EP2466236A1 - Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air - Google Patents

Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air Download PDF

Info

Publication number
EP2466236A1
EP2466236A1 EP11008761A EP11008761A EP2466236A1 EP 2466236 A1 EP2466236 A1 EP 2466236A1 EP 11008761 A EP11008761 A EP 11008761A EP 11008761 A EP11008761 A EP 11008761A EP 2466236 A1 EP2466236 A1 EP 2466236A1
Authority
EP
European Patent Office
Prior art keywords
air
compressor
pressure
partial flow
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11008761A
Other languages
German (de)
French (fr)
Inventor
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11008761A priority Critical patent/EP2466236A1/en
Publication of EP2466236A1 publication Critical patent/EP2466236A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air

Definitions

  • the invention relates to a method for obtaining a gaseous printed product by cryogenic separation of air according to the preamble of patent claim 1.
  • the distillation column system of the invention can be designed as a two-column system (for example as a classic Linde double column system), or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery.
  • a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
  • This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • expansion machine includes any machine for work-relaxing a process stream.
  • the expansion machines are formed in the invention by expansion turbines.
  • the "main heat exchanger” may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks. It serves to cool the feed air streams in indirect heat exchange with return streams from the distillation column system.
  • the invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate.
  • At least a portion of the air from the second expansion machine (third partial flow) is not discarded, but returned to the air compressor.
  • the yield of the system is increased;
  • the second expansion machine can still be operated with a particularly low outlet pressure, ie with relatively high power.
  • the outlet pressure of the second expansion machine is approximately equal to the operating pressure of the low-pressure column (plus line losses).
  • the entire third partial flow can be introduced into the air compressor.
  • at least 30%, in particular at least 50% of the work-performing expanded third partial stream is introduced into the low-pressure column.
  • third partial flow here refers to the entire air flow guided through the second expansion machine.
  • the remainder of the work-performing expanded third partial stream or a part thereof can be fed into the low-pressure column.
  • the supply of the working third partial flow (or a part thereof) in the air compressor can be made for example at the entrance. Alternatively, this supply takes place at an intermediate stage of the air compressor, wherein the air compressor is designed in multiple stages and has at least one first and one last stage, wherein at least a part of the work-performing relaxed third
  • Partial flow is returned to the air compressor downstream of the first stage and upstream of the last stage.
  • the diversion of the third partial stream from the feed air can, for example, be carried out downstream of the cleaning device, for example immediately upstream of the postcompressor, downstream of the postcompressor or also downstream of the first expansion machine.
  • the third partial flow is branched off from the compressed feed air upstream of the cleaning device.
  • Air separation plants of the aforementioned type regularly have a precooling device, in which the compressed feed air upstream of the cleaning device by direct or indirect heat exchange with cooling water. is cooled to remove the heat of compression.
  • the third partial stream upstream of the pre-cooling device can be branched off from the purified feed air.
  • This feature of the invention namely the diversion of a partial air flow upstream of the pre-cooler with subsequent work expansion and return to the air compressor and / or venting to the atmosphere, can be applied in principle to any cryogenic air separation process, even without the above mentioned features; This is especially true when cold is generated in another expansion machine (here: the first expansion machine) and both expansion machines are mechanically coupled with additional compressor, in particular one with a cold compressor and the other with a warm booster.
  • a part of the work-performing expanded third partial flow is discharged into the atmosphere. This may be useful, in particular, when the outlet pressure of the second expansion machine is at the level of the low-pressure column pressure.
  • the total feed air can be compressed together in the warm after-compressor, ie in particular the first, the second and the third partial flow.
  • Air separation plants of the aforementioned type regularly have a pre-cooling device, in which the air upstream of the cleaning device in direct or indirect heat exchange with alternative, the first and the second partial stream are recompressed in the warm booster, and the third partial flow is passed to the warm booster.
  • the diversion of the third partial flow of other air parts takes place here upstream of the warm after-compressor.
  • the second partial flow is recompressed in the warm after-compressor, and the first and the third partial flow are conducted past the warm after-compressor.
  • the diversion of the third partial flow of other parts of the air also takes place here upstream of the warm after-compressor or downstream of the common branch of the first and third partial flow from the purified, but not recompressed feed air flow.
  • the third partial flow is introduced into the second expansion machine at approximately the outlet pressure of the air compressor or below approximately the outlet pressure of the warm after-compressor.
  • the splitting into the first and third partial flow takes place upstream of the work-performing depressions.
  • the two relaxation machines are connected in parallel.
  • the third partial flow is expanded together with the first partial flow in the first expansion machine and fed downstream of the first expansion machine separately from the first partial flow of the second expansion machine.
  • the splitting into the first and third partial flow is therefore carried out only upstream of the first expansion machine.
  • the two expansion machines are connected in series.
  • the air compressor is the only external energy driven machine for compressing air.
  • a single machine is meant here a single stage or multi-stage compressor whose stages are all connected to the same drive, all stages in the same Housing housed or connected to the same gear.
  • the entire feed air is compressed to a pressure which is significantly above the highest pressure of the distillation column system, in particular significantly above the operating pressure of the high-pressure column.
  • This pressure difference between the outlet pressure of the air compressor and the operating pressure of the high-pressure column is, for example, at least 4 bar and is preferably between 6 and 16 bar.
  • the compressed in the air compressor total air (except for possible smaller proportions such as instrument air) is preferably completely divided among the three sub-streams.
  • a nitrogen internal compression can be supplemented by removing a liquid nitrogen product stream from the distillation column system, brought to elevated pressure in the liquid state, vaporized or pseudo-evaporated under this elevated pressure in the main heat exchanger, warmed to about ambient temperature and finally withdrawn as a gaseous nitrogen pressure product stream.
  • the first and the second partial flow 11, 13 are here together via the lines 7 and 10 from the outlet of the cleaning device 5 by a hot booster 8 with aftercooler 9 to the warm end of the main heat exchanger 14 out.
  • a liquid oxygen product stream 30 is withdrawn from the low pressure column 90, pressurized (52) in a liquid state pump (52), vaporized under this elevated pressure in the main heat exchanger or, if the pressure is higher than the critical pressure, pseudo-liquid. evaporated, warmed to about ambient temperature and finally withdrawn as a gaseous oxygen pressure product stream 33.
  • a nitrogen-pressure product can also be obtained by means of internal compression.
  • a liquid nitrogen product stream from the high-pressure column or its top condenser, the main condenser is brought in a pump in the liquid state to an elevated pressure, evaporated under this elevated pressure (line 41) in the main heat exchanger or, if the pressure is higher than the critical Pressure is pseudo-evaporated, warmed to about ambient temperature, and finally withdrawn as a gaseous nitrogen pressure product stream (42).
  • the second partial flow 7 can be precooled upstream of the hot secondary compressor 8.
  • the aftercooler may then be omitted under certain circumstances.
  • one or more parts of the working expanded third partial stream 26 may be directed to other locations of the air compressor, in the low-pressure column and / or in the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The method involves expanding the main partial flow (11) of purified feed air (6) in expanding machine (16). The intermediate partial flow (12) of purified feed air is cooled to intermediate temperature and is recompacted in a cold compressor (19). The final partial flow (13) of compressed feed air (3) is expanded. The liquid oxygen product streams (30,32) are evaporated or pseudo vaporized, warmed to ambient temperature and withdrawn finally as the gaseous pressurized oxygen product stream (33). The portion of final partial flow is returned to the air compressor (28).

Description

Die Erfindung betrifft ein Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for obtaining a gaseous printed product by cryogenic separation of air according to the preamble of patent claim 1.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.The distillation column system of the invention can be designed as a two-column system (for example as a classic Linde double column system), or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery.

Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".

Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.Against the (pseudo) evaporating product stream, a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure). The heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.

Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , A1, EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355 A1 .Internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 253132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 . DE 10334559 A1 . DE 10334560 A1 . DE 10332863 A1 . EP 1544559 A1 . EP 1585926 A1 . DE 102005029274 A1 EP 1666824 A1 . EP 1672301 A1 . DE 102005028012 A1 . WO 2007033838 A1 . WO 2007104449 A1 . EP 1845324 A1 . DE 102006032731 A1 . EP 1892490 A1 . DE 102007014643 A1 , A1, EP 2015012 A2 . EP 2015013 A2 . EP 2026024 A1 . WO 2009095188 A2 or DE 102008016355 A1 ,

Der Begriff "Entspannungsmaschine" umfasst jede Maschine zur arbeitsleistenden Entspannung eines Prozessstroms. Bevorzugt werden die Entspannungsmaschinen bei der Erfindung durch Expansionsturbinen gebildet.The term "expansion machine" includes any machine for work-relaxing a process stream. Preferably, the expansion machines are formed in the invention by expansion turbines.

Der "Hauptwärmetauscher" kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken. Er dient zur Abkühlung der Einsatzluftströme in indirektem Wärmeaustausch mit Rückströmen aus dem Destilliersäulen-System.The "main heat exchanger" may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks. It serves to cool the feed air streams in indirect heat exchange with return streams from the distillation column system.

Diese Anmeldung umfasst auch die Offenbarung der gleichzeitig eingereichten deutschen Patentanmeldung (internes Aktenzeichen P10C124-DE = IC0362a), die im Folgenden als "Parallelanmeldung" bezeichnet wird, sowie die Offenbarung der zu dieser Parallelanmeldung korrespondierenden Anmeldungen.This application also includes the disclosure of the concurrently filed German patent application (internal reference P10C124-DE = IC0362a), which is referred to below as "parallel application", as well as the disclosure of the corresponding to this application in parallel applications.

Ein Verfahren der eingangs genannten Art ist aus WO 2008110734 A2 bekannt. Bei diesem Prozess ist entscheidend, dass die zweite Entspannungsmaschine abschaltbar ist und der gesamte dritte Teilstrom stromabwärts der zweiten Entspannungsmaschine in die Atmosphäre abgeblasen wird, damit er die Rektifikation nicht stört.A method of the type mentioned is out WO 2008110734 A2 known. In this process, it is crucial that the second expansion machine is switched off and the entire third partial stream is blown off into the atmosphere downstream of the second expansion machine, so that it does not disturb the rectification.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich besonders günstig zu betreiben sind.The invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate.

Diese Aufgabe wird durch das Verfahren gemäß Patentanspruch 1 gelöst.This object is achieved by the method according to claim 1.

Bei dem erfindungsgemäßen Verfahren wird mindestens ein Teil der Luft aus der zweiten Entspannungsmaschine (dritter Teilstrom) nicht verworfen, sondern in den Luftverdichter zurückgeführt. Damit wird einerseits die Ausbeute der Anlage erhöht; andererseits kann die zweite Entspannungsmaschine nach wie vor mit einem besonders niedrigen Austrittsdruck, also mit relativ hoher Leistung, betrieben werden.In the method according to the invention at least a portion of the air from the second expansion machine (third partial flow) is not discarded, but returned to the air compressor. Thus, on the one hand, the yield of the system is increased; On the other hand, the second expansion machine can still be operated with a particularly low outlet pressure, ie with relatively high power.

Vorzugsweise ist der Austrittsdruck der zweiten Entspannungsmaschine etwa gleich dem Betriebsdruck der Niederdrucksäule (plus Leitungsverlusten).Preferably, the outlet pressure of the second expansion machine is approximately equal to the operating pressure of the low-pressure column (plus line losses).

Im Rahmen der Erfindung kann der gesamte dritte Teilstrom in den Luftverdichter eingeführt werden. Vorzugsweise werden mindestens 30 %, insbesondere mindestens 50 % des arbeitsleistend entspannten dritten Teilstroms in die Niederdrucksäule eingeleitet. (Als "dritter Teilstrom" wird an dieser Stelle der gesamte durch die zweite Entspannungsmaschine geführte Luftstrom bezeichnet.)In the context of the invention, the entire third partial flow can be introduced into the air compressor. Preferably, at least 30%, in particular at least 50% of the work-performing expanded third partial stream is introduced into the low-pressure column. (The term "third partial flow" here refers to the entire air flow guided through the second expansion machine.)

Der Rest des arbeitsleistend entspannten dritten Teilstroms oder ein Teil davon kann in die Niederdrucksäule eingespeist werden.The remainder of the work-performing expanded third partial stream or a part thereof can be fed into the low-pressure column.

Die Zuführung des arbeitsleistenden dritten Teilstroms (oder eines Teils davon) in den Luftverdichter kann beispielsweise am Eintritt vorgenommen werden. Alternativ findet diese Zuführung an einer Zwischenstufe des Luftverdichters statt, wobei der Luftverdichter mehrstufig ausgebildet ist und mindestens eine erste und eine letzte Stufe aufweist, wobei mindestens ein Teil des arbeitsleistend entspannten drittenThe supply of the working third partial flow (or a part thereof) in the air compressor can be made for example at the entrance. Alternatively, this supply takes place at an intermediate stage of the air compressor, wherein the air compressor is designed in multiple stages and has at least one first and one last stage, wherein at least a part of the work-performing relaxed third

Teilstroms dem Luftverdichter stromabwärts der ersten Stufe und stromaufwärts der letzten Stufe zurückgeführt wird.Partial flow is returned to the air compressor downstream of the first stage and upstream of the last stage.

Die Abzweigung des dritten Teilstroms aus der Einsatzluft kann zum Beispiel stromabwärts der Reinigungsvorrichtung durchgeführt werden, etwa unmittelbar stromaufwärts des Nachverdichters, stromabwärts des Nachverdichters oder auch stromabwärts der ersten Entspannungsmaschine erfolgen. Insbesondere wird der dritte Teilstrom jedoch stromaufwärts der Reinigungseinrichtung aus der verdichteten Einsatzluft abgezweigt.The diversion of the third partial stream from the feed air can, for example, be carried out downstream of the cleaning device, for example immediately upstream of the postcompressor, downstream of the postcompressor or also downstream of the first expansion machine. In particular, however, the third partial flow is branched off from the compressed feed air upstream of the cleaning device.

Luftzerlegungsanlagen der eingangs genannten Art weisen regelmäßig eine Vorkühlvorrichtung auf, in der die verdichtete Einsatzluft stromaufwärts der Reinigungsvorrichtung durch direkten oder indirekten Wärmeaustausch mit Kühlwasser. abgekühlt wird, um die Verdichtungswärme zu entfernen. In diesem Fall kann der dritte Teilstrom stromaufwärts der Vorkühlvorrichtung aus der gereinigten Einsatzluft abgezweigt werden. Dieses Merkmal der Erfindung, nämlich die Abzweigung eines Teilluftstroms stromaufwärts der Vorkühleinrichtung mit anschließender arbeitsleistender Entspannung und Rückführung in den Luftverdichter und/oder Ablassen in die Atmosphäre kann grundsätzlich bei jedem Tieftemperatur-Luftzerlegungsverfahren angewendet werden, auch ohne die weiter oben angeführten Merkmale; dies gilt insbesondere dann, wenn Kälte in einer weiteren Entspannungsmaschine (hier: der ersten Entspannungsmaschine) erzeugt wird und beide Entspannungsmaschinen mechanisch mit Nachverdichter gekoppelt sind, insbesondere eine mit einem Kaltverdichter und die andere mit einem warmen Nachverdichter.Air separation plants of the aforementioned type regularly have a precooling device, in which the compressed feed air upstream of the cleaning device by direct or indirect heat exchange with cooling water. is cooled to remove the heat of compression. In this case, the third partial stream upstream of the pre-cooling device can be branched off from the purified feed air. This feature of the invention, namely the diversion of a partial air flow upstream of the pre-cooler with subsequent work expansion and return to the air compressor and / or venting to the atmosphere, can be applied in principle to any cryogenic air separation process, even without the above mentioned features; This is especially true when cold is generated in another expansion machine (here: the first expansion machine) and both expansion machines are mechanically coupled with additional compressor, in particular one with a cold compressor and the other with a warm booster.

Alternativ oder zusätzlich ein Teil des arbeitsleistend entspannten dritten Teilstroms in die Atmosphäre abgelassen wird. Dies kann insbesondere dann sinnvoll sein, wenn der Austrittsdruck der zweiten Entspannungsmaschine auf dem Niveau des Niederdrucksäulendrucks liegt.Alternatively or additionally, a part of the work-performing expanded third partial flow is discharged into the atmosphere. This may be useful, in particular, when the outlet pressure of the second expansion machine is at the level of the low-pressure column pressure.

Bei dem erfindungsgemäßen Verfahren kann die gesamte Einsatzluft gemeinsam in dem warmen Nachverdichter nachverdichtet werden, also insbesondere der erste, der zweite und der dritte Teilstrom. (Eventuell für andere Zwecke abgezweigte Luftteile, so genannte Instrumentenluft, werden hier nicht zur "gesamten Einsatzluft" gezählt.) Die,In the method according to the invention, the total feed air can be compressed together in the warm after-compressor, ie in particular the first, the second and the third partial flow. (Air units possibly diverted for other purposes, so-called instrument air, are not counted here as "total feed air").

Abzweigung des dritten Teilstroms von anderen Luftteilen findet dann stromabwärts des warmen Nachverdichters statt. Diese Verfahrensweise ist insbesondere bei serieller Verbindung der Turbinen sinnvoll, kann aber auch bei Parallelschaltung eingesetzt werden.Divergence of the third partial flow from other parts of the air then takes place downstream of the warm after-compressor. This procedure is particularly useful for serial connection of the turbines, but can also be used in parallel connection.

Luftzerlegungsanlagen der eingangs genannten Art weisen regelmäßig eine Vorkühlungseinrichtung aus, in der die Luft stromaufwärts der Reinigungsvorrichtung in direktem oder indirektem Wärmeaustausch mit Alternativ werden der erste und der zweite Teilstrom in dem warmen Nachverdichter nachverdichtet, und der dritte Teilstrom wird an dem warmen Nachverdichter vorbeigeführt. Die Abzweigung des dritten Teilstroms von anderen Luftteilen findet hier stromaufwärts des warmen Nachverdichters statt.Air separation plants of the aforementioned type regularly have a pre-cooling device, in which the air upstream of the cleaning device in direct or indirect heat exchange with alternative, the first and the second partial stream are recompressed in the warm booster, and the third partial flow is passed to the warm booster. The diversion of the third partial flow of other air parts takes place here upstream of the warm after-compressor.

In einer weiteren Ausführungsform der Erfindung wird der zweite Teilstrom in dem warmen Nachverdichter nachverdichtet wird, und der erste und der dritte Teilstrom werden an dem warmen Nachverdichter vorbeigeführt. Die Abzweigung des dritten Teilstroms von anderen Luftteilen findet hier ebenfalls stromaufwärts des warmen Nachverdichters beziehungsweise stromabwärts der gemeinsamen Abzweigung von erstem und drittem Teilstrom aus dem gereinigten, aber nicht nachverdichteten Einsatzluftstrom statt.In a further embodiment of the invention, the second partial flow is recompressed in the warm after-compressor, and the first and the third partial flow are conducted past the warm after-compressor. The diversion of the third partial flow of other parts of the air also takes place here upstream of the warm after-compressor or downstream of the common branch of the first and third partial flow from the purified, but not recompressed feed air flow.

Zum Beispiel wird der dritte Teilstrom unter etwa dem Austrittsdruck des Luftverdichters beziehungsweise unter etwa dem Austrittsdruck des warmen Nachverdichters in die zweite Entspannungsmaschine eingeführt. In diesem Fall findet die Aufspaltung in den ersten und dritten Teilstrom stromaufwärts der arbeitsleistenden Entspannungen statt. Die beiden Entspannungsmaschinen sind parallel geschaltet.For example, the third partial flow is introduced into the second expansion machine at approximately the outlet pressure of the air compressor or below approximately the outlet pressure of the warm after-compressor. In this case, the splitting into the first and third partial flow takes place upstream of the work-performing depressions. The two relaxation machines are connected in parallel.

Alternativ wird der dritte Teilstrom gemeinsam mit dem ersten Teilstrom in der ersten Entspannungsmaschine entspannt und stromabwärts der ersten Entspannungsmaschine getrennt von dem ersten Teilstrom der zweiten Entspannungsmaschine zugeleitet. Die Aufspaltung in den ersten und dritten Teilstrom wird also erst stromaufwärts der ersten Entspannungsmaschine durchgeführt. Die beiden Entspannungsmaschinen sind seriell geschaltet.Alternatively, the third partial flow is expanded together with the first partial flow in the first expansion machine and fed downstream of the first expansion machine separately from the first partial flow of the second expansion machine. The splitting into the first and third partial flow is therefore carried out only upstream of the first expansion machine. The two expansion machines are connected in series.

Vorzugsweise stellt bei dem Verfahren der Luftverdichter die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft dar. Unter einer "einzigen Maschine" wird hier ein einstufiger oder mehrstufiger Verdichter verstanden, dessen Stufen alle mit dem gleichen Antrieb verbunden sind, wobei alle Stufen in demselben Gehäuse untergebracht oder mit demselben Getriebe verbunden sind. In diesem Luftverdichter wird vorzugsweise die gesamte Einsatzluft auf einen Druck verdichtet, der deutlich über dem höchsten Druck des Destilliersäulen-Systems, insbesondere deutlich über dem Betriebsdruck der Hochdrucksäule liegt. Dieser Druckunterschied zwischen dem Austrittsdruck des Luftverdichters und dem Betriebsdruck der Hochdrucksäule beträgt beispielsweise mindestens 4 bar und liegt vorzugsweise zwischen 6 und 16 bar. In dieser Variante wird die im Luftverdichter verdichtete Gesamtluft (bis auf mögliche kleinere Anteile wie zum Beispiel Instrumentenluft) vorzugsweise vollständig auf die drei Teilströme aufgeteilt.Preferably, in the method, the air compressor is the only external energy driven machine for compressing air. By a "single machine" is meant here a single stage or multi-stage compressor whose stages are all connected to the same drive, all stages in the same Housing housed or connected to the same gear. In this air compressor, preferably the entire feed air is compressed to a pressure which is significantly above the highest pressure of the distillation column system, in particular significantly above the operating pressure of the high-pressure column. This pressure difference between the outlet pressure of the air compressor and the operating pressure of the high-pressure column is, for example, at least 4 bar and is preferably between 6 and 16 bar. In this variant, the compressed in the air compressor total air (except for possible smaller proportions such as instrument air) is preferably completely divided among the three sub-streams.

Außerdem kann bei dem Verfahren eine Stickstoff-Innenverdichtung ergänzt werden, indem ein flüssiger Stickstoff-Produktstrom aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht, unter diesem erhöhten Druck im Hauptwärmetauscher verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Stickstoff-Druckproduktstrom abgezogen wird.In addition, in the process, a nitrogen internal compression can be supplemented by removing a liquid nitrogen product stream from the distillation column system, brought to elevated pressure in the liquid state, vaporized or pseudo-evaporated under this elevated pressure in the main heat exchanger, warmed to about ambient temperature and finally withdrawn as a gaseous nitrogen pressure product stream.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen sowie anhand der Ausführungsbeispiele in der Parallelanmeldung näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel der Erfindung mit Abzweigung des dritten Teilstroms stromaufwärts der Vorkühlung und
Figuren 2 bis 4
drei weitere Ausführungsbeispiele mit Abzweigung des dritten Teilstroms stromaufwärts der Vorkühlung.
The invention and further details of the invention are explained in more detail below with reference to embodiments schematically illustrated in the drawings and with reference to the embodiments in the parallel application. Hereby show:
FIG. 1
a first embodiment of the invention with branching of the third partial stream upstream of the pre-cooling and
FIGS. 2 to 4
three further embodiments with branching of the third partial flow upstream of the precooling.

In Figur 1 wird atmosphärische Luft als Einsatzluft über Leitung 1 von einem Luftverdichter 2 angesaugt und dort auf einen Druck verdichtet, der deutlich höher als der Betriebsdruck der Hochdrucksäule 80 ist. Der Luftverdichter ist hier mehrstufig, insbesondere vier-, fünf- oder sechsstufig ausgebildet, wobei sich zwischen den Stufen je ein Zwischenkühler befindet. Die verdichtete Einsatzluft 3 wird zum größeren Teil 42 einer Vorkühlungsvorrichtung 4 ("Precooling") zugeführt, in dem die Verdichtungswärme der letzten Stufe des Luftverdichters in direktem oder indirektem Wärmeaustausch mit Kühlwasser entfernt wird. Die vorgekühlte Einsatzluft wird in einer Reinigungseinrichtung 5, die vorzugsweise als Molekularsieb-Adsorber ausgebildet ist, gereinigt. Die verdichtete Einsatzluft 3 wird in dem Ausführungsbeispiel drei Teilströme aufgeteilt:

  • Ein erster Teilstrom 11 wird nach Abkühlung in einem Hauptwärmetauscher 14 auf eine erste Zwischentemperatur über Leitung 15 der arbeitsleistenden Entspannung in einer ersten Entspannungsmaschine 16 zugeführt und anschließend über Leitung 17 in die Hochdrucksäule 80 des Destilliersäulen-Systems eingeleitet.
  • Ein zweiter Teilstrom 12 wird im Hauptwärmetauscher 14 auf eine zweite Zwischentemperatur abgekühlt, die niedriger oder höher als die erste Zwischentemperatur oder gleich der ersten Zwischentemperatur ist, über Leitung 18 aus dem Hauptwärmetauscher 14 entnommen, in einem Kaltverdichter 19 weiter verdichtet, bei einer dritten Zwischentemperatur, die höher als die zweite Zwischentemperatur über Leitung 20 wieder in den Hauptwärmetauscher 14 eingeführt und dort weiter abgekühlt und schließlich verflüssigt beziehungsweise - falls der Druck des zweiten Teilstroms überkritisch ist - pseudo-verflüssigt. Der (pseudo-)verflüssigte zweite Teilstrom 21 wird in einem Drosselventil 22 auf etwa den Druck der Hochdrucksäule 80 entspannt und schließlich in die Hochdrucksäule 80 eingeleitet. Ein Teil des entspannten dritten Teilstroms 23 kann auch direkt in die Niederdrucksäule 90 eingespeist werden.
  • Ein dritter Teilstrom 13 der verdichteten Einsatzluft 3 wird unmittelbar stromaufwärts der Vorkühlvorrichtung 4 abgezweigt und ohne Abkühlung im Hauptwärmetauscher 14 der arbeitsleistenden Entspannung in einer zweiten Entspannungsmaschine 25 zugeführt. Der arbeitsleistend auf einen Druck von beispielsweise 1,2 bis 6 bar, vorzugsweise etwa 1,3 bar entspannte dritte Teilstrom 26 wird in dem Beispiel vollständig über Leitung 28 zum Luftverdichter 2 zurückgeführt und dort in den Gesamtluftstrom eingeleitet, zum Beispiel stromaufwärts der letzten Stufe, insbesondere stromaufwärts eines Zwischenkühlers, der unter passendem Druck betrieben wird.
In FIG. 1 Atmospheric air is sucked as feed air via line 1 from an air compressor 2 and compressed there to a pressure which is significantly higher than the operating pressure of the high-pressure column 80. The air compressor is multi-level here, in particular four, five or six stages, with an intercooler between the stages. The compressed feed air 3 is fed to a larger part 42 of a precooling device 4 ("precooling") in which the compression heat of the last stage of the air compressor is removed in direct or indirect heat exchange with cooling water. The pre-cooled feed air is purified in a cleaning device 5, which is preferably designed as a molecular sieve adsorber. The compressed feed air 3 is divided into three sub-streams in the embodiment:
  • A first partial flow 11 is supplied after cooling in a main heat exchanger 14 to a first intermediate temperature via line 15 of the working expansion in a first expansion machine 16 and then introduced via line 17 into the high pressure column 80 of the distillation column system.
  • A second substream 12 is cooled in the main heat exchanger 14 to a second intermediate temperature, which is lower or higher than the first intermediate temperature or equal to the first intermediate temperature, taken from the main heat exchanger 14 via line 18, further compressed in a cold compressor 19, at a third intermediate temperature, the higher than the second intermediate temperature via line 20 again introduced into the main heat exchanger 14 and further cooled there and finally liquefied or - if the pressure of the second partial flow is supercritical - pseudo-liquefied. The (pseudo-) liquefied second substream 21 is expanded in a throttle valve 22 to approximately the pressure of the high-pressure column 80 and finally introduced into the high-pressure column 80. A portion of the relaxed third partial flow 23 can also be fed directly into the low-pressure column 90.
  • A third partial flow 13 of the compressed feed air 3 is branched off immediately upstream of the precooling device 4 and fed to the work-performing expansion in a second expansion machine 25 without cooling in the main heat exchanger 14. The working to a pressure of, for example, 1.2 to 6 bar, preferably about 1.3 bar relaxed third part stream 26 is completely returned in the example via line 28 to the air compressor 2 and introduced there in the total air flow, for example, upstream of the last stage, in particular upstream of an intercooler operated under suitable pressure.

Der erste und der zweite Teilstrom 11, 13 werden hier gemeinsam über die Leitungen 7 und 10 vom Austritt der Reinigungseinrichtung 5 durch einem warmen Nachverdichter 8 mit Nachkühler 9 zum warmen Ende des Hauptwärmetauschers 14 geführt.The first and the second partial flow 11, 13 are here together via the lines 7 and 10 from the outlet of the cleaning device 5 by a hot booster 8 with aftercooler 9 to the warm end of the main heat exchanger 14 out.

Ein flüssiger Sauerstoff-Produktstrom 30 wird aus der Niederdrucksäule 90 entnommen, in einer Pumpe 31 in flüssigem Zustand auf einen erhöhten Druck gebracht (52), unter diesem erhöhten Druck im Hauptwärmetauscher verdampft oder, falls der Druck höher als der kritische Druck ist, pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Sauerstoff-Druckproduktstrom 33 abgezogen.A liquid oxygen product stream 30 is withdrawn from the low pressure column 90, pressurized (52) in a liquid state pump (52), vaporized under this elevated pressure in the main heat exchanger or, if the pressure is higher than the critical pressure, pseudo-liquid. evaporated, warmed to about ambient temperature and finally withdrawn as a gaseous oxygen pressure product stream 33.

Auch ein Stickstoff-Druckprodukt kann mittels Innenverdichtung gewonnen werden. Hierzu wird ein flüssiger Stickstoff-Produktstrom aus der Hochdrucksäule oder deren Kopfkondensator, dem Hauptkondensator entnommen, in einer Pumpe in flüssigem Zustand auf einen erhöhten Druck gebracht, unter diesem erhöhten Druck (Leitung 41) im Hauptwärmetauscher verdampft oder, falls der Druck höher als der kritische Druck ist, pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Stickstoff-Druckproduktstrom (42) abgezogen werden.A nitrogen-pressure product can also be obtained by means of internal compression. For this purpose, a liquid nitrogen product stream from the high-pressure column or its top condenser, the main condenser is brought in a pump in the liquid state to an elevated pressure, evaporated under this elevated pressure (line 41) in the main heat exchanger or, if the pressure is higher than the critical Pressure is pseudo-evaporated, warmed to about ambient temperature, and finally withdrawn as a gaseous nitrogen pressure product stream (42).

Weitere Rückströme aus dem Destilliersäulen-System sind gasförmiger Sauerstoff 36, unreiner Stickstoff 35 und reiner Stickstoff 36. Außerdem können Flüssigsauerstoff und Flüssigstickstoff sowohl aus der Hochdrucksäule als auch aus der Niederdrucksäule entnommen werden. Die gasförmige Produkte werden im Hauptwärmetauscher 14 auf etwa Umgebungstemperatur angewärmt und schließlich über die Leitungen 37, 38 und 39 abgezogen.Further refluxes from the distillation column system are gaseous oxygen 36, impure nitrogen 35 and pure nitrogen 36. In addition, liquid oxygen and liquid nitrogen can be taken from both the high pressure column and the low pressure column. The gaseous products are heated in the main heat exchanger 14 to about ambient temperature and finally withdrawn via lines 37, 38 and 39.

In der fakultativen Passagengruppe 40 des Hauptwärmetauschers 14 kann der zweite Teilstrom 7 stromaufwärts des warmen Nachverdichters 8 vorgekühlt werden. Der Nachkühler kann dann unter Umständen entfallen.In the optional passage group 40 of the main heat exchanger 14, the second partial flow 7 can be precooled upstream of the hot secondary compressor 8. The aftercooler may then be omitted under certain circumstances.

Figur 2 unterscheidet sich in folgenden Details von Figur 1:

  • Der erste Teilstrom 11 wird über Leitung 210 am warmen Nachverdichters 8 vorbeigeführt.
  • Der dritte Teilstrom 13 wird stromabwärts von Vorkühlung 4 und Reinigungseinrichtung 5 vom zweiten Teilstrom 7, 12 abgezweigt und dann über Leitung 210 gemeinsam mit dem ersten Teilstrom zum warmen Ende des Hauptwärmetauschers 14 geführt. Anschließend wird der dritte Teilstrom 13 im Hauptwärmetauscher 14 auf eine Zwischentemperatur abgekühlt und über Leitung 24 unter dieser Zwischentemperatur zur arbeitsleistenden Entspannung 25 geführt. - Der arbeitsleistend entspannte dritte Teilstrom 28 wird im Hauptwärmetauscher 14 auf etwa Umgebungstemperatur angewärmt und strömt über Leitung 29 zurück zum Luftverdichter 2.
  • Durch den Hauptwärmetauscher 14 wird ein Rückstrom weniger geführt (41/42 in Figur 1).
FIG. 2 differs in the following details of FIG. 1 :
  • The first partial flow 11 is guided past the warm secondary compressor 8 via line 210.
  • The third partial flow 13 is branched off from the second partial flow 7, 12 downstream of the pre-cooling 4 and purification device 5 and then guided via line 210 together with the first partial flow to the warm end of the main heat exchanger 14. Subsequently, the third partial flow 13 is cooled in the main heat exchanger 14 to an intermediate temperature and passed via line 24 under this intermediate temperature for work-performing expansion 25. - The working expanded third partial stream 28 is heated in the main heat exchanger 14 to about ambient temperature and flows via line 29 back to the air compressor. 2
  • Through the main heat exchanger 14, a return flow is less led (41/42 in FIG. 1 ).

Figur 3 unterscheidet sich in folgenden Details von Figur 2:

  • Der dritte Teilstrom 13 wird vor der arbeitsleistenden Entspannung 25 nicht im Hauptwärmetauscher 14 abgekühlt, sondern direkt zur Entspannungsmaschine geführt.
  • Der arbeitsleistend entspannte dritte Teilstrom 28 wird nur zu einem ersten Teil über die Leitungen 28 und 29 wie in Figur 2 geführt: ein zweiter Teil wird über die Leitungen 27, 227 durch den kalten Teil des Hauptwärmetauschers 14 zur Niederdrucksäule (LPC) des Destilliersäulensystems geleitet.
FIG. 3 differs in the following details of FIG. 2 :
  • The third partial flow 13 is not cooled in the main heat exchanger 14 before work-performing expansion 25, but led directly to the expansion machine.
  • The working expanded third partial stream 28 is only to a first part via the lines 28 and 29 as in FIG. 2 a second part is passed via the lines 27, 227 through the cold part of the main heat exchanger 14 to the low pressure column (LPC) of the distillation column system.

Figur 4 unterscheidet sich in folgendem Detail von Figur 2:

  • Der arbeitsleistend entspannte dritte Teilstrom 28 wird über Leitung 329 zum Eintritt des Luftverdichters 2 zurückgeführt.
FIG. 4 differs in the following detail of FIG. 2 :
  • The working expanded third partial stream 28 is returned via line 329 to the inlet of the air compressor 2.

Alle Ausführungsbeispiele der Parallelanmeldung welche die Rückführung mindestens eines Teils des arbeitsleistend entspannten dritten Teilstroms zum Luftverdichter zeigen, sind auch Ausführungsbeispiele der vorliegenden Erfindung. Immer wenn der dritte Teilstrom stromaufwärts der zweiten Entspannungsmaschine nicht nachverdichtet wird, kann er analog zu der hier anhängenden Zeichnung stromaufwärts der Reinigungsvorrichtung und entweder stromaufwärts oder stromabwärts der Vorkühlvorrichtung aus der verdichteten Einsatzluft abgezweigt werden.All embodiments of the parallel application which show the return of at least a portion of the working expanded third partial flow to the air compressor, are also embodiments of the present invention. Whenever the third partial stream upstream of the second expansion machine is not recompressed, it can be branched off from the compressed feed air upstream of the cleaning device and either upstream or downstream of the precooling device, analogously to the attached drawing.

In Abwandlung sämtlicher Ausführungsbeispiele können ein oder mehrere Teile des arbeitsleistend entspannten dritten Teilstroms 26 an andere Stellen des Luftverdichters, in die Niederdrucksäule und/oder in die Atmosphäre geleitet werden.In a modification of all embodiments, one or more parts of the working expanded third partial stream 26 may be directed to other locations of the air compressor, in the low-pressure column and / or in the atmosphere.

Claims (10)

Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Niederdrucksäule (90) und eine Hochdrucksäule (80) aufweist, wobei bei dem Verfahren - Einsatzluft (1) in einem Luftverdichter (2) verdichtet wird, - die verdichtete Einsatzluft (3) mindestens zum Teil in einer Reinigungseinrichtung (5) gereinigt wird, - mindestens ein Teil (7) der gereinigten Einsatzluft (6) in einem warmen Nachverdichter (8) nachverdichtet wird, - ein erster Teilstrom (11, 15) der gereinigten Einsatzluft (6) in einer ersten Entspannungsmaschine (16) arbeitsleistend entspannt wird, und mindestens zum Teil in die Hochdrucksäule (80) eingeleitet (17) wird, - ein zweiter Teilstrom (12) der gereinigten Einsatzluft (6) in einem Hauptwärmetauscher (14) auf eine Zwischentemperatur abgekühlt, in einem Kaltverdichter (19) nachverdichtet, im Hauptwärmetauscher (14) weiter abgekühlt und verflüssigt oder pseudo-verflüssigt und anschließend in das Destilliersäulen-System eingeleitet (21, 23) wird, - ein dritter Teilstrom (13) der verdichteten Einsatzluft (3) in einer zweiten Entspannungsmaschine (25) arbeitsleistend entspannt wird, - ein flüssiger Sauerstoff-Produktstrom (30, 32) aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (34), unter diesem erhöhten Druck im Hauptwärmetauscher (14) verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Sauerstoff-Druckproduktstrom (33) abgezogen wird, - die beiden Entspannungsmaschinen (16, 25) mit je einem der beiden Maschinen, dem warmen Nachverdichter (8) und dem Kaltverdichter (18, 19) gekoppelt sind, dadurch gekennzeichnet, dass - mindestens ein Teil des arbeitsleistend entspannten dritten Teilstroms (26) zum Luftverdichter (28) zurückgeleitet wird. A process for producing a gaseous oxygen pressure product by cryogenic separation of air in a distillation column system comprising at least one low pressure column (90) and one high pressure column (80), the method - compressed air (1) in an air compressor (2) is compressed, the compressed feed air (3) is at least partly cleaned in a cleaning device (5), - At least a part (7) of the purified feed air (6) is recompressed in a warm booster (8), a first partial flow (11, 15) of the purified feed air (6) is depressurized in a first expansion machine (16) and at least partially introduced into the high-pressure column (17) (17), - A second partial stream (12) of the purified feed air (6) in a main heat exchanger (14) cooled to an intermediate temperature, in a cold compressor (19) nachverdichtet, further cooled in the main heat exchanger (14) and liquefied or pseudo-liquefied and then in the distillation columns System is initiated (21, 23), a third partial stream (13) of the compressed feed air (3) is expanded to perform a work in a second expansion machine (25), - A liquid oxygen product stream (30, 32) taken from the distillation column system, brought in the liquid state to an elevated pressure (34), vaporized or pseudo-evaporated under this elevated pressure in the main heat exchanger (14), heated to about ambient temperature and finally withdrawn as a gaseous oxygen pressure product stream (33), the two expansion machines (16, 25) are each coupled to one of the two machines, the warm secondary compressor (8) and the cold compressor (18, 19), characterized in that - At least a portion of the work performing relaxed third partial flow (26) is returned to the air compressor (28). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Luftverdichter (2) mehrstufig ausgebildet ist und mindestens eine erste und eine letzte Stufe aufweist, wobei mindestens ein Teil des arbeitsleistend entspannten dritten Teilstroms (26) dem Luftverdichter (2) stromabwärts der ersten Stufe und stromaufwärts der letzten Stufe zurückgeführt (28) wird.A method according to claim 1, characterized in that the air compressor (2) is formed in multiple stages and at least a first and a last stage wherein at least a portion of the work-performing expanded third substream (26) is returned to the air compressor (2) downstream of the first stage and upstream of the last stage (28). Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der der dritte Teilstrom (13) stromaufwärts der Reinigungseinrichtung (5) aus der verdichteten Einsatzluft (3) abgezweigt wird.Method according to one of claims 1 or 2, characterized in that the third partial stream (13) is branched off upstream of the cleaning device (5) from the compressed feed air (3). Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Teil (6) der verdichteten Einsatzluft (3), der den ersten und den zweiten Teilstrom umfasst, stromaufwärts der Reinigungseinrichtung (5) in einer Vorkühlvorrichtung (4) abgekühlt wird und der dritte Teilstrom (13) stromaufwärts der Vorkühlvorrichtung (4) aus der verdichteten Einsatzluft (3) abgezweigt wird.Method according to claim 3, characterized in that a part (6) of the compressed feed air (3) comprising the first and the second partial stream is cooled upstream of the cleaning device (5) in a precooling device (4) and the third partial flow (13 ) is branched off upstream of the precooling device (4) from the compressed feed air (3). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Teil des arbeitsleistend entspannten dritten Teilstroms (26) in die Atmosphäre abgelassen wird.Method according to one of claims 1 to 4, characterized in that a part of the work-performing expanded third partial flow (26) is discharged into the atmosphere. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste und der zweite Teilstrom in dem warmen Nachverdichter (8) nachverdichtet werden und der dritte Teilstrom (13) an dem warmen Nachverdichter (8) vorbeigeführt wird.Method according to one of claims 1 to 5, characterized in that the first and the second partial stream are recompressed in the warm after-compressor (8) and the third partial stream (13) is guided past the warm secondary compressor (8). Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zweite Teilstrom in dem warmen Nachverdichter nachverdichtet wird und der erste Teilstrom an dem warmen Nachverdichter vorbeigeführt wird.Method according to one of claims 1 to 5, characterized in that the second partial stream is recompressed in the warm after-compressor and the first partial stream is guided past the warm after-compressor. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der dritte Teilstrom (13) unter etwa dem Austrittsdruck des Luftverdichters in die zweite Entspannungsmaschine (25) eingeführt wird.Method according to one of claims 1 to 7, characterized in that the third partial flow (13) is introduced at about the discharge pressure of the air compressor in the second expansion machine (25). Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Luftverdichter (2) die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft darstellt.Method according to one of claims 1 to 8, characterized in that the air compressor (2) represents the only driven with external energy machine for compressing air. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein flüssiger Stickstoff-Produktstrom aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht, unter diesem erhöhten Druck im Hauptwärmetauscher verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Stickstoff-Druckproduktstrom abgezogen wird.Method according to one of claims 1 to 9, characterized in that a liquid nitrogen product stream taken from the distillation column system, brought in the liquid state to an elevated pressure, evaporated under this increased pressure in the main heat exchanger or pseudo-evaporated, heated to about ambient temperature and finally withdrawn as a gaseous nitrogen pressure product stream.
EP11008761A 2010-11-25 2011-11-03 Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air Withdrawn EP2466236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11008761A EP2466236A1 (en) 2010-11-25 2011-11-03 Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010052544A DE102010052544A1 (en) 2010-11-25 2010-11-25 Process for obtaining a gaseous product by cryogenic separation of air
EP10015789 2010-12-17
EP11008761A EP2466236A1 (en) 2010-11-25 2011-11-03 Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air

Publications (1)

Publication Number Publication Date
EP2466236A1 true EP2466236A1 (en) 2012-06-20

Family

ID=45001606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008761A Withdrawn EP2466236A1 (en) 2010-11-25 2011-11-03 Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air

Country Status (3)

Country Link
US (1) US20120131952A1 (en)
EP (1) EP2466236A1 (en)
DE (1) DE102010052544A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
DE102014019612A1 (en) 2014-12-30 2015-04-02 Linde Aktiengesellschaft Process and installation for the cryogenic separation of air
DE102013019504A1 (en) 2013-11-21 2015-05-21 Linde Aktiengesellschaft Process for recovering a liquid nitrogen product by cryogenic separation of air and air separation plant
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
EP3101374A2 (en) 2015-06-03 2016-12-07 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
EP3196573A1 (en) 2016-01-21 2017-07-26 Linde Aktiengesellschaft Method for obtaining an air product and air decomposition system
WO2019081065A1 (en) 2017-10-24 2019-05-02 Linde Aktiengesellschaft Method and apparatus for treating a sour gas mixture
WO2019120619A1 (en) 2017-12-19 2019-06-27 Linde Aktiengesellschaft Gas treatment method including an oxidative process providing waste heat and corresponding apparatus
WO2020160842A1 (en) 2019-02-07 2020-08-13 Linde Gmbh Gas treatment method and apparatus including an oxidative process for treating a sour gas mixture using gas from an air separation process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2770286T3 (en) * 2013-02-21 2017-10-31 Linde Ag Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
EP2963371B1 (en) * 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2963369B1 (en) * 2014-07-05 2018-05-02 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP3059536A1 (en) * 2015-02-19 2016-08-24 Linde Aktiengesellschaft Method and device for obtaining a pressurised nitrogen product

Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0420725A1 (en) * 1989-09-25 1991-04-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration production process, the refrigeration cycle used and application in the distillation of air
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
FR2688052A1 (en) * 1992-03-02 1993-09-03 Grenier Maurice Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0618415A1 (en) * 1993-03-23 1994-10-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous Oxygen and/or gaseous nitrogen under pressure by distillation of air
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
DE19819338A1 (en) * 1997-10-30 1999-05-06 Linde Ag Air rectification process for production of compressed nitrogen@
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
WO2008110734A2 (en) 2007-03-13 2008-09-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for producing air gases in a gaseous and liquid form with a high flexibility and by cryogenic distillation
FR2913759A1 (en) * 2007-03-13 2008-09-19 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND HIGHLY FLEXIBLE LIQUID BY CRYOGENIC DISTILLATION
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271231A (en) * 1992-08-10 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
EP0420725A1 (en) * 1989-09-25 1991-04-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration production process, the refrigeration cycle used and application in the distillation of air
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (en) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Low temperature air separation process
FR2688052A1 (en) * 1992-03-02 1993-09-03 Grenier Maurice Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
EP0618415A1 (en) * 1993-03-23 1994-10-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous Oxygen and/or gaseous nitrogen under pressure by distillation of air
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
DE19819338A1 (en) * 1997-10-30 1999-05-06 Linde Ag Air rectification process for production of compressed nitrogen@
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
DE102006012241A1 (en) * 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
FR2913759A1 (en) * 2007-03-13 2008-09-19 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND HIGHLY FLEXIBLE LIQUID BY CRYOGENIC DISTILLATION
WO2008110734A2 (en) 2007-03-13 2008-09-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for producing air gases in a gaseous and liquid form with a high flexibility and by cryogenic distillation
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN/LINDE: "Tieftemperaturtechnik, 2. Auflage", 1985, pages: 281 - 337

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
DE102013019504A1 (en) 2013-11-21 2015-05-21 Linde Aktiengesellschaft Process for recovering a liquid nitrogen product by cryogenic separation of air and air separation plant
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
DE102014019612A1 (en) 2014-12-30 2015-04-02 Linde Aktiengesellschaft Process and installation for the cryogenic separation of air
EP3101374A2 (en) 2015-06-03 2016-12-07 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
EP3196573A1 (en) 2016-01-21 2017-07-26 Linde Aktiengesellschaft Method for obtaining an air product and air decomposition system
EP3205963A1 (en) 2016-01-21 2017-08-16 Linde Aktiengesellschaft Method for obtaining an air product and air decomposition system
WO2019081065A1 (en) 2017-10-24 2019-05-02 Linde Aktiengesellschaft Method and apparatus for treating a sour gas mixture
WO2019120619A1 (en) 2017-12-19 2019-06-27 Linde Aktiengesellschaft Gas treatment method including an oxidative process providing waste heat and corresponding apparatus
WO2020160842A1 (en) 2019-02-07 2020-08-13 Linde Gmbh Gas treatment method and apparatus including an oxidative process for treating a sour gas mixture using gas from an air separation process

Also Published As

Publication number Publication date
US20120131952A1 (en) 2012-05-31
DE102010052544A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2466236A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2458311A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP2235460B1 (en) Process and device for the cryogenic separation of air
EP1994344A1 (en) Method and apparatus for fractionating air at low temperatures
EP2015012A2 (en) Process for the cryogenic separation of air
DE102007014643A1 (en) Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
EP2789958A1 (en) Method for the low-temperature decomposition of air and air separation plant
EP2299221A2 (en) Method and device for cryogenic decomposition of air
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2236964A1 (en) Method and device for low-temperature air separation
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP3059536A1 (en) Method and device for obtaining a pressurised nitrogen product
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
DE10238282A1 (en) Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
DE10060678A1 (en) Machine system for work relaxation of two process streams
EP2053331A1 (en) Method and device for low-temperature air separation
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP0768503A2 (en) Triple column air separation process
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP1586838A1 (en) Process and device for the production of variable amounts of a pressurized product by cryogenic separation of air
EP2568242A1 (en) Method and device for generating of steel
EP3696486A1 (en) Method and apparatus for providing one or more gaseous oxygen rich air products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601