressor 5 and cooled in an aftercooler 6.
  • the air flow then separates into a first partial flow 7 and a second partial flow 8.
  • the second partial flow is compressed in two post-compression stages 9, 11 to 45 to 60 bar.
  • the heat of compression is dissipated in the associated aftercoolers 10, 12.
  • the first partial flow is fed directly to a heat exchanger 13 and there cooled in countercurrent to decomposition products to 230 to 280 K and expanded to 5.4 to 6.5 bar in an expansion device 14.
  • the work obtained in this way is delivered to the post-compression stage 11.
  • the first partial flow has a temperature of 150 to 170 K and is returned to the compressor 5 via the heat exchanger 13.
  • a side stream 16 is branched off from the second partial stream behind the aftercooler 12 and is cooled to the temperature of the first partial stream upstream of the expansion device 14 by means of heat exchange with an external coolant, preferably halogenated hydrocarbons, and in the heat exchanger 13 is combined again with the remaining second partial stream.
  • the heat exchange with the external coolant is carried out here specifically in two stages 17. This cooling could just as well be carried out in one stage.
  • a side stream of the partial stream 7 or a side stream of each of the two partial streams 7, 8 could be cooled by means of heat exchange with the external coolant.
  • a further partial flow 18 is branched off from the second partial flow and expanded in the expansion device 19 to 5.6 to 6.6 bar.
  • the work obtained in this way is handed over to post-compression stage 9.
  • the relaxed side stream 18 is then partly fed to the first stage 21 of a two-stage rectification column 20, and partly returned to the compressor 5 via the heat exchangers 15 and 13.
  • the remaining second partial flow is throttled after further cooling in the heat exchanger 15 and fed to the first stage 21 of the rectification column.
  • the first stage 21 of the rectification is operated at a pressure of 5.6 to 6.6 bar. It is connected to a second stage 22, which operates at a pressure of 1.5 to 1.7 bar, via a condenser-evaporator 23 in a heat-exchanging manner.
  • Oxygen-rich liquid 24 is removed from the bottom of the first stage, and nitrogen-rich liquid 25 is removed from the top of the first stage.
  • the two streams 24, 25 are subcooled in heat exchange with gaseous nitrogen 27 from the top of the second stage and with residual gas 33 in a heat exchanger 26, then relaxed throttle and introduced into the second stage 22 according to their composition.
  • the nitrogen stream 27 and the residual gas stream 33 are heated in the heat exchanger 26.
  • oxygen in the gaseous state is removed via a line 28.
  • the two product streams 27 and 28 are then passed together with the residual gas stream 33 through the heat exchangers 15 and 13 and warmed to almost ambient temperature.
  • FIG. 2 A further example is shown in FIG. 2 in which the cooling stage is operated with nitrogen-rich gas from the rectification column as the working gas. This method is very similar to that shown in Figure 1. The different process parts are mainly described below.
  • the pre-compressed and pre-cleaned air is not fed to the cooling stage, but is cooled to about saturation temperature in the heat exchange 29 with gaseous decomposition products and a compensating stream 34 and is fed to the first stage 21 of the rectification column 20.
  • nitrogen is withdrawn via line 30 and fed as working gas to the cooling stage, which is constructed essentially like the cooling stage in FIG. 1.
  • the working gas Before entering the compressor 5, the working gas is heated. One part is passed through the heat exchangers 15, 13, another part through the equalizing flow 34 through the heat exchanger 29. A part of the equalizing flow 34 is branched off in the heat exchanger 29 and led to the heat exchanger 13 via the line 35. After heating, all branch flows of the working gas are combined again and fed to the compression in compressor 5.
  • the entire second partial flow 8 is introduced into the heat exchanger 13 after the compression, without using an external coolant for the additional supply of cold. All versions with or without external coolant can optionally be used for both working gases.
  • the side stream 18 of the second partial stream is largely returned to the compressor 5 after the expansion.
  • Liquid oxygen 31 and liquid nitrogen 32 are taken as products from the first and second stages of the rectification column.

Claims (10)

1. Procédé de séparation de l'air en ses constituants par rectification à basse température, dans lequel un courant des gaz impliqués dans la séparation de l'air est amené dans une zone de réfrigération dans laquelle du froid opératoire est produit par compression et détente d'au moins une partie de ce courant de gaz, de sorte que, dans cette zone de réfrigération, le courant de gaz soit comprimé puis séparé en deux courants partiels qui sont, au moins en partie, refroidis et détendus en fournissant du travail, procédé dans lequel la détente du premier courant partiel est effectuée à une température plus élevée, celle du deuxième courant partiel est effectuée à une température moins élevée, au moins un courant partiel est en outre post-comprimé avant la détente grâce au travail produit lors de la détente et au moins un des deux courants partiels est envoyé, au moins en partie, à la rectification, et caractérisé en ce que la post-compression du deuxième courant partiel (8) est effectuée dans deux étages (9, 11) et en ce que le travail produit lors de la détente (14, 19) des deux courants partiels (7, 8) est utilisé dans les deux étages (9, 10) de post-compression du deuxième courant partiel (8).
2. Procédé selon la revendication 1, caractérisé en ce que le travail produit lors de la détente (19) du deuxième courant partiel est utilisé dans le premier étage (9) pour réaliser la post-compression du deuxième courant partiel.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le travail produit lors de la détente (14) du premier courant partiel est utilisé dans le deuxième étage (11) pour réaliser la post-compression du deuxième courant partiel.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le premier courant partiel (7) est détendu sans post-compression et en fournissant du travail.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'une partie des courants partiels est ramenée dans le courant de gaz à comprimer après la détente.
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les deux courants partiels sont intégralement amenés à la rectification.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que au moins une partie des courants partiels est refroidie par échange de chaleur avec un agent réfrigérant externe (17).
8. Procédé selon la revendication 7, caractérisé en ce que l'échange de chaleur avec un agent réfrigérant externe (17) est effectué à une température supérieure ou égale à la température à laquelle commence la détente (14) du premier courant partiel.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'air précomprimé et préalablement épuré est utilisé comme gaz de travail pour la zone de réfrigération.
10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que du gaz riche en azote, qui est prélevé sur la colonne de rectification, est utilisé comme gaz de travail pour l'étage de refrigération.
EP88118753A 1987-11-13 1988-11-10 Procédé de séparation d'air par rectification à basse température Revoked EP0316768B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873738559 DE3738559A1 (de) 1987-11-13 1987-11-13 Verfahren zur luftzerlegung durch tieftemperaturrektifikation
DE3738559 1987-11-13

Publications (3)

Publication Number Publication Date
EP0316768A2 EP0316768A2 (fr) 1989-05-24
EP0316768A3 EP0316768A3 (en) 1989-08-09
EP0316768B1 true EP0316768B1 (fr) 1991-06-19

Family

ID=6340422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88118753A Revoked EP0316768B1 (fr) 1987-11-13 1988-11-10 Procédé de séparation d'air par rectification à basse température

Country Status (4)

Country Link
US (1) US4883518A (fr)
EP (1) EP0316768B1 (fr)
JP (1) JPH01239376A (fr)
DE (2) DE3738559A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383994A3 (fr) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Procédé et dispositif de rectification d'air
FR2652409A1 (fr) * 1989-09-25 1991-03-29 Air Liquide Procede de production frigorifique, cycle frigorifique correspondant et leur application a la distillation d'air.
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
FR2685460B1 (fr) * 1991-12-20 1997-01-31 Maurice Grenier Procede et installation de production d'oxygene gazeux sous pression par distillation d'air
DE4109945A1 (de) * 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
GB9124242D0 (en) * 1991-11-14 1992-01-08 Boc Group Plc Air separation
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
FR2692664A1 (fr) * 1992-06-23 1993-12-24 Lair Liquide Procédé et installation de production d'oxygène gazeux sous pression.
FR2697325B1 (fr) * 1992-10-27 1994-12-23 Air Liquide Procédé et installation de production d'azote et d'oxygène.
DE4301100C2 (de) * 1993-01-18 2002-06-20 Alstom Schweiz Ag Baden Verfahren zum Betrieb eines Kombikraftwerkes mit Kohle- oder Oelvergasung
FR2703140B1 (fr) * 1993-03-23 1995-05-19 Air Liquide Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation de l'air.
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2711778B1 (fr) * 1993-10-26 1995-12-08 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression.
CA2142317A1 (fr) * 1994-02-24 1995-08-25 Anton Moll Methode et appareil pour la recuperation d'argon pur
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
FR2913759B1 (fr) * 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
US20090320520A1 (en) * 2008-06-30 2009-12-31 David Ross Parsnick Nitrogen liquefier retrofit for an air separation plant
DE102009048456A1 (de) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2312247A1 (fr) 2009-10-09 2011-04-20 Linde AG Procédé et dispositif de production d'azote liquide par décomposition de l'air à basse température
CN103322770B (zh) * 2013-07-01 2015-05-13 首钢京唐钢铁联合有限责任公司 一种能耗分摊的计算方法
DE102013019504A1 (de) 2013-11-21 2015-05-21 Linde Aktiengesellschaft Verfahren zur Gewinnung eines flüssigen Stickstoffprodukts durch Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP2963367A1 (fr) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
US20160245585A1 (en) 2015-02-24 2016-08-25 Henry E. Howard System and method for integrated air separation and liquefaction
CN106621684B (zh) * 2016-12-13 2019-09-27 大连欧科膜技术工程有限公司 一种聚烯烃尾气回收方法
EP3339277A1 (fr) * 2016-12-22 2018-06-27 Linde Aktiengesellschaft Procédé et installation de production d'une oléfine
EP3385248A1 (fr) 2017-04-07 2018-10-10 Linde Aktiengesellschaft Procédé et installation de fabrication d'un ou de plusieurs oléfines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
DE3367023D1 (en) * 1982-05-03 1986-11-20 Linde Ag Process and apparatus for obtaining gaseous oxygen at elevated pressure
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
US4705548A (en) * 1986-04-25 1987-11-10 Air Products And Chemicals, Inc. Liquid products using an air and a nitrogen recycle liquefier

Also Published As

Publication number Publication date
US4883518A (en) 1989-11-28
DE3863345D1 (de) 1991-07-25
JPH01239376A (ja) 1989-09-25
EP0316768A2 (fr) 1989-05-24
DE3738559A1 (de) 1989-05-24
EP0316768A3 (en) 1989-08-09

Similar Documents

Publication Publication Date Title
EP0316768B1 (fr) Procédé de séparation d'air par rectification à basse température
EP0384483B1 (fr) Procédé et dispositif de rectification d'air
EP0093448B1 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP0505812B1 (fr) Procédé de séparation d'air à basse température
EP0130284B1 (fr) Procédé pour la production de monoxyde de carbonepur
EP0299364A2 (fr) Procédé et dispositif de séparation de l'air par rectification
EP1031804B1 (fr) Procédé de séparation des gaz de l'air avec recyclage d'azote
DE3817244A1 (de) Verfahren zur tieftemperaturzerlegung von luft
DE19908451A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
DE2646690A1 (de) Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
DE69814519T2 (de) Kryogenisches Verfahren mit Doppelsäure und externem Verdämpfer-Kondensator für eine Sauerstoff- und Stickstoffmischung
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE3528374A1 (de) Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
DE2854508A1 (de) Verfahren zur tieftemperaturzerlegung eines gasgemisches
DE3834793A1 (de) Verfahren zur gewinnung von rohargon
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
DE3216510A1 (de) Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
EP0795727A1 (fr) Procédé et dispositif pour la liquéfaction d'un gaz à bas point d'ébullition
DE3643359C2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch zweistufige Rektifikation
DE3035844A1 (de) Verfahren und vorrichtung zur gewinnung von sauerstoff mittlerer reinheit
DE3814187C2 (de) Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote
EP0559117B1 (fr) Procédé et dispositif pour la séparation d'un mélange de gaz
DE2307004A1 (de) Verfahren und vorrichtung zur gewinnung von fluessigem stickstoff
DE2518557A1 (de) Verfahren zur luftzerlegung durch tieftemperaturrektifikation nach dem niederdruckverfahren mit fluessigkeitserzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19890711

17Q First examination report despatched

Effective date: 19900321

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3863345

Country of ref document: DE

Date of ref document: 19910725

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911218

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE BOC GROUP

Effective date: 19920317

NLR1 Nl: opposition has been filed with the epo

Opponent name: THE BOC GROUP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921109

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 5

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19930408

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 930408

NLR2 Nl: decision of opposition