EP3164654B1 - Method and device for the low-temperature separation of air at variable energy consumption - Google Patents

Method and device for the low-temperature separation of air at variable energy consumption Download PDF

Info

Publication number
EP3164654B1
EP3164654B1 EP15735849.0A EP15735849A EP3164654B1 EP 3164654 B1 EP3164654 B1 EP 3164654B1 EP 15735849 A EP15735849 A EP 15735849A EP 3164654 B1 EP3164654 B1 EP 3164654B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
compressed
compressor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15735849.0A
Other languages
German (de)
French (fr)
Other versions
EP3164654A1 (en
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3164654A1 publication Critical patent/EP3164654A1/en
Application granted granted Critical
Publication of EP3164654B1 publication Critical patent/EP3164654B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to a method and a device for the variable extraction of a compressed gas product by means of low-temperature separation of air.
  • the distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double-column system), or as a three- or more-column system.
  • it can have further devices for obtaining highly pure products and / or other air components, in particular noble gases, for example argon extraction and / or krypton-xenon extraction.
  • a liquid product stream which is brought under pressure is vaporized against a heat transfer medium and finally obtained as an internally compressed compressed gas product.
  • This method is also known as internal compression. It is used to obtain gaseous printed products.
  • the product stream is then "pseudo-evaporated".
  • the product stream can be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction chamber of a main condenser, via which the high-pressure column and low-pressure column are in heat-exchanging connection
  • a heat carrier under high pressure is liquefied against the (pseudo) evaporating product stream (or pseudo-liquefied if it is under supercritical pressure).
  • the heat transfer medium is often by part of the Air formed, in the present case from the "second partial flow" of the compressed feed air.
  • DE 102010052545 A1 shows a stationary internal compression process, in which an air flow in the main heat exchanger is warmed up and returned to the main air compressor.
  • the invention relates in particular to systems in which the total feed air is at a pressure which is clearly above the highest distillation pressure which prevails inside the columns of the distillation column system (this is normally the high-pressure column pressure.
  • the "first pressure” is between 17 and 25 bar, for example.
  • the main air compressor is regularly the only machine powered by external energy to compress air.
  • a "single machine” is understood here to mean a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in are housed in the same housing or connected to the same gearbox.
  • MAC-BAC processes in which the air in the main air compressor is compressed to a relatively low total air pressure, for example to the operating pressure of the high pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in a booster air compressor driven by external energy (BAC).
  • BAC external energy
  • This task can be accomplished relatively well with a conventional MAC-BAC method, since both compressors (MAC and BAC) are responsible for functionally separate tasks.
  • the main air compressor only supplies the feed air for disassembly; the air post-compressor supplies energy for internal compression (GOXIV, GANIV) and for liquid production. Both machines can usually be controlled relatively easily between 70% and 100%.
  • the invention is based on the object of specifying a method and a corresponding device which combine the advantages of HAP methods with flexibility such as is known in a similar way to MAC-BAC methods.
  • “Flexibility” is understood here in particular to mean that the system can be operated not only with low energy in a certain production quantity of internally compressed product, but also in a relatively wide load range with approximately constant low specific energy consumption. In particular, the production of other air separation products should remain the same, or at least change less than the product quantity of the internal compression product.
  • part of the quantity of feed air is bypassed the entire distillation column system. This quantity then does not take part in the generation of the first product stream, but can nevertheless be directed through the first turbine in order to produce enough cold or to supply the system with enough energy to be able to maintain or at least reduce the liquid production relatively less than the amount of the first print production.
  • the excess air is not fed into the distillation column system, but is fed back into the heat exchanger immediately after expansion in the turbine and then fed to a suitable point (for example after the second or third stage) of the main air compressor without throttling.
  • a suitable point for example after the second or third stage of the main air compressor without throttling.
  • Another possibility is to guide and separate the excess air into the distillation column system. This other possibility is not part of the invention claimed here.
  • the argon present in this amount of air can be obtained.
  • the excess amount of oxygen can be taken as low-pressure oxygen from the low-pressure column and fed to the UN2 stream. In principle, you only lose the separation work to obtain additional oxygen molecules, but at the same time significantly more argon is produced.
  • an oxygen gas stream can be taken from the lower region of the low-pressure column, mixed with a nitrogen-enriched stream from the upper region of the low-pressure column, and the mixture can be warmed in the main heat exchanger.
  • Electricity from the upper area of the low pressure column is mixed and the mixture is warmed up in the main heat exchanger.
  • a second air turbine can be used, a third partial stream of the feed air compressed in the main air compressor being cooled to an intermediate temperature in a main heat exchanger and relaxed in the second air turbine in a work-performing manner, and at least a first part of the third partial stream being relaxed in the work Distillation column system is initiated.
  • the second partial flow of the feed air compressed in the main air compressor can be cooled to an intermediate temperature in the main heat exchanger, can be post-compressed in a second post-compressor, which is operated as a cold compressor and driven by the second turbine, to a third pressure which is higher than the first pressure.
  • a second post-compressor which is operated as a cold compressor and driven by the second turbine, to a third pressure which is higher than the first pressure.
  • cooled in the main heat exchanger (pseudo) liquefied and then expanded and introduced into the distillation column system.
  • the pressure of the second partial stream can be increased further without using external energy.
  • a correspondingly higher internal compression pressure can be achieved.
  • a fourth partial flow of the air compressed in the main air compressor can be cooled under the first pressure in the main heat exchanger and then expanded and introduced into the distillation column system.
  • the heat exchange process in the main heat exchanger is further optimized by such a second throttle flow.
  • the amount of air used in the cold box is "artificially" increased, which means that more air is driven into the low-temperature part of the system than is necessary to obtain the pressurized oxygen products specified for this operating case. If the feed air is run in "excess", the pressure at the compressor outlet can be reduced, since the energy supply for the (pseudo) evaporation of the GOXIV product is then not with the air pressure, but with the amount of air.
  • the first partial flow of the feed air compressed in the main air compressor is recompressed upstream of its introduction into the main heat exchanger in a first post-compressor which is operated in the warm state and is driven by the first turbine.
  • the inlet pressure of the first turbine is significantly higher than the first pressure to which the total air is compressed.
  • the air for the second turbine for example, is not post-compressed, i.e. its inlet pressure is at the lower level of the first pressure.
  • the second turbine on the other hand, is not recompressed, for example, which means that its inlet pressure is at the lower level of the first pressure.
  • the invention also relates to a device according to claim 8.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the "means for switching between a first and a second operating mode" are complex regulating and control devices which, in cooperation, enable an at least partially automatic switching between the two operating modes, for example by means of an appropriately programmed operating control system.
  • Atmospheric air is drawn in by a main air compressor 2 via a filter 1.
  • the main air compressor has five stages and compresses the total air flow to a "first pressure" of, for example, 22 bar.
  • the total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4.
  • the pre-cooled total air flow 5 is cleaned in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorbers.
  • the cleaned total air flow 7 becomes a first part 8 in a hot air post-compressor 9 with after-cooler 10 to a second pressure of 28 bar, for example, and then divided into a "first partial flow” 11 (first turbine air flow) and a "second partial flow” 12 (first throttle flow).
  • the first partial flow 11 is cooled in a main heat exchanger 13 to a first intermediate temperature.
  • the cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar in a work-performing manner.
  • the first air turbine 15 drives the warm air post-compressor 9.
  • the first partial stream 16, which is relaxed in terms of work, is introduced into a separator (phase separator) 17.
  • the liquid portion 18 is introduced via lines 19 and 20 into the low pressure column 22 of the distillation column system.
  • the distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon recovery 24 with crude argon column 25 and pure argon column 26.
  • the main condenser 23 is designed as a condenser-evaporator, in the specific example as a cascade evaporator.
  • the operating pressure at the top of the high pressure column is 5.3 bar in the example, that at the top of the low pressure column is 1.35 bar.
  • the second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, is fed via line 27 to a cold compressor 28 and there is further compressed to a "third pressure" of approximately 40 bar.
  • the post-compressed second partial flow 29 is introduced again into the main heat exchanger 13 at a third intermediate temperature, which is higher than the second intermediate temperature, and is cooled there to the cold end.
  • the cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32.
  • a part 33 is removed again, cooled in a subcooling countercurrent 34 and fed via lines 35 and 20 into the low-pressure column 22.
  • a "third partial flow" 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and is cooled there to a fourth intermediate temperature, which in the example is somewhat lower than the first intermediate temperature.
  • the cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to approximately high-pressure column pressure while performing work.
  • the second Air turbine 38 drives cold compressor 28.
  • the third partial stream 39 which is relaxed in terms of work, is fed via line 40 to the high-pressure column 21 at the bottom.
  • a "fourth partial flow” 41 (second throttle flow) flows through the main heat exchanger 13 from the warm to the cold end under the first pressure.
  • the cold fourth partial flow 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32.
  • the oxygen-enriched bottom liquid of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced into the optional argon recovery 24 via line 45. Vapor 46 generated therefrom and remaining liquid 47 are fed into the low-pressure column 22.
  • a first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction chamber of the main condenser 23 against liquid oxygen evaporating in the evaporation chamber from the sump of the low-pressure column.
  • a first part 51 of the liquid nitrogen 50 produced in the process is fed as a return to the high-pressure column 21.
  • a second part 52 is cooled in the subcooling countercurrent 34 and fed into the low-pressure column 22 via line 53. At least a part of the liquid low-pressure nitrogen 53 serves as a return in the low-pressure column 21; another part 54 can be obtained as a liquid nitrogen product (LIN).
  • Gaseous low-pressure nitrogen 55 is drawn off from the top of the low-pressure column 22 and heated in the supercooling countercurrent 34 and in the main heat exchanger 13.
  • the warm low-pressure nitrogen 56 is compressed in a two-section nitrogen product compressor (57, 59) with intermediate and after-cooling (58, 60) to the desired product pressure, which in the example is 12 bar.
  • the first section 57 of the nitrogen product compressor consists, for example, of two or three stages with associated aftercoolers; the second section 59 has at least one stage and is preferably also intercooled and postcooled.
  • Gaseous impure nitrogen 61 is drawn off from an intermediate point of the low-pressure column 22 and in the supercooling counterflow 34 and in the main heat exchanger 13 warmed up.
  • the warm impure nitrogen 62 can be blown off (63) into the atmosphere (ATM) and / or used as regeneration gas 64 for the cleaning device 6.
  • the lines 67 and 68 connect the low-pressure column 22 to the crude argon column 25 of the argon extraction 24.
  • a first portion 70 of the liquid oxygen 69 from the bottom of the low pressure column 22 is withdrawn as a "first product stream", brought to a "first product pressure” of, for example, 37 bar in an oxygen pump 71 and evaporated under the first product pressure in the main heat exchanger 13 and finally via line 72 as the "first pressurized gas product” (GOX IC - internally compressed gaseous oxygen).
  • a second part 73 of the liquid oxygen 69 from the bottom of the low-pressure column 22 is optionally cooled in the supercooling countercurrent 34 and obtained as a liquid oxygen product (LOX) via line 74.
  • LOX liquid oxygen product
  • a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 or the main condenser 23 is also subjected to an internal compression by bringing it to a second product pressure of, for example, 37 bar in a nitrogen pump 76, under the second product pressure in the main heat exchanger 13 pseudo evaporated and finally obtained via line 77 as an internally compressed gaseous nitrogen pressure product (GAN IC).
  • GAN IC internally compressed gaseous nitrogen pressure product
  • a second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is heated in the main heat exchanger and either obtained via line 79 as a gaseous medium-pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the process pumps shown.
  • a lower oxygen production (for example 75%) can then be regarded as a "second operating mode".
  • part of the gaseous portion 17 of the first partial stream 16 relaxed as a "second process stream" via the lines 65, 66 through the main heat exchanger to an intermediate stage of the main air compressor 2.
  • the recycle stream is admixed to the feed air between the second and third stages or between the third and fourth stages of the main air compressor. (This feed air represents the "first process stream”.)
  • the amount of air through the turbine 15 can be kept relatively high and an unchanged - or at least a less reduced - amount of nitrogen and liquid products can be obtained.
  • a 95% mode of operation could just as well be regarded as the "first mode of operation".
  • a "second operating mode” is then achieved, for example, with an oxygen production of 90% of the design value.
  • the return quantity in the table relates to the current air quantity through filter 1. All percentages here and in the rest of the text refer to molar quantities, unless otherwise stated.
  • gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column.
  • the mixing takes place downstream of the supercooling counterflow 34 in the example.
  • line 181 is closed, or less gas is conducted via line 181.
  • the corresponding amount of nitrogen 180 from the high pressure column is not condensed in the main condenser 23 and is not introduced into the low pressure column. As a result, it does not take part in the rectification in the low-pressure column (neither indirectly via the evaporation of the bottoms oxygen, nor directly through use as a return liquid) and thereby enables the reduction in oxygen production. At the same time, the same amount of air (or only slightly less) is available for cold production and nitrogen generation.
  • gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column.
  • the mixing takes place downstream of the supercooling counterflow 34 in the example.
  • line 181 is closed, or less gas is conducted via line 181.
  • the amount of nitrogen through line 180 relates to the amount of air through filter 1 in the design case.
  • Figure 3 differs from Figure 1 through a third inductor current.
  • the second turbine 38 is operated with a relatively high outlet pressure and a relatively high outlet temperature.
  • Turbine flow 339 which has been relieved of work, then has a pressure which is at least 1 bar, in particular 4 to 11 bar, above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 20 to 60 K, above the inlet temperature of low-pressure nitrogen flows 55 , 61 is at the cold end of the main heat exchanger.
  • This stream is then further cooled in the cold part of the main heat exchanger.
  • the further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to approximately high-pressure column pressure and introduced into the high-pressure column via line 32. This allows the heat exchange process in the main heat exchanger to be further optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur variablen Gewinnung eines Druckgasprodukts mittels Tieftemperaturzerlegung von Luft.The invention relates to a method and a device for the variable extraction of a compressed gas product by means of low-temperature separation of air.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.Methods and devices for the low-temperature separation of air are, for example, out Hausen / Linde, low-temperature technology, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destillationssäulen-System einer solchen Anlage kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hoch reiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.The distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double-column system), or as a three- or more-column system. In addition to the columns for nitrogen-oxygen separation, it can have further devices for obtaining highly pure products and / or other air components, in particular noble gases, for example argon extraction and / or krypton-xenon extraction.

Bei dem Prozess wird im Rahmen einer "Innenverdichtung" ein flüssig auf Druck gebrachter Produktstrom gegen einen Wärmeträger verdampft und schließlich als innenverdichtetes Druckgasprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von gasförmigem Druckprodukt. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft". Bei dem Produktstrom kann es sich beispielsweise um ein Sauerstoffprodukt aus der Niederdrucksäule eines Zwei-Säulen-Systems oder um ein Stickstoffprodukt aus der Hochdrucksäule eines Zwei-Säulen-Systems beziehungsweise aus dem Verflüssigungsraum eines Hauptkondensators handeln, über den Hochdrucksäule und Niederdrucksäule in wärmetauschender Verbindung stehenIn the course of an "internal compression", a liquid product stream which is brought under pressure is vaporized against a heat transfer medium and finally obtained as an internally compressed compressed gas product. This method is also known as internal compression. It is used to obtain gaseous printed products. In the case of a supercritical pressure, there is no phase transition in the actual sense, the product stream is then "pseudo-evaporated". The product stream can be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction chamber of a main condenser, via which the high-pressure column and low-pressure column are in heat-exchanging connection

Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.A heat carrier under high pressure is liquefied against the (pseudo) evaporating product stream (or pseudo-liquefied if it is under supercritical pressure). The heat transfer medium is often by part of the Air formed, in the present case from the "second partial flow" of the compressed feed air.

Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738/ US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 , EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355 A1 .Internal compression methods are known for example from DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 , EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 or DE 102008016355 A1 .

DE 102010052545 A1 zeigt ein stationäres Innenverdichtungsverfahren, bei dem ein Luftstrom im Hauptwärmetauscher angewärmt und zum Hauptluftverdichter zurückgeführt wird. DE 102010052545 A1 shows a stationary internal compression process, in which an air flow in the main heat exchanger is warmed up and returned to the main air compressor.

Die Erfindung betrifft insbesondere Systeme, bei denen die gesamte Einsatzluft auf einen Druck, der deutlich über dem höchsten Destillationsdruck, der im Inneren der Säulen des Destillationssäulen-Systems herrscht (im Normalfall ist dies der Hochdrucksäulendruck verdichtet wird. Solche Systeme werden auch als HAP-Prozesse bezeichnet (HAP - high air pressure). Dabei liegt der "erste Druck", also der Austrittsdruck des Hauptluftverdichters (MAC = main air compressor), in dem die Gesamtluft verdichtet wird, beispielsweise mehr als 4 bar, insbesondere 6 bis 16 bar über dem höchsten Destillationsdruck. Absolut liegt der "erste Druck" beispielsweise zwischen 17 und 25 bar. Bei HAP-Verfahren stellt der Hauptluftverdichter regelmäßig die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft dar. Unter einer "einzigen Maschine" wird hier ein einstufiger oder mehrstufiger Verdichter verstanden, dessen Stufen alle mit dem gleichen Antrieb verbunden sind, wobei alle Stufen in demselben Gehäuse untergebracht oder mit demselben Getriebe verbunden sind.The invention relates in particular to systems in which the total feed air is at a pressure which is clearly above the highest distillation pressure which prevails inside the columns of the distillation column system (this is normally the high-pressure column pressure. Such systems are also called HAP processes (HAP - high air pressure), where the "first pressure", ie the outlet pressure of the main air compressor (MAC = main air compressor), in which the Total air is compressed, for example more than 4 bar, in particular 6 to 16 bar above the highest distillation pressure. In absolute terms, the "first pressure" is between 17 and 25 bar, for example. In HAP processes, the main air compressor is regularly the only machine powered by external energy to compress air. A "single machine" is understood here to mean a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in are housed in the same housing or connected to the same gearbox.

Eine Alternative zu derartigen HAP-Verfahren stellen so genannte MAC-BAC-Verfahren dar, bei denen die Luft im Hauptluftverdichter auf einen relativ niedrigen Gesamtluftdruck verdichtet wird, zum Beispiel auf den Betriebsdruck der Hochdrucksäule (plus Leitungsverlusten). Ein Teil der Luft aus dem Hauptluftverdichter im einem mit externer Energie angetriebenen Luftnachverdichter (BAC = booster air compressor) auf einen höheren Druck verdichtet wird. Dieser Luftteil unter höherem Druck (häufig Drosselstrom genannt) liefert den Großteil der für die (Pseudo-)Verdampfung des innenverdichteten Produkts notwendige Wärme im Hauptwärmetauscher. Er wird stromabwärts des Hauptluftverdichter in einem Drosselventil oder in einer Flüssigturbine (DLE = dense liquid expander) auf den im Destillationssäulen-System benötigten Druck entspannt.An alternative to such HAP processes are so-called MAC-BAC processes, in which the air in the main air compressor is compressed to a relatively low total air pressure, for example to the operating pressure of the high pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in a booster air compressor driven by external energy (BAC). This air section under higher pressure (often called a throttle flow) supplies the majority of the heat required for the (pseudo) evaporation of the internally compressed product in the main heat exchanger. It is expanded downstream of the main air compressor in a throttle valve or in a liquid turbine (DLE = dense liquid expander) to the pressure required in the distillation column system.

Vielfach zwingt ein schwankender Bedarf an innenverdichtetem Produkt dazu, eine Luftzerlegungsanlage auf variablen Betrieb mit variabler Druckgasproduktion auszulegen. Umgekehrt kann es sinnvoll sein, eine Luftzerlegungsanlage trotz konstanter oder im Wesentlichen konstanter Produktion variabel zu betreiben, indem verschiedene Betriebsweisen vorgesehen sind, die unterschiedlich hohen Energieverbrauch aufweisen.In many cases, a fluctuating demand for internally compressed products forces an air separation plant to be designed for variable operation with variable compressed gas production. Conversely, it can make sense to operate an air separation plant variably despite constant or essentially constant production by providing different operating modes which have different levels of energy consumption.

Ein konkretes Beispiel für eine derartige Randbedingung ist die Lieferung von innenverdichtetem Sauerstoff (GOXIV) und gegebenenfalls weiteren gasförmigen und/oder flüssigen Produkten an einer Ethylenoxid-Produktionsanlage. Hier ist es oftmals der Fall, dass der Sauerstoff-Bedarf dem Katalysator-Zustand bei der EO-Produktion angepasst wird; er kann daher zwischen 100% und ca. 70% während der Katalysator-Lebensdauer (in der Regel um die 3 Jahre) variiert werden. Dabei ist es wesentlich, dass während dieser Zeit die Luftzerlegungsanlage ca. die gleichen Zeiten mit unterschiedlichen GOXIV-Produktmengen (zwischen 100% und ca. 70%) betrieben wird. Daher ist es wichtig, dass die Anlage nicht nur im Design-Fall mit 100% GOXIV, sondern auch in Unterlastfällen effizient betrieben wird. Diese Forderung wird noch dadurch erschwert, dass die Produktion von anderen Luftzerlegungsprodukten unabhängig vom GOXIV-Produkt ist; zum Beispiel kann der Bedarf an einem, mehreren oder allen anderen Luftzerlegungsprodukten unverändert bleiben, während die GOX-Produktion von 100 % auf etwa 70 % sinkt. Bei solchen "anderen Luftzerlegungsprodukten" kann es sich beispielsweise um ein, mehrere oder alle der folgenden Produkte handeln:

  • Innenverdichtetes Stickstoffprodukt (GANIV)
  • Anderes gasförmiges Druckprodukt wie zum Beispiel gasförmig aus der Hochdrucksäule entnommener Druckstickstoff (HPGAN), der gegebenenfalls in einem Stickstoffverdichter weiter verdichtet wird.
  • Flüssigprodukt(e) wie flüssiger Sauerstoff, flüssiger Stickstoff und/oder flüssiges Argon.
A concrete example of such a boundary condition is the delivery of internally compressed oxygen (GOXIV) and possibly other gaseous and / or liquid products at an ethylene oxide production plant. It is often the case here that the oxygen requirement is adapted to the catalyst state during EO production; it can therefore be varied between 100% and approx. 70% during the catalyst life (usually around 3 years). It is essential that during this time the air separation plant has approximately the same times is operated with different GOXIV product quantities (between 100% and approx. 70%). It is therefore important that the system is operated efficiently not only in the design case with 100% GOXIV, but also in underload cases. This requirement is made even more difficult by the fact that the production of other air separation products is independent of the GOXIV product; for example, the need for one, more, or all other air separation products may remain unchanged while GOX production drops from 100% to about 70%. Such "other air separation products" can be, for example, one, several or all of the following products:
  • Internally compressed nitrogen product (GANIV)
  • Other gaseous pressure product, such as gaseous pressure nitrogen (HPGAN) taken from the high pressure column, which may be further compressed in a nitrogen compressor.
  • Liquid product (s) such as liquid oxygen, liquid nitrogen and / or liquid argon.

Mit einem konventionellen MAC-BAC-Verfahren ist diese Aufgabenstellung relativ gut zu bewerkstelligen , da beide Verdichter (MAC und BAC) für funktional getrennte Aufgaben zuständig sind. Der Hauptluftverdichter liefert im Prinzip nur die Einsatzluft für die Zerlegung; der Luftnachverdichter liefert Energie für die Innenverdichtung (GOXIV, GANIV) und für die Flüssigproduktion. Beide Maschinen können dabei in der Regel zwischen 70% und 100% relativ einfach geregelt werden.This task can be accomplished relatively well with a conventional MAC-BAC method, since both compressors (MAC and BAC) are responsible for functionally separate tasks. In principle, the main air compressor only supplies the feed air for disassembly; the air post-compressor supplies energy for internal compression (GOXIV, GANIV) and for liquid production. Both machines can usually be controlled relatively easily between 70% and 100%.

Bei einem HAP-Verfahren werden diese beiden Aufgaben (Lieferung von Zerlegungsluft und von Energie zur Innenverdichtung/Flüssigproduktion) mit einem einzigen Verdichter gelöst. Das kann zu Situationen führen, dass bestimmte Betriebsfälle außerhalb des Verdichter-Kennfeldes liegen und nicht fahrbar sind. Der Gesamtenergiebedarf einer Luftzerlegungsanlage wird nicht nur durch das GOXIV-Produkt, sondern zu einem großen Teil durch Flüssigproduktion beziehungsweise durch andere innenverdichteten Produkte bestimmt. Für die Menge der Zerlegungsluft ist das GOXIV-Produkt aber oftmals bestimmend. Wird die GOXIV-Menge deutlich reduziert, wird auch deutlich weniger Zerlegungsluft in die Anlage gefahren. Damit wird aber auch deutlich weniger Energie ins System eingetragen, was unter Umständen nicht mehr für die gewünschte Produktion von anderen Produkten (Flüssigkeiten, GANIV etc.) ausreichen kann. Um trotz der deutlich geringeren Luftmenge genügend Energie zu liefern, muss der Verdichterdruck deutlich höher gefahren werden. Dies ist aber bei einem HAP-Verfahren nur bedingt machbar, weil

  1. a) das Maschinen-Kennfeld begrenzt ist und
  2. b) der Auslegungsdruck für den "warmen" Anlagenteil (Vorkühlung, Adsorber etc.) darf nicht überschritten werden .
In a HAP process, these two tasks (supply of separation air and energy for internal compression / liquid production) are solved with a single compressor. This can lead to situations in which certain operating cases lie outside the compressor map and cannot be driven. The total energy requirement of an air separation plant is determined not only by the GOXIV product, but to a large extent by liquid production or by other internally compressed products. However, the GOXIV product is often decisive for the amount of separation air. If the amount of GOXIV is significantly reduced, significantly less separation air is fed into the system. However, this means that significantly less energy is introduced into the system, which may not be necessary for the desired production of other products (liquids, GANIV etc.) can suffice. In order to supply enough energy despite the significantly lower air volume, the compressor pressure must be increased significantly. However, this is only feasible to a limited extent with a HAP process because
  1. a) the engine map is limited and
  2. b) The design pressure for the "warm" part of the system (pre-cooling, adsorber, etc.) must not be exceeded.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine entsprechende Vorrichtung anzugeben, welche die Vorteile von HAP-Verfahren mit einer Flexibilität zu verbinden, wie sie ähnlich bei MAC-BAC-Verfahren bekannt ist. Unter "Flexibilität" wird hier insbesondere verstanden, dass das System nicht nur bei einer bestimmten Produktionsmenge an innenverdichtetem Produkt energetisch günstig betrieben werden kann, sondern im einem relativ weiten Lastbereich bei ungefähr gleich bleibend geringem spezifischen Energieverbrauch. Dabei soll insbesondere die Produktion von anderen Luftzerlegungsprodukten gleich bleiben oder sich zumindest weniger stark als die Produktmenge des Innenverdichtungsprodukts ändern.The invention is based on the object of specifying a method and a corresponding device which combine the advantages of HAP methods with flexibility such as is known in a similar way to MAC-BAC methods. “Flexibility” is understood here in particular to mean that the system can be operated not only with low energy in a certain production quantity of internally compressed product, but also in a relatively wide load range with approximately constant low specific energy consumption. In particular, the production of other air separation products should remain the same, or at least change less than the product quantity of the internal compression product.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the features of patent claim 1.

Bei der Erfindung wird in dem zweiten Betriebsmodus ein Teil der Einsatzluftmenge an dem gesamten Destillationssäulen-System vorbeigeleitet. Diese Menge nimmt dann nicht an der Erzeugung des ersten Produktstroms teil, kann aber trotzdem durch die erste Turbine geleitet werden, um damit genügend Kälte zu produzieren beziehungsweise genügend Energie ins System zu liefern, um die Flüssigproduktion aufrechterhalten zu können oder mindestens relativ weniger stark zu vermindern als die Menge der ersten Druckproduktion.In the invention, in the second operating mode, part of the quantity of feed air is bypassed the entire distillation column system. This quantity then does not take part in the generation of the first product stream, but can nevertheless be directed through the first turbine in order to produce enough cold or to supply the system with enough energy to be able to maintain or at least reduce the liquid production relatively less than the amount of the first print production.

Gemäß der Erfindung wird ein Teil der Einsatzluft nicht in das Destillationssäulen-System eingeleitet, sondern in den Hauptluftverdichter zurückgeführt, indem

  • der mehrstufige Verdichter durch den Hauptluftverdichter,
  • der erste Prozessstrom durch die gesamte Einsatzluft und
  • der zweite Prozessstrom durch einen Teil des arbeitsleistend entspannten ersten Teilstroms der Einsatzluft
gebildet werden.According to the invention, part of the feed air is not introduced into the distillation column system, but is returned to the main air compressor by
  • the multi-stage compressor through the main air compressor,
  • the first process stream through the entire feed air and
  • the second process stream through a part of the work-relieved, relaxed first part stream of the feed air
be formed.

Die überschüssige Luft wird nicht in das Destillationssäulen-System geleitet, sondern gleich nach Entspannung in der Turbine zurück in den Wärmetauscher geführt und anschließend ohne Abdrosselung an einer passenden Stelle (zum Beispiel nach der zweiten oder dritten Stufe) des Hauptluftverdichters eingespeist. Dadurch wird die notwendige Menge an "Überschuss"-Luft nicht vom atmosphärischen Druck, sondern beispielsweise von ca. 5 bar aus verdichtet, und es wird viel Energie gespart.The excess air is not fed into the distillation column system, but is fed back into the heat exchanger immediately after expansion in the turbine and then fed to a suitable point (for example after the second or third stage) of the main air compressor without throttling. As a result, the necessary amount of "excess" air is compressed not from atmospheric pressure, but, for example, from about 5 bar, and a lot of energy is saved.

Eine andere Möglichkeit (bei nicht vorhandenem Niederdruck-GAN-Verdichter) besteht darin, die überschüssige Luft ins Destillationssäulen-System zu leiten und zu trennen. Diese andere Möglichkeit ist nicht Teil der hier beanspruchten Erfindung. Dabei kann das in dieser Luftmenge vorhandene Argon gewonnen werden. Die überschüssige Sauerstoff-Menge kann dabei als Niederdruck-Sauerstoff aus der Niederdrucksäule entnommen werden und dem UN2-Strom zugeführt werden. Hier verliert man im Prinzip nur die Trennarbeit zur Gewinnung von zusätzlichen Sauerstoff-Molekülen, gleichzeitig wird aber deutlich mehr an Argon produziert.Another possibility (if a low-pressure GAN compressor is not available) is to guide and separate the excess air into the distillation column system. This other possibility is not part of the invention claimed here. The argon present in this amount of air can be obtained. The excess amount of oxygen can be taken as low-pressure oxygen from the low-pressure column and fed to the UN2 stream. In principle, you only lose the separation work to obtain additional oxygen molecules, but at the same time significantly more argon is produced.

Die variable Luftrückführung kann aber auch mit einer Stickstoffzwischeneinspeisung in einen entsprechenden Verdichter kombiniert werden, indem

  • ein dritter Prozessstrom in einem Stickstoffproduktverdichter von einem Eintrittsdruck auf einen Enddruck verdichtet wird und
  • mindestens zeitweise ein vierter Prozessstrom stromabwärts der ersten Stufe des Stickstoffproduktverdichters mit dem dritten Prozessstrom vermischt wird, wobei
  • der dritte Prozessstrom durch einen ersten gasförmigen Stickstoffstrom aus der Niederdrucksäule und
  • der vierte Prozessstrom durch ersten gasförmigen Stickstoffstrom aus der Hochdrucksäule
gebildet werden.The variable air recirculation can also be combined with an intermediate nitrogen feed into a corresponding compressor by
  • a third process stream is compressed in a nitrogen product compressor from an inlet pressure to a final pressure and
  • at least at times a fourth process stream downstream of the first stage of the nitrogen product compressor is mixed with the third process stream, wherein
  • the third process stream through a first gaseous nitrogen stream from the low pressure column and
  • the fourth process stream through first gaseous nitrogen stream from the high pressure column
be formed.

Es ist günstig, wenn die Vermischung des zweiten mit dem ersten Prozessstrom bei einer Zwischenstufe des mehrstufigen Verdichters durchgeführt wird.It is advantageous if the mixing of the second and the first process stream is carried out at an intermediate stage of the multi-stage compressor.

Zusätzlich kann in dem zweiten Betriebsmodus ein Sauerstoffgasstrom aus dem unteren Bereich der Niederdrucksäule entnommen, mit einem stickstoffangereicherten Strom aus dem oberen Bereich der Niederdrucksäule vermischt und das Gemisch im Hauptwärmetauscher angewärmt werden.In addition, in the second operating mode, an oxygen gas stream can be taken from the lower region of the low-pressure column, mixed with a nitrogen-enriched stream from the upper region of the low-pressure column, and the mixture can be warmed in the main heat exchanger.

Strom aus dem oberen Bereich der Niederdrucksäule vermischt und das Gemisch im Hauptwärmetauscher angewärmt werden.Electricity from the upper area of the low pressure column is mixed and the mixture is warmed up in the main heat exchanger.

Außerdem kann in einer speziellen Ausführungsform der Erfindung eine zweite Luftturbine eingesetzt werden, wobei ein dritter Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft in einem Hauptwärmetauscher auf eine Zwischentemperatur abgekühlt und in der zweiten Luftturbine arbeitsleistend entspannt wird und mindestens ein erster Teil des arbeitsleistend entspannten dritten Teilstroms in das Destillationssäulen-System eingeleitet wird.In addition, in a special embodiment of the invention, a second air turbine can be used, a third partial stream of the feed air compressed in the main air compressor being cooled to an intermediate temperature in a main heat exchanger and relaxed in the second air turbine in a work-performing manner, and at least a first part of the third partial stream being relaxed in the work Distillation column system is initiated.

Außerdem kann der zweite Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft in dem Hauptwärmetauscher auf eine Zwischentemperatur abgekühlt, in einem zweiten Nachverdichter, der als Kaltverdichter betrieben und von der zweiten Turbine angetrieben wird, auf einen dritten Druck nachverdichtet werden, der höher als der erste Druck ist, in dem Hauptwärmetauscher abgekühlt, (pseudo-)verflüssigt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Auf diese Weise kann der Druck des zweiten Teilstroms ohne Aufwendung äußerer Energie weiter erhöht werden. Ein entsprechend höherer Innenverdichtungsdruck kann erreicht werden.In addition, the second partial flow of the feed air compressed in the main air compressor can be cooled to an intermediate temperature in the main heat exchanger, can be post-compressed in a second post-compressor, which is operated as a cold compressor and driven by the second turbine, to a third pressure which is higher than the first pressure. cooled in the main heat exchanger, (pseudo) liquefied and then expanded and introduced into the distillation column system. In this way, the pressure of the second partial stream can be increased further without using external energy. A correspondingly higher internal compression pressure can be achieved.

Zusätzlich kann ein vierter Teilstrom der im Hauptluftverdichter verdichteten Luft unter dem ersten Druck in dem Hauptwärmetauscher abgekühlt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Durch einen derartigen zweiten Drosselstrom wird der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimiert.In addition, a fourth partial flow of the air compressed in the main air compressor can be cooled under the first pressure in the main heat exchanger and then expanded and introduced into the distillation column system. The heat exchange process in the main heat exchanger is further optimized by such a second throttle flow.

Bei einer anderen Ausführungsform mit einer zweiten Turbine ist es günstig, wenn der dritte Teilstrom in der zweiten Luftturbine auf einen Druck entspannt wird, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule ist, und der arbeitsleistend entspannte dritte Teilstrom in dem Hauptwärmetauscher weiter abgekühlt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Durch einen derartigen dritten Drosselstrom wird der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimiert.

  • in dem ersten Betriebsmodus eine erste Menge an Einsatzluft in dem Hauptluftverdichter verdichtet wird und
  • in dem zweiten Betriebsmodus eine zweite Menge an Einsatzluft in dem Hauptluftverdichter verdichtet wird, wobei
  • das Verhältnis von zweiter Menge an Einsatzluft zu erster Menge an Einsatzluft größer, insbesondere um mindestens 3 %, insbesondere um mehr als 5 %größer ist als das Verhältnis zwischen zweiter Menge an erstem Druckgasprodukt und erster Menge an erstem Druckgasprodukt.
In another embodiment with a second turbine, it is expedient if the third partial flow in the second air turbine is expanded to a pressure which is at least 1 bar higher than the operating pressure of the high-pressure column, and the work-relieved relaxed third partial flow in the main heat exchanger is cooled further and is then relaxed and introduced into the distillation column system. The heat exchange process in the main heat exchanger is further optimized by such a third throttle flow.
  • in the first operating mode, a first amount of feed air is compressed in the main air compressor and
  • in the second operating mode, a second amount of feed air is compressed in the main air compressor, wherein
  • the ratio of the second quantity of feed air to the first quantity of feed air is larger, in particular by at least 3%, in particular by more than 5%, greater than the ratio between the second quantity of first compressed gas product and the first quantity of first compressed gas product.

In Betriebsfällen mit geringerer GOXIV-Produktion, wird die Einsatzluftmenge in die Coldbox "künstlich" angehoben, das heißt es wird mehr Luft in den Tieftemperaturteil der Anlage gefahren als zur Gewinnung der für diesen Betriebsfall spezifizierten Drucksauerstoff-Produkte notwendig ist. Fährt man die Einsatzluft im "Überschuss", kann der Druck am Verdichter-Austritt reduziert werden, da die Energielieferung für die (Pseudo-)Verdampfung des GOXIV-Produkts dann nicht mit dem Luft-Druck, sondern mit der Luft-Menge erfolgt. Dabei ist es von der Bedeutung, dass die Luft nicht nur einfach im Überschuss gefahren (im Hauptluftverdichter verdichtet, im Wärmetauscher abgekühlt, in der Turbine auf den Hochdrucksäulen-Druck entspannt, im Wärmetauscher wieder angewärmt und schließlich auf atmosphärischen Druck abgedrosselt) wird, sondern es werden mit den weiter oben beschriebenen Merkmale auch weitere Vorteile erzielt.In operating cases with lower GOXIV production, the amount of air used in the cold box is "artificially" increased, which means that more air is driven into the low-temperature part of the system than is necessary to obtain the pressurized oxygen products specified for this operating case. If the feed air is run in "excess", the pressure at the compressor outlet can be reduced, since the energy supply for the (pseudo) evaporation of the GOXIV product is then not with the air pressure, but with the amount of air. It is important that the air is not simply run in excess (compressed in the main air compressor, cooled in the heat exchanger, expanded in the turbine to the high pressure column pressure, warmed up again in the heat exchanger and finally throttled to atmospheric pressure), but it is further advantages are also achieved with the features described above.

Durch diese Maßnahme steht weiterhin ausreichend Luft für die Gewinnung von anderen Produkten zur Verfügung. Zu Beispiel kann ausreichend Kälte erzeugt werden, um eine gleich bleibende Menge an Flüssigprodukten zu liefern.As a result of this measure, sufficient air is still available for the extraction of other products. For example, sufficient cold can be generated to deliver a constant amount of liquid products.

Bei der Erfindung wird der erste Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft stromaufwärts seiner Einleitung in den Hauptwärmetauscher in einem ersten Nachverdichter nachverdichtet, der im Warmen betrieben und von der ersten Turbine angetrieben wird. Dadurch ist der Eintrittsdruck der ersten Turbine deutlich höher als der erste Druck, auf den die Gesamtluft verdichtet wird. Die Luft für die zweite Turbine wird dagegen beispielsweise nicht nachverdichtet, das heißt ihr Eintrittsdruck liegt auf dem niedrigeren Niveau des ersten Drucks.In the invention, the first partial flow of the feed air compressed in the main air compressor is recompressed upstream of its introduction into the main heat exchanger in a first post-compressor which is operated in the warm state and is driven by the first turbine. As a result, the inlet pressure of the first turbine is significantly higher than the first pressure to which the total air is compressed. In contrast, the air for the second turbine, for example, is not post-compressed, i.e. its inlet pressure is at the lower level of the first pressure.

zweite Turbine wird dagegen beispielsweise nicht nachverdichtet, das heißt ihr Eintrittsdruck liegt auf dem niedrigeren Niveau des ersten Drucks.the second turbine, on the other hand, is not recompressed, for example, which means that its inlet pressure is at the lower level of the first pressure.

Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 8. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen der abhängigen Verfahrensansprüche entsprechen.The invention also relates to a device according to claim 8. The device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.

Bei den "Mitteln zum Umschalten zwischen einem ersten und einem zweiten Betriebsmodus" handelt es sich um komplexe Regel- und Steuerungsvorrichtungen, die im Zusammenwirken ein mindestens teilweise automatisches Umschalten zwischen den beiden Betriebsmodi ermöglichen, beispielsweise durch ein entsprechend programmiertes Betriebsleitsystem.The "means for switching between a first and a second operating mode" are complex regulating and control devices which, in cooperation, enable an at least partially automatic switching between the two operating modes, for example by means of an appropriately programmed operating control system.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein Ausführungsbeispiel der Erfindung mit Rückführung von Turbinenluft zum Hauptluftverdichter in dem zweiten Betriebsmodus,
Figur 2
eine Verfahrensvariante, die nicht Teil der hier beanspruchten Erfindung ist, aber zur weiteren Erläuterung der Erfindung dient, mit Einführung von gasförmigem Stickstoff aus der Hochdrucksäule in einen Stickstoffproduktverdichter und
Figuren 3 und 4
Abwandlungen der Figur 1 mit einem dritten Drosselstrom.
The invention and further details of the invention are explained in more detail below on the basis of exemplary embodiments schematically illustrated in the drawings. Here show:
Figure 1
an embodiment of the invention with return of turbine air to the main air compressor in the second operating mode,
Figure 2
a process variant, which is not part of the invention claimed here, but serves to further explain the invention, with the introduction of gaseous nitrogen from the high pressure column in a nitrogen product compressor and
Figures 3 and 4
Variations of the Figure 1 with a third inductor current.

Anhand von Figur 1 wird zunächst der erste Betriebsmodus einer ersten Ausführungsform des Verfahrens gemäß der Erfindung beschrieben. Atmosphärische Luft (AIR) wird über ein Filter 1 von einem Hauptluftverdichter 2 angesaugt. Der Hauptluftverdichter weist in dem Beispiel fünf Stufen auf und verdichtet den Gesamtluftstrom auf einen "ersten Druck" von beispielsweise 22 bar. Der Gesamtluftstrom 3 stromabwärts des Hauptluftverdichters 2 wird unter dem ersten Druck in einer Vorkühlung 4 gekühlt. Der vorgekühlte Gesamtluftstrom 5 wird in einer Reinigungseinrichtung 6, die insbesondere durch ein Paar umschaltbarer Molsieb-Adsorber gebildet wird, gereinigt. Der gereinigte Gesamtluftstrom 7 wird zu einem ersten Teil 8 in einem im Warmen betriebenen Luftnachverdichter 9 mit Nachkühler 10 auf einen zweiten Druck von beispielsweise 28 bar nachverdichtet und anschließend in einen "ersten Teilstrom" 11 (erster Turbinenluftstrom) und einen "zweiten Teilstrom" 12 (erster Drosselstrom) aufgeteilt.Based on Figure 1 The first operating mode of a first embodiment of the method according to the invention is first described. Atmospheric air (AIR) is drawn in by a main air compressor 2 via a filter 1. In the example, the main air compressor has five stages and compresses the total air flow to a "first pressure" of, for example, 22 bar. The total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4. The pre-cooled total air flow 5 is cleaned in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorbers. The cleaned total air flow 7 becomes a first part 8 in a hot air post-compressor 9 with after-cooler 10 to a second pressure of 28 bar, for example, and then divided into a "first partial flow" 11 (first turbine air flow) and a "second partial flow" 12 (first throttle flow).

Der erste Teilstrom 11 wird in einem Hauptwärmetauscher 13 auf eine erste Zwischentemperatur abgekühlt. Der abgekühlte erste Teilstrom 14 wird in einer ersten Luftturbine 15 von dem zweiten Druck auf etwa 5,5 bar arbeitsleistend entspannt. Die erste Luftturbine 15 treibt den warmen Luftnachverdichter 9 an. Der arbeitsleistend entspannte erste Teilstrom 16 wird in einem Abscheider (Phasentrenner) 17 eingeleitet. Der flüssige Anteil 18 wird über die Leitungen 19 und 20 in die Niederdrucksäule 22 des Destillationssäulen-Systems eingeleitet.The first partial flow 11 is cooled in a main heat exchanger 13 to a first intermediate temperature. The cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar in a work-performing manner. The first air turbine 15 drives the warm air post-compressor 9. The first partial stream 16, which is relaxed in terms of work, is introduced into a separator (phase separator) 17. The liquid portion 18 is introduced via lines 19 and 20 into the low pressure column 22 of the distillation column system.

Das Destillationssäulen-System umfasst eine Hochdrucksäule 21, die Niederdrucksäule 22 und einen Hauptkondensator 23 sowie eine übliche Argongewinnung 24 mit Rohargonsäule 25 und Reinargonsäule 26. Der Hauptkondensator 23 ist als Kondensator-Verdampfer ausgebildet, in dem konkreten Beispiel als Kaskadenverdampfer. Der Betriebsdruck am Kopf der Hochdrucksäule beträgt in dem Beispiel 5,3 bar, derjenige am Kopf der Niederdrucksäule 1,35 bar.The distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon recovery 24 with crude argon column 25 and pure argon column 26. The main condenser 23 is designed as a condenser-evaporator, in the specific example as a cascade evaporator. The operating pressure at the top of the high pressure column is 5.3 bar in the example, that at the top of the low pressure column is 1.35 bar.

Der zweite Teilstrom 12 der Einsatzluft wird in dem Hauptwärmetauscher 13 auf eine zweite Zwischentemperatur abgekühlt, die höher als die erste Zwischentemperatur ist, über Leitung 27 einem Kaltverdichter 28 zugeleitet und dort auf einen "dritten Druck" von ca. 40 bar nachverdichtet. Der nachverdichtete zweite Teilstrom 29 wird bei einer dritten Zwischentemperatur, die höher als die zweite Zwischentemperatur ist, wieder in den Hauptwärmetauscher 13 eingeleitet und dort bis zum kalten Ende abgekühlt. Der kalte zweite Teilstrom 30 wird in einem Drosselventil 31 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt. Ein Teil 33 wird wieder entnommen, in einem Unterkühlungs-Gegenströmer 34 abgekühlt und über die Leitungen 35 und 20 in die Niederdrucksäule 22 eingespeist.The second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, is fed via line 27 to a cold compressor 28 and there is further compressed to a "third pressure" of approximately 40 bar. The post-compressed second partial flow 29 is introduced again into the main heat exchanger 13 at a third intermediate temperature, which is higher than the second intermediate temperature, and is cooled there to the cold end. The cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32. A part 33 is removed again, cooled in a subcooling countercurrent 34 and fed via lines 35 and 20 into the low-pressure column 22.

Ein "dritter Teilstrom" 36 der Einsatzluft wird unter dem ersten Druck in den Hauptwärmetauscher 13 eingeleitet und dort auf eine vierte Zwischentemperatur abgekühlt, die in dem Beispiel etwas niedriger als die erste Zwischentemperatur liegt. Der abgekühlte dritte Teilstrom 37 wird in einer zweiten Luftturbine 38 von dem ersten Druck auf etwa Hochdrucksäulendruck arbeitsleistend entspannt. Die zweite Luftturbine 38 treibt den Kaltverdichter 28 an. Der arbeitsleistend entspannte dritte Teilstrom 39 wird über Leitung 40 der Hochdrucksäule 21 am Sumpf zugeführt.A "third partial flow" 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and is cooled there to a fourth intermediate temperature, which in the example is somewhat lower than the first intermediate temperature. The cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to approximately high-pressure column pressure while performing work. The second Air turbine 38 drives cold compressor 28. The third partial stream 39, which is relaxed in terms of work, is fed via line 40 to the high-pressure column 21 at the bottom.

Ein "vierter Teilstrom" 41 (zweiter Drosselstrom) durchströmt den Hauptwärmetauscher 13 vom warmen bis zum kalten Ende unter dem ersten Druck. Der kalte vierte Teilstrom 42 wird in einem Drosselventil 43 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt.A "fourth partial flow" 41 (second throttle flow) flows through the main heat exchanger 13 from the warm to the cold end under the first pressure. The cold fourth partial flow 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed to the high-pressure column 21 via line 32.

Die sauerstoffangereicherte Sumpfflüssigkeit der Hochdrucksäule 21 wird im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 45 in die fakultative Argongewinnung 24 eingeleitet. Daraus erzeugter Dampf 46 und verbleibende Flüssigkeit 47 werden in die Niederdrucksäule 22 eingespeist.The oxygen-enriched bottom liquid of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced into the optional argon recovery 24 via line 45. Vapor 46 generated therefrom and remaining liquid 47 are fed into the low-pressure column 22.

Ein erster Teil 49 des Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Verflüssigungsraum des Hauptkondensators 23 gegen im Verdampfungsraum verdampfenden flüssigen Sauerstoff aus dem Sumpf der Niederdrucksäule vollständig oder im Wesentlichen vollständig verflüssigt. Ein erster Teil 51 des dabei erzeugten flüssigen Stickstoffs 50 wird als Rücklauf auf die Hochdrucksäule 21 aufgegeben. Ein zweiter Teil 52 wird im Unterkühlungs-Gegenströmer 34 abgekühlt, über Leitung 53 in die Niederdrucksäule 22 eingespeist. Mindestens ein Teil des flüssigen Niederdruckstickstoffs 53 dient als Rücklauf in der Niederdrucksäule 21; ein anderer Teil 54 kann als Flüssigstickstoffprodukt (LIN) gewonnen werden.A first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction chamber of the main condenser 23 against liquid oxygen evaporating in the evaporation chamber from the sump of the low-pressure column. A first part 51 of the liquid nitrogen 50 produced in the process is fed as a return to the high-pressure column 21. A second part 52 is cooled in the subcooling countercurrent 34 and fed into the low-pressure column 22 via line 53. At least a part of the liquid low-pressure nitrogen 53 serves as a return in the low-pressure column 21; another part 54 can be obtained as a liquid nitrogen product (LIN).

Vom Kopf der Niederdrucksäule 22 wird gasförmiger Niederdruckstickstoff 55 abgezogen und im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt. Der warme Niederdruckstickstoff 56 wird in einem aus zwei Sektionen bestehenden Stickstoffproduktverdichter (57, 59) mit Zwischen- und Nachkühlung (58, 60) auf den gewünschten Produktdruck verdichtet, der in dem Beispiel 12 bar beträgt. Die erste Sektion 57 des Stickstoffproduktverdichters besteht beispielsweise aus zwei oder drei Stufen mit dazugehörigen Nachkühlern; die zweite Sektion 59 weist mindestens eine Stufe auf und ist vorzugsweise ebenfalls zwischen- und nachgekühlt.Gaseous low-pressure nitrogen 55 is drawn off from the top of the low-pressure column 22 and heated in the supercooling countercurrent 34 and in the main heat exchanger 13. The warm low-pressure nitrogen 56 is compressed in a two-section nitrogen product compressor (57, 59) with intermediate and after-cooling (58, 60) to the desired product pressure, which in the example is 12 bar. The first section 57 of the nitrogen product compressor consists, for example, of two or three stages with associated aftercoolers; the second section 59 has at least one stage and is preferably also intercooled and postcooled.

Von einer Zwischenstelle der Niederdrucksäule 22 wird gasförmiger Unreinstickstoff 61 abgezogen und im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt. Der warme Unreinstickstoff 62 kann in die Atmosphäre (ATM) abgeblasen (63) und/oder als Regeneriergas 64 für die Reinigungseinrichtung 6 eingesetzt werden.Gaseous impure nitrogen 61 is drawn off from an intermediate point of the low-pressure column 22 and in the supercooling counterflow 34 and in the main heat exchanger 13 warmed up. The warm impure nitrogen 62 can be blown off (63) into the atmosphere (ATM) and / or used as regeneration gas 64 for the cleaning device 6.

Die Leitungen 67 und 68 (sogenannter Argonübergang) verbinden die Niederdrucksäule 22 mit der Rohargonsäule 25 der Argongewinnung 24.The lines 67 and 68 (so-called argon transition) connect the low-pressure column 22 to the crude argon column 25 of the argon extraction 24.

Ein erster Teil 70 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 22 wird als "erster Produktstrom" abgezogen, in einer Sauerstoffpumpe 71 auf einen "ersten Produktdruck" von beispielsweise 37 bar gebracht und unter dem ersten Produktdruck in dem Hauptwärmetauscher 13 verdampft und schließlich über Leitung 72 als "erstes Druckgasprodukt" (GOX IC - innenverdichteter gasförmiger Sauerstoff) gewonnen.A first portion 70 of the liquid oxygen 69 from the bottom of the low pressure column 22 is withdrawn as a "first product stream", brought to a "first product pressure" of, for example, 37 bar in an oxygen pump 71 and evaporated under the first product pressure in the main heat exchanger 13 and finally via line 72 as the "first pressurized gas product" (GOX IC - internally compressed gaseous oxygen).

Ein zweiter Teil 73 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 22 wird gegebenenfalls im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 74 als Flüssigsauerstoffprodukt (LOX) gewonnen.A second part 73 of the liquid oxygen 69 from the bottom of the low-pressure column 22 is optionally cooled in the supercooling countercurrent 34 and obtained as a liquid oxygen product (LOX) via line 74.

In dem Beispiel wird auch ein dritter Teil 75 des flüssigen Stickstoffs 50 aus der Hochdrucksäule 21 beziehungsweise dem Hauptkondensator 23 einer Innenverdichtung unterzogen, indem er in einer Stickstoffpumpe 76 auf einen zweiten Produktdruck von beispielsweise 37 bar gebracht, unter dem zweiten Produktdruck in dem Hauptwärmetauscher 13 pseudo-verdampft und schließlich über Leitung 77 als innenverdichtetes gasförmiges Stickstoff-Druckprodukt (GAN IC) gewonnen.In the example, a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 or the main condenser 23 is also subjected to an internal compression by bringing it to a second product pressure of, for example, 37 bar in a nitrogen pump 76, under the second product pressure in the main heat exchanger 13 pseudo evaporated and finally obtained via line 77 as an internally compressed gaseous nitrogen pressure product (GAN IC).

Ein zweiter Teil 78 des gasförmigen Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Hauptwärmetauscher angewärmt und über Leitung 79 entweder als gasförmiges Mitteldruckprodukt gewonnen oder - wie dargestellt - als Dichtgas (Sealgas) für eine oder mehrere der dargestellten Prozesspumpen eingesetzt.A second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is heated in the main heat exchanger and either obtained via line 79 as a gaseous medium-pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the process pumps shown.

Wenn man als "ersten Betriebsmodus" den Betrieb mit der maximalen Sauerstoffproduktion (100 % gemäß der Auslegung) bezeichnet, bleiben in dieser Betriebsweise die fett dargestellten Leitungen 65/66 außer Betrieb.If one calls the "first operating mode" the operation with the maximum oxygen production (100% according to the design), the lines 65/66 shown in bold will remain inoperative in this operating mode.

Eine niedrigere Sauerstoffproduktion (beispielsweise 75 %) kann dann als "zweiter Betriebsmodus" angesehen werden. Hier wird ein Teil des gasförmigen Anteils 17 des arbeitsleistend entspannten ersten Teilstroms 16 als "zweiter Prozessstrom" über die Leitungen 65, 66 durch den Hauptwärmetauscher zu einer Zwischenstufe des Hauptluftverdichters 2 zurückgeführt. In dem Beispiel wird der Rückführstrom zwischen der zweiten und der dritten Stufe beziehungsweise zwischen der dritten und vierten Stufe des Hauptluftverdichters der Einsatzluft zugemischt. (Diese Einsatzluft stellt den "ersten Prozessstrom" dar.) Dadurch kann die Luftmenge durch die Turbine 15 relativ hoch gehalten werden und eine unveränderte - oder zumindest eine weniger stark reduzierte - Menge and Stickstoff- und Flüssigprodukten gewonnen werden.A lower oxygen production (for example 75%) can then be regarded as a "second operating mode". Here, part of the gaseous portion 17 of the first partial stream 16 relaxed as a "second process stream" via the lines 65, 66 through the main heat exchanger to an intermediate stage of the main air compressor 2. In the example, the recycle stream is admixed to the feed air between the second and third stages or between the third and fourth stages of the main air compressor. (This feed air represents the "first process stream".) As a result, the amount of air through the turbine 15 can be kept relatively high and an unchanged - or at least a less reduced - amount of nitrogen and liquid products can be obtained.

Genauso gut könnte eine 95 %-Betriebsweise als "erster Betriebsmodus" angesehen werden. Ein "zweiter Betriebsmodus" wird dann beispielsweise mit einer Sauerstoffproduktion von 90 % des Auslegungswerts erreicht.A 95% mode of operation could just as well be regarded as the "first mode of operation". A "second operating mode" is then achieved, for example, with an oxygen production of 90% of the design value.

Die folgende Tabelle führt beispielhafte Zahlenwerte zweier verschiedener Betriebsmodi der Anlage von Figur 1 an: GOX-IC-Menge 72 Luftmenge durch Filter 1 Rückführmenge 65/66* 100 % 100 % 0 % 76 % 83 % 4,2 % The following table shows exemplary numerical values of two different operating modes of the system Figure 1 on: GOX IC lot 72 Air flow through filter 1 Return quantity 65/66 * 100% 100% 0% 76% 83% 4.2%

Die Rückführmenge bezieht sich in der Tabelle auf die aktuelle Luftmenge durch Filter 1. Alle Prozentangaben beziehen sich hier und im übrigen Text auf molare Mengen, wenn nichts Anderes angegeben ist.The return quantity in the table relates to the current air quantity through filter 1. All percentages here and in the rest of the text refer to molar quantities, unless otherwise stated.

Die Flexibilität des Verfahrens kann durch die im Folgenden beschriebene fakultative Maßnahme weiter erhöht werden. Hierbei wird in dem zweiten Betriebsmodus gasförmiger Sauerstoff 181 aus der Niederdrucksäule abgezogen und mit dem gasförmigen Unreinstickstoff 61 aus der Niederdrucksäule vermischt. Die Vermischung findet in dem Beispiel stromabwärts des Unterkühlungs-Gegenströmers 34 statt. Im ersten Betriebsmodus ist die Leitung 181 geschlossen oder es wird weniger Gas über Leitung 181 geführt.The flexibility of the process can be further increased by the optional measure described below. In the second operating mode, gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column. The mixing takes place downstream of the supercooling counterflow 34 in the example. In the first operating mode, line 181 is closed, or less gas is conducted via line 181.

In Figur 2 ist eine Ausführungsform einer zweiten Verfahrensvariante dargestellt, welche nicht Teil der hier beanspruchten Erfindung ist. Sie unterscheidet sich von Figur 1 durch die folgenden Merkmale.In Figure 2 An embodiment of a second method variant is shown, which is not part of the invention claimed here. It differs from Figure 1 by the following features.

Die Rückführleitung 65, 66 für Luft fehlt hier. Stattdessen wird im zweiten Betriebsmodus zusätzlich zu der Dichtgasmenge 79 ein zusätzlicher Teil 180 des gasförmigen Kopfstickstoffs 48 vom Kopf der Hochdrucksäule als "zweiter Prozessstrom" 180 über die Leitungen 178, 179 geführt und schließlich zwischen den beiden Sektionen 57, 59 des Stickstoffproduktverdichters mit den Stickstoff 56 aus der Niederdrucksäule vermischt, der in der Variante den "ersten Prozessstrom" bildet.The return line 65, 66 for air is missing here. Instead, in the second operating mode, in addition to the amount of sealing gas 79, an additional part 180 of the gaseous top nitrogen 48 is led from the top of the high-pressure column as a "second process stream" 180 via lines 178, 179 and finally between the two sections 57, 59 of the nitrogen product compressor with the nitrogen 56 mixed from the low pressure column, which forms the "first process stream" in the variant.

Die entsprechende Stickstoffmenge 180 aus der Hochdrucksäule wird nicht im Hauptkondensator 23 kondensiert und nicht in die Niederdrucksäule eingeleitet. Dadurch nimmt sie nicht an der Rektifikation in der Niederdrucksäule teil (weder indirekt über die Verdampfung des Sumpfsauerstoffs, noch direkt durch Verwendung als Rücklaufflüssigkeit) und ermöglicht dabei die Verringerung der Sauerstoffproduktion. Gleichzeitig steht gleich viel Luft (oder nur unwesentlich weniger) zur Kälteproduktion und Stickstofferzeugung zur Verfügung.The corresponding amount of nitrogen 180 from the high pressure column is not condensed in the main condenser 23 and is not introduced into the low pressure column. As a result, it does not take part in the rectification in the low-pressure column (neither indirectly via the evaporation of the bottoms oxygen, nor directly through use as a return liquid) and thereby enables the reduction in oxygen production. At the same time, the same amount of air (or only slightly less) is available for cold production and nitrogen generation.

Im ersten Betriebsmodus wird eine geringere Menge an zweitem Prozessstrom 180 zur Zwischenstelle des Stickstoffproduktverdichters gefahren oder Leitung 180 ist ganz geschlossen.In the first operating mode, a smaller amount of second process stream 180 is moved to the intermediate point of the nitrogen product compressor or line 180 is completely closed.

Die Flexibilität des Verfahrens kann durch die im Folgenden beschrieben fakultative Maßnahme weiter erhöht werden. Hierbei wird in dem zweiten Betriebsmodus gasförmiger Sauerstoff 181 aus der Niederdrucksäule abgezogen und mit dem gasförmigen Unreinstickstoff 61 aus der Niederdrucksäule vermischt. Die Vermischung findet in dem Beispiel stromabwärts des Unterkühlungs-Gegenströmers 34 statt. Im ersten Betriebsmodus ist die Leitung 181 geschlossen oder es wird weniger Gas über Leitung 181 geführt.The flexibility of the process can be further increased by the optional measure described below. In the second operating mode, gaseous oxygen 181 is withdrawn from the low-pressure column and mixed with the gaseous impure nitrogen 61 from the low-pressure column. The mixing takes place downstream of the supercooling counterflow 34 in the example. In the first operating mode, line 181 is closed, or less gas is conducted via line 181.

Die folgende Tabelle führt beispielhafte Zahlenwerte zweier verschiedener Betriebsmodi der Anlage von Figur 2 an: GOX-IC-Menge 72 Luftmenge durch Hauptluftverdichter 2 Stickstoffmenge durch Leitung 180 Sauerstoffmenge durch Leitung 181 100 % 100 % 0 % 0 % 76 % 83% 5 % 0 % The following table shows exemplary numerical values of two different operating modes of the system Figure 2 on: GOX IC lot 72 Air volume through main air compressor 2 Amount of nitrogen through line 180 Amount of oxygen through line 181 100% 100% 0% 0% 76% 83% 5% 0%

Die Stickstoffmenge durch Leitung 180 bezieht sich auf die Luftmenge durch Filter 1 im Designfall.The amount of nitrogen through line 180 relates to the amount of air through filter 1 in the design case.

Figur 3 unterscheidet sich von Figur 1 durch einen dritten Drosselstrom. Hierzu wird die zweite Turbine 38 mit einem relativ großen Austrittsdruck und einer relativ hohen Austrittstemperatur betrieben. Der arbeitsleistend entspannte Turbinenstrom 339 weist dann einen Druck auf, der mindestens 1 bar, insbesondere 4 bis 11 bar über dem Betriebsdruck der Hochdrucksäule liegt, und eine Temperatur, die mindestens 10 K, insbesondere 20 bis 60 K oberhalb der Eintrittstemperatur der Niederdruck-Stickstoffströme 55, 61 am kalten Ende des Hauptwärmetauschers liegt. Dieser Strom wird dann im kalten Teil des Hauptwärmetauschers weiter abgekühlt. Der weiter abgekühlte dritte Teilstrom 340 wird als dritter Drosselstrom in einem Drosselventil 341 auf etwa Hochdrucksäulendruck entspannt und über Leitung 32 in die Hochdrucksäule eingeführt. Hierdurch lässt sich der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimieren. Figure 3 differs from Figure 1 through a third inductor current. For this purpose, the second turbine 38 is operated with a relatively high outlet pressure and a relatively high outlet temperature. Turbine flow 339, which has been relieved of work, then has a pressure which is at least 1 bar, in particular 4 to 11 bar, above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 20 to 60 K, above the inlet temperature of low-pressure nitrogen flows 55 , 61 is at the cold end of the main heat exchanger. This stream is then further cooled in the cold part of the main heat exchanger. The further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to approximately high-pressure column pressure and introduced into the high-pressure column via line 32. This allows the heat exchange process in the main heat exchanger to be further optimized.

In Figur 4 wird in Abweichung von Figur 3 der dritte Teilstrom 436 nicht unter dem ersten Druck, sondern unter dem höheren zweiten Druck in die zweite Turbine 38 eingeleitet.In Figure 4 is in deviation from Figure 3 the third partial flow 436 is introduced into the second turbine 38 not under the first pressure but under the higher second pressure.

Die zusätzlichen Maßnahmen der Figuren 3 und 4 können nicht nur bei der Erfindung eingesetzt werden, sondern auch bei der Variante nach Figur 2.The additional measures of Figures 3 and 4th can not only be used in the invention, but also in the variant according to Figure 2 .

Claims (8)

  1. Method for the variable production of a compressed gas product (72; 77) by means of the low-temperature separation of air in a distillation column system having a high-pressure column (21) and a low-pressure column (22) and in which
    - the entire feed air is compressed in a main air compressor (2) to a first pressure, which is at least 4 bars higher than the operating pressure of the high-pressure column (21),
    - a first partial flow (8, 11, 14) of the feed air (7) compressed in the main air compressor (2) is cooled to an intermediate temperature in a main heat exchanger (13) and is expanded in a first air turbine (15) to perform work,
    - at least a first part of the first partial flow (16) expanded to perform work is introduced (40; 18, 19, 20) into the distillation column system,
    - a second partial flow (12, 27, 29, 30) of the feed air compressed in the main air compressor (2) is post-compressed in a first post-compressor (9), which is operated in warm mode and driven by the first turbine (15), to a second pressure that is higher than the first pressure, is cooled in the main heat exchanger (13) and then expanded (31), and is introduced into the distillation column system,
    - a first product flow (69; 75) is withdrawn in liquid form from the distillation column system and is subjected to a pressure increase (71; 76) to a first product pressure,
    - the first product flow is evaporated or pseudo-evaporated and heated under the first product pressure in the main heat exchanger (13),
    - the heated first product flow (72; 77) is produced as the first compressed gas product (GOX IC; GAN IC),
    - a first process flow containing at least 78 mol% nitrogen is compressed in a multi-stage compressor (2) from an inlet pressure to a final pressure, wherein
    - the multi-stage compressor is formed by the main air compressor (2), and
    - the first process flow is formed by the entire feed air,
    - at least temporarily, a second process flow (65) containing at least 78 mol% nitrogen is mixed, downstream of the first stage of the multi-stage compressor (2), with the first process flow, wherein the second process flow is formed by a part (65) of the first partial flow (16), expanded to perform work, of the feed air,
    - in a first operating mode, a first quantity of the first compressed gas product is produced,
    - in a second operating mode, a second quantity of the first compressed gas product, which is less than the first quantity, is produced,
    - in the first operating mode, a first quantity of the second process flow (65), which may also be zero, is compressed in the multi-stage compressor (2),
    - in the second operating mode, a second quantity of the second process flow (65), which is greater than the first quantity of the second process flow, is compressed in the multi-stage compressor (2),
    characterized in that
    - in the first operating mode, a first quantity of feed air is compressed in the main air compressor (2), and
    - in the second operating mode, a second quantity of feed air, which is less than the first quantity of feed air, is compressed in the main air compressor (2), wherein
    - the ratio of the second quantity of feed air to the first quantity of feed air is greater - in particular, more than 3% greater - than the ratio between the second quantity of the first compressed gas product and the first quantity of the first compressed gas product.
  2. Method according to claim 1, characterized in that
    - a third process flow is compressed in a nitrogen product compressor from an inlet pressure to a final pressure, and
    - at least temporarily, a fourth process flow is mixed, downstream of the first stage of the nitrogen product compressor, with the third process flow, wherein
    - the third process flow is formed by a first gaseous nitrogen flow from the low-pressure column, and
    - the fourth process flow is formed by a first gaseous nitrogen flow from the high-pressure column.
  3. Method according to one of claims 1 through 2, characterized in that, in the second operating mode, an oxygen gas flow (181) is withdrawn from the lower area of the low-pressure column (22) and is mixed with a nitrogen-enriched flow (61) from the upper area of the low-pressure column (22), and the mixture is heated in the main heat exchanger (13).
  4. Method according to one of claims 1 through 3, characterized in that
    - a third partial flow (36, 37) of the feed air (7) compressed in the main air compressor (2) is cooled to an intermediate temperature in the main heat exchanger (13) and is expanded in a second air turbine (38) to perform work, and
    - at least a first part of the third partial flow (39) expanded to perform work is introduced (40) into the distillation column system,
    - wherein the turbine inlet pressure of the second air turbine is, in particular, equal to the first pressure.
  5. Method according to claim 4, characterized in that
    - the second partial flow (12, 27, 29, 30) of the feed air (7) compressed in the main air compressor (2) is cooled downstream of the first post-compressor (9) to an intermediate temperature in the main heat exchanger (13), is post-compressed in a second post-compressor (28), which is operated as a cold compressor and is driven by the second turbine (38), to a third pressure that is higher than the first pressure, is cooled in the main heat exchanger (13), and then expanded (31) and introduced (32) into the distillation column system.
  6. Method according to one of claims 1 through 5, characterized in that a fourth partial flow (41, 42) of the air (7) compressed in the main air compressor (2) is cooled under the first pressure in the main heat exchanger (13) and then expanded (43) and introduced into the distillation column system.
  7. Method according to claim 4 or 5 or according to claim 6 relating back to one of claims 4 or 5, characterized in that
    - the third partial flow (37, 339) is expanded in the second air turbine (38) to a pressure that is at least 1 bar higher than the operating pressure of the high-pressure column (21), and
    - the third partial flow (339), which is expanded to perform work, is further cooled in the main heat exchanger (13) and then expanded (341) and introduced into the distillation column system.
  8. Device for the variable production of a compressed gas product (72; 73) by means of the low-temperature separation of air, with
    - a distillation column system having a high-pressure column (21) and a low-pressure column (22),
    - a main air compressor (2) for compressing the entire feed air to a first pressure that is at least 4 bar higher than the operating pressure of the high-pressure column (21),
    - means for cooling in a main heat exchanger (13) a first partial flow (8, 11, 14) of the feed air (7), compressed in the main air compressor (2), to an intermediate temperature,
    - a first air turbine (15) for the expansion of the cooled first partial flow to perform work,
    - means for introducing (40; 18, 19, 20) the first partial flow (16) expanded to perform work into the distillation column system,
    - a first post-compressor (9) for post-compressing a second partial flow (12, 27, 29, 30) of the feed air, compressed in the main air compressor (2), to a second pressure that is higher than the first pressure, wherein the post-compressor (9) is operable in warm mode and is driven by the first turbine (15), - means for cooling the post-compressed, second partial flow in the main heat exchanger (13),
    - means for expanding (31) and introducing the cooled, second partial flow into the distillation column system,
    - means for the liquid withdrawal of a first product flow (69; 75) from the distillation column system and for increasing the pressure (71; 76) of the liquid first product flow to a first product pressure,
    - means for evaporating or pseudo-evaporating and heating the first product flow under the first product pressure in the main heat exchanger (13),
    - means for producing the heated first product flow (72; 77) as the first compressed gas product (GOX IC; GAN IC),
    - a multi-stage compressor (2) for compressing a first process flow containing at least 78 mol% nitrogen from an inlet pressure to a final pressure, wherein
    - the multi-stage compressor is formed by the main air compressor (2), and
    - the first process flow is formed by the entire feed air,
    - means for mixing, downstream of the first stage of the multi-stage compressor (2; 57/59), a second process flow (65), which contains at least 78 mol% nitrogen, with the first process flow, wherein the second process flow (180) is formed by a part (65) of the first partial flow (16), expanded to perform work, of the feed air,
    - means for switching between a first and a second operating mode, wherein
    - in the first operating mode, a first quantity of the first compressed gas product is produced,
    - in a second operating mode, a second quantity of the first compressed gas product, which is less than the first quantity, is produced, and
    - the means for switching between the first and the second operating modes are designed such that
    - in the first operating mode, a first quantity of the second process flow (65), which may also be zero, is compressed in the multi-stage compressor (2) from an inlet pressure to a final pressure,
    - in the second operating mode, a second quantity of the second process flow (65; 180), which is larger than the first quantity of the second process flow, is compressed in the multi-stage compressor (2; 57/59),
    characterized in that the means for switching between the first and the second operating modes are designed such that
    - in the first operating mode, a first quantity of feed air is compressed in the main air compressor (2), and
    - in the second operating mode, a second quantity of feed air, which is less than the first quantity of feed air, is compressed in the main air compressor (2), wherein
    - the ratio of the second quantity of feed air to the first quantity of feed air is greater - in particular, more than 3% greater - than the ratio between the second quantity of the first compressed gas product and the first quantity of the first compressed gas product.
EP15735849.0A 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption Active EP3164654B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14002307.8A EP2963367A1 (en) 2014-07-05 2014-07-05 Method and device for cryogenic air separation with variable power consumption
PCT/EP2015/001284 WO2016005030A1 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption

Publications (2)

Publication Number Publication Date
EP3164654A1 EP3164654A1 (en) 2017-05-10
EP3164654B1 true EP3164654B1 (en) 2020-07-29

Family

ID=51176034

Family Applications (3)

Application Number Title Priority Date Filing Date
EP14002307.8A Withdrawn EP2963367A1 (en) 2014-07-05 2014-07-05 Method and device for cryogenic air separation with variable power consumption
EP15735849.0A Active EP3164654B1 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption
EP15733625.6A Withdrawn EP3164653A1 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14002307.8A Withdrawn EP2963367A1 (en) 2014-07-05 2014-07-05 Method and device for cryogenic air separation with variable power consumption

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15733625.6A Withdrawn EP3164653A1 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption

Country Status (6)

Country Link
US (2) US10458702B2 (en)
EP (3) EP2963367A1 (en)
CN (2) CN106662394B (en)
RU (2) RU2691210C2 (en)
TW (2) TW201607599A (en)
WO (2) WO2016005031A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963367A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
US10746461B2 (en) * 2016-08-30 2020-08-18 8 Rivers Capital, Llc Cryogenic air separation method for producing oxygen at high pressures
EP3312533A1 (en) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Method for air separation and air separation plant
DE102017010001A1 (en) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Process and installation for the cryogenic separation of air
DE102016015292A1 (en) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Method of providing one or more air products with an air separation plant
EP3343158A1 (en) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system
US10359231B2 (en) 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
FR3062197B3 (en) * 2017-05-24 2019-05-10 Air Liquide METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
WO2018219501A1 (en) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Method for obtaining one or more air products and air separation plant
HUE045459T2 (en) * 2017-06-02 2019-12-30 Linde Ag Method for producing one or more air products and air separation system
FR3072451B1 (en) * 2017-10-13 2022-01-21 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US11578916B2 (en) * 2017-12-29 2023-02-14 L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude Method and device for producing air product based on cryogenic rectification
WO2019214847A1 (en) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Method for obtaining one or more air products and air separation system
EP3620739A1 (en) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
KR20210070988A (en) 2018-10-09 2021-06-15 린데 게엠베하 Method for obtaining at least one air product and an air separation system
WO2020083520A1 (en) 2018-10-26 2020-04-30 Linde Aktiengesellschaft Method for obtaining one or more air products, and air separation unit
DE202018005045U1 (en) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Plant for the production of argon by cryogenic separation of air
EP3671085A1 (en) 2018-12-18 2020-06-24 Linde GmbH Assembly and method for recovering compression heat from the air which is compressed and processed in an air processing system
DE102019000335A1 (en) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Process for providing air products and air separation plant
EP3696486A1 (en) 2019-02-13 2020-08-19 Linde GmbH Method and apparatus for providing one or more gaseous oxygen rich air products
EP3699535A1 (en) 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product
EP3699534A1 (en) 2019-02-19 2020-08-26 Linde GmbH Method and air separation system for variable provision of a gaseous pressurised air product
EP4211409A1 (en) 2020-09-08 2023-07-19 Linde GmbH Method for obtaining one or more air products, and air fractionation plant
WO2022053173A1 (en) 2020-09-08 2022-03-17 Linde Gmbh Method and plant for cryogenic fractionation of air
CN116547488A (en) 2020-11-24 2023-08-04 林德有限责任公司 Method and apparatus for cryogenic separation of air
WO2022263013A1 (en) 2021-06-17 2022-12-22 Linde Gmbh Method and plant for providing a pressurized oxygen-rich, gaseous air product
DE202021002439U1 (en) 2021-07-17 2021-10-20 Linde Gmbh compressor
TW202326047A (en) 2021-09-02 2023-07-01 德商林德有限公司 Method for recovering one or more air products, and air separation plant
DE202021002895U1 (en) 2021-09-07 2022-02-09 Linde GmbH Plant for the low-temperature separation of air
CN117940727A (en) 2021-09-29 2024-04-26 林德有限责任公司 Method and air separation plant for the cryogenic separation of air
CN114674112A (en) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 Automatic oxygen-nitrogen conversion method for liquefaction device

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132C3 (en) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
SU787829A1 (en) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Method of producing liquid and gaseous components of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
DE3367023D1 (en) 1982-05-03 1986-11-20 Linde Ag Process and apparatus for obtaining gaseous oxygen at elevated pressure
DE3738559A1 (en) * 1987-11-13 1989-05-24 Linde Ag METHOD FOR AIR DISASSEMBLY BY DEEP TEMPERATURE RECTIFICATION
EP0383994A3 (en) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Air rectification process and apparatus
RU2054609C1 (en) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Air separation method
DE4109945A1 (en) 1991-03-26 1992-10-01 Linde Ag METHOD FOR DEEP TEMPERATURE DISPOSAL OF AIR
FR2689224B1 (en) 1992-03-24 1994-05-06 Lair Liquide PROCESS AND PLANT FOR THE PRODUCTION OF NITROGEN AT HIGH PRESSURE AND OXYGEN.
FR2692664A1 (en) * 1992-06-23 1993-12-24 Lair Liquide Process and installation for producing gaseous oxygen under pressure.
DE4443190A1 (en) 1994-12-05 1996-06-13 Linde Ag Method and apparatus for the cryogenic separation of air
DE19526785C1 (en) 1995-07-21 1997-02-20 Linde Ag Method and device for the variable production of a gaseous printed product
DE19529681C2 (en) 1995-08-11 1997-05-28 Linde Ag Method and device for air separation by low-temperature rectification
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
DE19732887A1 (en) 1997-07-30 1999-02-04 Linde Ag Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
DE19815885A1 (en) 1998-04-08 1999-10-14 Linde Ag Air separation method producing gas, or gas and liquid e.g. for steel plant
EP0955509B1 (en) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
EP1031804B1 (en) 1999-02-26 2004-02-04 Linde AG Air separation process with nitrogen recycling
DE19908451A1 (en) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh A low temperature air fractionating system uses a rectification unit comprising pressure and low pressure columns and a nitrogen fraction recycle to the system air feed inlet, to provide bulk nitrogen
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
US6116052A (en) * 1999-04-09 2000-09-12 Air Liquide Process And Construction Cryogenic air separation process and installation
EP1067345B1 (en) 1999-07-05 2004-06-16 Linde Aktiengesellschaft Process and device for cryogenic air separation
DE19936816A1 (en) 1999-08-05 2001-02-08 Linde Ag Method and device for extracting oxygen under superatmospheric pressure
DE19954593B4 (en) 1999-11-12 2008-04-10 Linde Ag Method and apparatus for the cryogenic separation of air
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
DE10013075A1 (en) 2000-03-17 2001-09-20 Linde Ag Process for recovering gaseous nitrogen by the decomposition of air in a distillation column system comprises removing a part of the nitrogen-rich liquid from the condenser-vaporizer as a liquid product
DE10015602A1 (en) 2000-03-29 2001-10-04 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10018200A1 (en) 2000-04-12 2001-10-18 Linde Gas Ag Method and device for obtaining pressurized nitrogen by low-temperature separation of air
DE10021081A1 (en) 2000-04-28 2002-01-03 Linde Ag Heat exchange method and apparatus
DE10060678A1 (en) 2000-12-06 2002-06-13 Linde Ag Machine system for work relaxation of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10139727A1 (en) 2001-08-13 2003-02-27 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10153252A1 (en) 2001-10-31 2003-05-15 Linde Ag Process for recovering krypton and/or xenon by low temperature decomposition of air, comprises passing compressed purified process air to a rectifier system, removing a fraction containing krypton and xenon, and further processing
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
FR2831249A1 (en) * 2002-01-21 2003-04-25 Air Liquide Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10217091A1 (en) 2002-04-17 2003-11-06 Linde Ag Three-column system for low-temperature air separation with argon extraction
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
MXPA05006447A (en) 2002-12-19 2006-01-27 Karges Faulconbridge Inc System for liquid extraction, and methods.
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1666822A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
DE102006012241A1 (en) 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
EP1845323A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic separation of air
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
US8020408B2 (en) * 2006-12-06 2011-09-20 Praxair Technology, Inc. Separation method and apparatus
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102007031765A1 (en) 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102007031759A1 (en) 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2520886A1 (en) * 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2600090B1 (en) * 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
FR2995393B1 (en) * 2012-09-12 2014-10-03 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2963367A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201607599A (en) 2016-03-01
RU2017103099A (en) 2018-08-06
US10215489B2 (en) 2019-02-26
CN106489059A (en) 2017-03-08
RU2017103099A3 (en) 2018-12-20
WO2016005030A1 (en) 2016-01-14
EP3164654A1 (en) 2017-05-10
CN106662394B (en) 2019-11-05
CN106662394A (en) 2017-05-10
EP3164653A1 (en) 2017-05-10
RU2017103309A3 (en) 2018-12-18
RU2691210C2 (en) 2019-06-11
US20170153058A1 (en) 2017-06-01
EP2963367A1 (en) 2016-01-06
TW201607598A (en) 2016-03-01
CN106489059B (en) 2019-11-05
RU2690550C2 (en) 2019-06-04
US20170131028A1 (en) 2017-05-11
WO2016005031A1 (en) 2016-01-14
US10458702B2 (en) 2019-10-29
RU2017103309A (en) 2018-08-06

Similar Documents

Publication Publication Date Title
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP2015012A2 (en) Process for the cryogenic separation of air
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP1074805B1 (en) Process for producing oxygen under pressure and device therefor
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP2979051B1 (en) Method and device for producing gaseous compressed oxygen having variable power consumption
WO2014146779A2 (en) Method and device for generating gaseous compressed nitrogen.
EP2053331A1 (en) Method and device for low-temperature air separation
DE19537913A1 (en) Triple column process for the low temperature separation of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP4065910A1 (en) Process and plant for low-temperature fractionation of air
EP3980705A1 (en) Method and system for low-temperature air separation
EP3924677A1 (en) Method and system for providing one or more oxygen-rich, gaseous air products
WO2014102014A2 (en) Method and device for low-temperature air separation
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP1750074A1 (en) Process and device for the cryogenic separation of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102004016931A1 (en) Method and apparatus for variably producing a printed product by cryogenic separation of air
EP2963371B1 (en) Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP1199532A1 (en) Three-column system for the cryogenic separation of air

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013119

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013119

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 9

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729