EP2520886A1 - Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air - Google Patents

Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air Download PDF

Info

Publication number
EP2520886A1
EP2520886A1 EP11003707A EP11003707A EP2520886A1 EP 2520886 A1 EP2520886 A1 EP 2520886A1 EP 11003707 A EP11003707 A EP 11003707A EP 11003707 A EP11003707 A EP 11003707A EP 2520886 A1 EP2520886 A1 EP 2520886A1
Authority
EP
European Patent Office
Prior art keywords
air
pressure
heat exchanger
main heat
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11003707A
Other languages
German (de)
French (fr)
Inventor
Horst Altmeyer
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP11003707A priority Critical patent/EP2520886A1/en
Publication of EP2520886A1 publication Critical patent/EP2520886A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the distillation column system of the invention can be used as a two-column system (for example, as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery
  • a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
  • This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
  • a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
  • This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is frequently replaced by a part of Air formed, in the present case of the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • the "main heat exchanger system” serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
  • post-compression system is here a system of at least two serially connected stages (hereinafter also referred to as “compressor stages”).
  • compressor stages serially connected stages
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate by having an increased product yield, higher product purity, lower operating costs and / or lower investment costs.
  • the adiabatic mode of operation of the recompression system ie the absence of any intercooling between its stages, not only leads to an apparatus saving, but also to an overall very efficient process.
  • the second intermediate temperature at which the second air stream is supplied to the secondary compression system is below the temperature of the warm end of the main heat exchanger system, in particular by at least 10 K. It is for example 230 to 270 K.
  • the distillation column system of the invention preferably comprises a high pressure column and a low pressure column.
  • the first pressure to which the total air is compressed is at least 5 bar, preferably at least 10 bar higher than the operating pressure at the top of the high-pressure column.
  • the work-performing expansion of the first air flow is performed in two parallel relaxation machines, with a two expansion machines with the last stage of the secondary compression system and the other of the two expansion machines with another stage of the secondary compression system is directly mechanically coupled
  • Parallel connection here means that the two expansion machines have the same inlet pressure. Preferably, they also have the same inlet temperature and the same outlet pressure. Alternatively, they are operated with different inlet temperatures and / or with different outlet pressures.
  • Pressures are referred to herein as "equal" when the pressure differential between the respective locations is not greater than the natural conduction losses due to pressure losses in piping, heat exchangers, coolers, adsorbers, etc. Similarly, two streams are at the same temperature even if their temperature differs by a value corresponding to a temperature difference due to natural variations or to common insulation losses along a pipe.
  • the expansion machines are formed for example by turbines, each with a turbine wheel.
  • a “direct mechanical coupling” here means a direct connection between the expansion machine and the after-compressor stage via a common shaft, in particular not via a transmission.
  • one of the expansion machines must be coupled to a warm braking device, ie to a dissipative brake (for example oil brake), to a generator or to a warm compressor for generating process refrigeration.
  • a dissipative brake for example oil brake
  • This can be realized by using a corresponding third expansion machine, which is not coupled to any of the stages of the Nachverdichtungssystems, or in that on the shaft of one of the above-mentioned expansion machines additionally an oil brake or a generator is arranged.
  • the second air stream is cooled downstream of the Nachverdichtungssystems in an aftercooler in indirect heat exchange with cooling water before it is fed to the warm end of the main heat exchanger system.
  • a part of the mechanical energy generated in the expansion machine which is coupled to the last stage of the Nachverdichtungssystems, are released into the warm.
  • the corresponding expansion machine generates both the energy required for driving the last stage and at least a portion of the required process cooling.
  • it produces all the cold needed in the process to compensate for insulation and replacement losses and, where appropriate, for product liquefaction.
  • the recompression system has exactly two stages.
  • the recompression system has exactly three stages or more than three stages, wherein the work-performing expansion of the first air flow is carried out in three parallel expansion machines, each of the three expansion machines with one stage of the Nachverdichtungssystems is directly mechanically coupled. This makes it possible to achieve even higher end pressures in the second air flow, furthermore without the use of external energy that goes beyond the drive of the main air compressor.
  • a third air stream which is branched off from the feed air compressed to the first pressure (p1) in addition to the first and the second air flow, is cooled to the cold end under the first pressure (p1) in the main heat exchanger and then introduced into the distillation column system.
  • the first and third air streams may be cooled in common passages of the main heat exchanger system to the first intermediate temperature, with the first air stream branched off at the first intermediate temperature and led out of the main heat exchanger system, while the third air stream continues to cool to the cold end , Alternatively, the first and third air streams may be cooled in separate passages of the main heat exchanger system.
  • the third airflow supports the second airflow in the (pseudo) evaporation of the oxygen product stream.
  • the entire compressed to the first pressure (p1) feed air is divided into the first and the second air flow, or - if three air streams are used - on the first, second and third air flow.
  • some of the compressed air compressed in the main air compressor can still be used for other purposes. This portion of air, such as instrument air, does not constitute part of the "feed air" introduced into the distillation column system.
  • the invention also relates to a device for the cryogenic separation of air according to the claims 7 to 10.
  • FIG. 1 In the process of FIG. 1 is compressed atmospheric air 1 after flowing through a filter 2 in a main air compressor 3 to a first pressure p1 of about 18 bar.
  • the compressed feed air 4 is in a cooling device 5, the is formed for example by a direct contact cooler or by one or more indirect cooling stages, cooled and then fed via line 6 to a cleaning device 7 having a pair of switchable container, which are filled with an adsorbent, in particular with a molecular sieve.
  • the purified feed air 8 is divided into a first airflow 9, 10 (so-called turbine flow) and a second airflow 20 (so-called throttle flow) and an optional third airflow 9, 30 (additional throttle flow).
  • the first air stream 9, 10 is fed directly to a main heat exchanger system 40 at its warm end.
  • the main heat exchanger system 40 is formed in the example by a single heat exchanger block and hereinafter referred to as the main heat exchanger.
  • the first air stream is cooled to a first intermediate temperature T1 and fed via line 10 under this intermediate temperature and the first pressure p1 two parallel relaxation machines 11, 12, which are each formed by a turboexpander.
  • the working expanded first air stream 14 is reunited and introduced into a distillation column system, which in the example comprises a high pressure column 50, a low pressure column 51, a main condenser 52 and a subcooling countercurrent 53.
  • the operating pressures (in each case at the top) are 3 to 12 bar in the high-pressure column and 1.2 to 4.5 bar in the low-pressure column, in a specific example 1.4 bar and 5.8 bar.
  • the second air stream 20 is cooled in the main heat exchanger 40 to a second intermediate temperature T1 of 250 K.
  • the cooled second air stream 21 is supplied under the second intermediate temperature T1 and below the first pressure p1 of the first stage 22 of a two-stage recompression system (22, 24, 25) and first recompressed to an intermediate pressure. Via line 23, it is passed directly (that is, in particular without intermediate cooling) to the second and last stage 24 of the secondary compression system and further compressed there to a second pressure p2 of 45 bar.
  • the inlet temperature of the second stage 24 is approximately at the level of the ambient temperature, while the first stage 22 is operated as a cold compressor, ie with an inlet temperature at a significantly lower level.
  • the heat of compression of the second stage 24 is removed in an aftercooler 25 by indirect heat exchange with cooling water.
  • This two-tiered one Post-compression system is operated adiabatically, that is, there is no cooling between the two stages 22, 24 made.
  • the recompressed second air stream 26 is fed under the second pressure p2 to the warm end of the main heat exchanger system 40, cooled in the main heat exchanger system 40 and liquefied or pseudo-liquefied, throttled to some high-pressure column pressure (27) and then via the lines 28 and 29 in The feed station is located some practical or theoretical plates above the feed of the first air stream 29. At least a portion of the supplied liquid air is withdrawn via line 35 back from the high pressure column 50 and the supercooling Countercurrent 53, line 36 and throttle valve 37 of the low pressure column 51 fed to a suitable first intermediate point.
  • a third air stream 30 is shown, which is introduced together with the first via line 9 in the main heat exchanger 40. After the diversion of the first air flow at the first intermediate temperature of the third air flow continues its cooling in the main heat exchanger 40 to the cold end, it is optionally liquefied or pseudo-liquefied and then via a throttle valve 31 and the lines 32 and 29 together with the throttled second Air stream 28 introduced into the distillation column system.
  • the two recompression stages 22 and 24 are each driven by a common shaft of the expansion machines 11, 12.
  • Liquid raw oxygen 54 from the bottom of the high-pressure column 50 is cooled in the subcooling countercurrent 53 and introduced via line 55 and throttle valve 56 at a second intermediate point in the low pressure column 51, which is arranged below the first intermediate point.
  • Liquid nitrogen 57 from the main condenser 52 is fed to a first part 58 as reflux to the top of the high pressure column 50.
  • the remainder 59 is discharged to a part 60, 61 as liquid product (LIN) and fed to another part 62 of an internal compression.
  • the liquid nitrogen 62 is brought in a nitrogen pump 63 to a pressure of 7 to 100 bar
  • the high pressure liquid nitrogen 64 is vaporized in the main heat exchanger system 40 and to about ambient temperature warmed up.
  • the nitrogen product stream 65 withdrawn from the hot end of the main heat exchanger system 40 exits the plant as a gaseous high pressure nitrogen compressed nitrogen product [GAN I (IC)].
  • a liquid impure nitrogen stream 66 is withdrawn and abandoned after cooling in the subcooling countercurrent 53 via line 67 as reflux liquid to the head of the low pressure column 51.
  • Via line 68 can - for example, when starting the system, but also in stationary operation - additional reflux liquid are applied to the low pressure column 51, for example, from a liquid tank comes from either an external source, with the liquid nitrogen 61 from the main capacitor 52 or both are fed.
  • Liquid oxygen 69 is brought in an oxygen pump 46 to an elevated pressure of 6 to about 100 bar. A first portion thereof forms the "liquid oxygen product stream" and is supplied via line 71 to the cold end of the main heat exchanger 40.
  • the oxygen product stream is vaporized or pseudo-evaporated under the elevated pressure in the main heat exchanger system 40, warmed to about ambient temperature, and finally withdrawn as gaseous internal compressed oxygen pressure product stream (GOCX IC) 72.
  • GOCX IC gaseous internal compressed oxygen pressure product stream
  • a second part 73, 76, 77 is discharged after throttling to a pressure of about 1.5 bar via a separator (phase separator) 75 - optionally after cooling in the subcooling countercurrent 53 - as a liquid product (LOX).
  • the separated in the separator 75 steam 78 is returned to the low pressure column 51.
  • Main heat exchanger 40 warmed to about ambient temperature.
  • the warm nitrogen 82 is partially used under the high-pressure column pressure as a sealing gas (seal gas).
  • Another part 83 is further compressed in a nitrogen compressor 84 with aftercooler 85 and finally withdrawn as another pressurized nitrogen product (GAN2).
  • FIG. 2 is different from this FIG. 1 in that the adiabatic post-compression system is designed in three stages (22, 222, 24). To drive the three stages of the first air stream 10 in three parallel expansion machines 11, 211, 12 is relaxed work, each coupled to one of the Nachverdichtungst 22, 222, 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The method involves compressing feed air in a main air compressor (3) at certain pressure. A portion of the compressed feed air is cooled in a main heat exchanger system (40) in indirect heat exchange against a return flow (64,71,79,81) from a distillation column system (50,51). A primary air flow (9,10) and a secondary air flow (20,21) are diverted from the compressed feed air. The secondary air flow is compressed from the former pressure to another pressure higher than the former pressure in a secondary compression system, where the secondary compression system is adiabatically designed. An independent claim is included for a device for generating a gaseous oxygen pressurized product by cryogenic separation of air.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method according to the preamble of patent claim 1.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.Methods and devices for the cryogenic separation of air are, for example, Hausen / Linde, Cryogenics, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-GewinnungThe distillation column system of the invention can be used as a two-column system (for example, as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery

Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".

Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".

Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.Against the (pseudo) evaporating product stream, a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure). The heat transfer medium is frequently replaced by a part of Air formed, in the present case of the "second partial flow" of the compressed feed air.

Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , A1, EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355 A1 .Internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 253132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 . DE 10334559 A1 . DE 10334560 A1 . DE 10332863 A1 . EP 1544559 A1 . EP 1585926 A1 . DE 102005029274 A1 EP 1666824 A1 . EP 1672301 A1 . DE 102005028012 A1 . WO 2007033838 A1 . WO 2007104449 A1 . EP 1845324 A1 . DE 102006032731 A1 . EP 1892490 A1 . DE 102007014643 A1 , A1, EP 2015012 A2 . EP 2015013 A2 . EP 2026024 A1 . WO 2009095188 A2 or DE 102008016355 A1 ,

Das "Hauptwärmetauscher-System" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destilliersäulen-System. Es kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.The "main heat exchanger system" serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.

Der Begriff "Nachverdichtungssystem" wird hier ein System aus mindestens zwei seriell verbundenen Stufen (im Folgenden auch "Verdichterstufen" genannt) aufweist. Der zweite Luftstrom durchströmt also zunächst eine erste Stufe des Nachverdichtungssystems und später die letzte Stufe des Nachverdichtungssystems.The term "post-compression system" is here a system of at least two serially connected stages (hereinafter also referred to as "compressor stages"). Thus, the second air flow first flows through a first stage of the secondary compression system and later through the last stage of the secondary compression system.

Dazwischen können andere Verfahrensschritte angeordnet sein, die keine wesentliche Änderung der Zusammensetzung des Luftstroms bewirken, insbesondere weitere Stufen des Nachverdichtungssystems (falls vorhanden) und grundsätzlich auch Wärmetauscher zur Abkühlung des zweiten Luftstrom unter einem Zwischendruck. Zwei oder mehr Stufen des Nachverdichtungssystems können grundsätzlich einen gemeinsamen Antrieb aufweisen; alternativ werden alle Stufen des Nachverdichters separat angetrieben.In between, it is possible to arrange other method steps which do not cause a substantial change in the composition of the air stream, in particular further stages of the recompression system (if present) and in principle also heat exchangers for cooling the second air stream under an intermediate pressure. Two or more stages of the recompression system may basically have a common drive; Alternatively, all stages of the booster are driven separately.

Innenverdichtungsverfahren mit einem zweistufigem Nachverdichtungssystem sind beispielsweise aus WO 2007104449 A1 bekannt; das Nachverdichtungssystem besteht hier aus zwei warmen Verdichterstufen mit Zwischenkühlung oder aus je einer kalten und warmen Verdichterstufe, wobei die kalte Verdichtungsstufe stromabwärts der warmen angeordnet ist.Internal compression processes with a two-stage recompression system are for example out WO 2007104449 A1 known; here the recompression system consists of two hot compressor stages with intermediate cooling or each of a cold and warm compressor stage, the cold compression stage is arranged downstream of the warm.

Ein Verfahren der eingangs genannten Art ist in Figur 4 von DE 102007042462 A1 offenbart. Auch hier sind zwei warme Nachverdichter-Stufen mit jeweils eigenem Nachkühler seriell verbunden. Zusätzlich wird der nachzuverdichtende Luftstrom am warmen Ende etwas abgekühlt, allerdings lediglich auf eine leicht erniedrigte Temperatur von 240 bis 270 K.A method of the type mentioned is shown in Figure 4 of DE 102007042462 A1 disclosed. Here, too, two warm booster stages are connected in series, each with its own aftercooler. In addition, the air stream to be compressed at the warm end is slightly cooled, but only to a slightly reduced temperature of 240 to 270 K.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich besonders günstig zu betreiben sind, indem sie eine erhöhte Produktsausbeute, eine höhere Produktreinheit, geringere Betriebskosten und/oder geringere Investitionskosten aufweisen.The invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate by having an increased product yield, higher product purity, lower operating costs and / or lower investment costs.

Diese Aufgabe wird dadurch gelöst, dass das Nachverdichtungssystem adiabat ausgebildet ist.This object is achieved in that the post-compression system is adiabatic.

Überraschenderweise führt die adiabate Betriebsweise des Nachverdichtungssystems, also der Verzicht auf jegliche Zwischenkühlung zwischen seinen Stufen, nicht nur zu einer apparativen Einsparung, sondern immer noch zu einem insgesamt sehr effizienten Verfahren.Surprisingly, the adiabatic mode of operation of the recompression system, ie the absence of any intercooling between its stages, not only leads to an apparatus saving, but also to an overall very efficient process.

Die zweite Zwischentemperatur, unter der der zweite Luftstrom dem Nachverdichtungssystem zugeführt wird, liegt unterhalb der Temperatur des warmen Endes des Hauptwärmetauscher-Systems, insbesondere um mindestens 10 K. Sie beträgt beispielsweise 230 bis 270 K.The second intermediate temperature at which the second air stream is supplied to the secondary compression system is below the temperature of the warm end of the main heat exchanger system, in particular by at least 10 K. It is for example 230 to 270 K.

Das Destilliersäulen-System der Erfindung weist vorzugsweise eine Hochdrucksäule und eine Niederdrucksäule auf. Der erste Druck, auf den die Gesamtluft verdichtet wird, ist mindestens 5 bar, vorzugsweise mindestens 10 bar höher als der Betriebsdruck am Kopf der Hochdrucksäule.The distillation column system of the invention preferably comprises a high pressure column and a low pressure column. The first pressure to which the total air is compressed is at least 5 bar, preferably at least 10 bar higher than the operating pressure at the top of the high-pressure column.

Vorzugsweise wird die arbeitsleistende Entspannung des ersten Luftstroms in zwei parallel geschalteten Entspannungsmaschinen durchgeführt, wobei eine beiden Entspannungsmaschinen mit der letzten Stufe des Nachverdichtungssystems und die andere der beiden Entspannungsmaschinen mit einer anderen Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt istPreferably, the work-performing expansion of the first air flow is performed in two parallel relaxation machines, with a two expansion machines with the last stage of the secondary compression system and the other of the two expansion machines with another stage of the secondary compression system is directly mechanically coupled

Parallelschaltung bedeute hier, dass die beiden Entspannungsmaschinen den gleichen Eintrittsdruck aufweisen. Vorzugsweise weisen Sie auch die gleiche Eintrittstemperatur und den gleichen Austrittsdruck auf. Alternativ werden sie mit verschiedenen Eintrittstemperaturen und/oder mit verschiedenen Austrittsdrücken betrieben.Parallel connection here means that the two expansion machines have the same inlet pressure. Preferably, they also have the same inlet temperature and the same outlet pressure. Alternatively, they are operated with different inlet temperatures and / or with different outlet pressures.

Drücke werden hier als "gleich" bezeichnet, wenn der Druckunterschied zwischen den entsprechenden Stellen nicht größer als die natürlichen Leitungsverluste sind, die durch Druckverluste in Rohrleitungen, Wärmetauschern, Kühlern, Adsorbern etc. sind. Analog dazu befinden sich zwei Ströme auch dann auf "gleicher Temperatur", wenn sich ihre Temperaturen um einen Wert unterscheidet, der einem Temperaturunterschied durch natürliche Schwankungen oder durch übliche Isolationsverluste entlang einer Leitung entspricht.Pressures are referred to herein as "equal" when the pressure differential between the respective locations is not greater than the natural conduction losses due to pressure losses in piping, heat exchangers, coolers, adsorbers, etc. Similarly, two streams are at the same temperature even if their temperature differs by a value corresponding to a temperature difference due to natural variations or to common insulation losses along a pipe.

Die Entspannungsmaschinen werden beispielsweise durch Turbinen mit je einem Turbinenrad gebildet.The expansion machines are formed for example by turbines, each with a turbine wheel.

Unter einer "direkten mechanischen Kopplung" wird hier eine direkte Verbindung zwischen Entspannungsmaschine und Nachverdichterstufe über eine gemeinsame Welle verstanden, insbesondere nicht über ein Getriebe.A "direct mechanical coupling" here means a direct connection between the expansion machine and the after-compressor stage via a common shaft, in particular not via a transmission.

Falls alle Stufen des Nachverdichtungssystems als Kaltverdichter betrieben werden, muss für die Erzeugung von Verfahrenskälte eine der Entspannungsmaschinen an eine warme Bremsvorrichtung gekoppelt sein, also an eine dissipative Bremse (zum Beispiel Ölbremse), an einen Generator oder an einen warmen Verdichter. Dies kann durch Einsatz einer entsprechenden dritten Entspannungsmaschine realisiert werden, die mit keiner der Stufen des Nachverdichtungssystems gekoppelt ist, oder dadurch, dass auf der Welle einer der oben erwähnten Entspannungsmaschinen zusätzlich eine Ölbremse oder ein Generator angeordnet ist.If all stages of the post-compression system are operated as a cold compressor, one of the expansion machines must be coupled to a warm braking device, ie to a dissipative brake (for example oil brake), to a generator or to a warm compressor for generating process refrigeration. This can be realized by using a corresponding third expansion machine, which is not coupled to any of the stages of the Nachverdichtungssystems, or in that on the shaft of one of the above-mentioned expansion machines additionally an oil brake or a generator is arranged.

Günstiger ist es jedoch, wenn der zweite Luftstrom stromabwärts des Nachverdichtungssystems in einem Nachkühler in indirektem Wärmeaustausch mit Kühlwasser abgekühlt wird, bevor er dem warmen Ende des Hauptwärmetauscher-Systems zugeführt wird. Damit kann ein Teil der mechanischen Energie, die in der Entspannungsmaschine erzeugt wird, die mit der letzten Stufe des Nachverdichtungssystems gekoppelt ist, ins Warme abgegeben werden. Auf diese Weise erzeugt die entsprechende Entspannungsmaschine sowohl zum Antrieb der letzten Stufe erforderliche Energie als auch mindestens einen Teil der benötigten Verfahrenskälte. Vorzugsweise produziert sie die gesamte Kälte, die in dem Prozess für den Ausgleich von Isolierungs- und Austauschverlusten sowie gegebenenfalls für die Produktverflüssigung benötigt wird.It is more favorable, however, if the second air stream is cooled downstream of the Nachverdichtungssystems in an aftercooler in indirect heat exchange with cooling water before it is fed to the warm end of the main heat exchanger system. Thus, a part of the mechanical energy generated in the expansion machine, which is coupled to the last stage of the Nachverdichtungssystems, are released into the warm. In this way, the corresponding expansion machine generates both the energy required for driving the last stage and at least a portion of the required process cooling. Preferably, it produces all the cold needed in the process to compensate for insulation and replacement losses and, where appropriate, for product liquefaction.

In einer ersten Ausführungsvariante der Erfindung weist das Nachverdichtungssystem genau zwei Stufen. In einer zweiten Ausführungsform weist das Nachverdichtungssystem genau drei Stufen oder mehr als drei Stufen auf, wobei die arbeitsleistende Entspannung des ersten Luftstroms in drei parallel geschalteten Entspannungsmaschinen durchgeführt wird, wobei jede der drei Entspannungsmaschinen mit je einer Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt ist. Damit lassen sich noch höhere Enddrücke im zweiten Luftstrom erreichen, weiterhin ohne Einsatz von externer Energie, die über den Antrieb des Hauptluftverdichters hinausginge.In a first embodiment of the invention, the recompression system has exactly two stages. In a second embodiment, the recompression system has exactly three stages or more than three stages, wherein the work-performing expansion of the first air flow is carried out in three parallel expansion machines, each of the three expansion machines with one stage of the Nachverdichtungssystems is directly mechanically coupled. This makes it possible to achieve even higher end pressures in the second air flow, furthermore without the use of external energy that goes beyond the drive of the main air compressor.

Es ist günstig, wenn ein dritter Luftstrom, der zusätzlich zum ersten und zum zweiten Luftstrom aus der auf den ersten Druck (p1) verdichteten Einsatzluft abgezweigt wird, unter dem ersten Druck (p1) im Hauptwärmetauscher bis zum kalten Ende abgekühlt und anschließend in das Destilliersäulen-System eingeleitet wird. Der erste und der dritte Luftstrom können in gemeinsamen Passagen des Hauptwärmetauscher-Systems bis zu der ersten Zwischentemperatur abgekühlt werden, wobei der erste Luftstrom bei der ersten Zwischentemperatur abgezweigt und aus dem Hauptwärmetauscher-System herausgeführt wird, dritte Luftstrom seine Abkühlung aber bis zum kalten Ende fortsetzt. Alternativ können der erste und der dritte Luftstrom in getrennten Passagen des Hauptwärmetauscher-Systems abgekühlt werden.It is favorable if a third air stream, which is branched off from the feed air compressed to the first pressure (p1) in addition to the first and the second air flow, is cooled to the cold end under the first pressure (p1) in the main heat exchanger and then introduced into the distillation column system. The first and third air streams may be cooled in common passages of the main heat exchanger system to the first intermediate temperature, with the first air stream branched off at the first intermediate temperature and led out of the main heat exchanger system, while the third air stream continues to cool to the cold end , Alternatively, the first and third air streams may be cooled in separate passages of the main heat exchanger system.

Der dritte Luftstrom unterstützt den zweiten Luftstrom bei der (Pseudo-)Verdampfung des Sauerstoff-Produktstroms.The third airflow supports the second airflow in the (pseudo) evaporation of the oxygen product stream.

Vorzugsweise wird die gesamte auf den ersten Druck (p1) verdichtete Einsatzluft auf den ersten und den zweiten Luftstrom aufgeteilt, beziehungsweise - falls drei Luftströme eingesetzt werden - auf den ersten, zweiten und dritten Luftstrom. Selbstverständlich kann immer noch ein Teil der in dem Hauptluftverdichter komprimierten Druckluft für andere Zwecke eingesetzt werden. Dieser Luftanteil, beispielsweise lnstrumentenluft, stellt keinen Teil der "Einsatzluft" dar, die in das Destilliersäulen-System eingeführt wird.Preferably, the entire compressed to the first pressure (p1) feed air is divided into the first and the second air flow, or - if three air streams are used - on the first, second and third air flow. Of course, some of the compressed air compressed in the main air compressor can still be used for other purposes. This portion of air, such as instrument air, does not constitute part of the "feed air" introduced into the distillation column system.

Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 7 bis 10.The invention also relates to a device for the cryogenic separation of air according to the claims 7 to 10.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel der Erfindung mit zwei parallel geschalteten Turbinen und einem zweistufigen Nachverdichtungssystem und
Figur 2
ein zweites Ausführungsbeispiel der Erfindung mit drei parallel geschalteten Turbinen und einem dreistufigen Nachverdichtungssystem.
The invention and further details of the invention are explained below with reference to embodiments schematically illustrated in the drawings. Hereby show:
FIG. 1
a first embodiment of the invention with two parallel turbines and a two-stage recompression system and
FIG. 2
A second embodiment of the invention with three parallel turbines and a three-stage recompression system.

In dem Verfahren der Figur 1 wird atmosphärische Luft 1 nach Durchströmen eines Filters 2 in einem Hauptluftverdichter 3 auf einen ersten Druck p1 von ca. 18 bar verdichtet. Die verdichtete Einsatzluft 4 wird in einer Kühlvorrichtung 5, die beispielsweise durch einen Direktkontaktkühler oder durch einen oder mehrere indirekte Kühlstufen gebildet wird, abgekühlt und anschließend über Leitung 6 einer Reinigungsvorrichtung 7 zugeführt, die ein Paar umschaltbarer Behälter aufweist, die mit einem Adsorptionsmittel, insbesondere mit einem Molekularsieb gefüllt sind.In the process of FIG. 1 is compressed atmospheric air 1 after flowing through a filter 2 in a main air compressor 3 to a first pressure p1 of about 18 bar. The compressed feed air 4 is in a cooling device 5, the is formed for example by a direct contact cooler or by one or more indirect cooling stages, cooled and then fed via line 6 to a cleaning device 7 having a pair of switchable container, which are filled with an adsorbent, in particular with a molecular sieve.

Die gereinigte Einsatzluft 8 wird in einen ersten Luftstrom 9, 10 (so genannter Turbinenstrom) und einen zweiten Luftstrom 20 (so genannter Drosselstrom) und einen fakultativen dritten Luftstrom 9, 30 aufgeteilt (zusätzlicher Drosselstrom).The purified feed air 8 is divided into a first airflow 9, 10 (so-called turbine flow) and a second airflow 20 (so-called throttle flow) and an optional third airflow 9, 30 (additional throttle flow).

Der erste Luftstrom 9, 10 wird direkt einem Hauptwärmetauscher-System 40 an dessen warmem Ende zugeleitet. Das Hauptwärmetauscher-System 40 wird in dem Beispiel durch einen einzelnen Wärmetauscherblock gebildet und im Folgenden als Hauptwärmetauscher bezeichnet. In dem Hauptwärmetauscher 40 wird der erste Luftstrom auf eine erste Zwischentemperatur T1 abgekühlt und über Leitung 10 unter dieser Zwischentemperatur und dem ersten Druck p1 zwei parallel geschalteten Entspannungsmaschinen 11, 12 zugeführt, die durch je einen Turboexpander gebildet werden. Der arbeitsleistend entspannte erste Luftstrom 14 wird wieder vereinigt und in ein Destilliersäulen-System eingeleitet, das in dem Beispiel eine Hochdrucksäule 50, eine Niederdrucksäule 51, einen Hauptkondensator 52 und einen Unterkühlungs-Gegenströmer 53 aufweist. Die Betriebsdrücke (jeweils am Kopf) betragen 3bis 12 bar in der Hochdrucksäule und 1,2 bis 4,5 bar in der Niederdrucksäule, in einem konkreten Beispiel 1,4 bar beziehungsweise 5,8 bar.The first air stream 9, 10 is fed directly to a main heat exchanger system 40 at its warm end. The main heat exchanger system 40 is formed in the example by a single heat exchanger block and hereinafter referred to as the main heat exchanger. In the main heat exchanger 40, the first air stream is cooled to a first intermediate temperature T1 and fed via line 10 under this intermediate temperature and the first pressure p1 two parallel relaxation machines 11, 12, which are each formed by a turboexpander. The working expanded first air stream 14 is reunited and introduced into a distillation column system, which in the example comprises a high pressure column 50, a low pressure column 51, a main condenser 52 and a subcooling countercurrent 53. The operating pressures (in each case at the top) are 3 to 12 bar in the high-pressure column and 1.2 to 4.5 bar in the low-pressure column, in a specific example 1.4 bar and 5.8 bar.

Der zweite Luftstrom 20 wird in dem Hauptwärmetauscher 40 auf eine zweite Zwischentemperatur T1 von 250 K abgekühlt. Der abgekühlte zweite Luftstrom 21 wird unter der zweiten Zwischentemperatur T1 und unter dem ersten Druck p1 der ersten Stufe 22 eines zweistufigen Nachverdichtungssystems (22, 24, 25) zugeführt und zunächst auf einen Zwischendruck nachverdichtet. Über Leitung 23 wird er direkt (das heißt insbesondere ohne Zwischenkühlung) zur zweiten und letzten Stufe 24 des Nachverdichtungssystem geleitet und weiter dort auf einen zweiten Druck p2 von 45 bar verdichtet. Die Eintrittstemperatur der zweiten Stufe 24 liegt etwa auf dem Niveau der Umgebungstemperatur, während die erste Stufe 22 als Kaltverdichter betrieben wird, also mit einer Eintrittstemperatur auf deutlich niedrigerem Niveau. Die Verdichtungswärme der zweiten Stufe 24 wird in einem Nachkühler 25 durch indirekten Wärmeaustausch mit Kühlwasser entfernt. Das hier zweistufige Nachverdichtungssystem wird adiabat betrieben, das heißt es wird keine Kühlung zwischen den beiden Stufen 22, 24 vorgenommen.The second air stream 20 is cooled in the main heat exchanger 40 to a second intermediate temperature T1 of 250 K. The cooled second air stream 21 is supplied under the second intermediate temperature T1 and below the first pressure p1 of the first stage 22 of a two-stage recompression system (22, 24, 25) and first recompressed to an intermediate pressure. Via line 23, it is passed directly (that is, in particular without intermediate cooling) to the second and last stage 24 of the secondary compression system and further compressed there to a second pressure p2 of 45 bar. The inlet temperature of the second stage 24 is approximately at the level of the ambient temperature, while the first stage 22 is operated as a cold compressor, ie with an inlet temperature at a significantly lower level. The heat of compression of the second stage 24 is removed in an aftercooler 25 by indirect heat exchange with cooling water. This two-tiered one Post-compression system is operated adiabatically, that is, there is no cooling between the two stages 22, 24 made.

Der nachverdichtete zweite Luftstrom 26 wird unter dem zweiten Druck p2 dem warmen Ende des Hauptwärmetauscher-Systems 40 zugeführt, im Hauptwärmetauscher-System 40 abgekühlt und verflüssigt oder pseudo-verflüssigt, auf etwas Hochdrucksäulendruck abgedrosselt (27) und anschließend über die Leitungen 28 und 29 in das Destilliersäulen-System eingeleitet, nämlich in die Hochdrucksäule 50. Die Einspeisestelle liegt einige praktische oder theoretische Böden oberhalb der Zuspeisung des ersten Luftstroms 29. Mindestens ein Teil der zugeführten flüssigen Luft wird über Leitung 35 wieder aus der Hochdrucksäule 50 entnommen und über den Unterkühlungs-Gegenströmer 53, Leitung 36 und Drosselventil 37 der Niederdrucksäule 51 an einer geeigneten ersten Zwischenstelle zugeleitet.The recompressed second air stream 26 is fed under the second pressure p2 to the warm end of the main heat exchanger system 40, cooled in the main heat exchanger system 40 and liquefied or pseudo-liquefied, throttled to some high-pressure column pressure (27) and then via the lines 28 and 29 in The feed station is located some practical or theoretical plates above the feed of the first air stream 29. At least a portion of the supplied liquid air is withdrawn via line 35 back from the high pressure column 50 and the supercooling Countercurrent 53, line 36 and throttle valve 37 of the low pressure column 51 fed to a suitable first intermediate point.

In dem Beispiel ist ein dritter Luftstrom 30 gezeigt, der gemeinsam mit dem ersten über Leitung 9 in den Hauptwärmetauscher 40 eingeführt wird. Nach der Abzweigung des ersten Luftstroms bei der ersten Zwischentemperatur setzt der dritte Luftstrom seine Abkühlung im Hauptwärmetauscher 40 bis zum kalten Ende fort, wird dabei gegebenenfalls verflüssigt beziehungsweise pseudo-verflüssigt und anschließend über ein Drosselventil 31 und die Leitungen 32 und 29 gemeinsam mit dem gedrosselten zweiten Luftstrom 28 in das Destilliersäulen-System eingeleitet.In the example, a third air stream 30 is shown, which is introduced together with the first via line 9 in the main heat exchanger 40. After the diversion of the first air flow at the first intermediate temperature of the third air flow continues its cooling in the main heat exchanger 40 to the cold end, it is optionally liquefied or pseudo-liquefied and then via a throttle valve 31 and the lines 32 and 29 together with the throttled second Air stream 28 introduced into the distillation column system.

Die beiden Nachverdichtungsstufen 22 und 24 werden über je eine gemeinsame Welle von den Entspannungsmaschinen 11, 12 angetrieben.The two recompression stages 22 and 24 are each driven by a common shaft of the expansion machines 11, 12.

Flüssiger Rohsauerstoff 54 vom Sumpf der Hochdrucksäule 50 wird im Unterkühlungs-Gegenströmer 53 abgekühlt und über Leitung 55 und Drosselventil 56 an einer zweiten Zwischenstelle in die Niederdrucksäule 51 eingeleitet, die unterhalb der ersten Zwischenstelle angeordnet ist. Flüssiger Stickstoff 57 aus dem Hauptkondensator 52 wird zu einem ersten Teil 58 als Rücklauf auf den Kopf der Hochdrucksäule 50 aufgegeben. Der Rest 59 wird zu einem Teil 60, 61 als Flüssigprodukt (LIN) abgegeben und zu einem anderen Teil 62 einer Innenverdichtung zugeführt. Dabei wird der flüssige Stickstoff 62 in einer Stickstoffpumpe 63 auf einen Druck von 7 bis 100 bar gebracht Der flüssige Hochdruck-Stickstoff 64 wird in dem Hauptwärmetauscher-System 40 verdampft und auf etwa Umgebungstemperatur angewärmt. Der vom warmen Ende des Hauptwärmetauscher-Systems 40 abgezogene Stickstoffproduktstrom 65 verlässt die Anlage als gasförmiges innenverdichtetes Hochdruck-Stickstoffprodukt [GAN I (IC)].Liquid raw oxygen 54 from the bottom of the high-pressure column 50 is cooled in the subcooling countercurrent 53 and introduced via line 55 and throttle valve 56 at a second intermediate point in the low pressure column 51, which is arranged below the first intermediate point. Liquid nitrogen 57 from the main condenser 52 is fed to a first part 58 as reflux to the top of the high pressure column 50. The remainder 59 is discharged to a part 60, 61 as liquid product (LIN) and fed to another part 62 of an internal compression. In this case, the liquid nitrogen 62 is brought in a nitrogen pump 63 to a pressure of 7 to 100 bar The high pressure liquid nitrogen 64 is vaporized in the main heat exchanger system 40 and to about ambient temperature warmed up. The nitrogen product stream 65 withdrawn from the hot end of the main heat exchanger system 40 exits the plant as a gaseous high pressure nitrogen compressed nitrogen product [GAN I (IC)].

Einige praktische oder theoretische Böden unterhalb des Kopfs der Hochdrucksäule 50 wird ein flüssiger Unreinstickstoffstrom 66 abgezogen und nach Abkühlung im Unterkühlungs-Gegenströmer 53 über Leitung 67 als Rücklaufflüssigkeit auf den Kopf der Niederdrucksäule 51 aufgegeben. Über Leitung 68 kann - zum Beispiel beim Anfahren der Anlage, aber auch im stationären Betrieb - zusätzliche Rücklaufflüssigkeit auf die Niederdrucksäule 51 aufgegeben werden, die beispielsweise aus einem Flüssigtank stammt der entweder aus einer äußeren Quelle, mit dem Flüssigstickstoff 61 aus dem Hauptkondensator 52 oder aus beidem gespeist wird.Some practical or theoretical plates below the head of the high pressure column 50, a liquid impure nitrogen stream 66 is withdrawn and abandoned after cooling in the subcooling countercurrent 53 via line 67 as reflux liquid to the head of the low pressure column 51. Via line 68 can - for example, when starting the system, but also in stationary operation - additional reflux liquid are applied to the low pressure column 51, for example, from a liquid tank comes from either an external source, with the liquid nitrogen 61 from the main capacitor 52 or both are fed.

Flüssiger Sauerstoff 69 wird in einer Sauerstoffpumpe 46 auf einen erhöhten Druck von 6 bis ca. 100 bar gebracht. Ein erster Teil davon bildet den "flüssiger Sauerstoff-Produktstrom" und wird über Leitung 71 dem kalten Ende des Hauptwärmetauschers 40 zugeführt. Der Sauerstoff-Produktstrom wird unter dem erhöhten Druck im Hauptwärmetauscher-System 40 verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger innenverdichteter Sauerstoff-Druckproduktstrom (GOCX IC) 72 abgezogen.Liquid oxygen 69 is brought in an oxygen pump 46 to an elevated pressure of 6 to about 100 bar. A first portion thereof forms the "liquid oxygen product stream" and is supplied via line 71 to the cold end of the main heat exchanger 40. The oxygen product stream is vaporized or pseudo-evaporated under the elevated pressure in the main heat exchanger system 40, warmed to about ambient temperature, and finally withdrawn as gaseous internal compressed oxygen pressure product stream (GOCX IC) 72.

Ein zweiter Teil 73, 76, 77 wird nach Drosselung auf einen Druck von ca. 1,5 bar über einen Abscheider (Phasentrenner) 75 - gegebenenfalls nach Abkühlung im Unterkühlungs-Gegenströmer 53 - als Flüssigprodukt (LOX) abgegeben. Der im Abscheider 75 abgetrennte Dampf 78 wird in die Niederdrucksäule 51 zurückgeleitet.A second part 73, 76, 77 is discharged after throttling to a pressure of about 1.5 bar via a separator (phase separator) 75 - optionally after cooling in the subcooling countercurrent 53 - as a liquid product (LOX). The separated in the separator 75 steam 78 is returned to the low pressure column 51.

Vom Kopf der Niederdrucksäule 51 wird Unreinstickstoff als Restgasstrom 79 entnommen und in dem Hauptwärmetauscher-System 40 auf etwa Umgebungstemperatur angewärmt Der vom warmen Ende des Hauptwärmetauscher-Systems 11 abgezogene Restgasstrom 80 (oder nur ein Teil davon) wird in die Atmosphäre abgeblasen beziehungsweise als Regeneriergas in der Reinigungsvorrichtung 7 oder als trockenes Gas in einem Verdunstungskühler zur Abkühlung von Kühlwasser für die Kühlvorrichtung 5 genutzt.From the top of the low pressure column 51 is impure nitrogen removed as residual gas flow 79 and heated in the main heat exchanger system 40 to about ambient temperature withdrawn from the warm end of the main heat exchanger system 11 residual gas stream 80 (or only a part thereof) is blown off into the atmosphere or as a regeneration in the cleaning device 7 or used as a dry gas in an evaporative cooler for cooling cooling water for the cooling device 5.

Etwa auf Höhe der Entnahme der Rücklaufflüssigkeit 66, 67 für die Niederdrucksäule wird ein gasförmiger Stickstoffstrom 81 aus der Hochdrucksäule 50 entnommen, imApproximately at the level of removal of the reflux liquid 66, 67 for the low-pressure column, a gaseous nitrogen stream 81 is removed from the high-pressure column 50, in

Hauptwärmetauscher 40 auf etwa Umgebungstemperatur angewärmt. Der warme Stickstoff 82 wird teilweise unter dem Hochdrucksäulendruck als Dichtgas (Sealgas) eingesetzt. Ein anderer Teil 83 wird in einem Stickstoffverdichter 84 mit Nachkühler 85 weiter verdichtet und schließlich als weiteres Druckstickstoffprodukt (GAN2) abgezogen.Main heat exchanger 40 warmed to about ambient temperature. The warm nitrogen 82 is partially used under the high-pressure column pressure as a sealing gas (seal gas). Another part 83 is further compressed in a nitrogen compressor 84 with aftercooler 85 and finally withdrawn as another pressurized nitrogen product (GAN2).

Figur 2 unterscheidet sich dadurch von Figur 1, dass das adiabate Nachverdichtungssystem dreistufig (22, 222, 24) ausgebildet ist. Zum Antrieb der drei Stufen wird der erste Luftstrom 10 in drei parallelen Entspannungsmaschinen 11, 211, 12 arbeitsleistend entspannt, die jeweils an einer der Nachverdichtungsstufen 22, 222, 24 gekoppelt sind. FIG. 2 is different from this FIG. 1 in that the adiabatic post-compression system is designed in three stages (22, 222, 24). To drive the three stages of the first air stream 10 in three parallel expansion machines 11, 211, 12 is relaxed work, each coupled to one of the Nachverdichtungsstufen 22, 222, 24.

Claims (10)

Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System (50, 51) , bei dem - die gesamte Einsatzluft (1) in einem Hauptluftverdichter (3) auf einen ersten Druck (p1) verdichtet wird, - mindestens ein Teil der verdichteten Einsatzluft (6, 8) in einem Hauptwärmetauscher-System (40) in indirektem Wärmeaustausch gegen mindestens einen Rückstrom (64, 71, 79, 81) aus dem Destilliersäulen-System (50, 51) abgekühlt und in das Destilliersäulen-System (50, 51) eingeleitet wird, - ein erster Luftstrom (9, 10) und ein zweiter Luftstrom (20, 21) aus der verdichteten Einsatzluft (6, 8) abgezweigt werden, - der erste Luftstrom (9) unter dem ersten Druck (p1) dem Hauptwärmetauscher-System (40) zugeführt und dort auf eine erste Zwischentemperatur (T1) abgekühlt wird, - der abgekühlte erste Luftstrom (10) arbeitsleistend entspannt (11, 12; 211) wird, - mindestens ein Teil des arbeitsleistend entspannten ersten Luftstroms (13) in das Destilliersäulen-System (50, 51) eingeleitet wird, - der zweite Luftstrom (20) unter dem ersten Druck (p1) dem Hauptwärmetauscher-System (11) zugeführt und dort auf eine zweite Zwischentemperatur (T2) abgekühlt wird, - der zweite Luftstrom (21) anschließend in einem Nachverdichtungssystem, das mindestens zwei Stufen (22, 24) aufweist, von dem ersten Druck (p1) auf einen zweiten Druck (p2) nachverdichtet wird, der höher als der erste Druck (p1) ist, - der nachverdichtete zweite Luftstrom (26) unter dem zweiten Druck (p2) dem warmen Ende des Hauptwärmetauscher-Systems (40) zugeführt, im Hauptwärmetauscher-System (40) abgekühlt und verflüssigt oder pseudo-verflüssigt und anschließend in das Destilliersäulen-System eingeleitet (28, 29) wird, - ein flüssiger Sauerstoff-Produktstrom (69) aus dem Destilliersäulen-System (51) entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (70), unter diesem erhöhten Druck im Hauptwärmetauscher-System (40) verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger Sauerstoff-Druckproduktstrom (72) abgezogen wird, dadurch gekennzeichnet, dass - das Nachverdichtungssystem adiabat ausgebildet ist. A process for producing a gaseous oxygen pressure product by cryogenic separation of air in a distillation column system (50, 51), wherein the total feed air (1) in a main air compressor (3) is compressed to a first pressure (p1), - At least a portion of the compressed feed air (6, 8) in a main heat exchanger system (40) in indirect heat exchange against at least one return flow (64, 71, 79, 81) cooled from the distillation column system (50, 51) and in the Distillation column system (50, 51) is initiated, a first air stream (9, 10) and a second air stream (20, 21) are branched off from the compressed feed air (6, 8), the first air stream (9) is fed under the first pressure (p1) to the main heat exchanger system (40) and cooled there to a first intermediate temperature (T1), the cooled first air stream (10) is working expanded (11, 12, 211), - at least a part of the work-performing relaxed first air stream (13) is introduced into the distillation column system (50, 51), the second air stream (20) is fed under the first pressure (p1) to the main heat exchanger system (11) and cooled there to a second intermediate temperature (T2), - The second air stream (21) then in a Nachverdichtungssystem having at least two stages (22, 24) is recompressed from the first pressure (p1) to a second pressure (p2) which is higher than the first pressure (p1) . - The second secondary pressure air (26) supplied to the warm end of the main heat exchanger system (40), cooled in the main heat exchanger system (40) and liquefied or pseudo-liquefied and then introduced into the distillation column system ( 28, 29), - a liquid oxygen product stream (69) taken from the distillation column system (51), brought in liquid state to an elevated pressure (70), vaporized under this increased pressure in the main heat exchanger system (40) or pseudo-evaporated, to about Warmed to ambient temperature and finally withdrawn as gaseous oxygen-pressure product stream (72), characterized in that - The post-compression system is formed adiabatically. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die arbeitsleistende Entspannung des ersten Luftstroms in zwei parallel geschalteten Entspannungsmaschinen (11, 12) durchgeführt wird, wobei eine beiden Entspannungsmaschinen (12) mit der letzten Stufe (24) des Nachverdichtungssystems und die andere der beiden Entspannungsmaschinen (11) mit einer anderen Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt ist.A method according to claim 1, characterized in that the work-performing expansion of the first air flow in two parallel relaxation machines (11, 12) is performed, wherein a two expansion machines (12) with the last stage (24) of the Nachverdichtungssystems and the other of the two expansion machines (11) is directly mechanically coupled to another stage of the post-compression system. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zweite-Luftstrom (26) stromabwärts des Nachverdichtungssystems in einem Nachkühler (25) in indirektem Wärmeaustausch mit Kühlwasser bzw. mit einem anzuwärmenden Produktstrom abgekühlt wird, bevor er dem warmen Ende des Hauptwärmetauscher-Systems (40) zugeführt wird.A method according to claim 1 or 2, characterized in that the second air stream (26) is cooled downstream of the post-compression system in an aftercooler (25) in indirect heat exchange with cooling water or with a product flow to be heated before it reaches the warm end of the main heat exchanger system (40) is supplied. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Nachverdichtungssystem drei Stufen (22, 222, 24) aufweist und die arbeitsleistende Entspannung des ersten Luftstroms in drei parallel geschalteten Entspannungsmaschinen (11, 211, 12) durchgeführt wird, wobei jede der drei Entspannungsmaschinen mit je einer Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt ist.Method according to one of claims 1 to 3, characterized in that the Nachverdichtungssystem three stages (22, 222, 24) and the work-performing expansion of the first air flow in three parallel relaxation machines (11, 211, 12) is performed, each of three expansion machines with one stage of the secondary compression system is mechanically coupled directly. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein dritter Luftstrom (9, 30), der zusätzlich zum ersten und zum zweiten Luftstrom aus der auf den ersten Druck (p1) verdichteten Einsatzluft (6,8) abgezweigt wird, unter dem ersten Druck (p1) in dem Hauptwärmetauscher-System (40) bis zum kalten Ende abgekühlt und anschließend in das Destilliersäulen-System (50, 51) eingeleitet (30, 32, 29) wird.Method according to one of claims 1 to 4, characterized in that a third air stream (9, 30) which is branched off in addition to the first and the second air flow from the compressed to the first pressure (p1) feed air (6,8) under the first pressure (p1) in the main heat exchanger system (40) is cooled to the cold end and then introduced into the distillation column system (50, 51) (30, 32, 29). Verfahren nach einem der Ansprüche 1 bis 0, dadurch gekennzeichnet, dass die gesamte auf den ersten Druck (p1) verdichtete Einsatzluft (6, 8) auf den ersten und den zweiten Luftstrom (9,10; 20) beziehungsweise auf den ersten, zweiten und dritten Luftstrom (9, 10; 20; 9, 30) aufgeteilt wird.Method according to one of claims 1 to 0, characterized in that the entire on the first pressure (p1) compressed feed air (6, 8) on the first and the second air flow (9,10; 20) or on the first, second and third air stream (9, 10, 20, 9, 30) is divided. Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft mit - einem Destilliersäulen-System (50, 51), - einem Hauptluftverdichter (3) zum Verdichten der gesamten Einsatzluft (1) auf einen ersten Druck (p1), - Hauptwärmetauscher-System (40) zum Abkühlen mindestens eines Teils der verdichteten Einsatzluft (6, 8) in indirektem Wärmeaustausch gegen mindestens einen Rückstrom (64, 71, 79, 81) aus dem Destilliersäulen-System (50, 51), - Mitteln zum Einleiten der abgekühlten Einsatzluft in das Destilliersäulen-System (50,51), - Mitteln zum Abzweigen eines ersten Luftstroms (9, 10) und eines zweiten Luftstroms (20, 21) aus der verdichteten Einsatzluft (6, 8), - Mitteln zum Zuführen des ersten Luftstroms (9) unter dem ersten Druck (p1) zu dem Hauptwärmetauscher-System (40), - Mitteln zum Entnehmen des auf eine erste Zwischentemperatur (T1) abgekühlten ersten Luftstroms (10) aus dem Hauptwärmetauscher-System (40), - Mitteln zum arbeitsleistenden Entspannen (11, 12; 211) des abgekühlten ersten Luftstroms (10), - Mitteln zum Einleiten mindestens eines Teils des arbeitsleistend entspannten ersten Luftstroms (13) in das Destilliersäulen-System (50, 51), - Mitteln zum Zuführen des zweiten Luftstroms (20) unter dem ersten Druck (p1) zu dem Hauptwärmetauscher-System (11), - Mitteln zum Entnehmen des auf eine zweite Zwischentemperatur (T2) abgekühlten zweiten Luftstroms (10) aus dem Hauptwärmetauscher-System (40), - Mitteln zum Einleiten des abgekühlten zweiten Luftstroms (21) in ein Nachverdichtungssystem, das mindestens zwei Stufen (22, 24) aufweist und für die Nachverdichtung von dem ersten Druck (p1) auf einen zweiten Druck (p2) ausgebildet ist, der höher als der erste Druck (p1) ist, - Mitteln zum Einleiten des nachverdichteten zweiten Luftstroms (26) unter dem zweiten Druck (p2) in das warme Ende des Hauptwärmetauscher-Systems (40) zum Abkühlen und Verflüssigen oder Pseudo-Verflüssigen, - Mitteln zum Einleiten (28, 29) des verflüssigten oder pseudo-verflüssigten zweiten Teilstroms in das Destilliersäulen-System, - Mitteln (70) zur Druckerhöhung eines flüssiger Sauerstoff-Produktstrom (69) aus dem Destilliersäulen-System (51) auf einen erhöhten Druck, - Mitteln zum Einleiten des Sauerstoff-Produktstroms unter diesem erhöhten Druck in das Hauptwärmetauscher-System (40) zum Verdampfen oder Pseudo-Verdampfen und zum Anwärmen auf etwa Umgebungstemperatur und mit - Mitteln zum Abziehen des angewärmten Sauerstoff-Produktstroms als gasförmiger Sauerstoff-Druckproduktstrom (72) abgezogen wird, dadurch gekennzeichnet, dass - das Nachverdichtungssystem adiabat ausgebildet ist. Apparatus for generating a gaseous oxygen pressure product by cryogenic separation of air with a distillation column system (50, 51), a main air compressor (3) for compressing the total feed air (1) to a first pressure (p1), - Main heat exchanger system (40) for cooling at least a portion of the compressed feed air (6, 8) in indirect heat exchange against at least one return flow (64, 71, 79, 81) from the distillation column system (50, 51), Means for introducing the cooled feed air into the distillation column system (50, 51), - means for branching off a first air flow (9, 10) and a second air flow (20, 21) from the compressed feed air (6, 8), Means for supplying the first air flow (9) below the first pressure (p1) to the main heat exchanger system (40), Means for removing the first air stream (10) cooled to a first intermediate temperature (T1) from the main heat exchanger system (40), - means for work-performing expansion (11, 12, 211) of the cooled first air stream (10), - means for introducing at least a portion of the work-performing expanded first air stream (13) into the distillation column system (50, 51), - means for supplying the second air flow (20) below the first pressure (p1) to the main heat exchanger system (11), - means for removing the cooled to a second intermediate temperature (T2) second air stream (10) from the main heat exchanger system (40), - Means for introducing the cooled second air stream (21) in a Nachverdichtungssystem having at least two stages (22, 24) and is designed for the recompression of the first pressure (p1) to a second pressure (p2), which is higher than that first pressure (p1) is, - means for introducing the second compressed air (26) under secondary pressure (p2) into the warm end of the main heat exchanger system (40) for cooling and liquefying or pseudo-liquefying, Means for introducing (28, 29) the liquefied or pseudo-liquefied second substream into the distillation column system, - means (70) for increasing the pressure of a liquid oxygen product stream (69) from the distillation column system (51) to an elevated pressure, - Means for introducing the oxygen product stream under this increased pressure in the main heat exchanger system (40) for vaporizing or pseudo-evaporation and for heating to about ambient temperature and with Withdrawing means for withdrawing the warmed oxygen product stream as gaseous oxygen pressure product stream (72), characterized in that - The post-compression system is formed adiabatically. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Mittel zum arbeitsleistenden Entspannen des ersten Luftstroms durch zwei parallel geschaltete Entspannungsmaschinen (11, 12) gebildet werden, wobei eine beiden Entspannungsmaschinen (12) mit der letzten Stufe (24) des Nachverdichtungssystems und die andere der beiden Entspannungsmaschinen (11) mit einer anderen Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt ist.Apparatus according to claim 7, characterized in that the means for work-relaxing of the first air flow by two parallel relaxation machines (11, 12) are formed, wherein a two expansion machines (12) with the last stage (24) of the Nachverdichtungssystems and the other of the both expansion machines (11) is directly mechanically coupled to another stage of the secondary compression system. Vorrichtung nach Anspruch 7 oder 8, gekennzeichnet durch einen einem Nachkühler (25) zum Abkühlen des zweiten Luftstrom (26) stromabwärts des Nachverdichtungssystems und stromaufwärts des warmen Endes des Hauptwärmetauscher-Systems (40) in indirektem Wärmeaustausch mit Kühlwasser bzw. mit einem anzuwärmenden Produktstrom.Apparatus according to claim 7 or 8, characterized by an aftercooler (25) for cooling the second air stream (26) downstream of the recompression system and upstream of the warm end of the main heat exchanger system (40) in indirect heat exchange with cooling water or with a product stream to be heated. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Nachverdichtungssystem drei Stufen (22, 222, 24) aufweist und die Mittel zum arbeitsleistenden Entspannen des ersten Luftstroms durch drei parallel geschaltete Entspannungsmaschinen (11, 211, 12) gebildet werden, wobei jede der drei Entspannungsmaschinen mit je einer Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt istDevice according to one of claims 7 to 9, characterized in that the Nachverdichtungssystem three stages (22, 222, 24) and the means for work-relaxing the first air flow by three parallel relaxation machines (11, 211, 12) are formed, each of the three expansion machines is directly mechanically coupled to one stage of the secondary compression system
EP11003707A 2011-05-05 2011-05-05 Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air Withdrawn EP2520886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11003707A EP2520886A1 (en) 2011-05-05 2011-05-05 Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003707A EP2520886A1 (en) 2011-05-05 2011-05-05 Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air

Publications (1)

Publication Number Publication Date
EP2520886A1 true EP2520886A1 (en) 2012-11-07

Family

ID=44117116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003707A Withdrawn EP2520886A1 (en) 2011-05-05 2011-05-05 Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air

Country Status (1)

Country Link
EP (1) EP2520886A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014545A1 (en) * 2013-12-05 2015-06-12 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2963369A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963367A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963370A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
EP3101374A2 (en) 2015-06-03 2016-12-07 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
EP3179188A1 (en) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
CN108240734A (en) * 2018-03-08 2018-07-03 李佳晨 Booster expansion machine air supply system and air separation plant
WO2020083520A1 (en) * 2018-10-26 2020-04-30 Linde Aktiengesellschaft Method for obtaining one or more air products, and air separation unit
RU2783184C2 (en) * 2018-10-26 2022-11-09 Линде Гмбх Method for producing one or more air separation products and air separation unit

Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
JP2000130928A (en) * 1998-10-22 2000-05-12 Nippon Sanso Corp Method and apparatus for manufacturing oxygen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1202012A1 (en) * 2000-10-30 2002-05-02 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Process and installation for cryogenic air separation integrated with an associated process
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1284403A1 (en) * 2001-08-09 2003-02-19 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by low temperature air separation
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
US20050126221A1 (en) * 2003-12-10 2005-06-16 Bao Ha Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
DE102007042462A1 (en) 2007-09-06 2008-10-30 Linde Ag Method and apparatus for the cryogenic separation of air
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
EP2299221A2 (en) * 2009-09-21 2011-03-23 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (en) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Low temperature air separation process
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
JP2000130928A (en) * 1998-10-22 2000-05-12 Nippon Sanso Corp Method and apparatus for manufacturing oxygen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1202012A1 (en) * 2000-10-30 2002-05-02 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Process and installation for cryogenic air separation integrated with an associated process
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
EP1284403A1 (en) * 2001-08-09 2003-02-19 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by low temperature air separation
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
US20050126221A1 (en) * 2003-12-10 2005-06-16 Bao Ha Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
DE102007042462A1 (en) 2007-09-06 2008-10-30 Linde Ag Method and apparatus for the cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
EP2299221A2 (en) * 2009-09-21 2011-03-23 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN, LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014545A1 (en) * 2013-12-05 2015-06-12 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
WO2015082860A3 (en) * 2013-12-05 2015-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
EP2963370A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
CN106489059A (en) * 2014-07-05 2017-03-08 林德股份公司 Method and apparatus with variable energy consumption low temperature air separating
RU2690550C2 (en) * 2014-07-05 2019-06-04 Линде Акциенгезелльшафт Method and device for low-temperature air separation with variable power consumption
WO2016005030A1 (en) * 2014-07-05 2016-01-14 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption
WO2016005031A1 (en) * 2014-07-05 2016-01-14 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption
US11193710B2 (en) 2014-07-05 2021-12-07 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
EP2963369A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
CN105318661A (en) * 2014-07-05 2016-02-10 林德股份公司 Method and apparatus for the cryogenic separation of air
US11175091B2 (en) 2014-07-05 2021-11-16 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
EP2963367A1 (en) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
CN106662394A (en) * 2014-07-05 2017-05-10 林德股份公司 Method and device for the low-temperature separation of air at variable energy consumption
CN106662394B (en) * 2014-07-05 2019-11-05 林德股份公司 Method and apparatus can be changed energy consumption low temperature air separating
CN106489059B (en) * 2014-07-05 2019-11-05 林德股份公司 Method and apparatus can be changed energy consumption low temperature air separating
US10458702B2 (en) 2014-07-05 2019-10-29 Linde Aktingesellschaft Method and device for the low-temperature separation of air at variable energy consumption
RU2698378C2 (en) * 2014-07-05 2019-08-26 Линде Акциенгезелльшафт Method and device for low-temperature air separation
RU2691210C2 (en) * 2014-07-05 2019-06-11 Линде Акциенгезелльшафт Method and device for low-temperature air separation with variable power consumption
US10215489B2 (en) 2014-07-05 2019-02-26 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption
WO2016015860A1 (en) * 2014-07-31 2016-02-04 Linde Aktiengesellschaft Method for the cryogenic separation of air and air separation plant
US10480853B2 (en) 2014-07-31 2019-11-19 Linde Aktiengesellschaft Method for the cryogenic separation of air and air separation plant
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
CN106716033B (en) * 2014-07-31 2020-03-31 林德股份公司 Method for the cryogenic separation of air and air separation plant
CN106716033A (en) * 2014-07-31 2017-05-24 林德股份公司 Method for the cryogenic separation of air and air separation plant
EP3101374A2 (en) 2015-06-03 2016-12-07 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
EP3179188A1 (en) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
RU2721195C2 (en) * 2015-12-07 2020-05-18 Линде Акциенгезелльшафт Low-temperature air separation method and air separation plant
CN106931721B (en) * 2015-12-07 2020-12-01 林德股份公司 Method for the cryogenic separation of air and air separation plant
EP3179185A1 (en) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
CN106931721A (en) * 2015-12-07 2017-07-07 林德股份公司 The method and air separation equipment of low temperature air separating
CN108240734A (en) * 2018-03-08 2018-07-03 李佳晨 Booster expansion machine air supply system and air separation plant
CN108240734B (en) * 2018-03-08 2024-03-26 李佳晨 Air supply system of booster expander and air separation equipment
WO2020083520A1 (en) * 2018-10-26 2020-04-30 Linde Aktiengesellschaft Method for obtaining one or more air products, and air separation unit
RU2783184C2 (en) * 2018-10-26 2022-11-09 Линде Гмбх Method for producing one or more air separation products and air separation unit

Similar Documents

Publication Publication Date Title
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP1067345B1 (en) Process and device for cryogenic air separation
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2015012A2 (en) Process for the cryogenic separation of air
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
EP2466236A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2299221A2 (en) Method and device for cryogenic decomposition of air
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP2603754B1 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP2489968A1 (en) Method and device for cryogenic decomposition of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
EP2758735A2 (en) Method and device for generating two purified partial air streams
EP4065910A1 (en) Process and plant for low-temperature fractionation of air
WO2021078405A1 (en) Method and system for low-temperature air separation
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP3980705A1 (en) Method and system for low-temperature air separation
WO2017108187A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP2963371B1 (en) Method and device for creating a pressurised gas product by the cryogenic decomposition of air
DE102011121314A1 (en) Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
EP2770286B1 (en) Method and apparatus for the production of high pressure oxygen and high pressure nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130508