DE102007031765A1 - Process for the cryogenic separation of air - Google Patents

Process for the cryogenic separation of air Download PDF

Info

Publication number
DE102007031765A1
DE102007031765A1 DE200710031765 DE102007031765A DE102007031765A1 DE 102007031765 A1 DE102007031765 A1 DE 102007031765A1 DE 200710031765 DE200710031765 DE 200710031765 DE 102007031765 A DE102007031765 A DE 102007031765A DE 102007031765 A1 DE102007031765 A1 DE 102007031765A1
Authority
DE
Germany
Prior art keywords
pressure
column
partial flow
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200710031765
Other languages
German (de)
Inventor
Dietrich Rottmann
Florian Schliebitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE200710031765 priority Critical patent/DE102007031765A1/en
Publication of DE102007031765A1 publication Critical patent/DE102007031765A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2

Abstract

Das Verfahren und die Vorrichtung dienen zur Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (11) und eine Niederdrucksäule (12) aufweist. Einsatzluft (20, 32) wird in die Hochdrucksäule (11) eingeleitet. Ein flüssiger Produktstrom (42; 46) wird aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (43; 47) und unter diesem erhöhten Druck durch indirekten Wärmeaustausch (6) verdampft oder pseudo-verdampft und schließlich als gasförmiger Produktstrom (45; 49) abgezogen. Die gesamte Einsatzluft (1) wird in einem Hauptluftverdichter auf einen ersten Druck verdichtet, der mindestens gleich dem Betriebsdruck der Hochdrucksäule (11) ist, und anschließend in einer Reinigungsvorrichtung gereinigt. Ein erster Teilstrom (2, 7) der Einsatzluft wird unter etwa dem ersten Druck einer ersten Entspannungsmaschine (8) zugeführt, dort arbeitsleistend auf etwa den Betriebsdruck der Niederdrucksäule (12) entspannt und anschließend in die Niederdrucksäule (12) eingeführt (10). Ein zweiter Teilstrom (3) der Einsatzluft wird in einem ersten Nachverdichter (14) auf einen zweiten Druck verdichtet, der höher als der erste Druck ist. Mindestens ein Teil (17) des zweiten Teilstroms (16) stromabwärts der Verdichtung wird in einem zweiten Nachverdichter (18) auf einen dritten Druck nachverdichtet, der höher als der zweite Druck ist, dem indirekten Wärmeaustausch (6) zur Verdampfung beziehungsweise ...The method and apparatus are for cryogenic separation of air in a distillation column system having at least one high pressure column (11) and one low pressure column (12). Feed air (20, 32) is introduced into the high-pressure column (11). A liquid product stream (42; 46) is withdrawn from the distillation column system, brought to an elevated pressure in the liquid state (43; 47) and vaporized or pseudo-evaporated under this increased pressure by indirect heat exchange (6) and finally as a gaseous product stream (45, 49) subtracted. The total feed air (1) is compressed in a main air compressor to a first pressure which is at least equal to the operating pressure of the high-pressure column (11), and then cleaned in a cleaning device. A first partial flow (2, 7) of the feed air is supplied at about the first pressure of a first expansion machine (8) where it performs work to approximately the operating pressure of the low pressure column (12) and then introduced into the low pressure column (12) (10). A second partial stream (3) of the feed air is compressed in a first secondary compressor (14) to a second pressure that is higher than the first pressure. At least part (17) of the second partial flow (16) downstream of the compression is recompressed in a second after-compressor (18) to a third pressure which is higher than the second pressure, the indirect heat exchange (6) for evaporation or ...

Description

  • Die Erfindung betrifft ein Verfahren durch Tieftemperaturzerlegung von Luft, insbesondere zur Erzeugung von gasförmigem Drucksauerstoff.The The invention relates to a process by cryogenic separation of Air, in particular for the production of gaseous pressure oxygen.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337) known.
  • Das Destilliersäulen-System der Erfindung kann als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem ausgebildet sein. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung können weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise eine Argon- oder eine Krypton-Xenon-Gewinnung.The Distillation column system of the invention can be used as a two-column system (for example, as a classic Linde double column system), or be designed as a three or more column system. In addition to the columns for nitrogen-oxygen separation may be other devices for obtaining other air components, be provided in particular by noble gases, for example an argon or a krypton-xenon recovery.
  • Die Erfindung betrifft insbesondere ein Verfahren, in dem mindestens ein gasförmiges Druckprodukt gewonnen wird, indem ein flüssiger Produktstrom aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und unter diesem erhöhten Druck durch indirektem Wärmeaustausch verdampft oder (bei überkritischem Druck) pseudo-verdampft wird. Derartige Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 2535132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 .More particularly, the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated. Such internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 2535132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 ,
  • Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung wirtschaftlich besonders günstig zu gestalten.Of the Invention is based on the object, such a method and a corresponding device economically particularly favorable to design.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.These The object is solved by the features of claim 1.
  • Der Antrieb des Kaltverdichters durch die erste Entspannungsmaschine ist insbesondere energetisch besonders günstig. Bei vielen Innenverdichtungsverfahren, die mit relativ hohem Luftdruck gefahren werden, weist die Einsatzluft ein Druckpotential auf, das in der beziehungsweise den Entspannungsmaschinen mehr Kälte erzeugen würde, als in dem Prozess verwendet werden kann. Die überschüssige Energie wird bei der Erfindung zum Antrieb des Kaltverdichters genutzt, der den zweiten Teilstrom der Einsatzluft auf einen besonders hohen Druck bringt.Of the Drive of the cold compressor through the first expansion machine is particularly energetically particularly favorable. In many Internal compression method, which is driven with relatively high air pressure be, the feed air has a pressure potential, which in the or the relaxation machines produce more cold would, as can be used in the process. The excess Energy is used in the invention for driving the cold compressor, the second partial flow of the feed air to a particularly high pressure brings.
  • Vorzugsweise weist das Verfahren eine zweite Entspannungsmaschine auf, in der ein dritter Teilstrom der Einsatzluft arbeitsleistend entspannt wird. Der Austrittsdruck der zweiten Entspannungsmaschine liegt beispielsweise etwa auf dem Niveau der Niederdrucksäule oder der Hochdrucksäule. Je nachdem wird die entspannte Luft in die Niederdrucksäule oder in die Hochdrucksäule eingeleitet.Preferably the method has a second expansion machine in which a third partial flow of the feed air is released to perform work. The outlet pressure of the second expansion machine is for example at about the level of the low-pressure column or the high-pressure column. Depending on the relaxed air is in the low pressure column or introduced into the high pressure column.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:The Invention and further details of the invention are hereinafter with reference to embodiments illustrated in the drawings explained. Hereby show:
  • 1 eine erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens mit zwei Einblaseturbinen, 1 A first embodiment of the method according to the invention with two injection turbines,
  • 2 ein zweites Ausführungsbeispiel, bei dem eine Turbine in die Hochdrucksäule entspannt, 2 A second embodiment in which a turbine relaxes in the high-pressure column,
  • 3 ein weiteres Ausführungsbeispiel mit zwei Einblaseturbinen und 3 a further embodiment with two injection turbines and
  • 4 ein viertes Ausführungsbeispiel, das Aspekte der 2 und 3 kombiniert. 4 a fourth embodiment, the aspects of 2 and 3 combined.
  • In 1 wird atmosphärische Luft in einem Hauptluftverdichter auf einen ersten Druck von beispielsweise 5 bis 7,5 bar, vorzugsweise 5,5 bis 6 bar verdichtet und anschließend in einer Reinigungsvorrichtung gereinigt (nicht dargestellt). Die gereinigte Einsatzluft 1 wird unter etwa dem ersten Druck auf vier Teilströme 2, 3, 4, 5 aufgeteilt.In 1 atmospheric air is compressed in a main air compressor to a first pressure of for example 5 to 7.5 bar, preferably 5.5 to 6 bar and then cleaned in a cleaning device (not shown). The purified feed air 1 will be under about the first pressure on four partial flows 2 . 3 . 4 . 5 divided up.
  • Der erste Teilstrom 2 wird dem warmen Ende eines Hauptwärmetauschers 6 zugeführt, dort auf eine erste Zwischentemperatur abgekühlt, über Leitung 7 wieder entnommen und in einer ersten Entspannungsmaschine 8 arbeitsleistend auf einen Druck von beispielsweise 1,3 bis 1,8 bar, vorzugsweise 1,3 bis 1,6 bar entspannt. Der arbeitsleistend entspannte erste Teilstrom wird über die Leitungen 9 und 10 in die Niederdrucksäule 12 eines Destilliersäulen-Systems eingeleitet, das außerdem eine Hochdrucksäule 11 und einen Hauptkondensator 13 aufweist.The first partial flow 2 becomes the warm end of a main heat exchanger 6 fed, cooled there to a first intermediate temperature, via line 7 taken again and in a first relaxation machine 8th working to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 to 1.6 bar relaxed. The work-performing relaxed first partial flow is over the lines 9 and 10 in the low pressure column 12 a distillation column len system, which also has a high-pressure column 11 and a main capacitor 13 having.
  • Der zweite Teilstrom 3 der Einsatzluft wird in einem ersten Nachverdichter 14 auf einen zweiten Druck von beispielsweise 29 bis 60 bar, vorzugsweise 35 bis 50 bar nachverdichtet und strömt nach Abkühlung in einem Nachkühler 15 über Leitung 16 ebenfalls dem warmen Ende des Hauptwärmetauschers 6 zu. Bei einer zweiten Zwischentemperatur wird der zweite Teilstrom über Leitung 17 entnommen und einem zweiten Nachverdichter 18 zugeführt, der als Kaltverdichter ausgebildet und mechanisch mit der ersten Entspannungsmaschine 8 gekoppelt ist. Der Austrittsdruck des Kaltverdichters 18 ("dritter Druck") beträgt beispielsweise 40 bis 85 bar, vorzugsweise 45 bis 70 bar. Über Leitung 19 wird die Hochdruckluft bei einer dritten Zwischentemperatur, die höher als die erste Zwischentemperatur ist, in den Hauptwärmetauscher 6 eingeführt und durchströmt diesen bis zum kalten Ende. Der dritte Teilstrom 19 unter dem dritten Druck wird in dem Hauptwärmetauscher abgekühlt und kondensiert oder (bei überkritischem Druck) pseudo-kondensiert. Die kalte Hochdruckluft 20 wird in einem Drosselventil 21 auf etwa den Betriebsdruck der Hochdrucksäule 11 entspannt, der beispielsweise 5 bis 7,5 bar, vorzugsweise 5,5 bis 6 bar beträgt, und in die Hochdrucksäule eingeleitet. Mindestens ein Teil der eingeleiteten Flüssigluft wird über Leitung 22 wieder entnommen, in einem Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 24 und Drosselventil 25 in die Niederdrucksäule 12 eingespeist.The second partial flow 3 the feed air is in a first after-compressor 14 to a second pressure of, for example, 29 to 60 bar, preferably 35 to 50 bar after-compressed and flows after cooling in an aftercooler 15 via wire 16 also the warm end of the main heat exchanger 6 to. At a second intermediate temperature, the second partial flow is via line 17 taken and a second compressor 18 supplied, which is designed as a cold compressor and mechanically with the first expansion machine 8th is coupled. The outlet pressure of the cold compressor 18 ("Third pressure") is for example 40 to 85 bar, preferably 45 to 70 bar. Via wire 19 the high pressure air is in the main heat exchanger at a third intermediate temperature, which is higher than the first intermediate temperature 6 introduced and flows through this to the cold end. The third partial flow 19 under the third pressure is cooled in the main heat exchanger and condensed or (at supercritical pressure) pseudo-condensed. The cold high pressure air 20 is in a throttle valve 21 at about the operating pressure of the high pressure column 11 relaxed, for example, is 5 to 7.5 bar, preferably 5.5 to 6 bar, and introduced into the high-pressure column. At least part of the incoming liquid air is via line 22 taken again, in a supercooling countercurrent 23 cooled and over line 24 and throttle valve 25 in the low pressure column 12 fed.
  • Der dritte Teilstrom 4 der Einsatzluft wird in einem dritten Nachverdichter 26 mit Nachkühler 27 auf einen vierten Druck von beispielsweise 7,5 bis 11 bar, vorzugsweise 8 bis 9 bar nachverdichtet und über Leitung 28 zum Hauptwärmetauscher 6 geführt. Bei einer vierten Zwischentemperatur wird der abgekühlte dritte Teilstrom 29 einer zweiten Entspannungsmaschine 30 zugeleitet und dort arbeitsleistend auf einen Druck von beispielsweise 1,3 bis 1,8 bar, vorzugsweise 1,3 bis 1,6 bar entspannt. Der arbeitsleistend entspannte dritte Teilstrom 31 wird gemeinsam mit dem ersten Teilstrom 9 über Leitung 10 der Niederdrucksäule 12 zugeleitet. Die zweite Entspannungsmaschine 30 ist mechanisch mit dem dritten Nachverdichter 26 gekoppelt und treibt diesen an. Beide Entspannungsmaschinen sind vorzugsweise als Turboexpander ausgebildet und entspannen auf etwa den Druck der Niederdrucksäule (Einblaseturbinen).The third partial flow 4 the feed air is in a third booster 26 with aftercooler 27 to a fourth pressure of for example 7.5 to 11 bar, preferably 8 to 9 bar and recompressed via line 28 to the main heat exchanger 6 guided. At a fourth intermediate temperature, the cooled third partial flow 29 a second relaxation machine 30 fed and there work to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 to 1.6 bar relaxed. The work-performing relaxed third partial flow 31 will be shared with the first sub-stream 9 via wire 10 the low pressure column 12 fed. The second relaxation machine 30 is mechanical with the third booster 26 coupled and drives this. Both expansion machines are preferably designed as a turboexpander and relax to about the pressure of the low-pressure column (injection turbines).
  • Der vierte Teilstrom 5 der Einsatzluft durchströmt unter etwa dem ersten Druck den Hauptwärmetauscher 6 und wird über Leitung 32 gasförmig dem Sumpf der Hochdrucksäule 11 zugeleitet.The fourth partial flow 5 the feed air flows through the main heat exchanger at about the first pressure 6 and will be over line 32 gaseous to the bottom of the high-pressure column 11 fed.
  • Flüssiger Rohsauerstoff 33 wird in dem Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 34 und Drosselventil 35 in die Niederdrucksäule 12 eingespeist. Ein Teil des Kopfgases der Hochdrucksäule 11 wird über Leitung 36 abgezogen, im Hauptwärmetauscher 6 auf etwa Umgebungstemperatur angewärmt und schließlich bei 37 als gasförmiges Mitteldruckstickstoffprodukt abgezogen. Der Rest des Kopfgases wird im Hauptkondensator 13 kondensiert. Der dabei gewonnene Flüssigstickstoff 38 wird zu einem ersten Teil 39 über den Unterkühlungs-Gegenströmer 23, eine Leitung 40 und ein Drosselventil 41 als Rücklauf auf den Kopf der Niederdrucksäule 12 aufgegeben. Ein zweiter Teil dient als Rücklauf in der Hochdrucksäule 11. Ein dritter Teil 42 wird in einer Stickstoffpumpe 43 in flüssigem Zustand auf einen erhöhten Druck von beispielsweise 10 bis 50 bar, vorzugsweise 10 bis 15 bar gebracht, über Leitung 44 zum Hauptwärmetauscher 6 geführt und dort unter diesem erhöhten Druck durch indirekten Wärmeaustausch mit Einsatzluft verdampft oder pseudo-verdampft und auf etwa Umgebungstemperatur angewärmt. Er verlässt die Anlage über Leitung 45 als gasförmiges Druckstickstoffprodukt.Liquid crude oxygen 33 is in the subcooling countercurrent 23 cooled and over line 34 and throttle valve 35 in the low pressure column 12 fed. Part of the top gas of the high pressure column 11 will be over line 36 subtracted, in the main heat exchanger 6 warmed to about ambient temperature and finally at 37 withdrawn as gaseous medium pressure nitrogen product. The rest of the top gas is in the main condenser 13 condensed. The resulting liquid nitrogen 38 becomes a first part 39 via the subcooling countercurrent 23 , a lead 40 and a throttle valve 41 as reflux to the top of the low-pressure column 12 given up. A second part serves as reflux in the high pressure column 11 , A third part 42 is in a nitrogen pump 43 brought in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 10 to 15 bar, via line 44 to the main heat exchanger 6 led there and evaporated under this increased pressure by indirect heat exchange with feed air or pseudo-evaporated and warmed to about ambient temperature. He leaves the plant via pipe 45 as gaseous pressure nitrogen product.
  • Vom Sumpf der Niederdrucksäule 12 wird flüssiger Sauerstoff 46 abgezogen, in einer Sauerstoffpumpe 47 in flüssigem Zustand auf einen erhöhten Druck von beispielsweise 10 bis 50 bar, vorzugsweise 12 bis 40 bar gebracht, über Leitung 48 zum Hauptwärmetauscher 6 geführt und dort unter diesem erhöhten Druck durch indirekten Wärmeaustausch mit Einsatzluft verdampft oder pseudo-verdampft und auf etwa Umgebungstemperatur angewärmt. Er verlässt die Anlage über Leitung 49 als gasförmiges Drucksauerstoffprodukt.From the bottom of the low-pressure column 12 becomes liquid oxygen 46 subtracted, in an oxygen pump 47 brought in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 12 to 40 bar, via line 48 to the main heat exchanger 6 led there and evaporated under this increased pressure by indirect heat exchange with feed air or pseudo-evaporated and warmed to about ambient temperature. He leaves the plant via pipe 49 as a gaseous pressure oxygen product.
  • Vom Kopf der Niederdrucksäule 12 wird gasförmiger Stickstoff 50 abgezogen und im Unterkühlungs-Gegenströmer 23 und im Hauptwärmetauscher 6 angewärmt. Der warme drucklose Stickstoff 51 kann als Produkt genutzt, verworfen und/oder in der Anlage als Regeneriergas in der nicht dargestellten Reinigungsvorrichtung und/oder als trockenes Gas in einem Verdunstungskühler zur Abkühlung von Kühlwasser verwendet werden.From the top of the low-pressure column 12 becomes gaseous nitrogen 50 subtracted and in the subcooling countercurrent 23 and in the main heat exchanger 6 warmed up. The warm pressureless nitrogen 51 can be used as a product, discarded and / or used in the system as a regeneration gas in the cleaning device, not shown, and / or as a dry gas in an evaporative cooler for cooling of cooling water.
  • 2 unterscheidet sich dadurch von 1, dass der Austrittsdruck der zweiten Entspannungsmaschine 130 höher ist, nämlich auf dem Niveau des Betriebsdrucks der Hochdrucksäule 11 liegt. Folglich wird der arbeitsleistend entspannte dritte Teilstrom 131 hier mit dem kalten vierten Teilstrom vereinigt und über Leitung 132 der Hochdrucksäule 11 zugeführt. 2 is different from this 1 in that the discharge pressure of the second expansion machine 130 is higher, namely at the level of the operating pressure of the high pressure column 11 lies. Consequently, the work-performing relaxed third partial flow 131 here united with the cold fourth partial stream and over lead 132 the high pressure column 11 fed.
  • Bei dem Verfahren von 2 werden außerdem Flüssigprodukte gewonnen, indem ein Teil 136 des flüssigen Sauerstoffs aus dem Sumpf der Niederdrucksäule 12 als Flüssigsauerstoffprodukt (LOX) und ein Teil des im Hauptkondensator 13 erzeugten flüssigen Stickstoffs 142a, 142b als Flüssigstickstoffprodukt (LIN) abgezogen wird.In the process of 2 In addition, liquid products are obtained by adding a part 136 of the liquid oxygen from the bottom of the low-pressure column 12 as liquid oxygen product (LOX) and part of the main capacitor 13 produced liquid nitrogen 142a . 142b is withdrawn as liquid nitrogen product (LIN).
  • Rücklaufflüssigkeit 139140141 für die Niederdrucksäule 12 wird der Hochdrucksäule 11 hier an einer Zwischenstelle entnommen.Reflux liquid 139 - 140 - 141 for the low pressure column 12 becomes the high pressure column 11 taken here at an intermediate point.
  • Das Verfahren der 3 unterscheidet sich von 1 dadurch, dass der erste, der zweite und der dritte Teilstrom zunächst gemeinsam (203) in einem vierten Nachverdichter 214 mit Nachkühler 215 auf einen Zwischendruck nachverdichtet werden. (Die Nachverdichter 214 und 14 können dabei von verschiedenen Stufen derselben Maschine gebildet werden.) Erst anschließend wird der Strom unter dem Zwischendruck auf den ersten Teilstrom 2, den zweiten Teilstrom 3 und den vierten Teilstrom 4 aufgeteilt. Dadurch ergeben sich höhere Eintrittsdrücke an den beiden Turbinen 8, 30, nämlich beispielsweise 12 bis 16 bar, vorzugsweise 12 bis 14 bar an der ersten Entspannungsmaschine 8 ("zweiter Druck") und beispielsweise 12 bis 16 bar, vorzugsweise 12 bis 14 bar an der zweiten Entspannungsmaschine 30 ("Zwischendruck"). Hierdurch lässt sich ein relativ großer Anteil der Produkte in flüssiger Form gewinnen. Die Flüssigproduktentnahme erfolgt analog zu 2 aus dem Sumpf der Niederdrucksäule 12 (LOX mit einer Reinheit von 99,5% über Leitungen 146a, 146b und/oder LIN über Leitungen 142a, 142b). Rücklaufflüssigkeit 139140141 für die Niederdrucksäule 12 wird der Hochdrucksäule 11 hier an einer Zwischenstelle entnommen.The procedure of 3 differs from 1 in that the first, the second and the third partial flow are first jointly (203) in a fourth after-compressor 214 with aftercooler 215 be recompressed to an intermediate pressure. (The re-compressors 214 and 14 can be formed by different stages of the same machine.) Only then is the current under the intermediate pressure on the first partial flow 2 , the second partial flow 3 and the fourth sub-stream 4 divided up. This results in higher inlet pressures at the two turbines 8th . 30 namely, for example 12 to 16 bar, preferably 12 to 14 bar at the first expansion machine 8th ("second pressure") and for example 12 to 16 bar, preferably 12 to 14 bar at the second expansion machine 30 ( "Intermediate pressure"). As a result, a relatively large proportion of the products can be obtained in liquid form. The liquid product removal takes place analogously to 2 from the bottom of the low-pressure column 12 (LOX with a purity of 99.5% over lines 146a . 146b and / or LIN over lines 142a . 142b ). Reflux liquid 139 - 140 - 141 for the low pressure column 12 becomes the high pressure column 11 taken here at an intermediate point.
  • Der innenzuverdichtende flüssige Sauerstoff 46 wird mit einer niedrigeren Reinheit von etwa 95% von einer Zwischenstelle der Niederdrucksäule 12 abgezogen. Zusätzlich kann ein zweites, reineres Sauerstoffprodukt 346, 348, 349 durch Innenverdichtung (zweite Sauerstoffpumpe 347) gewonnen werden. Wegen der Reinsauerstoffgewinnung muss der Luftdruck etwas höher als in den vorbeschriebenen Ausführungsbeispielen sein. Er liegt bei beispielsweise 6 bis 7,5 bar, vorzugsweise 6 bis 7 bar.The inside to be compressed liquid oxygen 46 is at a lower purity of about 95% of an intermediate point of the low pressure column 12 deducted. In addition, a second, purer oxygen product 346 . 348 . 349 by internal compression (second oxygen pump 347 ) be won. Because of the pure oxygen production, the air pressure must be slightly higher than in the above-described embodiments. It is for example 6 to 7.5 bar, preferably 6 to 7 bar.
  • 4 kombiniert die Luftführung der 2 mit der Produktentnahme der 3. 4 combines the airflow of the 2 with the product removal of the 3 ,
  • ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.
  • Zitierte PatentliteraturCited patent literature
    • - DE 830805 [0004] - DE 830805 [0004]
    • - DE 901542 [0004] - DE 901542 [0004]
    • - US 2712738 [0004] US 2712738 [0004]
    • - US 2784572 [0004] US 2784572 [0004]
    • - DE 952908 [0004] - DE 952908 [0004]
    • - DE 1103363 [0004] - DE 1103363 [0004]
    • - US 3083544 [0004] - US 3083544 [0004]
    • - DE 1112997 [0004] - DE 1112997 [0004]
    • - US 3214925 [0004] US 3214925 [0004]
    • - DE 1124529 [0004] - DE 1124529 [0004]
    • - DE 1117616 [0004] - DE 1117616 [0004]
    • - US 3280574 [0004] - US 3280574 [0004]
    • - DE 1226616 [0004] DE 1226616 [0004]
    • - US 3216206 [0004] - US 3216206 [0004]
    • - DE 1229561 [0004] DE 1229561 [0004]
    • - US 3222878 [0004] US 3222878 [0004]
    • - DE 1199293 [0004] - DE 1199293 [0004]
    • - DE 1187248 [0004] - DE 1187248 [0004]
    • - US 3371496 [0004] US 3371496 [0004]
    • - DE 1235347 [0004] DE 1235347 [0004]
    • - DE 1258882 [0004] - DE 1258882 [0004]
    • - US 3426543 [0004] - US 3426543 [0004]
    • - DE 1263037 [0004] - DE 1263037 [0004]
    • - US 3401531 [0004] - US 3401531 [0004]
    • - DE 1501722 [0004] - DE 1501722 [0004]
    • - US 3416323 [0004] - US 3416323 [0004]
    • - DE 1501723 [0004] - DE 1501723 [0004]
    • - US 3500651 [0004] - US 3500651 [0004]
    • - DE 2535132 [0004] - DE 2535132 [0004]
    • - US 4279631 [0004] - US 4279631 [0004]
    • - DE 2646690 [0004] - DE 2646690 [0004]
    • - EP 93448 B1 [0004] EP 93448 B1 [0004]
    • - US 4555256 [0004] US 4555256 [0004]
    • - EP 384483 B1 [0004] - EP 384483 B1 [0004]
    • - US 5036672 [0004] - US 5036672 [0004]
    • - EP 505812 B1 [0004] - EP 505812 B1 [0004]
    • - US 5263328 [0004] - US 5263328 [0004]
    • - EP 716280 B1 [0004] - EP 716280 B1 [0004]
    • - US 5644934 [0004] US 5644934 [0004]
    • - EP 842385 B1 [0004] - EP 842385 B1 [0004]
    • - US 5953937 [0004] US 5953937 [0004]
    • - EP 758733 B1 [0004] - EP 758733 B1 [0004]
    • - US 5845517 [0004] US 5845517 [0004]
    • - EP 895045 B1 [0004] - EP 895045 B1 [0004]
    • - US 6038885 [0004] - US 6038885 [0004]
    • - DE 19803437 A1 [0004] - DE 19803437 A1 [0004]
    • - EP 949471 B1 [0004] - EP 949471 B1 [0004]
    • - US 6185960 B1 [0004] US 6185960 B1 [0004]
    • - EP 955509 A1 [0004] - EP 955509 A1 [0004]
    • - US 6196022 B1 [0004] - US 6196022 B1 [0004]
    • - EP 1031804 A1 [0004] - EP 1031804 A1 [0004]
    • - US 6314755 [0004] US 6314755 [0004]
    • - DE 19909744 A1 [0004] - DE 19909744 A1 [0004]
    • - EP 1067345 A1 [0004] EP 1067345 A1 [0004]
    • - US 6336345 [0004] - US 6336345 [0004]
    • - EP 1074805 A1 [0004] - EP 1074805 A1 [0004]
    • - US 6332337 [0004] US 6332337 [0004]
    • - DE 19954593 A1 [0004] - DE 19954593 A1 [0004]
    • - EP 1134525 A1 [0004] - EP 1134525 A1 [0004]
    • - US 6477860 [0004] US 6477860 [0004]
    • - DE 10013073 A1 [0004] - DE 10013073 A1 [0004]
    • - EP 1139046 A1 [0004] - EP 1139046 A1 [0004]
    • - EP 1146301 A1 [0004] - EP 1146301 A1 [0004]
    • - EP 1150082 A1 [0004] EP 1150082 A1 [0004]
    • - EP 1213552 A1 [0004] - EP 1213552 A1 [0004]
    • - DE 10115258 A1 [0004] - DE 10115258 A1 [0004]
    • - EP 1284404 A1 [0004] EP 1284404 A1 [0004]
    • - US 2003051504 A1 [0004] US 2003051504 A1 [0004]
    • - EP 1308680 A1 [0004] - EP 1308680 A1 [0004]
    • - US 6612129 B2 [0004] - US 6612129 B2 [0004]
    • - DE 10213212 A1 [0004] DE 10213212 A1 [0004]
    • - DE 10213211 A1 [0004] - DE 10213211 A1 [0004]
    • - EP 1357342 A1 [0004] - EP 1357342 A1 [0004]
    • - DE 10238282 A1 [0004] - DE 10238282 A1 [0004]
  • Zitierte Nicht-PatentliteraturCited non-patent literature
    • - Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) [0002] - Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337) [0002]

Claims (4)

  1. Verfahren zur Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (11) und eine Niederdrucksäule (12) aufweist, bei dem – Einsatzluft (20, 32, 132) in die Hochdrucksäule (11) eingeleitet wird, – ein flüssiger Produktstrom (42; 46; 346) aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (43; 47; 347) und unter diesem erhöhten Druck durch indirekten Wärmeaustausch (6) verdampft oder pseudo-verdampft und schließlich als gasförmiger Produktstrom (45; 49; 349) abgezogen wird, – die gesamte Einsatzluft (1) in einem Hauptluftverdichter auf einen ersten Druck verdichtet wird, der mindestens gleich dem Betriebsdruck der Hochdrucksäule (11) ist, – und anschließend in einer Reinigungsvorrichtung gereinigt wird, – ein erster Teilstrom (2, 7) der Einsatzluft unter etwa dem ersten Druck einer ersten Entspannungsmaschine (8) zugeführt, dort arbeitsleistend auf etwa den Betriebsdruck der Niederdrucksäule (12) entspannt und anschließend in die Niederdrucksäule (12) eingeführt (10) wird, – ein zweiter Teilstrom (3) der Einsatzluft in einem ersten Nachverdichter (14) auf einen zweiten Druck verdichtet wird, der höher als der erste Druck ist, und – mindestens ein Teil (17) des zweiten Teilstroms (16) stromabwärts der Verdichtung in einem zweiten Nachverdichter (18) auf einen dritten Druck nachverdichtet wird, der höher als der zweite Druck ist, dem indirekten Wärmeaustausch (6) zur Verdampfung beziehungsweise Pseudo-Verdampfung des flüssigen Produktstroms zugeführt und anschließend in das Destilliersäulen-System eingeleitet (20) wird, wobei der zweite Nachverdichter (18) als Kaltverdichter ausgebildet ist, dadurch gekennzeichnet, dass – mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (8) des ersten Teilstroms (7) erzeugt wird, zum Antrieb des zweiten Nachverdichters (18) verwendet wird.A process for the cryogenic separation of air in a distillation column system comprising at least one high-pressure column ( 11 ) and a low pressure column ( 12 ), in which - feed air ( 20 . 32 . 132 ) in the high pressure column ( 11 ), - a liquid product stream ( 42 ; 46 ; 346 ) taken from the distillation column system, brought in the liquid state to an elevated pressure ( 43 ; 47 ; 347 ) and under this increased pressure by indirect heat exchange ( 6 ) vaporized or pseudo-vaporized and finally as a gaseous product stream ( 45 ; 49 ; 349 ), - the total feed air ( 1 ) is compressed in a main air compressor to a first pressure which is at least equal to the operating pressure of the high-pressure column ( 11 ), - and then cleaned in a cleaning device, - a first partial flow ( 2 . 7 ) of the feed air below about the first pressure of a first expansion machine ( 8th ), there performing work on about the operating pressure of the low pressure column ( 12 ) and then into the low-pressure column ( 12 ) introduced ( 10 ), - a second partial flow ( 3 ) of the feed air in a first secondary compressor ( 14 ) is compressed to a second pressure which is higher than the first pressure, and - at least one part ( 17 ) of the second partial flow ( 16 ) downstream of the compression in a second secondary compressor ( 18 ) is recompressed to a third pressure which is higher than the second pressure, the indirect heat exchange ( 6 ) for the vaporization or pseudo-evaporation of the liquid product stream and then introduced into the distillation column system ( 20 ), the second secondary compressor ( 18 ) is designed as a cold compressor, characterized in that - at least a part of the mechanical energy, which in the work-performing relaxation ( 8th ) of the first partial flow ( 7 ), for driving the second post-compressor ( 18 ) is used.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein dritter Teilstrom (4) der Einsatzluft in einer zweiten Entspannungsmaschine (30, 130) arbeitsleistend entspannt wird.Method according to claim 1, characterized in that a third partial flow ( 4 ) of the feed air in a second expansion machine ( 30 . 130 ) is working relaxed.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der arbeitsleistend entspannte dritte Teilstrom (31) in die Niederdrucksäule (12) eingeleitet (10) wird.A method according to claim 2, characterized in that the work-performing relaxed third partial flow ( 31 ) in the low-pressure column ( 12 ) ( 10 ) becomes.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der arbeitsleistend entspannte dritte Teilstrom (131) in die Hochdrucksäule (11) eingeleitet (132) wird.A method according to claim 2, characterized in that the work-performing relaxed third partial flow ( 131 ) in the high pressure column ( 11 ) ( 132 ) becomes.
DE200710031765 2007-07-07 2007-07-07 Process for the cryogenic separation of air Withdrawn DE102007031765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200710031765 DE102007031765A1 (en) 2007-07-07 2007-07-07 Process for the cryogenic separation of air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200710031765 DE102007031765A1 (en) 2007-07-07 2007-07-07 Process for the cryogenic separation of air
EP08012052A EP2015012A3 (en) 2007-07-07 2008-07-03 Process for the cryogenic separation of air
US12/168,462 US20090064714A1 (en) 2007-07-07 2008-07-07 Process for low-temperature separation of air

Publications (1)

Publication Number Publication Date
DE102007031765A1 true DE102007031765A1 (en) 2009-01-08

Family

ID=39828943

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200710031765 Withdrawn DE102007031765A1 (en) 2007-07-07 2007-07-07 Process for the cryogenic separation of air

Country Status (3)

Country Link
US (1) US20090064714A1 (en)
EP (1) EP2015012A3 (en)
DE (1) DE102007031765A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
FR2943408A1 (en) * 2009-03-17 2010-09-24 Air Liquide Air separation process for air separation installation, involves extracting argon enriched gas from low pressure column, and delivering gas to argon splitter i.e. argon column, to produce uniform argon enriched flow in liquid form
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090B1 (en) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
FR3010778B1 (en) * 2013-09-17 2019-05-24 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
US20150114037A1 (en) * 2013-10-25 2015-04-30 Neil M. Prosser Air separation method and apparatus
TR201808162T4 (en) 2014-07-05 2018-07-23 Linde Ag Method and apparatus for recovering a pressurized gas product by decomposing air at low temperature.
PL2963369T3 (en) * 2014-07-05 2018-10-31 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963370B1 (en) 2014-07-05 2018-06-13 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas AG Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2718836B1 (en) * 1994-04-15 1996-05-24 Maurice Grenier Improved heat exchanger with brazed plates.
GB9410696D0 (en) * 1994-05-27 1994-07-13 Boc Group Plc Air separation
GB9414938D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
JP3737611B2 (en) * 1997-08-08 2006-01-18 大陽日酸株式会社 Method and apparatus for producing low purity oxygen
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
GB9903908D0 (en) * 1999-02-19 1999-04-14 Boc Group Plc Air separation
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide Method and installation of air separation by cryogenic distillation
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide Method and installation for producing pressurized air gases by air cryogenic distillation
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Patent Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (en) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Low temperature air separation process
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas AG Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337)

Also Published As

Publication number Publication date
EP2015012A3 (en) 2012-08-22
US20090064714A1 (en) 2009-03-12
EP2015012A2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
DE69612532T3 (en) Process and apparatus for the production of oxygen of moderate purity
DE69925769T2 (en) Process for oxygen production
DE19526785C1 (en) Method and device for the variable production of a gaseous printed product
EP0628777B1 (en) Process and apparatus for obtaining argon
EP0895045B1 (en) Air separation process
DE69727648T2 (en) Process and plant for supplying an air gas in variable quantities
EP0316768B1 (en) Air separation process by low temperature rectification
EP1729077B1 (en) Process and device for the recovery of products from synthesis gas
EP1376037B1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
EP0093448A2 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP0758733B1 (en) Air separation process and apparatus by low temperature rectification
EP1308680B1 (en) Process and system for production of krypton and/or xenon by cryogenic air separation
EP0377117B1 (en) Air separation process and apparatus
EP0716280B1 (en) Method and apparatus for the low temperature air separation
EP1666823A1 (en) Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP1482266B1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP0955509B1 (en) Process and apparatus to produce high purity nitrogen
EP0669509A1 (en) Process and apparatus for obtaining pure argon
DE69801462T3 (en) Cryogenic air separation with warm turbine return
EP1134525A1 (en) Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
DE3706733A1 (en) GAS SEPARATION PROCESS WITH SINGLE DISTILLATION COLUMN
AU2014234685B2 (en) Method and device for generating gaseous compressed nitrogen.
EP0383994A2 (en) Air rectification process and apparatus
EP1243882B1 (en) Production of argon using a triple pressure air separation system with an argon column

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110201