DE901542C - Process for the separation of air by liquefaction and rectification - Google Patents
Process for the separation of air by liquefaction and rectificationInfo
- Publication number
- DE901542C DE901542C DEG7913A DEG0007913A DE901542C DE 901542 C DE901542 C DE 901542C DE G7913 A DEG7913 A DE G7913A DE G0007913 A DEG0007913 A DE G0007913A DE 901542 C DE901542 C DE 901542C
- Authority
- DE
- Germany
- Prior art keywords
- air
- oxygen
- pressure
- heat exchange
- argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04278—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/58—Quasi-closed internal or closed external argon refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/902—Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
Anlagen zur Gewinnung von Sauerstoff aus atmosphärischer Luft arbeiten im allgemeinen so, daß der Sauerstoff drucklos anfällt. In vielen: Fällen wird er aber unter erhöhtem Druck gebraucht und muß idafür nachträglich verdichtet werden. Diese Verdichtung kann nicht in üblichen ölgeschmierten Vendichterni vorgenommen werden, sondern erfordert besondere Maßnahmen, die es wünschenswert erscheinen lassen, den Sauerstoff der Erzeugungsanläge schon unter erhöhtem Druck entnehmen zu können. Ein solches Verfahren kann auch dann noch interessant sein, wenn eine entsprechende Menge eines anderen Gases verdichtet werden muß, wenn dies nur in Verdichtern üblicher Bauart geschehen kann.Systems for the extraction of oxygen from atmospheric air generally work as follows: that the oxygen is obtained without pressure. In many cases but if it is used under increased pressure, it has to be condensed afterwards. These Compression cannot be carried out in conventional oil-lubricated compressors, but requires special measures that make it appear desirable, the oxygen of the generation facilities can be removed even under increased pressure. Such a procedure can still be used be of interest if a corresponding amount of another gas has to be compressed, if this can only happen in compressors of the usual design.
Es ist bereits ein Verfahren beschrieben worden, das iziu diesem Ziel führt. Hiernach wird die Rektifikationssäule unter normalem Druck betrieben, der produzierte Sauerstoff in flüssiger Form entnommen, in einer Pumpe verdichtet und anschließend, in einem Wärmeaustauscher im Austausch mit iziu zerlegender Luft verdampft und auf Umgebungstemperatur erwärmt. Der Sauerstoff kann dabei unter Druck und unter Wiedergewinnung der in ihm enthaltenen Kälte verdampft werden, indem er in Wärmeaustausch mit Luft tritt, deren Druck ■so hoch ist, daß sie bei einer Temperatur verflüssigt wird, die höher liegt als die Verdampfungstemperatur des Sauerstoffs. Dieses Verfahren hat noch gewisse Nachteile auf energiewirtschaftlichem Gebiet. Es kann rechnerisch nachgewiesen werden, daß, wenn die Kälteverluste der Anlage klein gehalten werden sollen, was Bedingung für wirtschaftliches Arbeiten ist, die Temperaturdifferenz zwischen Luft und Sauerstoff am warmen Ende desA method has already been described which accomplishes this goal. After that, the rectification column operated under normal pressure, the oxygen produced is taken in liquid form, compressed in a pump and then in exchange in a heat exchanger evaporated with iziu decomposing air and warmed to ambient temperature. The oxygen can be evaporated under pressure and with recovery of the cold contained in it by it enters into heat exchange with air, the pressure of which is so high that it liquefies at one temperature which is higher than the evaporation temperature of the oxygen. This procedure still has certain disadvantages in the energy sector. It can be proven mathematically, that if the refrigeration losses of the system are to be kept small, which is a condition for economic Working is the temperature difference between air and oxygen at the warm end of the
Austauschers nur gering sein darf. Andererseits muß die Luft an jeder Stelle des Austauschers wärmer sein als der Sauerstoff, weil sonst keine Wärmeübertragung möglich ist. Diejenige Stelle im Austauscher, wo, außer am warmen Ende, die Temperaturdifferenz am kleinsten ist, ist diejenige, an der der Sauerstoff gerade zu verdampfen beginnt. Legt man die kleinste zulässige Temperaturdifferenz am warmen Ende des Austauschers und an der Stelle der beginnenden O2-Verdampfung fest oder läßt man sie im GrenzfaH Null werden, so kann rechnerisch eindeutig die Luftmenge (Geschwindigkeit, Wärmeaustauschflächen) bestimmt werden, die mit einer bestimmten Sauerstoffmenge in Wärmeaustausch treten muß. Diese Luftaienge hängt bei gegebenem Sauerstoffdruck vom Druck der Luft ab und durchläuft bei steigendem Luftdruck ein flaches Minimum; in jedem Fall aber ist die im Wärmeaustausch mit Sauerstoff konidensierende Luftmenge größer als die Sauerstoffmenge, und zwar in den meisten Fällen beim Minimum um etwa 15 bis 30%.Exchanger may only be small. On the other hand, the air must be warmer than the oxygen at every point in the exchanger, otherwise no heat transfer is possible. The point in the exchanger where the temperature difference is smallest, except at the warm end, is the one where the oxygen just begins to evaporate. If the smallest permissible temperature difference is determined at the warm end of the exchanger and at the point where O 2 evaporation begins, or if it is allowed to be at the limit of zero, then the amount of air (speed, heat exchange surfaces) that can be used with a certain amount of oxygen can be determined unambiguously by calculation must enter into heat exchange. At a given oxygen pressure, this amount of air depends on the pressure of the air and passes through a flat minimum with increasing air pressure; in any case, however, the amount of air conidizing in the heat exchange with oxygen is greater than the amount of oxygen, and in most cases at the minimum by about 15 to 30%.
Da aber, im ganzen gesehen, die Menge der Zerlegungsprodukte, die die Anlage verläßt, ebenso groß ist wie die Luftmenge, die in die Anlage eintritt, ergibt sich für den Wärmeaustausch für die übrigen! Gasströme die Tatsache, daß dem Stickstoff, der die Anlage ja drucklos verläßt, eine Luftmenge gegenübersteht, die stets kleiner ist als die Stickstoffmenge, was ein. Nachteil ist, da die Kälteverluste ansteigen. Etwas günstiger werden die Verhältnisse in Regeneratoren, die man in der Regel für den Wärmeaustausch Luft gegen Stickstoff verwendet, wobei der Druck der zu zerlegenden Luft etwa gleich dem Druck in der Vbrzerlegungs- -säule, d. h. 5 bis 6 ata sein wird. Für diese Austauscher gelten, ähnliche Beschränkungen bezüglich des Mengenverhältnisses der austauschenden Gase wie für den Sauer stoff austauscher, nur darf in die- *° sem Fall die Luftmenge etwas kleiner sein als die Stickstoffmenge, und zwar bis zu 2,5 °/o; bei größerer Abweichung treten wieder zusätzliche Kälteverluste durch verschlechterten Austausch auf. Wurden 20 Teile Sauerstoff durch Zerlegung von 4S 100 Teilen Luft gewonnen, während der Wärmeaustausch mit Sauerstoff einen. Überschuß von 25 % verlangt, so müssen 20 -1,25 = 25 Teile Luft dem Sauerstoff entgegengehen. Es stehen also· nur noch 75 Teile Luft den restlichen 80 Teilen Stickstoff gegenüber, während für den Wärmeaustausch mindestens 80 · 0,975 = 78 Teile erforderlich wären. Auf diese Weise ist also ein wirtschaftliches Arbeiten nicht möglich.But since, on the whole, the amount of decomposition products that leave the system is just as large as the amount of air that enters the system, there is a heat exchange for the others! Gas flows the fact that the nitrogen, which leaves the system without pressure, is faced with an amount of air that is always smaller than the amount of nitrogen, which is a. The disadvantage is that the cold losses increase. The conditions in regenerators, which are usually used for the heat exchange between air and nitrogen, are somewhat more favorable, the pressure of the air to be separated being approximately the same as the pressure in the decomposition column, ie 5 to 6 ata. For these exchangers, similar restrictions apply with regard to the quantitative ratio of the exchanging gases as for the oxygen exchanger, only in this case the amount of air may be slightly smaller than the amount of nitrogen, namely up to 2.5%; if the deviation is greater, additional cold losses occur again due to deteriorated exchange. If 20 parts of oxygen were obtained by decomposing 4 S 100 parts of air, while the heat exchange with oxygen one. If an excess of 25% is required, then 20 -1.25 = 25 parts of air must go towards the oxygen. There are therefore only 75 parts of air compared to the remaining 80 parts of nitrogen, while at least 80 0.975 = 78 parts would be required for the heat exchange. In this way, it is not possible to work economically.
Möglich'wird es erst dann, wenn man einen weiteren Luftanteil aus der vorgesehenen Gesamtmenge auf erhöhten Druck bringt. Wegen der höheren spezifischen Wärme kann eine größere Menge Stickstoff mit ihr in Wärmeaustausch treten, so. daß auf diesem Wege die obenerwähnte Lücke geschlossen werden könnte.It will only be possible if you have another Brings the proportion of air from the intended total amount to increased pressure. Because of the higher specific heat, a larger amount of nitrogen can enter into heat exchange with it, so. that on in this way the gap mentioned above could be closed.
Nachteilig an dieser Lösung ist noch, daß ein verhältnismäßig hoher Anteil der Gesamtluftmenge (etwa 35 bis 55 0Zo) auf hohen Druck gefördert I -werden müßte. Dies würde zunächst einen hohen Energiebedarf des Verfahrens bedingen. Außerdem wäre es nicht zweckmäßig, für den Wärmeaustausch hochverdichteter Luft Regeneratoren oder ähnliche selbstreinigende Austauscher zu verwenden, weil die beim Umschalten der Strömungsräume jedesmal zurückbleibende und daher verlorene Luftmenge zu groß würde. Es würde andererseits bei Verwendung von Gegenströmem notwendig sein, diesen verhältnismäß ig großen Anteil der Gesamtluftmenge zu trocknen und von Kohlendioxyd zu befreien, was zusätzliche Kosten verursachen, würde.Another disadvantage of this solution is that a relatively high proportion of the total amount of air (about 35 to 55 0 Zo) would have to be conveyed to high pressure. Initially, this would require the process to consume a lot of energy. In addition, it would not be expedient to use regenerators or similar self-cleaning exchangers for the heat exchange of highly compressed air, because the amount of air remaining and therefore lost each time when the flow spaces are switched over would be too large. On the other hand, if countercurrents are used, it would be necessary to dry this relatively large proportion of the total amount of air and to free it from carbon dioxide, which would incur additional costs.
Um letzteres zu vermeiden, ist auch schon vorgeschlagen worden, die ganze Luftmenge nur auf den Zerlegungsdruck zu fördern und einen Stickstoffkreislauf zu verwenden, wobei der Stickstoff auf entsprechend hohen Druck gebracht wird und in Wärmeaustausch mit dem unter erhöhtem Druck verdampfenden Sauerstoff tritt. Man könnte dann zwar die Trocknung und C Oa-Reinigung vermeiden,, wenn man die Wärmeaustauscher (Regeneratoren) für Niederdruckluft so* bauen würde, daß ein gewisser Anteil des produzierten Stickstoffs nicht mit Heizflächen in Berührung kommt, die mit Wassereis und fester Kohlensäure belegt sind und diesen Anteil dann .dem Kreislaufverdichter zuführt. Die Schwierigkeiten für den Wärmeaustausch in der vorher für Luft geschilderten Weise bestehen aber in erhöhtem Maß bei Stickstoff, so daß auch hier ein'weiterer Wärmeaustausch (Kreislaufstickstoff gegen entspannten Stickstoff) erforderlich, wäre. Dieses bedingt, daß der Energiebedarf bei dem. bekannten Verfahren mit Stickstoffkreislauf eher noch höher ist, als beim Verfahren ohne Kreislauf.In order to avoid the latter, it has already been suggested been to promote the whole amount of air only to the decomposition pressure and a nitrogen cycle to use, whereby the nitrogen is brought to a correspondingly high pressure and enters into heat exchange with the oxygen evaporating under increased pressure. One could then avoid drying and cleaning, if one would build the heat exchangers (regenerators) for low pressure air so * that a certain proportion of the nitrogen produced does not come into contact with heating surfaces are covered with water ice and solid carbon dioxide and this portion then .dem circulation compressor feeds. The difficulties for the heat exchange in the one described above for air Wise, however, exist to a greater extent with nitrogen, so that here too there is a further heat exchange (Circulatory nitrogen versus relaxed nitrogen) would be required. This requires that the energy requirement in which. known processes with nitrogen cycle is even higher than with the method without a cycle.
Um diesen. Nachteil zu beheben, wird erfmdungsgemäß ein. Verfahren sowohl ohne als auch mit Kreislauf verwendet. Das erste sei zunächst beschrieben. To this one. To remedy the disadvantage, according to the invention. Procedure both with and without Circuit used. The first will be described first.
Es ist oben schon gesagt worden, daß es für den Wärmeaustausch Luft gegen Sauerstoff einen optimalen Druck der Luft gibt, bei dem der notwendige Überschuß der Luft am geringsten sein kann. Er ist bei 12. ata Sauerstoff druck etwa 28 ata und bei 25 ata Sauerstoffdruck etwa 80 ata. Für den unvermeidlichen Wärmeaustausch hochverdichtete Luft gegen drucklosen Stickstoff gibt es ebenfalls einen optimalen Luftdruck, der aber viel höher liegt. Der Unterschied rührt daher, daß im ersten Fall die mittlere spezifische Wärme der Luft über einen großen Temperaturbereich möglichst groß sein muß, weil ja außer der fühlbaren Wärme auch noch die Verdampfungswärme aus dem Sauerstoff aufgenommen werden muß, während im zweiten Fall, wo lediglich ein Gas anzuwärmen ist, die spezifische Wärme der Luft bei Umgebungstemperatur möglichst groß sein soll.It has already been said above that air for oxygen is an optimal heat exchange There is pressure of the air at which the necessary excess of air can be the least. He is at 12 ata oxygen pressure about 28 ata and at 25 ata oxygen pressure about 80 ata. For the inevitable There is also an exchange of heat between highly compressed air and pressureless nitrogen optimal air pressure, which is much higher. The difference arises from the fact that in the first case the mean specific heat of the air must be as large as possible over a wide temperature range, because in addition to the sensible heat, the heat of evaporation from the oxygen is also absorbed must be, while in the second case, where only a gas is to be heated, the specific The warmth of the air at ambient temperature should be as great as possible.
Erfindungsgemäß wird also für den Wärmeaustausch Luft gegen Sauerstoff ein mittlerer Druck auf gewendet, dessen Höhe sich nach dem Sauerstoffdruck richtet, während man gegen Stickstoff außer einer größeren Menge niedrigverdich- 1*5 teter Luft (5 bis oatü) eine kleine Menge hoch-According to the invention, therefore, air for oxygen becomes an average for the heat exchange Pressure applied, the level of which depends on the oxygen pressure, while against nitrogen, except for a larger amount, low-compression 1 * 5 a small amount of high-
verdichteter Luft, ζ. B. 2oo ata, schicken wird, die gerade ausreicht, 'das Mengendefizit zu decken. Der dadurch erzielbare Effekt ist überraschend hoch. So müßte z. B. bei der Verdichtung des Sauerstoffs auf 25 ata und bestimmten Bedingungen entweder 53% der Luft auf 80 ata verdichtet werden oder statt dessen 24% auf 80ata und- 3,5°/» auf 200 ata, zusammen also 27,5%. Die Energieersparnis im zweiten gegenüber dem ersten Fall beträgt 23%. Fig. ι stellt eine mögliche Aus füh rungs form dieses Verfahrens dar, wobei alle für die Erfindung unwesentlichen Anlagenteile weggelassen sind. Die gesamte Luftmenge wird zunächst mit dem Turboverdichter ι auf 5,5 ata verdichtet und der größte Teil davon einem der Regeneratoren 2 zugeführt. Ein Teil geht über die Trocknungseinrichtung und Kohlensäureausscheidung 3 zum Zusatzverdichter4, der einen Teil auf 80 atü verdichtet, der zum Austauscher 5 geht und einen weiteren Teil auf 200 atü, der in den Austauscher 6 gelangt. Alle Luftströme vereinigen; sich nach ihrer Abkühlung (die höher verdichteten nach Entspannung in den Ventilen 7 und 8) und gelangen in den Rektifikator 9, der nur angedeutet bzw. teilweise dargestellt ist. Der oben abziehende Stickstoff geht durch den zweiten Regenerator 2 und ein kleiner Teil· davon durch den Austauscher 6. Der Sauerstoff wird aus dem Rektifikator flüssig entnommen, in einer Druckpumpe 10 auf den gewünschten Druck verdichtet und im Austauscher 5 verdampft und auf Umgebungstemperatur erwärmt.compressed air, ζ. B. 2oo ata, will send that just enough to cover the shortage. The effect that can be achieved in this way is surprisingly high. So should z. B. when compressing the oxygen to 25 ata and certain conditions either 53% of the air is compressed to 80 ata or instead 24% to 80ata and - 3.5 ° / »to 200 ata, together so 27.5%. The energy saving in the second compared to the first case is 23%. Fig. Ι shows a possible embodiment of this method, all for the invention insignificant system parts are omitted. The entire amount of air is first used with the turbo compressor ι compressed to 5.5 ata and most of it fed to one of the regenerators 2. One part goes through the drying device and carbon dioxide separation 3 to the additional compressor4, which compresses one part to 80 atmospheres, which goes to exchanger 5 and another part to 200 atmospheres, which gets into the exchanger 6. Unite all air currents; after they have cooled down (the higher compressed after relaxation in the valves 7 and 8) and get into the rectifier 9, which only is indicated or partially shown. The nitrogen withdrawn from the top goes through the second regenerator 2 and a small part of it through exchanger 6. The oxygen is extracted from the rectifier taken in liquid form, compressed in a pressure pump 10 to the desired pressure and im Exchanger 5 evaporated and warmed to ambient temperature.
Auch für das Kreislaufverfahren wurde eine Verbesserung gefunden. Sie besteht darin, daß für den, Kreislauf ein Gas verwendet wird, das in seinen thermodynami sehen Eigenschaften, in erster Linie Dampfdruck und Verdampfungswärme, dem Sauerstoff möglichst ähnlich ist, sich aber in normalen ölgeschmierten Verdichtern, komprimieren läßt. Ein solches Gas ist Argon. Sein Siedepunkt liegt bei 760 mm Druck bei 87,5° K (Sauerstoff 90,2° K) und die Verdampfungswärme beträgt 1500 kcal/Mol (Sauerstoff 1595 kcal/Mol). Nur ein scheinbarer Nachteil ist die viel geringere spezifische Wärme (5,00 kcal/0 C Mol gegenüber 7,01 bei Sauerstoff). Man kommt bei Argon mit einem wesentlich niedrigeren Verdichtungsdruck aus (33 ata gegenüber 100 ata für Stickstoff bei 25 ata Sauerstoffdruck). Eine Überschußmenge an verdichtetem Argon gegenüber dem Sauerstoff ist zwar in derselben Größenordnung nötig wie bei Luft; er ist aber in erster Linie durch die geringe spezifische Wärme des Argons bedingt, die andererseits zur Folge hat, daß beim Wärmeaustausch entspanntes Argon—Luft kein Mengendefizit entsteht, weil 7 Teile Argon die Wärme von nur 5 Teilen Luft von 5,5 ata aufzunehmen vermögen. Ein Nachteil ist, daß man einen geschlossenen Kreislauf verwenden muß, der nicht, wie beim Stickstoff, an der Rektifikation teilnimmt und daher zusätzliche Austausch/flächen für die Verdampfung des verflüssigten Argons erfordert. Jedoch läßt sich Argon ■in kleinen Mengen ohne weiteres als Nebenprodukt bei der Luftzerlegung gewinnen, so daß etwaige Unidichtheitisiverluste des Kreislaufes laufend ersetzt werden können.An improvement was also found for the circulatory process. It consists in the fact that a gas is used for the, circuit, which see in its thermodynami properties, primarily vapor pressure and heat of vaporization, is as similar as possible to oxygen, but can be compressed in normal oil-lubricated compressors. One such gas is argon. Its boiling point is at 760 mm pressure at 87.5 ° K (oxygen 90.2 ° K) and the heat of vaporization is 1500 kcal / mol (oxygen 1595 kcal / mol). Only one apparent disadvantage is the much lower specific heat (5.00 kcal / 0 C mol compared to 7.01 for oxygen). With argon, you get by with a significantly lower compression pressure (33 ata compared to 100 ata for nitrogen at 25 ata oxygen pressure). An excess amount of compressed argon compared to the oxygen is necessary in the same order of magnitude as with air; But it is primarily due to the low specific heat of argon, which on the other hand has the consequence that there is no deficit in the heat exchange of relaxed argon-air, because 7 parts of argon can absorb the heat of only 5 parts of air of 5.5 ata . A disadvantage is that you have to use a closed circuit that does not take part in the rectification, as is the case with nitrogen, and therefore requires additional exchange / areas for the evaporation of the liquefied argon. However, argon can easily be obtained in small quantities as a by-product in the air separation process, so that any leakage losses in the circuit can be continuously replaced.
Fig. 2 zeigt eine mögliche Ausführungsform des Verfahrens. Die gesamte zu zerlegende Luftmenge wird im Turboverdichter 1 verdichtet und vollständig einem der Regeneratoren 2 zugeleitet und gelangt nach ihrer Abkühlung über dem später noch zu erwähnenden, Argonrverdampfer 3 zu der Rektifikationseinrichtung 4. Der produzierte Stickstoff durchströmt dabei den anderen Regenerator 2. Außerdem liegen in beiden Regeneratoren Rohrschlangen, durch die Argon mit etwa 2 ata fließt, das aus dem Argonrverdampfer 3 kommt. Auf diese Weise wird vermieden, daß Argon durch Querschnitte strömt, die in der vorhergehenden Periode Wasser und Kohlenisäureausscheidungen aufgenommen haben. Es wird, auf Umgebungstemperatur erwärmt, im Argonverdichter 5 auf 33 ata verdichtet und dem Austauscher 6 zugeführt, wo es gekühlt und verflüssigt wird. Über das EntspannungBvenitil 7 kehrt es in 3 zurück, wo es verdampft und einen; Teil der aus dem Regenerator 2 kommenden Luft verflüssigt. Der produzierte Sauerstoff wird durch die Pumpe 8 verdichtet und im Austauscher 6 im Wärmeaustausch mit verdichtetem Argon; verdampft und erwärmt.Fig. 2 shows a possible embodiment of the method. The total amount of air to be broken down is compressed in the turbo compressor 1 and completely fed to one of the regenerators 2 and, after it has cooled, it passes through the later to be mentioned, argon vaporizer 3 to rectification device 4. The nitrogen produced flows through the other regenerator 2. In addition, there are pipe coils in both regenerators, through which argon flows at about 2 ata, which comes from the argon evaporator 3. To this This avoids that argon flows through cross-sections, which in the previous period Have absorbed water and carbonic acid excretions. It will, at ambient temperature heated, compressed in the argon compressor 5 to 33 ata and fed to the exchanger 6, where it is cooled and liquefied. About the Relaxation Bvenitil 7 it returns to 3 where it vaporizes and one; Part of the coming from the regenerator 2 Air liquefies. The oxygen produced is compressed by the pump 8 and in the exchanger 6 in heat exchange with compressed argon; evaporates and warms.
Zur Auffüllung des Kreislaufes und zum Ersatz der Argonverluste dient eine kleine Argonsäule 9, deren Produkt drucklos über den Austauscher 6 geht und durch einen kleinen' Hilfsverdichter 10 entweder unmittelbar in den Kreislauf oder zunächst im den Druckbehälter 11 verdichtet wird. Von hier wird über ein automatisches Druckmindexiventil 12 dem Kreislauf so viel Argon zugeführt, daß dessen Gasverluste ersetzt werden.A small argon column 9 is used to fill up the circuit and to replace the argon losses. whose product goes through the exchanger 6 without pressure and through a small auxiliary compressor 10 either directly in the circuit or first in the pressure vessel 11 is compressed. From here an automatic pressure index valve is used 12 fed so much argon to the circuit that its gas losses are replaced.
Dadurch, daß man mit einer geringeren Kreislaufmenge auskommt als beim Stickstoffkreislauf (z. B. 24% der zu zerlegenden Luftmenge statt 33%) bei etwa gleichem Druckverhältnis bei der Verdichtung, ist der Energiebedarf erheblich geringer als beim Stickstoffkreislauf und nicht wesentlich höher als der bei druckloser Entnahme des Sauerstoffs aus der Zerlegungsanlage und nachträglicher Verdichtung.Because you get by with a smaller amount of cycle than with the nitrogen cycle (e.g. 24% of the air volume to be broken down instead of 33%) with approximately the same pressure ratio for the Compression, the energy requirement is considerably lower than in the nitrogen cycle and not significantly higher than that with unpressurized removal of the oxygen from the separation plant and later Compression.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEG7913A DE901542C (en) | 1952-01-10 | 1952-01-11 | Process for the separation of air by liquefaction and rectification |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2712738X | 1952-01-10 | ||
DEG7913A DE901542C (en) | 1952-01-10 | 1952-01-11 | Process for the separation of air by liquefaction and rectification |
Publications (1)
Publication Number | Publication Date |
---|---|
DE901542C true DE901542C (en) | 1954-01-11 |
Family
ID=25977991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEG7913A Expired DE901542C (en) | 1952-01-10 | 1952-01-11 | Process for the separation of air by liquefaction and rectification |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE901542C (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1112997B (en) * | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
DE1199293B (en) * | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
DE102007031759A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Method and apparatus for producing gaseous pressure product by cryogenic separation of air |
DE102007031765A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Process for the cryogenic separation of air |
DE102009034979A1 (en) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block |
EP2312248A1 (en) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Method and device for obtaining pressurised oxygen and krypton/xenon |
EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
DE102013017590A1 (en) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
-
1952
- 1952-01-11 DE DEG7913A patent/DE901542C/en not_active Expired
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1112997B (en) * | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
DE1199293B (en) * | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
DE102007031759A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Method and apparatus for producing gaseous pressure product by cryogenic separation of air |
DE102007031765A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Process for the cryogenic separation of air |
EP2015013A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process and device for producing a gaseous pressurised product by cryogenic separation of air |
EP2015012A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process for the cryogenic separation of air |
DE102009034979A1 (en) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block |
EP2312248A1 (en) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Method and device for obtaining pressurised oxygen and krypton/xenon |
EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
DE102010052545A1 (en) | 2010-11-25 | 2012-05-31 | Linde Aktiengesellschaft | Method and apparatus for recovering a gaseous product by cryogenic separation of air |
DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
EP2466236A1 (en) | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
DE102011112909A1 (en) | 2011-09-08 | 2013-03-14 | Linde Aktiengesellschaft | Process and apparatus for recovering steel |
EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
DE102013017590A1 (en) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer |
EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
WO2016005031A1 (en) | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE901542C (en) | Process for the separation of air by liquefaction and rectification | |
DE2402043C3 (en) | Plant for the evaporation and heating of liquefied natural gas | |
DE620077C (en) | Process for the separation of gas mixtures | |
DE2628007C2 (en) | ||
DE1182256B (en) | Process for liquefying natural gas | |
DE2407686A1 (en) | DISTILLATION PROCESS | |
DE628788C (en) | Manufacture of krypton and xenon | |
DE829459C (en) | Process for the separation of gas mixtures | |
DE1159971B (en) | Process for the production of gaseous and pressurized oxygen by decomposing air | |
DE1018848B (en) | Process for the production of heavy hydrogen | |
DE1239888B (en) | Gas steam turbine plant | |
DE2718265C3 (en) | Method for the optional heating or cooling of a fluid flow and a heat pump for its implementation | |
DE1056634B (en) | Process for heat recovery from streams of gases, vapors or their mixtures with a moistening and a drying process | |
DE675538C (en) | Diffusion absorption refrigeration machine | |
DE1250848B (en) | Method and device for the low-temperature decomposition of air with fluctuations in oxygen decrease | |
AT135454B (en) | Process for reducing the normal condensation pressure in the extraction of raw oxygen with fractional condensation of the air. | |
DE2553700C3 (en) | Method for operating a gas turbine system with a closed circuit | |
DE645746C (en) | Procedure for the operation of refrigeration compressors | |
DE612537C (en) | Process for reducing the condensation pressure in the preliminary separation in the two-stage rectification of liquefied gas mixtures | |
DE472291C (en) | Process for cooling hot gases produced with the aid of an absorption refrigeration machine | |
AT154893B (en) | Process for the separation of air with a high moisture content by liquefaction and rectification. | |
DE862454C (en) | Process for concentrating cooling brine in refrigeration systems | |
DE666578C (en) | Process for the removal of the constituents condensed when gases are cooled in cold storage tanks | |
DE647625C (en) | Process for the separation of air with a high moisture content by liquefaction and rectification | |
AT148973B (en) | Process for the production of liquefied sulfur dioxide. |