EP0768503B1 - Procédé de séparation d'air à triple colonne - Google Patents

Procédé de séparation d'air à triple colonne Download PDF

Info

Publication number
EP0768503B1
EP0768503B1 EP96116124A EP96116124A EP0768503B1 EP 0768503 B1 EP0768503 B1 EP 0768503B1 EP 96116124 A EP96116124 A EP 96116124A EP 96116124 A EP96116124 A EP 96116124A EP 0768503 B1 EP0768503 B1 EP 0768503B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pressure column
column
medium
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96116124A
Other languages
German (de)
English (en)
Other versions
EP0768503A2 (fr
EP0768503A3 (fr
Inventor
Jürgen Dipl.-Phys. Voit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0768503A2 publication Critical patent/EP0768503A2/fr
Publication of EP0768503A3 publication Critical patent/EP0768503A3/fr
Application granted granted Critical
Publication of EP0768503B1 publication Critical patent/EP0768503B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/90Triple column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the invention relates to a method for the low-temperature separation of air in one Triple column system consisting of a high pressure column, a medium pressure column and a low pressure column, with the steps listed in claim 1 (a) to (i).
  • a triple column system has at least three columns for nitrogen-oxygen separation on.
  • the term includes systems and processes that serve as additional pillars Nitrogen-oxygen separation and / or for the extraction of others Have air components such as noble gases, for example a crude argon column.
  • Triple column process of the type mentioned above is known from DE-A-2903089, The entire feed air is compressed to a first pressure, which is above the Medium pressure column pressure, and some without further pressure changing Measures fed into the medium pressure column, to another part on one second pressure further compressed and introduced into the high pressure column. The rest of compressed service air is relieved of work and into the low pressure column introduced. However, this process does not work optimally in terms of energy.
  • the invention is therefore based on the object of a method of the beginning specified type with particularly high efficiency.
  • This object is achieved in that the first pressure is lower than that Operating pressure of the medium pressure column and that the second part of the feed air from the first pressure is compressed to a third pressure that is at least equal to that Operating pressure of the medium pressure column, but is lower than the second pressure.
  • the total amount of feed air is therefore only at a relatively low pressure compressed, which is lower than the pressure prevailing in the medium pressure column.
  • the in the first air section to be introduced must be in a further one Compressors are compressed correspondingly higher; the part of the feed air that anyway directly under the low pressure column working at lower pressure is fed in, but does not even need to the high pressure of the High pressure column to be brought.
  • the cooling needs of the System is relatively small, for example, because a small part of the products are liquid is obtained or it is a pure gas system, results in particularly low energy consumption.
  • relaxation is preferably between the first pressure and the Pressure of the medium pressure column.
  • the third part of the air should relax during work gained energy or a part thereof for the compression of the third air part be used.
  • the post-compressor is preferably used exclusively for this internally generated mechanical energy is driven so that it does not come from the outside energy consumed.
  • Post-compressor and expansion machine are for example mechanically coupled via a common shaft.
  • the high pressure column can be relatively low operated low pressure, which is preferably 4.8 bar or less. This results in a particularly low effort when compressing the feed air.
  • the low pressure column is preferably under the lowest possible pressure operated. This is determined by the fact that the top product of the low pressure column - if necessary after passing through one or more heat exchangers - under im substantial atmospheric pressure can be removed from the process; if this top product as regeneration gas in a cleaning device (e.g. one Molecular sieve system) is used, the pressure of the low pressure column must also enable their operation.
  • a cleaning device e.g. one Molecular sieve system
  • part of the first oxygen-enriched bottom fraction is introduced from the high pressure column into the medium pressure column. It becomes a part of the bottom product from the high pressure column, and thus one larger amount of nitrogen-enriched fraction at the top of the medium pressure column won, which is available as return liquid in the low pressure column. This further improves rectification in the low pressure column.
  • the bottom fraction from the high pressure column is preferably at an intermediate point introduced into the medium pressure column, that is at a point that has at least one practical or theoretical floor above the sump of the medium pressure column and in particular at least one practical or theoretical floor above the point where the second air part is fed into the medium pressure column.
  • the invention also relates to a device for the low temperature decomposition of Air according to claim 8.
  • Nitrogen will be produced if there is an additional one at the top of the low pressure column Ordinary pure nitrogen section is arranged.
  • Argon production is also possible if the low pressure column in a known manner (see for example EP-B-377117) an argon rectification is connected downstream. Likewise, other noble gases are generated in a known manner.
  • Feed air 1 is compressed in a main air compressor 2 to a first pressure.
  • the compressed feed air 3 is in a first partial flow 101, a second partial flow 201 and a third partial stream 301 divided.
  • the first partial flow to a second pressure and the second partial flow to one brought between the first and the second pressure third pressure.
  • there the first partial flow and the second partial flow are initially together (4) in Compressor 5 to the third pressure and then the first partial flow 101 alone further compressed in the compressor 102 to the second pressure.
  • you can the first and the second partial stream can also be compressed independently of one another.
  • the third partial stream, the Relaxation machine 305 or the post-compressor 302 fed will be branched downstream of one of the compressors 5 or 102.
  • the cooling capacity achieved with this can increase the pressure when relaxing increased and / or the amount of air blown directly into the low pressure column be reduced.
  • the first partial flow 103 under the second pressure and that under the third Second partial flow 201 under pressure is counteracted in a main heat exchanger 6
  • the high pressure column 7 is under operated at a pressure of 4.5 to 5.5 bar, preferably 4.6 to 4.8 bar
  • Medium pressure column 8 is under 2.5 to 3.5 bar, preferably 2.8 to 3.0 bar.
  • the first pressure (in line 3 behind the main air compressor 2) is significantly lower as the high pressure column pressure; the difference is at least 2.5 bar, preferably 3.0 to 3.2 bar.
  • the second pressure is slightly above that High pressure column pressure (for example about 0.1 bar above the pressure at the Feeding point in the high pressure column) to the pressure drop in the main heat exchanger 6 and equalize in lines 103 and 104.
  • the third pressure is analogous to this (downstream of the compressor 5) slightly above the pressure of the medium pressure column the introduction of the second partial flow 201, 202 into the medium pressure column 8 guarantee.
  • the third partial flow 301 is optionally in a post-compressor 302 on a fourth pressure, which is between the first pressure and the operating pressure the medium pressure column can be, for example, 1.5 to 2.5 bar higher than that first print is.
  • the fourth pressure is correspondingly higher means for example higher than the pressure of the medium pressure column or even higher than the pressure of the high pressure column; in this case it can be up to 8 bar or more
  • Via line 303 it goes to the main heat exchanger 6 and from it cold end from further (304) to the relaxation machine 305.
  • the work-performing relaxed air 306 is introduced into the low-pressure column 9 at medium height.
  • each compressor 2, 5, 102, 302 in indirect heat exchange cooled with cooling water, as by the aftercoolers shown in the drawing is indicated.
  • a first nitrogen-enriched precipitate Head fraction as head gas and a first oxygen-enriched fraction as Sump liquid is in a first condenser-evaporator 11 condensed and in part 12 in the high pressure column and in another part 13 - if necessary after subcooling in counterflow 14 - via line 15 in the Low pressure column 9 throttled (16), the operating pressure 1.1 to 1.5 bar, preferably 1.2 to 1.4 bar.
  • Part of the condensed nitrogen enriched Fraction 13 from the high pressure column can via the optional line 17 to the top of the Medium pressure column 8 are performed.
  • the bottom liquid of the high pressure column is over Line 18 also into the low pressure column 9 after optional subcooling (14) relaxed (19, 20).
  • the feed point is above that of the work-performing relaxed air 306.
  • the feed point is at least one practical or theoretical floor, preferably two to five theoretical plates above the feed of the second Air section 202.
  • a second nitrogen-enriched head fraction and won a second oxygen-enriched sump liquid In the medium pressure column 8, a second nitrogen-enriched head fraction and won a second oxygen-enriched sump liquid.
  • the head gas 21 will condensed in a second condenser-evaporator 22 and to a first part 23 in the medium pressure column and to a second part 24 - if necessary after Hypothermia in counterflow 14 - throttled into low-pressure column 9 (25).
  • the Bottom liquid of the medium pressure column is also optional via line 26 Hypothermia (14) in the evaporation space of the second condenser-evaporator 22 relaxed (27).
  • the vaporized stream 28 is introduced into the low pressure column 9 (29).
  • the feed point for example, at the same level as that of the Bottom liquid from the high pressure column or something above it.
  • the cleaning of the feed air is not shown in the drawing. You can by each of the known methods take place, for example in a switchable Heat exchanger (Revex) or in one or more molecular sieve systems. in the the latter case, it is possible to collectively use the entire feed air (line 3) Subject to cleaning, the three substreams 103, 201, 303 in separate systems treat or the first and second partial stream together through one arranged immediately downstream of the aftercooler of the compressor 5 Molecular sieve. In the event that different from the representation in the Drawing of the third partial flow behind one of the compressors 5 or 102 removed and is fed to the post-compressor 302, all three partial flows or at least the first and the third partial stream are cleaned together.
  • the mass transfer elements in the High pressure column and those formed in the medium pressure column by still bottoms in the low pressure column by orderly packing. Basically, however, at of the invention in each of the columns conventional still bottoms (disordered packing) and / or ordered packing. Also Combinations of different elements in one column are possible. Because of the low pressure drop, ordered packings in all columns, in particular in the low pressure column, preferred. These increase the energy-saving effect the invention further.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (11)

  1. Procédé de séparation d'air à basse température dans un système à triple colonne, qui se compose d'une colonne haute pression (7), d'une colonne pression moyenne (8) et d'une colonne basse pression (9), avec les étapes suivantes :
    (a) compression (2) de l'air de charge (1) à une première pression
    (b) introduction d'une première partie (101, 103, 104) de l'air de charge comprimé (3) dans la colonne haute pression (7), la première partie de l'air de charge étant comprimée de la première pression à une deuxième pression (5, 102), qui est au moins égale à la pression de fonctionnement de la colonne haute pression (7)
    (c) introduction d'une deuxième partie (201, 202) de l'air de charge comprimé (3) dans la colonne pression moyenne (8)
    (d) détente fournissant du travail (305) d'une troisième partie (301, 303, 304) de l'air de charge comprimé (3)
    (e) introduction de l'air de charge détendu en fournissant du travail (306) dans la colonne basse pression (9)
    (f) introduction (19) d'au moins une partie d'une première fraction de puits (18), provenant de la colonne haute pression (7), enrichie en oxygène, dans la colonne basse pression (9)
    (g) condensation (11) d'une première fraction de tête (10), enrichie en azote, provenant de la colonne haute pression (7) , et introduction du condensat obtenu de ce fait (13, 15), en tant que reflux dans la colonne basse pression (9)
    (h) introduction (28) d'au moins une partie d'une deuxième fraction de puits (26), provenant de la colonne pression moyenne (8), enrichie en oxygène, dans la colonne basse pression (9)
    (i) condensation (22) d'une deuxième fraction de tête (21), enrichie en azote, provenant de la colonne pression moyenne (8) et introduction (25) du condensat ainsi obtenu (24) en tant que reflux dans la colonne basse pression (9)
    caractérisé en ce que
    (j) la première pression est inférieure à la pression de fonctionnement de la colonne pression moyenne (8) et
    (k) en ce que la deuxième partie de l'air de charge est comprimée (5) de la première pression à une troisième pression, qui est au moins égale à la pression de fonctionnement de la colonne pression moyenne (8), mais qui est inférieure à la deuxième pression.
  2. Procédé selon la revendication 1, caractérisé en ce que la troisième partie (301) de l'air de charge est comprimée ultérieurement (302) en amont de la détente fournissant du travail (305).
  3. Procédé selon la revendication 2, caractérisé en ce que l'on utilise, en vue de la post-compression (302) de la troisième partie d'air (301), l'énergie obtenue lors de la détente fournissant du travail (305) de la troisième partie d'air (304).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la pression de fonctionnement à la tête de la colonne haute pression est environ de 4,8 bars ou moins.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la colonne basse pression (9) fonctionne à une pression tout juste supérieure à la pression atmosphérique, qui suffit pour éliminer du procédé la fraction de tête (32, 33) de la colonne basse pression (9) - le cas échéant, après passage à travers un ou plusieurs échangeurs thermiques (14, 6) - à une pression essentiellement atmosphérique, et/ou pour l'utiliser en tant que gaz de régénération dans une installation de nettoyage/purification.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'une partie (37) de la première fraction de puits (18), enrichie en oxygène, provenant de la colonne haute pression (7), est introduite dans la colonne pression moyenne (8).
  7. Procédé selon la revendication 6, caractérisé en ce que la partie (37) de la première fraction de puits, enrichie en oxygène, provenant de la colonne haute pression, est introduite dans la colonne pression moyenne (8) en un point intermédiaire.
  8. Dispositif de séparation d'air à basse température dans un système à triple colonne, qui présente une colonne haute pression (7), une colonne pression moyenne (8), et une colonne basse pression (9), avec
    (a) un compresseur d'air principal (2) en vue de la compression de l'air de charge (1) à une première pression qui est inférieure à la pression de fonctionnement de la colonne moyenne,
    (b) avec un premier conduit de courant partiel (101, 103, 104), qui est relié à la sortie du compresseur d'air principal (2) et à la colonne haute pression (7), le premier conduit de courant partiel conduisant à travers des moyens (5, 102) en vue de la compression de l'air de charge de la première pression à une deuxième pression, qui est au moins égale à la pression de fonctionnement de la colonne haute pression (7),
    (c) avec un deuxième conduit de courant partiel (201, 202), qui est relié à la sortie du compresseur d'air principal (2) et à la colonne pression moyenne (8),
    (d) avec un troisième conduit de courant partiel (301, 303, 304, 306), qui est relié à la sortie du compresseur d'air principal (2) et qui conduit à travers une machine de détente (305) vers la colonne basse pression (9),
    (e) avec des moyens en vue de l'introduction (13, 15, 16 ; 24, 25) de liquide de la tête de la colonne haute pression (7) et de la tête de la colonne pression moyenne (8) dans la colonne basse pression (9) ainsi qu'en vue de l'introduction (18, 19, 20 ; 26, 27, 28, 29) de liquide de puits provenant de la colonne haute pression (7) et de la colonne pression moyenne (8) dans la colonne basse pression (9), et
    (f) avec des moyens (5) en vue de la compression de l'air de charge (4) de la première pression à une troisième pression, qui est au moins égale à la pression de fonctionnement de la colonne pression moyenne (8), mais qui est inférieure à la deuxième pression, dont l'entrée est reliée à la sortie du compresseur d'air principal (2) et dont la sortie est reliée au deuxième conduit de courant partiel (201, 202).
  9. Dispositif selon la revendication 10,
    caractérisé par un post-compresseur (302), qui est disposé dans le troisième conduit de courant partiel (301, 303) en amont de la machine de détente (305).
  10. Dispositif selon la revendication 9,
    caractérisé par des moyens en vue du transfert de l'énergie mécanique de la machine de détente (305) vers le post-compresseur (302).
  11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé par des moyens (37) en vue de l'introduction du liquide de puits provenant de la colonne haute pression (7) dans la colonne pression moyenne (8).
EP96116124A 1995-10-11 1996-10-09 Procédé de séparation d'air à triple colonne Expired - Lifetime EP0768503B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19537913 1995-10-11
DE19537913A DE19537913A1 (de) 1995-10-11 1995-10-11 Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft

Publications (3)

Publication Number Publication Date
EP0768503A2 EP0768503A2 (fr) 1997-04-16
EP0768503A3 EP0768503A3 (fr) 1998-02-04
EP0768503B1 true EP0768503B1 (fr) 2001-07-25

Family

ID=7774605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96116124A Expired - Lifetime EP0768503B1 (fr) 1995-10-11 1996-10-09 Procédé de séparation d'air à triple colonne

Country Status (3)

Country Link
US (1) US5730004A (fr)
EP (1) EP0768503B1 (fr)
DE (2) DE19537913A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682764A (en) * 1996-10-25 1997-11-04 Air Products And Chemicals, Inc. Three column cryogenic cycle for the production of impure oxygen and pure nitrogen
US6205815B1 (en) 1997-04-11 2001-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plant for separation of a gas mixture by distillation
FR2774752B1 (fr) * 1998-02-06 2000-06-16 Air Liquide Installation de distillation d'air et boite froide correspondante
FR2774753B1 (fr) * 1998-02-06 2000-04-28 Air Liquide Installation de distillation d'air comprenant plusieurs unites de distillation cryogenique de meme nature
DE19933558C5 (de) * 1999-07-16 2010-04-15 Linde Ag Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE10103968A1 (de) * 2001-01-30 2002-08-01 Linde Ag Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
DE10113791A1 (de) * 2001-03-21 2002-10-17 Linde Ag Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
US6397631B1 (en) 2001-06-12 2002-06-04 Air Products And Chemicals, Inc. Air separation process
JP5425100B2 (ja) * 2008-01-28 2014-02-26 リンデ アクチエンゲゼルシャフト 低温空気分離方法及び装置
FR2946735B1 (fr) * 2009-06-12 2012-07-13 Air Liquide Appareil et procede de separation d'air par distillation cryogenique.
FR2953915B1 (fr) * 2009-12-11 2011-12-02 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US8978413B2 (en) * 2010-06-09 2015-03-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Rare gases recovery process for triple column oxygen plant

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854508C2 (de) * 1978-12-16 1981-12-03 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches
DE2903089A1 (de) * 1979-01-26 1980-07-31 Linde Ag Verfahren zur gewinnung von sauerstoff aus luft
DE3817244A1 (de) * 1988-05-20 1989-11-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
DE3840506A1 (de) * 1988-12-01 1990-06-07 Linde Ag Verfahren und vorrichtung zur luftzerlegung
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers
US5233838A (en) * 1992-06-01 1993-08-10 Praxair Technology, Inc. Auxiliary column cryogenic rectification system
GB9213776D0 (en) * 1992-06-29 1992-08-12 Boc Group Plc Air separation
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
GB9325648D0 (en) * 1993-12-15 1994-02-16 Boc Group Plc Air separation
US5386692A (en) * 1994-02-08 1995-02-07 Praxair Technology, Inc. Cryogenic rectification system with hybrid product boiler
GB9414939D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
GB9414938D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft

Also Published As

Publication number Publication date
DE19537913A1 (de) 1997-04-17
EP0768503A2 (fr) 1997-04-16
US5730004A (en) 1998-03-24
EP0768503A3 (fr) 1998-02-04
DE59607348D1 (de) 2001-08-30

Similar Documents

Publication Publication Date Title
EP1139046B1 (fr) Procédé et installation de production d'oxygène sous haute pression par séparation cryogénique de l'air
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1243882B1 (fr) Production d'argon dans un système de séparation d'air à triple pression et une colonne d'argon
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
EP1031804B1 (fr) Procédé de séparation des gaz de l'air avec recyclage d'azote
EP0093448A2 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
DE19908451A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP0948730A1 (fr) Procede et dispositif de production d'azote comprime
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
EP2938952A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE60015849T2 (de) Tieftemperaturdestilationsanlage zur Luftzerlegung
EP1750074A1 (fr) Procédé et dispositif pour la séparation cryogénique d'air
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote
DE19725821A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1050728B1 (fr) Procedé et installation de séparation des gaz de l'air à une seule colonne
DE102010056569A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
EP3255366A1 (fr) Procédé et dispositif de production d'un produit gazeux à base d'oxygène sous pression
DE19543395A1 (de) Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19980706

17Q First examination report despatched

Effective date: 20000426

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59607348

Country of ref document: DE

Date of ref document: 20010830

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011012

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021009

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021011

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051009