EP1150082A1 - Procédé et dispositif d'échange de chaleur - Google Patents

Procédé et dispositif d'échange de chaleur Download PDF

Info

Publication number
EP1150082A1
EP1150082A1 EP00115776A EP00115776A EP1150082A1 EP 1150082 A1 EP1150082 A1 EP 1150082A1 EP 00115776 A EP00115776 A EP 00115776A EP 00115776 A EP00115776 A EP 00115776A EP 1150082 A1 EP1150082 A1 EP 1150082A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger block
heat exchange
gas streams
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00115776A
Other languages
German (de)
English (en)
Inventor
Horst Dipl.-Ing. Corduan
Dietrich Dipl.-Ing. Rottmann
Karl Leibl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1150082A1 publication Critical patent/EP1150082A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/50Arrangement of multiple equipments fulfilling the same process step in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the invention relates to a method for indirect heat exchange of several Gas flows with a heat / coolant in heat exchanger blocks, in which the Gas flows are passed through a variety of heat exchange passages only one of the gas streams is passed through at least one heat exchanger block. Furthermore, the invention relates to a heat exchange device for indirect Heat exchange of at least two gas flows with a heat / coolant in Heat exchanger blocks, which have a variety of heat exchange passages have.
  • the main heat exchanger is usually designed as a plate heat exchanger which has a large number of heat exchange passages for the streams to be treated. In air separation plants in which large amounts of air are processed, several such heat exchanger blocks are necessary to process the air and product quantities.
  • the main heat exchanger is usually divided into two blocks from about 20,000 to 30,000 Nm 3 / h of air.
  • collectors / distributors necessary to the gas flows from the respective inlet nozzle on the to distribute assigned heat exchange passages or from the Heat exchange passages emerging gas flows into the corresponding Merge outlet connection.
  • the collectors / distributors have so far been integrated into the heat exchanger block Distribution zones realized. In these distribution zones there are at least some of the slats that delimit the individual heat exchange passages from one another, arranged obliquely, so that the gas flowing in through the inlet connection into the Heat exchange passages is performed or that from the Heat exchange passages exiting gas flow to the outlet port is redirected.
  • the object of the present invention is to provide a method and an apparatus for to develop indirect heating or cooling of multiple gas flows which the pressure loss in the heat exchanger is as low as possible.
  • the heat exchange device for indirect heat exchange of at least two gas streams with a heat / coolant in Heat exchanger blocks, which have a variety of heat exchange passages own, is characterized in that the heat exchange passages one Heat exchanger blocks intended for one of the gas flows on two opposite end faces of the heat exchanger block and end with are in flow communication with a collector / distributor, the Collector / distributor over the entire end face of the heat exchanger block extend.
  • At least one gas flow is as low as possible Should experience pressure loss, passed through a heat exchanger block through which otherwise no further of the gas flows are carried. Stream of course through this heat exchanger block one or more heat or cold carriers with where the gas flow exchanges its heat.
  • Heat exchange passages of this heat exchanger block extend from one Face of the block to the opposite face and run essentially parallel. On the two end faces where the heat exchange passages end a collector / distributor attached to the outside of the heat exchanger block, which the covers the entire end face and a connecting piece for the supply and discharge having.
  • the heat exchange passages thus go in without a cross-sectional taper the supply and discharge via and the flow deflection in the collector / distributor takes place slowly.
  • the pressure loss in the heat exchanger block and the associated one This minimizes collectors / distributors.
  • the invention is particularly suitable in processes in which gas streams, one Have pressure of less than 3.5 bar, preferably between 1.1 and 1.8 bar, in hereinafter referred to as low pressure flows, in indirect heat exchange with a Heat or cold carriers are to be brought. According to the invention, this is done by one heat exchanger block only one of these low-pressure gas flows, i.e. for each of the gas streams that have a pressure of less than 3.5 bar its own heat exchanger block used.
  • the method according to the invention is preferably used in low-temperature decomposition of application air application.
  • the product of a low pressure column Gas streams withdrawn from the double column rectifier have only a small amount Overpressure of about 0.1 to 0.8 bar above atmospheric pressure, so that a reduction the pressure drop is of great importance. This applies analogously to gaseous Argon product, since the crude argon column also operated under relatively low pressure becomes.
  • the gas flows with the feed air in indirect are particularly preferred Heat exchange brought.
  • the feed air can be divided into several flows through the heat exchanger blocks at different pressure levels be performed.
  • the air supply can be below Pressure column pressure passed through the heat exchanger block and then into the Pressure column can be fed, on the other hand, the feed air can before Heat exchanger block recompressed and after cooling for cooling be relaxed while working.
  • the gas stream is passed through the heat exchanger blocks so that it suffers a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
  • a pressure drop of 120 to 300 mbar, preferably 120 to 200 mbar.
  • Figure 1 shows a process scheme known from the prior art of a large air separation plant for processing about 100,000 Nm 3 / h of air, in which it is necessary to implement the main heat exchanger by means of several separate heat exchanger blocks 3.
  • Compressed and cleaned feed air 1 becomes part 2 directly several in parallel mutually arranged heat exchanger blocks 3a - 3e supplied, in part 4 by means of of a compressor 5 post-compressed, cooled in an after-cooler 6 and then into the Heat exchanger blocks 3a - 3e directed.
  • This in the following as turbine air flow 7 designated compressed air is at an intermediate point the heat exchanger blocks 3a - 3e removed, relaxed in a turbine 8 and one in the low pressure column 10 Rectification unit 11, which has a pressure column 9 and a low pressure column 10 includes, initiated.
  • the heat exchanger blocks 3a - 3e form the main heat exchanger of the Air separation plant.
  • the supply air 2 cooled in blocks 3a - 3e becomes the Pressure column 9 of the rectification unit 11 supplied.
  • the low pressure column 10 will gaseous oxygen 14, gaseous nitrogen 15 and gaseous impure nitrogen 16 taken as regeneration gas at a pressure of about 1.3 bar. Further it is possible to use oxygen and nitrogen as liquid in the rectification unit 11 Products 12, 13 to win.
  • the gas streams 14, 15, 16 are in each of the Heat exchanger blocks 3a - 3e guided and against the feed air flow 2 and Turbine airflow 7 warmed by indirect heat exchange.
  • FIG. 1 A method diagram corresponding to FIG. 1 is shown in FIG. in contrast to the known method shown in Figure 1, the Heat exchanger blocks 3 are divided according to the invention according to products.
  • the Air flow 2 and the turbine air 7 are the same as in the method according to FIG 1 supplied to all heat exchanger blocks 23a - 23e.
  • the gaseous Gas flows 14, 15, 16 no longer in all heat exchanger blocks 23, but in in each case specifically heated to the gas streams 14, 15, 16 blocks 23.
  • the Heat exchanger blocks 23 are dimensioned so that the gaseous Oxygen stream 14 and the impure nitrogen stream 16 each have blocks 23a, 23e Result in maximum dimensions, i.e. blocks 23a and 23e are exactly on that expected oxygen or nitrogen amounts. From manufacturing technology For this reason, all blocks 23a-23e are executed with the same size, so that for the pure nitrogen flow 15, three heat exchanger blocks 23b-23d are required.
  • the heat exchanger block 23a thus only oxygen 14 against the Air flows 2 and 7 guided through the blocks 23b to 23d pure nitrogen 15 against air 2, 7 and by the heat exchanger block 23e impure nitrogen 16 against air 2, 7. Die
  • the number of heat exchanger blocks 23 thus remains in relation to the method Figure 1 the same, since the same product quantities with the same in both methods Air volumes have to exchange their heat.
  • Every heat exchanger block 23 are only three streams, two air streams 2, 7 and a gas stream 14, 15 or 16, supplied, whereby each block 23 only six collectors / distributors with the appropriate connection piece required.
  • the heat exchanger blocks 23 are in accordance with the figures 7 and 8 executed.
  • the structure of a Heat exchanger blocks 3 shown the usual way.
  • Figure 3 shows the Lamella arrangement in the distribution zones 31 for the oxygen passages 34, Figure 4 for the pure nitrogen passages 35 and Figure 5 accordingly for the Impure nitrogen passages 36.
  • Figure 6 the arrangement of all inputs and Outlet nozzle to see.
  • the distribution zones 31, 32, 33 both lead to a change in the direction of flow as well as cross-sectional changes, which in turn changes the Cause flow velocity. Both have a negative impact on the Block flow and creates an undesirable pressure drop across the Heat exchanger block 3.
  • the pressure drop affects in particular the gas flows, which have a relatively low pressure between 1.1 and 1.8 bar.
  • FIGS. 7 and 8 show the new block configuration.
  • a key feature of the The inventive method is that in each heat exchanger block 23 only one of the gas streams 14, 15, 16 is guided in countercurrent with air 2, 7. With the End faces of the heat exchanger block 23 become collectors / distributors 43, also as Dome headers are referred to as inlets and outlets for the respective gas stream 14, 15, 16 connected.
  • the collectors / distributors 43 are semi-cylindrical and have a connecting piece for the product feed or discharge.
  • the one in the new Heat exchanger block 23 introduced gas flow does not experience anything Cross-sectional change and no significant change in current direction.
  • the Pressure drop across the heat exchanger block 23 is greater than the pressure drop a usual block 3, as it was explained with reference to FIGS. 3 to 6, by approximately 30% reduced. Furthermore, the costs for the heat exchanger blocks 23 are reduced, since on the elaborate lamella cuts for the distribution zones 32 in Figures 3 to 5 can be dispensed with.
  • the new Heat exchanger blocks preferably only have a narrow distribution zone 42 at the inlet and exit area of the heat exchange passages are provided.
  • the slats in the narrow distribution zone 42 are parallel to the slats below or above the heat exchange passages are arranged, but have a smaller distance from each other.
  • the gas entering the collector 41 easily builds up in front of the Distribution zone 42, which ensures an even distribution of the gas over all passages the distribution zone 42 and thus is reached on all heat exchange passages.
  • FIGS Procedure Another advantage of the invention is shown in FIGS Procedure clearly.
  • the piping in the new process much easier.
  • the number of block sockets from ten to six per heat exchanger block are also fewer manifolds and Pipe bends necessary to block the gas flows 14, 15, 16 feed.
  • the method according to the invention is not restricted to such processes only where all products are obtained in gaseous form, but also, for example Internal compression processes in which liquid products from the rectification unit subtracted from.
  • Figure 9 shows the scheme of an air separation process in which in addition gaseous pure nitrogen 15 and gaseous impure nitrogen 16 liquid nitrogen 51 removed from the main capacitor of the rectification unit 11 and by means of an internal compression pump 52 is brought to increased pressure.
  • the liquid and Nitrogen 51 brought to increased pressure is then in the heat exchanger block 56 against air 7 and compressed by the compressor 59 high pressure air evaporates and warmed up.
  • the oxygen 12 is also in liquid form from the Low pressure column 10 is withdrawn and using the two pumps 54 and 55 internally compressed.
  • the pure nitrogen stream 15 and the impure nitrogen stream 16 are in the heat exchanger blocks 23b, c, d and block 23e, respectively, respectively 7 and 8 are constructed, heated.
  • internally compressed streams 57, 58 find a high-pressure heat exchanger block 56 Application.
  • the high-pressure heat exchanger block 56 corresponds at first glance the heat exchanger block explained with reference to Figures 3 to 6, but has one significantly higher strength to withstand the high pressures of internal compression flows to be able to withstand. Those occurring in the heat exchanger block 56 Pressure losses have a far less effect on the internal compression flows 57, 58 negative than in the gaseous gas streams 15, 16 from the low pressure column 10.
  • FIG. 10 A method similar to that in FIG. 9 is shown in FIG. 10, in which likewise liquid oxygen 12 is internally compressed 54, 55, but not against high pressure air, but is vaporized and heated against high pressure nitrogen.
  • the Pressure column 9 removed gaseous nitrogen at 61 through which Heat exchanger block 62 out, compressed by means of the compressor 63 and in Countercurrent passed through the heat exchanger block 62 back into the pressure column 9.
  • the construction of the heat exchanger block 62 corresponds essentially to that Heat exchanger block 56 in FIG. 9. There is no internal compression of nitrogen this variant, since 63 high-pressure nitrogen 64 are drawn off after the compressor can.
  • FIG. 11 shows a further application of the method according to the invention.
  • liquid oxygen is removed from the rectification column 11 at 12 and by means of the two pumps 54, 55 internally compressed.
  • the evaporation of liquid oxygen takes place in this embodiment against circulating nitrogen, which at 61 from the Pressure column 9 removed, warmed in the heat exchanger block 77, with the compressors 71, 72, 73 compressed and in the heat exchanger block 77 against the Internal compression products cooled and passed into the pressure column 9 76.
  • a part of the nitrogen is expanded after the compressor 71 (74) and into the Nitrogen cycle returned.
  • Another part of the nitrogen is released Compression in compressors 71, 72, 73 and subsequent cooling in Heat exchanger block 77 at an intermediate point from the heat exchanger block 77 deducted, relaxed at 75 and returned to the nitrogen cycle.
EP00115776A 2000-04-28 2000-07-21 Procédé et dispositif d'échange de chaleur Withdrawn EP1150082A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10021081A DE10021081A1 (de) 2000-04-28 2000-04-28 Verfahren und Vorrichtung zum Wärmeaustausch
DE10021081 2000-04-28

Publications (1)

Publication Number Publication Date
EP1150082A1 true EP1150082A1 (fr) 2001-10-31

Family

ID=7640352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00115776A Withdrawn EP1150082A1 (fr) 2000-04-28 2000-07-21 Procédé et dispositif d'échange de chaleur

Country Status (6)

Country Link
US (1) US6629433B2 (fr)
EP (1) EP1150082A1 (fr)
JP (1) JP2001355963A (fr)
KR (1) KR20010098779A (fr)
CN (1) CN1202400C (fr)
DE (1) DE10021081A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867262A1 (fr) * 2004-03-02 2005-09-09 Air Liquide Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
WO2005085728A1 (fr) * 2004-03-02 2005-09-15 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
EP3006875A1 (fr) 2014-10-09 2016-04-13 Linde Aktiengesellschaft Procédé de réglage d'un système d'échangeur thermique couplé et système d'échangeur thermique
WO2018206886A1 (fr) * 2017-05-11 2018-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Appareil d'échange de chaleur

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
JP4820721B2 (ja) * 2006-09-07 2011-11-24 オリオン機械株式会社 薬液用熱交換器
US9222725B2 (en) * 2007-06-15 2015-12-29 Praxair Technology, Inc. Air separation method and apparatus
EP2236964B1 (fr) * 2009-03-24 2019-11-20 Linde AG Procédé et dispositif de séparation de l'air à basse température
US8397535B2 (en) * 2009-06-16 2013-03-19 Praxair Technology, Inc. Method and apparatus for pressurized product production
DE102009040561A1 (de) 2009-09-08 2011-03-10 Linde Aktiengesellschaft Wärmetauscher
JP6738126B2 (ja) * 2015-02-03 2020-08-12 エア・ウォーター・クライオプラント株式会社 空気分離装置
RU178401U1 (ru) * 2018-01-24 2018-04-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Тепломассообменное устройство
US20210285719A1 (en) * 2020-03-13 2021-09-16 Air Products And Chemicals, Inc. Heat exchanger apparatus, manifold arrangement for a heat exchanger apparatus, and methods relating to same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035284A (en) * 1987-12-24 1991-07-30 Sumitomo Presicion Products Co. Ltd. Plate-fin-type heat exchanger
DE4204172A1 (de) * 1992-02-13 1993-08-19 Linde Ag Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft
US5333683A (en) * 1991-12-11 1994-08-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Indirect heat exchanger
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression
EP0971189A1 (fr) * 1998-07-10 2000-01-12 Praxair Technology, Inc. Installation cryogénique de séparation des gaz de l'air avec fort taux de détente

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035284A (en) * 1987-12-24 1991-07-30 Sumitomo Presicion Products Co. Ltd. Plate-fin-type heat exchanger
US5333683A (en) * 1991-12-11 1994-08-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Indirect heat exchanger
DE4204172A1 (de) * 1992-02-13 1993-08-19 Linde Ag Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft
US5979182A (en) * 1997-03-13 1999-11-09 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for air separation
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression
EP0971189A1 (fr) * 1998-07-10 2000-01-12 Praxair Technology, Inc. Installation cryogénique de séparation des gaz de l'air avec fort taux de détente

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867262A1 (fr) * 2004-03-02 2005-09-09 Air Liquide Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
WO2005085728A1 (fr) * 2004-03-02 2005-09-15 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé et dispositif de production d'un gaz sous pression par séparation cryogénique d'air
EP2015012A2 (fr) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Procédé pour la séparation cryogénique d'air
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (fr) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Procédé et dispositif de production d'oxygène sous pression et de crypton/xénon
EP2458311A1 (fr) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Procédé et dispositif de production d'un produit d'impression gazeux par décomposition à basse température d'air
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (fr) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Procédé de production d'un produit d'impression gazeux par décomposition à basse température de l'air
EP2520886A1 (fr) 2011-05-05 2012-11-07 Linde AG Procédé et dispositif de production d'un produit comprimé à oxygène gazeux par décomposition à basse température d'air
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (fr) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'acier
EP2600090A1 (fr) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (fr) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Procédé de séparation de l'air et installation de séparation de l'air
WO2014154339A2 (fr) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Procédé de séparation d'air et installation de séparation d'air
EP2801777A1 (fr) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Installation de décomposition de l'air dotée d'un entraînement de compresseur principal
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963367A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procédé et dispositif cryogéniques de séparation d'air avec consommation d'énergie variable
EP2963370A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963371A1 (fr) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Procede et dispositif de production d'un produit de gaz sous pression par decomposition a basse temperature d'air
WO2016005031A1 (fr) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Procédé et dispositif de fractionnement de l'air à basse température à consommation d'énergie variable
EP3006875A1 (fr) 2014-10-09 2016-04-13 Linde Aktiengesellschaft Procédé de réglage d'un système d'échangeur thermique couplé et système d'échangeur thermique
WO2018206886A1 (fr) * 2017-05-11 2018-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Appareil d'échange de chaleur
FR3066265A1 (fr) * 2017-05-11 2018-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Appareil d'echange de chaleur

Also Published As

Publication number Publication date
DE10021081A1 (de) 2002-01-03
US20020124596A1 (en) 2002-09-12
JP2001355963A (ja) 2001-12-26
CN1321868A (zh) 2001-11-14
US6629433B2 (en) 2003-10-07
CN1202400C (zh) 2005-05-18
KR20010098779A (ko) 2001-11-08

Similar Documents

Publication Publication Date Title
EP1150082A1 (fr) Procédé et dispositif d'échange de chaleur
EP0093448B1 (fr) Procédé et dispositif pour obtenir de l'oxygène gazeux sous pression élevée
EP0384483B1 (fr) Procédé et dispositif de rectification d'air
EP1666823A1 (fr) Installation pour la séparation cryogénique d'un mélange gazeux en particulier d'air
EP1994344A1 (fr) Procédé et dispositif de décomposition de l'air à basse température
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
DE4109945A1 (de) Verfahren zur tieftemperaturzerlegung von luft
EP1067345A1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2313724A2 (fr) Procédé et dispositif de séparation de l'air à basse température
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1544559A1 (fr) Procédé et dispositif pour la séparation cryogénique d'air
EP3059536A1 (fr) Procédé et dispositif destinés à la production d'un produit d'azote pressurisé
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
DE10238282A1 (de) Verfahren zur Tieftemperatur-Zerlegung von Luft
EP0768503B1 (fr) Procédé de séparation d'air à triple colonne
EP0795727A1 (fr) Procédé et dispositif pour la liquéfaction d'un gaz à bas point d'ébullition
DE102004016931A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft
EP1329680B1 (fr) Echangeur de chaleur à plaques
DE10052180A1 (de) Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE10147047A1 (de) Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts
WO2023030689A1 (fr) Procédé pour obtenir un ou plusieurs produits de l'air et installation de séparation d'air
EP1209431A1 (fr) Procédé et dispositif de production d'oxygène et d'azote
DE10139097A1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020408

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040510

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041123