EP0505812B1 - Procédé de séparation d'air à basse température - Google Patents

Procédé de séparation d'air à basse température Download PDF

Info

Publication number
EP0505812B1
EP0505812B1 EP92104008A EP92104008A EP0505812B1 EP 0505812 B1 EP0505812 B1 EP 0505812B1 EP 92104008 A EP92104008 A EP 92104008A EP 92104008 A EP92104008 A EP 92104008A EP 0505812 B1 EP0505812 B1 EP 0505812B1
Authority
EP
European Patent Office
Prior art keywords
stream
sub
stage
pressure
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92104008A
Other languages
German (de)
English (en)
Other versions
EP0505812A1 (fr
Inventor
Wilhelm Dipl.-Ing. Rohde (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0505812A1 publication Critical patent/EP0505812A1/fr
Application granted granted Critical
Publication of EP0505812B1 publication Critical patent/EP0505812B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the invention relates to a process for the low-temperature extraction of air, in which feed air is compressed, cleaned, cooled and divided into several partial streams into the pressure stage and into the low-pressure stage of a two-stage rectification device, the feed air being brought to approximately the pressure stage pressure in a first compressor stage Cleaning stage is cleaned by adsorption and then divided into a first and a second partial stream, the first partial stream is fed to the pressure stage and the second partial stream is expanded while performing work and is fed to the low-pressure stage, the work obtained in the expansion of the second partial stream to compress a process stream, in particular air is used.
  • DE-A-3643359 shows such a method, in which both partial flows are fed downstream of the cleaning stage to a main heat exchanger, the warm end of which has approximately ambient temperature.
  • the second partial flow is cooled to a lower temperature in the main heat exchanger before it is relieved of pressure.
  • the work gained during the expansion is used exclusively to compress the second partial flow.
  • One of the relevant methods of GB-A-1520103 is to bring the total air upstream of the cleaning stage from ambient temperature into indirect heat exchange with the total air downstream of the cleaning stage .
  • the invention is therefore based on the object of specifying a method, which has a high efficiency and in particular a more cost effective air purification.
  • This object is achieved in that the second partial stream is heated to above ambient temperature in indirect heat exchange against compressed feed air before the work-relieving expansion and in that the process stream, for the compression of which work obtained in the expansion of the second partial stream is used, is not equal to the second partial stream .
  • the process according to the invention makes it possible to treat the entire feed air in a single cleaning stage, namely under pressure stage pressure.
  • the investment costs and the high operating costs for an additional low-pressure cleaning stage are eliminated.
  • the excess compression energy that is put into the second partial flow can be recovered in a turbine partly as mechanical work and partly converted into cold.
  • the work is usually given completely and directly to a compressor by mechanical coupling, but additionally or alternatively, a generator can also be driven.
  • a generator can also be driven.
  • the second partial flow is previously warmed to above ambient temperature . In this way, heat can be extracted from compressed compressed air cheaply.
  • a product or an intermediate product flow can flow through the compressor driven by the turbine. In general, it is most convenient to use the work gained from work relaxation to compress feed air.
  • cooling can be generated in the process by branching off a third partial stream downstream of the adsorption, post-compressing in a second compressor stage, then cooling, relieving work and feeding it into the low-pressure stage, with work obtained during the work-relieving expansion of the third partial stream to post-compress the third Partial flow is used in the second compressor stage. In this case, pressure that is not required is also used to generate process cooling.
  • the invention provides two variants for the transfer of work and cold:
  • the feed air must be pre-cooled anyway. It generally leaves a cooler operated with cooling water of approximately 25 ° C. and a temperature of approximately 35 ° C. and must be brought to approximately 10 ° C. to 15 ° C. for the adsorption in the cleaning stage. This is generally accomplished by an external refrigeration system or by cold cooling water taken from an evaporative cooler operated with dry nitrogen. This pre-cooling can now be at least partially carried out by the cleaned second partial flow, so that the costs for the refrigeration system are reduced or the nitrogen is available for other tasks.
  • work gained in the work-relieving expansion of the second partial flow is used in a third compressor stage for post-compression of the third partial flow.
  • This third compressor stage is preferably connected upstream of the second compressor stage and serves to increase the pressure difference during the expansion of the third partial flow. It is also expedient if, in addition or as an alternative, a fourth partial flow is branched off downstream of the cleaning stage, subsequently compressed in a fourth compressor stage, then cooled, decompressed and fed into the pressure stage, with work obtained in the work-relieving relaxation of the second partial flow to recompress the fourth partial flow in the fourth compressor stage is used.
  • the relief of the fourth partial flow is generally brought about by a throttle valve.
  • third and the fourth partial flow are post-compressed in a common third compressor stage.
  • the third and fourth compressor stages are implemented as a single machine relatively inexpensively.
  • a second type of transfer of the heat to the second partial stream is that the heating of the second partial stream prior to its expansion by indirect heat exchange with the third and / or fourth partial stream after the compression in the third or fourth compressor stage is carried out.
  • This measure makes it possible to achieve a particularly favorable adaptation of the flows to the inlet temperature of the main heat exchanger by cooling the partial flow or streams that are subsequently compressed.
  • the cold available before the second partial flow enters the expansion turbine is used particularly efficiently at this point.
  • Post-compression of the fourth partial flow above the pressure column pressure is particularly advantageous if oxygen is to be obtained under increased pressure in the process.
  • liquid oxygen is led out of the low-pressure stage, brought to pressure and evaporated in indirect heat exchange with the post-compressed fourth partial flow.
  • the part of the air available under a higher pressure column pressure is used here for an energetically favorable production of pressurized oxygen.
  • the oxygen is pressurized in liquid form (either by a pump or by utilizing a hydrostatic potential) and then evaporated under the increased pressure.
  • the high-pressure air condenses in counterflow to the evaporating oxygen and emits latent heat.
  • the indirect heat exchange is preferably carried out in the main heat exchanger block through which the other feed and product flows also flow.
  • the invention also relates to a device for the low-temperature extraction of air according to claim 11 .
  • air separation plants more than 100,000 Nm3 / h, preferably more than 200,000 Nm3 / h, most preferably between 200,000 and 400,000 Nm3 / h separation air
  • the advantages of the invention are particularly evident.
  • Use in the context of GUD (combined cycle) plants or plants for steel production (eg COREX process) is also advantageous.
  • FIGS. 1 and 2 show schematically in FIGS. 1 and 2.
  • the same reference numerals are used in both drawings for analog process steps.
  • atmospheric air is drawn in via a line 1 from a first compressor stage 2 and compressed to a pressure of 5 to 10 bar, preferably about 5.65 bar, and cooled to 5 to 25 ° C., preferably about 12 ° C. and freed of impurities such as water, carbon dioxide and hydrocarbons in a cleaning stage 4 filled with a molecular sieve.
  • the feed air is branched into a first partial flow 101 and a second partial flow 102.
  • the first partial stream 101 is cooled in the main heat exchanger 5 against product streams and fed into the pressure stage 7 of a conventional two-stage rectification column 6.
  • Gaseous oxygen 9 and gaseous nitrogen 10 are taken from the low-pressure stage 8 (working pressure 1.2 to 1.6 bar, preferably about 1.3 bar) and heated in the main heat exchanger 5 to about ambient temperature.
  • the nitrogen can be used to regenerate the molecular sieve of cleaning stage 4 (line 11) and / or also for other purposes, for example for cooling cooling water in an evaporative cooler, via line 12.
  • the second partial flow 102 is heated in a heat exchanger 3 against the compressed feed air, expanded in a turbine 13, cooled and blown into the low-pressure stage 8.
  • the feed air flow is additionally cooled between heat exchanger 3 and cleaning stage 4 (not shown in the drawing), for example by indirect heat exchange with water cooled by evaporative cooling.
  • a third partial flow 103 is also branched off downstream of the cleaning stage 4, further compressed in a second compressor 14, cooled to an average temperature in the main heat exchanger 5 and then expanded in a turbine 15 for generating cooling.
  • the work obtained when releasing the partial flow is mechanically transferred to the second compressor 14.
  • the relaxed third partial flow 103 is introduced into the low-pressure stage 8 together with the relaxed and cooled second partial flow 102.
  • FIG. 2 shows an exemplary embodiment for a second variant of the method.
  • the second partial flow is branched off at a branch point 21 from the first partial flow 101, warmed in the heat exchanger 3 'and relaxed in the turbine 13'.
  • the work obtained is transferred to a third compressor 16.
  • the third partial flow is compressed in the third compressor to a pressure of at least 15 bar, preferably about 20 to 50 bar, and then cooled in the heat exchanger 3 'against the second partial flow 102 before it relaxes, before the second secondary compressor 14 coupled to the turbine 15 reached.
  • a fourth partial flow 104 is branched off from the third partial flow (22), cooled in the main heat exchanger 5 and throttled into the pressure stage 7.
  • oxygen is evaporated, which was taken from line 9 of the low-pressure stage and brought to a pressure of at least 4 bar, preferably 20 to 100 bar, in a pump 17.
  • the high pressure air in the fourth partial flow condenses almost completely during the heat exchange and is fed into the pressure stage 7 above the first partial flow 101.
  • the process with direct feed of feed air to the low pressure stage proves to be economically advantageous if a purity of 85 to 98% is to be achieved in the product oxygen (lines 23 and 24 in the exemplary embodiment). If, for example, an oxygen purity of 96% is desired, up to 35% of the feed air can be fed directly into the low-pressure stage via the second and third partial streams 102, 103 without significantly reducing the oxygen yield.

Claims (12)

  1. Procédé de séparation d'air à basse température, dans lequel l'air de charge (1) est comprimé (2), purifié (4), refroidi (5), divisé en plusieurs courants partiels et introduit à l'étage de pression (7) et à l'étage à basse pression (8) d'un dispositif de rectification (6) à deux étages, où :
    - l'air de charge (1) est amené dans un premier étage de compresseur (2) à approximativement la pression à l'étage de pression, est purifié par adsorption à un étage de purification (4) et ensuite, divisé en un premier (101) et un deuxième (102) courants partiels,
    - le premier courant partiel (101) est conduit à l'étage de pression (7), et
    - le deuxième courant partiel (102) est détendu (13, 13′), de manière à produire un travail et envoyé vers l'étage à basse pression (8), où
    - le travail obtenu lors de la détente (13, 13′) du deuxième courant partiel (102) est utilisé pour la compression (2, 16) d'un courant du procédé, en particulier de l'air de charge,
       caractérisé en ce que :
    - le deuxième courant partiel (102), avant la détente (13, 13′) produisant un travail, est chauffé à une température supérieure à la température ambiante par échange de chaleur indirect (3, 3′) vis-à-vis de l'air de charge comprimé, et en ce que
    - le courant du procédé qui a été comprimé (2, 16) au moyen du travail obtenu lors de la détente (13, 13′) du deuxième courant partiel (102), n'est pas identique au deuxième courant partiel (102).
  2. Procédé suivant la revendication 1, caractérisé en ce qu'un troisième courant partiel (103) dérive de l'adsorption (4) en aval, est comprimé ultérieurement dans un deuxième étage de compresseur (14), est ensuite refroidi (5), est détendu (15) en produisant un travail et introduit à l'étage à basse pression (8), où le travail obtenu par la détente produisant un travail (15) du troisième courant partiel est utilisé au deuxième étage de compresseur (14).
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que le travail obtenu par la détente produisant un travail (13) du deuxième courant partiel est utilisé pour actionner le premier étage de compresseur (2).
  4. Procédé suivant la revendication 3, caractérisé en ce que le chauffage léger du deuxième courant partiel est réalisé avant sa détente, par échange de chaleur (3) indirect avec l'air de charge, après le premier étage de compression (2) et avant l'étage de purification (4).
  5. Procédé suivant la revendication 2, caractérisé en ce que le travail obtenu par la détente produisant un travail (13′) du deuxième courant partiel est utilisé à un troisième étage de compresseur (16) pour une compression ultérieure du troisième courant partiel.
  6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'un quatrième courant partiel (104) dérive en aval de l'étage de purification (4), est comprimé ultérieurement à un quatrième étage de compresseur, ensuite est refroidi (5), détendu et est introduit à l'étage de pression (7), où le travail obtenu par la détente produisant un travail (13′) du deuxième courant partiel est utilisé à un quatrième étage de compresseur (16) pour une compression ultérieure du quatrième courant partiel.
  7. Procédé suivant les revendications 5 et 6, caractérisé en ce que les troisième (103) et quatrième (104) courants partiels sont comprimés ultérieurement à un troisième étage commun de compresseur (16).
  8. Procédé suivant l'une quelconque des revendications 5 à 7, caractérisé en ce que le chauffage léger du deuxième courant partiel (102) est réalisé avant sa détente, par échange de chaleur indirect (3′) avec les troisième et/ou quatrième (104) courants partiels, après la compression ultérieure du troisième (16), respectivement quatrième, étage de compresseur.
  9. Procédé suivant l'une quelconque des revendications 5 à 8, caractérisé en ce que de l'oxygène liquide est récupéré (9) à l'étage à basse pression (8), mis sous pression (17) et vaporisé dans un échange de chaleur indirect (5) avec le quatrième courant partiel (104) comprimé ultérieurement.
  10. Procédé suivant la revendication 9, caractérisé en ce que le quatrième courant partiel (104) est au moins partiellement condensé par échange de chaleur indirect (5) avec l'oxygène à vaporiser et ensuite, introduit à l'étage de pression (7), au-dessus du premier courant partiel (101).
  11. Dispositif de séparation d'air à basse température comprenant :
    - un premier étage de compresseur (2) pour comprimer l'air de charge (1) à environ la pression de l'étage de pression, dont la sortie est en relation d'écoulement avec l'entrée d'un étage de purification (4) qui présente un dispositif d'adsorption,
    - un échangeur de chaleur principal (5);
    - un appareil de rectification (6) constitué d'une colonne sous pression (7) et d'une colonne à basse pression (8);
    - une première conduite de courant partiel (101) qui va de la sortie de l'étage de purification (4) vers la colonne sous pression (7);
    - une deuxième conduite de courant partiel (102) qui va de la sortie de l'étage de purification (4) vers la colonne à basse pression (8), par un appareil de détente (13, 13′), et
    - des moyens de transfert du travail obtenu dans l'appareil de détente (13, 13′) sur un moyen (2, 16) de compression d'un courant du procédé, en particulier de l'air de charge,
       caractérisé en ce que :
    - la deuxième conduite de courant partiel (102) est amenée en amont de l'appareil de détente (13, 13′), par un échangeur de chaleur (3, 3′) pour le réchauffage par échange de chaleur indirect (3, 3′) vis-à-vis d'air de charge comprimé jusqu'à une température supérieure à la température ambiante et en ce que
    - le moyen (2, 16) de compression d'un courant du procédé et l'appareil de détente (13, 13′) ne sont pas reliés l'un avec l'autre, de sorte que le même courant du procédé traverse les deux appareils.
  12. Utilisation du procédé suivant l'une quelconque des revendications 1 à 10 et/ou du dispositif suivant la revendication 11, pour la préparation d'oxygène de faible pureté.
EP92104008A 1991-03-26 1992-03-09 Procédé de séparation d'air à basse température Expired - Lifetime EP0505812B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4109945 1991-03-26
DE4109945A DE4109945A1 (de) 1991-03-26 1991-03-26 Verfahren zur tieftemperaturzerlegung von luft

Publications (2)

Publication Number Publication Date
EP0505812A1 EP0505812A1 (fr) 1992-09-30
EP0505812B1 true EP0505812B1 (fr) 1995-10-18

Family

ID=6428254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92104008A Expired - Lifetime EP0505812B1 (fr) 1991-03-26 1992-03-09 Procédé de séparation d'air à basse température

Country Status (10)

Country Link
US (1) US5263328A (fr)
EP (1) EP0505812B1 (fr)
CN (1) CN1064125C (fr)
AT (1) ATE129336T1 (fr)
AU (1) AU653120B2 (fr)
CA (1) CA2063928C (fr)
DE (2) DE4109945A1 (fr)
DK (1) DK0505812T3 (fr)
ES (1) ES2077898T3 (fr)
ZA (1) ZA922185B (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
CN105135724A (zh) * 2015-08-21 2015-12-09 深圳智慧能源技术有限公司 节能的制冷机组及压缩膨胀模组
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
WO2017031616A1 (fr) * 2015-08-21 2017-03-02 深圳智慧能源技术有限公司 Unité de réfrigération à économie d'énergie et module de compression-détente

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2728663B1 (fr) 1994-12-23 1997-01-24 Air Liquide Procede de separation d'un melange gazeux par distillation cryogenique
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
US5934105A (en) * 1998-03-04 1999-08-10 Praxair Technology, Inc. Cryogenic air separation system for dual pressure feed
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
US6000239A (en) * 1998-07-10 1999-12-14 Praxair Technology, Inc. Cryogenic air separation system with high ratio turboexpansion
JP4782380B2 (ja) * 2003-03-26 2011-09-28 エア・ウォーター株式会社 空気分離装置
JP4515225B2 (ja) * 2004-11-08 2010-07-28 大陽日酸株式会社 窒素製造方法及び装置
US7263859B2 (en) * 2004-12-27 2007-09-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for cooling a stream of compressed air
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
CN102721263A (zh) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 一种利用深冷技术分离空气的系统及方法
US20150168056A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air
CN103776239B (zh) * 2014-01-13 2016-03-30 浙江海天气体有限公司 多功能制氮装置
EP3438585A3 (fr) * 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de dégivrage d'un appareil de séparation d'air par distillation cryogénique et appareil adapté pour être dégivré par ce procédé
CN111693559B (zh) * 2020-06-22 2022-04-01 中国核动力研究设计院 气相混合物的蒸汽液滴质量流量分离测量装置及测量方法
CN112452095B (zh) * 2020-11-10 2022-11-08 中国石油化工股份有限公司 一种改进的尾气精馏方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
FR2461906A1 (fr) * 1979-07-20 1981-02-06 Air Liquide Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression
JPS62102074A (ja) * 1985-10-30 1987-05-12 株式会社日立製作所 ガス分離方法及び装置
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
DE3643359C2 (de) * 1986-12-18 1993-11-18 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch zweistufige Rektifikation
DE3738559A1 (de) * 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
DE3817244A1 (de) * 1988-05-20 1989-11-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
GB8904275D0 (en) * 1989-02-24 1989-04-12 Boc Group Plc Air separation
US5114449A (en) * 1990-08-28 1992-05-19 Air Products And Chemicals, Inc. Enhanced recovery of argon from cryogenic air separation cycles

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
CN105135724A (zh) * 2015-08-21 2015-12-09 深圳智慧能源技术有限公司 节能的制冷机组及压缩膨胀模组
WO2017031616A1 (fr) * 2015-08-21 2017-03-02 深圳智慧能源技术有限公司 Unité de réfrigération à économie d'énergie et module de compression-détente

Also Published As

Publication number Publication date
ZA922185B (en) 1993-09-24
AU653120B2 (en) 1994-09-15
DK0505812T3 (da) 1995-12-18
ES2077898T3 (es) 1995-12-01
CA2063928A1 (fr) 1992-09-27
AU1316692A (en) 1992-10-01
EP0505812A1 (fr) 1992-09-30
CN1064125C (zh) 2001-04-04
DE59204027D1 (de) 1995-11-23
CA2063928C (fr) 2003-05-06
ATE129336T1 (de) 1995-11-15
CN1065326A (zh) 1992-10-14
DE4109945A1 (de) 1992-10-01
US5263328A (en) 1993-11-23

Similar Documents

Publication Publication Date Title
EP0505812B1 (fr) Procédé de séparation d'air à basse température
EP0384483B1 (fr) Procédé et dispositif de rectification d'air
EP0093448B1 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP0316768B1 (fr) Procédé de séparation d'air par rectification à basse température
EP1031804B1 (fr) Procédé de séparation des gaz de l'air avec recyclage d'azote
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
EP1994344A1 (fr) Procédé et dispositif de décomposition de l'air à basse température
EP0758733A2 (fr) Procédé de séparation d'air par rectification à basse température
EP0342436A2 (fr) Procédé de séparation de l'air à basse température
WO2010017968A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE19908451A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP0989375A1 (fr) Procédé et liquéfacteur pour produire de l'air liquide
EP0384213A2 (fr) Procédé et dispositif de rectification d'air
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
EP3059536A1 (fr) Procédé et dispositif destinés à la production d'un produit d'azote pressurisé
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE2854508A1 (de) Verfahren zur tieftemperaturzerlegung eines gasgemisches
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
EP1134524B1 (fr) Procédé de production d'azote gazeux
DE4030750A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote
DE19543953C1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff und Stickstoff unter überatmosphärischem Druck
EP3255366A1 (fr) Procédé et dispositif de production d'un produit gazeux à base d'oxygène sous pression
DE3216502A1 (de) Verfahren und vorrichtung zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19921217

17Q First examination report despatched

Effective date: 19931025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 129336

Country of ref document: AT

Date of ref document: 19951115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 59204027

Country of ref document: DE

Date of ref document: 19951123

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077898

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030306

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030312

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030318

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030516

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040310