EP2520886A1 - Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air - Google Patents
Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air Download PDFInfo
- Publication number
- EP2520886A1 EP2520886A1 EP11003707A EP11003707A EP2520886A1 EP 2520886 A1 EP2520886 A1 EP 2520886A1 EP 11003707 A EP11003707 A EP 11003707A EP 11003707 A EP11003707 A EP 11003707A EP 2520886 A1 EP2520886 A1 EP 2520886A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- pressure
- heat exchanger
- main heat
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04478—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04818—Start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/06—Adiabatic compressor, i.e. without interstage cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/04—Multiple expansion turbines in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/10—Control for or during start-up and cooling down of the installation
Definitions
- the invention relates to a method according to the preamble of patent claim 1.
- the distillation column system of the invention can be used as a two-column system (for example, as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery
- a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
- This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
- a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
- This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
- a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
- the heat transfer medium is frequently replaced by a part of Air formed, in the present case of the "second partial flow" of the compressed feed air.
- EP 1139046 A1 EP 1146301 A1 .
- DE 10213212 A1 DE 10213211 A1 .
- EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
- DE 10332863 A1 EP 1544559 A1 .
- EP 1666824 A1 EP 1672301 A1 .
- DE 102005028012 A1 .
- WO 2007033838 A1 WO 2007104449 A1 .
- EP 1845324 A1 is
- the "main heat exchanger system” serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
- post-compression system is here a system of at least two serially connected stages (hereinafter also referred to as “compressor stages”).
- compressor stages serially connected stages
- the invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate by having an increased product yield, higher product purity, lower operating costs and / or lower investment costs.
- the adiabatic mode of operation of the recompression system ie the absence of any intercooling between its stages, not only leads to an apparatus saving, but also to an overall very efficient process.
- the second intermediate temperature at which the second air stream is supplied to the secondary compression system is below the temperature of the warm end of the main heat exchanger system, in particular by at least 10 K. It is for example 230 to 270 K.
- the distillation column system of the invention preferably comprises a high pressure column and a low pressure column.
- the first pressure to which the total air is compressed is at least 5 bar, preferably at least 10 bar higher than the operating pressure at the top of the high-pressure column.
- the work-performing expansion of the first air flow is performed in two parallel relaxation machines, with a two expansion machines with the last stage of the secondary compression system and the other of the two expansion machines with another stage of the secondary compression system is directly mechanically coupled
- Parallel connection here means that the two expansion machines have the same inlet pressure. Preferably, they also have the same inlet temperature and the same outlet pressure. Alternatively, they are operated with different inlet temperatures and / or with different outlet pressures.
- Pressures are referred to herein as "equal" when the pressure differential between the respective locations is not greater than the natural conduction losses due to pressure losses in piping, heat exchangers, coolers, adsorbers, etc. Similarly, two streams are at the same temperature even if their temperature differs by a value corresponding to a temperature difference due to natural variations or to common insulation losses along a pipe.
- the expansion machines are formed for example by turbines, each with a turbine wheel.
- a “direct mechanical coupling” here means a direct connection between the expansion machine and the after-compressor stage via a common shaft, in particular not via a transmission.
- one of the expansion machines must be coupled to a warm braking device, ie to a dissipative brake (for example oil brake), to a generator or to a warm compressor for generating process refrigeration.
- a dissipative brake for example oil brake
- This can be realized by using a corresponding third expansion machine, which is not coupled to any of the stages of the Nachverdichtungssystems, or in that on the shaft of one of the above-mentioned expansion machines additionally an oil brake or a generator is arranged.
- the second air stream is cooled downstream of the Nachverdichtungssystems in an aftercooler in indirect heat exchange with cooling water before it is fed to the warm end of the main heat exchanger system.
- a part of the mechanical energy generated in the expansion machine which is coupled to the last stage of the Nachverdichtungssystems, are released into the warm.
- the corresponding expansion machine generates both the energy required for driving the last stage and at least a portion of the required process cooling.
- it produces all the cold needed in the process to compensate for insulation and replacement losses and, where appropriate, for product liquefaction.
- the recompression system has exactly two stages.
- the recompression system has exactly three stages or more than three stages, wherein the work-performing expansion of the first air flow is carried out in three parallel expansion machines, each of the three expansion machines with one stage of the Nachverdichtungssystems is directly mechanically coupled. This makes it possible to achieve even higher end pressures in the second air flow, furthermore without the use of external energy that goes beyond the drive of the main air compressor.
- a third air stream which is branched off from the feed air compressed to the first pressure (p1) in addition to the first and the second air flow, is cooled to the cold end under the first pressure (p1) in the main heat exchanger and then introduced into the distillation column system.
- the first and third air streams may be cooled in common passages of the main heat exchanger system to the first intermediate temperature, with the first air stream branched off at the first intermediate temperature and led out of the main heat exchanger system, while the third air stream continues to cool to the cold end , Alternatively, the first and third air streams may be cooled in separate passages of the main heat exchanger system.
- the third airflow supports the second airflow in the (pseudo) evaporation of the oxygen product stream.
- the entire compressed to the first pressure (p1) feed air is divided into the first and the second air flow, or - if three air streams are used - on the first, second and third air flow.
- some of the compressed air compressed in the main air compressor can still be used for other purposes. This portion of air, such as instrument air, does not constitute part of the "feed air" introduced into the distillation column system.
- the invention also relates to a device for the cryogenic separation of air according to the claims 7 to 10.
- FIG. 1 In the process of FIG. 1 is compressed atmospheric air 1 after flowing through a filter 2 in a main air compressor 3 to a first pressure p1 of about 18 bar.
- the compressed feed air 4 is in a cooling device 5, the is formed for example by a direct contact cooler or by one or more indirect cooling stages, cooled and then fed via line 6 to a cleaning device 7 having a pair of switchable container, which are filled with an adsorbent, in particular with a molecular sieve.
- the purified feed air 8 is divided into a first airflow 9, 10 (so-called turbine flow) and a second airflow 20 (so-called throttle flow) and an optional third airflow 9, 30 (additional throttle flow).
- the first air stream 9, 10 is fed directly to a main heat exchanger system 40 at its warm end.
- the main heat exchanger system 40 is formed in the example by a single heat exchanger block and hereinafter referred to as the main heat exchanger.
- the first air stream is cooled to a first intermediate temperature T1 and fed via line 10 under this intermediate temperature and the first pressure p1 two parallel relaxation machines 11, 12, which are each formed by a turboexpander.
- the working expanded first air stream 14 is reunited and introduced into a distillation column system, which in the example comprises a high pressure column 50, a low pressure column 51, a main condenser 52 and a subcooling countercurrent 53.
- the operating pressures (in each case at the top) are 3 to 12 bar in the high-pressure column and 1.2 to 4.5 bar in the low-pressure column, in a specific example 1.4 bar and 5.8 bar.
- the second air stream 20 is cooled in the main heat exchanger 40 to a second intermediate temperature T1 of 250 K.
- the cooled second air stream 21 is supplied under the second intermediate temperature T1 and below the first pressure p1 of the first stage 22 of a two-stage recompression system (22, 24, 25) and first recompressed to an intermediate pressure. Via line 23, it is passed directly (that is, in particular without intermediate cooling) to the second and last stage 24 of the secondary compression system and further compressed there to a second pressure p2 of 45 bar.
- the inlet temperature of the second stage 24 is approximately at the level of the ambient temperature, while the first stage 22 is operated as a cold compressor, ie with an inlet temperature at a significantly lower level.
- the heat of compression of the second stage 24 is removed in an aftercooler 25 by indirect heat exchange with cooling water.
- This two-tiered one Post-compression system is operated adiabatically, that is, there is no cooling between the two stages 22, 24 made.
- the recompressed second air stream 26 is fed under the second pressure p2 to the warm end of the main heat exchanger system 40, cooled in the main heat exchanger system 40 and liquefied or pseudo-liquefied, throttled to some high-pressure column pressure (27) and then via the lines 28 and 29 in The feed station is located some practical or theoretical plates above the feed of the first air stream 29. At least a portion of the supplied liquid air is withdrawn via line 35 back from the high pressure column 50 and the supercooling Countercurrent 53, line 36 and throttle valve 37 of the low pressure column 51 fed to a suitable first intermediate point.
- a third air stream 30 is shown, which is introduced together with the first via line 9 in the main heat exchanger 40. After the diversion of the first air flow at the first intermediate temperature of the third air flow continues its cooling in the main heat exchanger 40 to the cold end, it is optionally liquefied or pseudo-liquefied and then via a throttle valve 31 and the lines 32 and 29 together with the throttled second Air stream 28 introduced into the distillation column system.
- the two recompression stages 22 and 24 are each driven by a common shaft of the expansion machines 11, 12.
- Liquid raw oxygen 54 from the bottom of the high-pressure column 50 is cooled in the subcooling countercurrent 53 and introduced via line 55 and throttle valve 56 at a second intermediate point in the low pressure column 51, which is arranged below the first intermediate point.
- Liquid nitrogen 57 from the main condenser 52 is fed to a first part 58 as reflux to the top of the high pressure column 50.
- the remainder 59 is discharged to a part 60, 61 as liquid product (LIN) and fed to another part 62 of an internal compression.
- the liquid nitrogen 62 is brought in a nitrogen pump 63 to a pressure of 7 to 100 bar
- the high pressure liquid nitrogen 64 is vaporized in the main heat exchanger system 40 and to about ambient temperature warmed up.
- the nitrogen product stream 65 withdrawn from the hot end of the main heat exchanger system 40 exits the plant as a gaseous high pressure nitrogen compressed nitrogen product [GAN I (IC)].
- a liquid impure nitrogen stream 66 is withdrawn and abandoned after cooling in the subcooling countercurrent 53 via line 67 as reflux liquid to the head of the low pressure column 51.
- Via line 68 can - for example, when starting the system, but also in stationary operation - additional reflux liquid are applied to the low pressure column 51, for example, from a liquid tank comes from either an external source, with the liquid nitrogen 61 from the main capacitor 52 or both are fed.
- Liquid oxygen 69 is brought in an oxygen pump 46 to an elevated pressure of 6 to about 100 bar. A first portion thereof forms the "liquid oxygen product stream" and is supplied via line 71 to the cold end of the main heat exchanger 40.
- the oxygen product stream is vaporized or pseudo-evaporated under the elevated pressure in the main heat exchanger system 40, warmed to about ambient temperature, and finally withdrawn as gaseous internal compressed oxygen pressure product stream (GOCX IC) 72.
- GOCX IC gaseous internal compressed oxygen pressure product stream
- a second part 73, 76, 77 is discharged after throttling to a pressure of about 1.5 bar via a separator (phase separator) 75 - optionally after cooling in the subcooling countercurrent 53 - as a liquid product (LOX).
- the separated in the separator 75 steam 78 is returned to the low pressure column 51.
- Main heat exchanger 40 warmed to about ambient temperature.
- the warm nitrogen 82 is partially used under the high-pressure column pressure as a sealing gas (seal gas).
- Another part 83 is further compressed in a nitrogen compressor 84 with aftercooler 85 and finally withdrawn as another pressurized nitrogen product (GAN2).
- FIG. 2 is different from this FIG. 1 in that the adiabatic post-compression system is designed in three stages (22, 222, 24). To drive the three stages of the first air stream 10 in three parallel expansion machines 11, 211, 12 is relaxed work, each coupled to one of the Nachverdichtungst 22, 222, 24.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method according to the preamble of patent claim 1.
Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde,
Das Destilliersäulen-System der Erfindung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-GewinnungThe distillation column system of the invention can be used as a two-column system (for example, as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery
Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.Against the (pseudo) evaporating product stream, a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure). The heat transfer medium is frequently replaced by a part of Air formed, in the present case of the "second partial flow" of the compressed feed air.
Innenverdichtungsverfahren sind zum Beispiel bekannt aus
Das "Hauptwärmetauscher-System" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destilliersäulen-System. Es kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.The "main heat exchanger system" serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
Der Begriff "Nachverdichtungssystem" wird hier ein System aus mindestens zwei seriell verbundenen Stufen (im Folgenden auch "Verdichterstufen" genannt) aufweist. Der zweite Luftstrom durchströmt also zunächst eine erste Stufe des Nachverdichtungssystems und später die letzte Stufe des Nachverdichtungssystems.The term "post-compression system" is here a system of at least two serially connected stages (hereinafter also referred to as "compressor stages"). Thus, the second air flow first flows through a first stage of the secondary compression system and later through the last stage of the secondary compression system.
Dazwischen können andere Verfahrensschritte angeordnet sein, die keine wesentliche Änderung der Zusammensetzung des Luftstroms bewirken, insbesondere weitere Stufen des Nachverdichtungssystems (falls vorhanden) und grundsätzlich auch Wärmetauscher zur Abkühlung des zweiten Luftstrom unter einem Zwischendruck. Zwei oder mehr Stufen des Nachverdichtungssystems können grundsätzlich einen gemeinsamen Antrieb aufweisen; alternativ werden alle Stufen des Nachverdichters separat angetrieben.In between, it is possible to arrange other method steps which do not cause a substantial change in the composition of the air stream, in particular further stages of the recompression system (if present) and in principle also heat exchangers for cooling the second air stream under an intermediate pressure. Two or more stages of the recompression system may basically have a common drive; Alternatively, all stages of the booster are driven separately.
Innenverdichtungsverfahren mit einem zweistufigem Nachverdichtungssystem sind beispielsweise aus
Ein Verfahren der eingangs genannten Art ist in Figur 4 von
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich besonders günstig zu betreiben sind, indem sie eine erhöhte Produktsausbeute, eine höhere Produktreinheit, geringere Betriebskosten und/oder geringere Investitionskosten aufweisen.The invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate by having an increased product yield, higher product purity, lower operating costs and / or lower investment costs.
Diese Aufgabe wird dadurch gelöst, dass das Nachverdichtungssystem adiabat ausgebildet ist.This object is achieved in that the post-compression system is adiabatic.
Überraschenderweise führt die adiabate Betriebsweise des Nachverdichtungssystems, also der Verzicht auf jegliche Zwischenkühlung zwischen seinen Stufen, nicht nur zu einer apparativen Einsparung, sondern immer noch zu einem insgesamt sehr effizienten Verfahren.Surprisingly, the adiabatic mode of operation of the recompression system, ie the absence of any intercooling between its stages, not only leads to an apparatus saving, but also to an overall very efficient process.
Die zweite Zwischentemperatur, unter der der zweite Luftstrom dem Nachverdichtungssystem zugeführt wird, liegt unterhalb der Temperatur des warmen Endes des Hauptwärmetauscher-Systems, insbesondere um mindestens 10 K. Sie beträgt beispielsweise 230 bis 270 K.The second intermediate temperature at which the second air stream is supplied to the secondary compression system is below the temperature of the warm end of the main heat exchanger system, in particular by at least 10 K. It is for example 230 to 270 K.
Das Destilliersäulen-System der Erfindung weist vorzugsweise eine Hochdrucksäule und eine Niederdrucksäule auf. Der erste Druck, auf den die Gesamtluft verdichtet wird, ist mindestens 5 bar, vorzugsweise mindestens 10 bar höher als der Betriebsdruck am Kopf der Hochdrucksäule.The distillation column system of the invention preferably comprises a high pressure column and a low pressure column. The first pressure to which the total air is compressed is at least 5 bar, preferably at least 10 bar higher than the operating pressure at the top of the high-pressure column.
Vorzugsweise wird die arbeitsleistende Entspannung des ersten Luftstroms in zwei parallel geschalteten Entspannungsmaschinen durchgeführt, wobei eine beiden Entspannungsmaschinen mit der letzten Stufe des Nachverdichtungssystems und die andere der beiden Entspannungsmaschinen mit einer anderen Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt istPreferably, the work-performing expansion of the first air flow is performed in two parallel relaxation machines, with a two expansion machines with the last stage of the secondary compression system and the other of the two expansion machines with another stage of the secondary compression system is directly mechanically coupled
Parallelschaltung bedeute hier, dass die beiden Entspannungsmaschinen den gleichen Eintrittsdruck aufweisen. Vorzugsweise weisen Sie auch die gleiche Eintrittstemperatur und den gleichen Austrittsdruck auf. Alternativ werden sie mit verschiedenen Eintrittstemperaturen und/oder mit verschiedenen Austrittsdrücken betrieben.Parallel connection here means that the two expansion machines have the same inlet pressure. Preferably, they also have the same inlet temperature and the same outlet pressure. Alternatively, they are operated with different inlet temperatures and / or with different outlet pressures.
Drücke werden hier als "gleich" bezeichnet, wenn der Druckunterschied zwischen den entsprechenden Stellen nicht größer als die natürlichen Leitungsverluste sind, die durch Druckverluste in Rohrleitungen, Wärmetauschern, Kühlern, Adsorbern etc. sind. Analog dazu befinden sich zwei Ströme auch dann auf "gleicher Temperatur", wenn sich ihre Temperaturen um einen Wert unterscheidet, der einem Temperaturunterschied durch natürliche Schwankungen oder durch übliche Isolationsverluste entlang einer Leitung entspricht.Pressures are referred to herein as "equal" when the pressure differential between the respective locations is not greater than the natural conduction losses due to pressure losses in piping, heat exchangers, coolers, adsorbers, etc. Similarly, two streams are at the same temperature even if their temperature differs by a value corresponding to a temperature difference due to natural variations or to common insulation losses along a pipe.
Die Entspannungsmaschinen werden beispielsweise durch Turbinen mit je einem Turbinenrad gebildet.The expansion machines are formed for example by turbines, each with a turbine wheel.
Unter einer "direkten mechanischen Kopplung" wird hier eine direkte Verbindung zwischen Entspannungsmaschine und Nachverdichterstufe über eine gemeinsame Welle verstanden, insbesondere nicht über ein Getriebe.A "direct mechanical coupling" here means a direct connection between the expansion machine and the after-compressor stage via a common shaft, in particular not via a transmission.
Falls alle Stufen des Nachverdichtungssystems als Kaltverdichter betrieben werden, muss für die Erzeugung von Verfahrenskälte eine der Entspannungsmaschinen an eine warme Bremsvorrichtung gekoppelt sein, also an eine dissipative Bremse (zum Beispiel Ölbremse), an einen Generator oder an einen warmen Verdichter. Dies kann durch Einsatz einer entsprechenden dritten Entspannungsmaschine realisiert werden, die mit keiner der Stufen des Nachverdichtungssystems gekoppelt ist, oder dadurch, dass auf der Welle einer der oben erwähnten Entspannungsmaschinen zusätzlich eine Ölbremse oder ein Generator angeordnet ist.If all stages of the post-compression system are operated as a cold compressor, one of the expansion machines must be coupled to a warm braking device, ie to a dissipative brake (for example oil brake), to a generator or to a warm compressor for generating process refrigeration. This can be realized by using a corresponding third expansion machine, which is not coupled to any of the stages of the Nachverdichtungssystems, or in that on the shaft of one of the above-mentioned expansion machines additionally an oil brake or a generator is arranged.
Günstiger ist es jedoch, wenn der zweite Luftstrom stromabwärts des Nachverdichtungssystems in einem Nachkühler in indirektem Wärmeaustausch mit Kühlwasser abgekühlt wird, bevor er dem warmen Ende des Hauptwärmetauscher-Systems zugeführt wird. Damit kann ein Teil der mechanischen Energie, die in der Entspannungsmaschine erzeugt wird, die mit der letzten Stufe des Nachverdichtungssystems gekoppelt ist, ins Warme abgegeben werden. Auf diese Weise erzeugt die entsprechende Entspannungsmaschine sowohl zum Antrieb der letzten Stufe erforderliche Energie als auch mindestens einen Teil der benötigten Verfahrenskälte. Vorzugsweise produziert sie die gesamte Kälte, die in dem Prozess für den Ausgleich von Isolierungs- und Austauschverlusten sowie gegebenenfalls für die Produktverflüssigung benötigt wird.It is more favorable, however, if the second air stream is cooled downstream of the Nachverdichtungssystems in an aftercooler in indirect heat exchange with cooling water before it is fed to the warm end of the main heat exchanger system. Thus, a part of the mechanical energy generated in the expansion machine, which is coupled to the last stage of the Nachverdichtungssystems, are released into the warm. In this way, the corresponding expansion machine generates both the energy required for driving the last stage and at least a portion of the required process cooling. Preferably, it produces all the cold needed in the process to compensate for insulation and replacement losses and, where appropriate, for product liquefaction.
In einer ersten Ausführungsvariante der Erfindung weist das Nachverdichtungssystem genau zwei Stufen. In einer zweiten Ausführungsform weist das Nachverdichtungssystem genau drei Stufen oder mehr als drei Stufen auf, wobei die arbeitsleistende Entspannung des ersten Luftstroms in drei parallel geschalteten Entspannungsmaschinen durchgeführt wird, wobei jede der drei Entspannungsmaschinen mit je einer Stufe des Nachverdichtungssystems direkt mechanisch gekoppelt ist. Damit lassen sich noch höhere Enddrücke im zweiten Luftstrom erreichen, weiterhin ohne Einsatz von externer Energie, die über den Antrieb des Hauptluftverdichters hinausginge.In a first embodiment of the invention, the recompression system has exactly two stages. In a second embodiment, the recompression system has exactly three stages or more than three stages, wherein the work-performing expansion of the first air flow is carried out in three parallel expansion machines, each of the three expansion machines with one stage of the Nachverdichtungssystems is directly mechanically coupled. This makes it possible to achieve even higher end pressures in the second air flow, furthermore without the use of external energy that goes beyond the drive of the main air compressor.
Es ist günstig, wenn ein dritter Luftstrom, der zusätzlich zum ersten und zum zweiten Luftstrom aus der auf den ersten Druck (p1) verdichteten Einsatzluft abgezweigt wird, unter dem ersten Druck (p1) im Hauptwärmetauscher bis zum kalten Ende abgekühlt und anschließend in das Destilliersäulen-System eingeleitet wird. Der erste und der dritte Luftstrom können in gemeinsamen Passagen des Hauptwärmetauscher-Systems bis zu der ersten Zwischentemperatur abgekühlt werden, wobei der erste Luftstrom bei der ersten Zwischentemperatur abgezweigt und aus dem Hauptwärmetauscher-System herausgeführt wird, dritte Luftstrom seine Abkühlung aber bis zum kalten Ende fortsetzt. Alternativ können der erste und der dritte Luftstrom in getrennten Passagen des Hauptwärmetauscher-Systems abgekühlt werden.It is favorable if a third air stream, which is branched off from the feed air compressed to the first pressure (p1) in addition to the first and the second air flow, is cooled to the cold end under the first pressure (p1) in the main heat exchanger and then introduced into the distillation column system. The first and third air streams may be cooled in common passages of the main heat exchanger system to the first intermediate temperature, with the first air stream branched off at the first intermediate temperature and led out of the main heat exchanger system, while the third air stream continues to cool to the cold end , Alternatively, the first and third air streams may be cooled in separate passages of the main heat exchanger system.
Der dritte Luftstrom unterstützt den zweiten Luftstrom bei der (Pseudo-)Verdampfung des Sauerstoff-Produktstroms.The third airflow supports the second airflow in the (pseudo) evaporation of the oxygen product stream.
Vorzugsweise wird die gesamte auf den ersten Druck (p1) verdichtete Einsatzluft auf den ersten und den zweiten Luftstrom aufgeteilt, beziehungsweise - falls drei Luftströme eingesetzt werden - auf den ersten, zweiten und dritten Luftstrom. Selbstverständlich kann immer noch ein Teil der in dem Hauptluftverdichter komprimierten Druckluft für andere Zwecke eingesetzt werden. Dieser Luftanteil, beispielsweise lnstrumentenluft, stellt keinen Teil der "Einsatzluft" dar, die in das Destilliersäulen-System eingeführt wird.Preferably, the entire compressed to the first pressure (p1) feed air is divided into the first and the second air flow, or - if three air streams are used - on the first, second and third air flow. Of course, some of the compressed air compressed in the main air compressor can still be used for other purposes. This portion of air, such as instrument air, does not constitute part of the "feed air" introduced into the distillation column system.
Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 7 bis 10.The invention also relates to a device for the cryogenic separation of air according to the
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
- Figur 1
- ein erstes Ausführungsbeispiel der Erfindung mit zwei parallel geschalteten Turbinen und einem zweistufigen Nachverdichtungssystem und
Figur 2- ein zweites Ausführungsbeispiel der Erfindung mit drei parallel geschalteten Turbinen und einem dreistufigen Nachverdichtungssystem.
- FIG. 1
- a first embodiment of the invention with two parallel turbines and a two-stage recompression system and
- FIG. 2
- A second embodiment of the invention with three parallel turbines and a three-stage recompression system.
In dem Verfahren der
Die gereinigte Einsatzluft 8 wird in einen ersten Luftstrom 9, 10 (so genannter Turbinenstrom) und einen zweiten Luftstrom 20 (so genannter Drosselstrom) und einen fakultativen dritten Luftstrom 9, 30 aufgeteilt (zusätzlicher Drosselstrom).The
Der erste Luftstrom 9, 10 wird direkt einem Hauptwärmetauscher-System 40 an dessen warmem Ende zugeleitet. Das Hauptwärmetauscher-System 40 wird in dem Beispiel durch einen einzelnen Wärmetauscherblock gebildet und im Folgenden als Hauptwärmetauscher bezeichnet. In dem Hauptwärmetauscher 40 wird der erste Luftstrom auf eine erste Zwischentemperatur T1 abgekühlt und über Leitung 10 unter dieser Zwischentemperatur und dem ersten Druck p1 zwei parallel geschalteten Entspannungsmaschinen 11, 12 zugeführt, die durch je einen Turboexpander gebildet werden. Der arbeitsleistend entspannte erste Luftstrom 14 wird wieder vereinigt und in ein Destilliersäulen-System eingeleitet, das in dem Beispiel eine Hochdrucksäule 50, eine Niederdrucksäule 51, einen Hauptkondensator 52 und einen Unterkühlungs-Gegenströmer 53 aufweist. Die Betriebsdrücke (jeweils am Kopf) betragen 3bis 12 bar in der Hochdrucksäule und 1,2 bis 4,5 bar in der Niederdrucksäule, in einem konkreten Beispiel 1,4 bar beziehungsweise 5,8 bar.The
Der zweite Luftstrom 20 wird in dem Hauptwärmetauscher 40 auf eine zweite Zwischentemperatur T1 von 250 K abgekühlt. Der abgekühlte zweite Luftstrom 21 wird unter der zweiten Zwischentemperatur T1 und unter dem ersten Druck p1 der ersten Stufe 22 eines zweistufigen Nachverdichtungssystems (22, 24, 25) zugeführt und zunächst auf einen Zwischendruck nachverdichtet. Über Leitung 23 wird er direkt (das heißt insbesondere ohne Zwischenkühlung) zur zweiten und letzten Stufe 24 des Nachverdichtungssystem geleitet und weiter dort auf einen zweiten Druck p2 von 45 bar verdichtet. Die Eintrittstemperatur der zweiten Stufe 24 liegt etwa auf dem Niveau der Umgebungstemperatur, während die erste Stufe 22 als Kaltverdichter betrieben wird, also mit einer Eintrittstemperatur auf deutlich niedrigerem Niveau. Die Verdichtungswärme der zweiten Stufe 24 wird in einem Nachkühler 25 durch indirekten Wärmeaustausch mit Kühlwasser entfernt. Das hier zweistufige Nachverdichtungssystem wird adiabat betrieben, das heißt es wird keine Kühlung zwischen den beiden Stufen 22, 24 vorgenommen.The
Der nachverdichtete zweite Luftstrom 26 wird unter dem zweiten Druck p2 dem warmen Ende des Hauptwärmetauscher-Systems 40 zugeführt, im Hauptwärmetauscher-System 40 abgekühlt und verflüssigt oder pseudo-verflüssigt, auf etwas Hochdrucksäulendruck abgedrosselt (27) und anschließend über die Leitungen 28 und 29 in das Destilliersäulen-System eingeleitet, nämlich in die Hochdrucksäule 50. Die Einspeisestelle liegt einige praktische oder theoretische Böden oberhalb der Zuspeisung des ersten Luftstroms 29. Mindestens ein Teil der zugeführten flüssigen Luft wird über Leitung 35 wieder aus der Hochdrucksäule 50 entnommen und über den Unterkühlungs-Gegenströmer 53, Leitung 36 und Drosselventil 37 der Niederdrucksäule 51 an einer geeigneten ersten Zwischenstelle zugeleitet.The recompressed
In dem Beispiel ist ein dritter Luftstrom 30 gezeigt, der gemeinsam mit dem ersten über Leitung 9 in den Hauptwärmetauscher 40 eingeführt wird. Nach der Abzweigung des ersten Luftstroms bei der ersten Zwischentemperatur setzt der dritte Luftstrom seine Abkühlung im Hauptwärmetauscher 40 bis zum kalten Ende fort, wird dabei gegebenenfalls verflüssigt beziehungsweise pseudo-verflüssigt und anschließend über ein Drosselventil 31 und die Leitungen 32 und 29 gemeinsam mit dem gedrosselten zweiten Luftstrom 28 in das Destilliersäulen-System eingeleitet.In the example, a
Die beiden Nachverdichtungsstufen 22 und 24 werden über je eine gemeinsame Welle von den Entspannungsmaschinen 11, 12 angetrieben.The two
Flüssiger Rohsauerstoff 54 vom Sumpf der Hochdrucksäule 50 wird im Unterkühlungs-Gegenströmer 53 abgekühlt und über Leitung 55 und Drosselventil 56 an einer zweiten Zwischenstelle in die Niederdrucksäule 51 eingeleitet, die unterhalb der ersten Zwischenstelle angeordnet ist. Flüssiger Stickstoff 57 aus dem Hauptkondensator 52 wird zu einem ersten Teil 58 als Rücklauf auf den Kopf der Hochdrucksäule 50 aufgegeben. Der Rest 59 wird zu einem Teil 60, 61 als Flüssigprodukt (LIN) abgegeben und zu einem anderen Teil 62 einer Innenverdichtung zugeführt. Dabei wird der flüssige Stickstoff 62 in einer Stickstoffpumpe 63 auf einen Druck von 7 bis 100 bar gebracht Der flüssige Hochdruck-Stickstoff 64 wird in dem Hauptwärmetauscher-System 40 verdampft und auf etwa Umgebungstemperatur angewärmt. Der vom warmen Ende des Hauptwärmetauscher-Systems 40 abgezogene Stickstoffproduktstrom 65 verlässt die Anlage als gasförmiges innenverdichtetes Hochdruck-Stickstoffprodukt [GAN I (IC)].Liquid
Einige praktische oder theoretische Böden unterhalb des Kopfs der Hochdrucksäule 50 wird ein flüssiger Unreinstickstoffstrom 66 abgezogen und nach Abkühlung im Unterkühlungs-Gegenströmer 53 über Leitung 67 als Rücklaufflüssigkeit auf den Kopf der Niederdrucksäule 51 aufgegeben. Über Leitung 68 kann - zum Beispiel beim Anfahren der Anlage, aber auch im stationären Betrieb - zusätzliche Rücklaufflüssigkeit auf die Niederdrucksäule 51 aufgegeben werden, die beispielsweise aus einem Flüssigtank stammt der entweder aus einer äußeren Quelle, mit dem Flüssigstickstoff 61 aus dem Hauptkondensator 52 oder aus beidem gespeist wird.Some practical or theoretical plates below the head of the
Flüssiger Sauerstoff 69 wird in einer Sauerstoffpumpe 46 auf einen erhöhten Druck von 6 bis ca. 100 bar gebracht. Ein erster Teil davon bildet den "flüssiger Sauerstoff-Produktstrom" und wird über Leitung 71 dem kalten Ende des Hauptwärmetauschers 40 zugeführt. Der Sauerstoff-Produktstrom wird unter dem erhöhten Druck im Hauptwärmetauscher-System 40 verdampft oder pseudo-verdampft, auf etwa Umgebungstemperatur angewärmt und schließlich als gasförmiger innenverdichteter Sauerstoff-Druckproduktstrom (GOCX IC) 72 abgezogen.
Ein zweiter Teil 73, 76, 77 wird nach Drosselung auf einen Druck von ca. 1,5 bar über einen Abscheider (Phasentrenner) 75 - gegebenenfalls nach Abkühlung im Unterkühlungs-Gegenströmer 53 - als Flüssigprodukt (LOX) abgegeben. Der im Abscheider 75 abgetrennte Dampf 78 wird in die Niederdrucksäule 51 zurückgeleitet.A
Vom Kopf der Niederdrucksäule 51 wird Unreinstickstoff als Restgasstrom 79 entnommen und in dem Hauptwärmetauscher-System 40 auf etwa Umgebungstemperatur angewärmt Der vom warmen Ende des Hauptwärmetauscher-Systems 11 abgezogene Restgasstrom 80 (oder nur ein Teil davon) wird in die Atmosphäre abgeblasen beziehungsweise als Regeneriergas in der Reinigungsvorrichtung 7 oder als trockenes Gas in einem Verdunstungskühler zur Abkühlung von Kühlwasser für die Kühlvorrichtung 5 genutzt.From the top of the
Etwa auf Höhe der Entnahme der Rücklaufflüssigkeit 66, 67 für die Niederdrucksäule wird ein gasförmiger Stickstoffstrom 81 aus der Hochdrucksäule 50 entnommen, imApproximately at the level of removal of the
Hauptwärmetauscher 40 auf etwa Umgebungstemperatur angewärmt. Der warme Stickstoff 82 wird teilweise unter dem Hochdrucksäulendruck als Dichtgas (Sealgas) eingesetzt. Ein anderer Teil 83 wird in einem Stickstoffverdichter 84 mit Nachkühler 85 weiter verdichtet und schließlich als weiteres Druckstickstoffprodukt (GAN2) abgezogen.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11003707A EP2520886A1 (en) | 2011-05-05 | 2011-05-05 | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11003707A EP2520886A1 (en) | 2011-05-05 | 2011-05-05 | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2520886A1 true EP2520886A1 (en) | 2012-11-07 |
Family
ID=44117116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11003707A Withdrawn EP2520886A1 (en) | 2011-05-05 | 2011-05-05 | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2520886A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3014545A1 (en) * | 2013-12-05 | 2015-06-12 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP2963369A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963367A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
EP2963370A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2980514A1 (en) * | 2014-07-31 | 2016-02-03 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
EP3101374A2 (en) | 2015-06-03 | 2016-12-07 | Linde Aktiengesellschaft | Method and installation for cryogenic decomposition of air |
EP3179188A1 (en) * | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
CN108240734A (en) * | 2018-03-08 | 2018-07-03 | 李佳晨 | Booster expansion machine air supply system and air separation plant |
WO2020083520A1 (en) * | 2018-10-26 | 2020-04-30 | Linde Aktiengesellschaft | Method for obtaining one or more air products, and air separation unit |
RU2783184C2 (en) * | 2018-10-26 | 2022-11-09 | Линде Гмбх | Method for producing one or more air separation products and air separation unit |
Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE830805C (en) | 1944-11-19 | 1952-02-07 | Linde Eismasch Ag | Process for gas, especially air, separation |
DE901542C (en) | 1952-01-10 | 1954-01-11 | Linde Eismasch Ag | Process for the separation of air by liquefaction and rectification |
US2712738A (en) | 1952-01-10 | 1955-07-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
DE952908C (en) | 1953-10-11 | 1956-11-22 | Linde Eismasch Ag | Process for the separation of air |
US2784572A (en) | 1953-01-02 | 1957-03-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
DE1103363B (en) | 1958-09-24 | 1961-03-30 | Linde Eismasch Ag | Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification |
DE1112997B (en) | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
DE1117616B (en) | 1960-10-14 | 1961-11-23 | Linde Eismasch Ag | Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants |
DE1124529B (en) | 1957-07-04 | 1962-03-01 | Linde Eismasch Ag | Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators |
DE1187248B (en) | 1963-03-29 | 1965-02-18 | Linde Eismasch Ag | Process and device for the production of oxygen gas with 70 to 98% O-content |
DE1199293B (en) | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
US3216206A (en) | 1961-11-29 | 1965-11-09 | Linde Eismasch Ag | Low temperature distillation of normally gaseous substances |
US3222878A (en) | 1962-12-21 | 1965-12-14 | Linde Eismasch Ag | Method and apparatus for fractionation of air |
DE1235347B (en) | 1964-05-13 | 1967-03-02 | Linde Ag | Method and device for the operation of switchable heat exchangers in low-temperature gas separation |
DE1258882B (en) | 1963-06-19 | 1968-01-18 | Linde Ag | Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen |
DE1263037B (en) | 1965-05-19 | 1968-03-14 | Linde Ag | Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen |
US3416323A (en) | 1966-01-13 | 1968-12-17 | Linde Ag | Low temperature production of highly compressed gaseous and/or liquid oxygen |
DE1501723A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air |
DE2535132A1 (en) | 1975-08-06 | 1977-02-10 | Linde Ag | PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR |
DE2646690A1 (en) | 1976-10-15 | 1978-04-20 | Linde Ag | Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle |
US4555256A (en) | 1982-05-03 | 1985-11-26 | Linde Aktiengesellschaft | Process and device for the production of gaseous oxygen at elevated pressure |
US5036672A (en) | 1989-02-23 | 1991-08-06 | Linde Aktiengesellschaft | Process and apparatus for air fractionation by rectification |
US5263328A (en) | 1991-03-26 | 1993-11-23 | Linde Aktiengesellschaft | Process for low-temperature air fractionation |
US5644934A (en) | 1994-12-05 | 1997-07-08 | Linde Aktiengesellchaft | Process and device for low-temperature separation of air |
US5845517A (en) | 1995-08-11 | 1998-12-08 | Linde Aktiengesellschaft | Process and device for air separation by low-temperature rectification |
DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
US5953937A (en) | 1995-07-21 | 1999-09-21 | Linde Aktiengesellschaft | Process and apparatus for the variable production of a gaseous pressurized product |
EP0955509A1 (en) | 1998-04-30 | 1999-11-10 | Linde Aktiengesellschaft | Process and apparatus to produce high purity nitrogen |
US6038885A (en) | 1997-07-30 | 2000-03-21 | Linde Aktiengesellschaft | Air separation process |
DE19909744A1 (en) | 1999-03-05 | 2000-05-04 | Linde Ag | Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating. |
JP2000130928A (en) * | 1998-10-22 | 2000-05-12 | Nippon Sanso Corp | Method and apparatus for manufacturing oxygen |
EP1031804A1 (en) | 1999-02-26 | 2000-08-30 | Linde Technische Gase GmbH | Air separation process with nitrogen recycling |
DE19954593A1 (en) | 1999-11-12 | 2000-09-28 | Linde Ag | Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level |
DE10013073A1 (en) | 2000-03-17 | 2000-10-19 | Linde Ag | Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction |
EP1067345A1 (en) | 1999-07-05 | 2001-01-10 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
EP1074805A1 (en) | 1999-08-05 | 2001-02-07 | Linde Aktiengesellschaft | Process for producing oxygen under pressure and device therefor |
US6185960B1 (en) | 1998-04-08 | 2001-02-13 | Linde Aktiengesellschaft | Process and device for the production of a pressurized gaseous product by low-temperature separation of air |
EP1134525A1 (en) | 2000-03-17 | 2001-09-19 | Linde Aktiengesellschaft | Process for producing gaseous and liquid nitrogen with a variable quantity of liquid |
EP1139046A1 (en) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
EP1146301A1 (en) | 2000-04-12 | 2001-10-17 | Linde Gas Aktiengesellschaft | Process and apparatus for the production of high pressure nitrogen from air separation |
EP1150082A1 (en) | 2000-04-28 | 2001-10-31 | Linde Aktiengesellschaft | Method and apparatus for heat exchange |
US6314755B1 (en) | 1999-02-26 | 2001-11-13 | Linde Aktiengesellschaft | Double column system for the low-temperature fractionation of air |
EP1202012A1 (en) * | 2000-10-30 | 2002-05-02 | L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude | Process and installation for cryogenic air separation integrated with an associated process |
EP1213552A1 (en) | 2000-12-06 | 2002-06-12 | Linde Aktiengesellschaft | Engine system for the work expansion of two process streams |
DE10115258A1 (en) | 2001-03-28 | 2002-07-18 | Linde Ag | Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form |
DE10213211A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid |
DE10213212A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump |
EP1284403A1 (en) * | 2001-08-09 | 2003-02-19 | Linde Aktiengesellschaft | Process and apparatus for the production of oxygen by low temperature air separation |
EP1284404A1 (en) | 2001-08-13 | 2003-02-19 | Linde Aktiengesellschaft | Process and device for recovering a product under pressure by cryogenic air separation |
EP1308680A1 (en) | 2001-10-31 | 2003-05-07 | Linde AG | Process and system for production of krypton and/or xenon by cryogenic air separation |
DE10238282A1 (en) | 2002-08-21 | 2003-05-28 | Linde Ag | Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing |
DE10302389A1 (en) | 2003-01-22 | 2003-06-18 | Linde Ag | Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column |
EP1357342A1 (en) | 2002-04-17 | 2003-10-29 | Linde Aktiengesellschaft | Cryogenic triple column air separation system with argon recovery |
DE10332863A1 (en) | 2003-07-18 | 2004-02-26 | Linde Ag | Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream |
DE10334560A1 (en) | 2003-05-28 | 2004-12-16 | Linde Ag | Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column |
DE10334559A1 (en) | 2003-05-28 | 2004-12-16 | Linde Ag | Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator |
US20050126221A1 (en) * | 2003-12-10 | 2005-06-16 | Bao Ha | Process and apparatus for the separation of air by cryogenic distillation |
EP1544559A1 (en) | 2003-12-20 | 2005-06-22 | Linde AG | Process and device for the cryogenic separation of air |
EP1585926A1 (en) | 2002-12-19 | 2005-10-19 | Karges-Faulconbridge, Inc. | System for liquid extraction, and methods |
DE102005029274A1 (en) | 2004-08-17 | 2006-02-23 | Linde Ag | Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation |
EP1666824A1 (en) | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Process and device for the recovery of Argon by cryogenic separation of air |
EP1672301A1 (en) | 2004-12-03 | 2006-06-21 | Linde AG | Apparatus for the cryogenic separation of a gaseous mixture in particular of air |
DE102005028012A1 (en) | 2005-06-16 | 2006-09-14 | Linde Ag | Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas |
DE102006032731A1 (en) | 2006-07-14 | 2007-01-18 | Linde Ag | Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir |
WO2007033838A1 (en) | 2005-09-23 | 2007-03-29 | Linde Aktiengesellschaft | Air cryogenic separation method and device |
WO2007104449A1 (en) | 2006-03-15 | 2007-09-20 | Linde Aktiengesellschaft | Method and apparatus for fractionating air at low temperatures |
DE102007014643A1 (en) | 2007-03-27 | 2007-09-20 | Linde Ag | Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors |
EP1845324A1 (en) | 2006-04-13 | 2007-10-17 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
EP1892490A1 (en) | 2006-08-16 | 2008-02-27 | Linde Aktiengesellschaft | Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation |
DE102007042462A1 (en) | 2007-09-06 | 2008-10-30 | Linde Ag | Method and apparatus for the cryogenic separation of air |
EP2015012A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process for the cryogenic separation of air |
EP2015013A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process and device for producing a gaseous pressurised product by cryogenic separation of air |
EP2026024A1 (en) | 2007-07-30 | 2009-02-18 | Linde Aktiengesellschaft | Process and device for producing argon by cryogenic separation of air |
WO2009095188A2 (en) | 2008-01-28 | 2009-08-06 | Linde Aktiengesellschaft | Method and device for low-temperature air separation |
DE102008016355A1 (en) | 2008-03-29 | 2009-10-01 | Linde Ag | Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator |
EP2299221A2 (en) * | 2009-09-21 | 2011-03-23 | Linde Aktiengesellschaft | Method and device for cryogenic decomposition of air |
-
2011
- 2011-05-05 EP EP11003707A patent/EP2520886A1/en not_active Withdrawn
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE830805C (en) | 1944-11-19 | 1952-02-07 | Linde Eismasch Ag | Process for gas, especially air, separation |
DE901542C (en) | 1952-01-10 | 1954-01-11 | Linde Eismasch Ag | Process for the separation of air by liquefaction and rectification |
US2712738A (en) | 1952-01-10 | 1955-07-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
US2784572A (en) | 1953-01-02 | 1957-03-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
DE952908C (en) | 1953-10-11 | 1956-11-22 | Linde Eismasch Ag | Process for the separation of air |
DE1124529B (en) | 1957-07-04 | 1962-03-01 | Linde Eismasch Ag | Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators |
DE1103363B (en) | 1958-09-24 | 1961-03-30 | Linde Eismasch Ag | Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification |
US3083544A (en) | 1958-09-24 | 1963-04-02 | Linde S Eismaschinen Ag Hollri | Rectification of gases |
US3214925A (en) | 1960-08-13 | 1965-11-02 | Linde Eismasch Ag | System for gas separation by rectification at low temperatures |
DE1112997B (en) | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
DE1117616B (en) | 1960-10-14 | 1961-11-23 | Linde Eismasch Ag | Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants |
US3280574A (en) | 1960-10-14 | 1966-10-25 | Linde Ag | High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators |
US3216206A (en) | 1961-11-29 | 1965-11-09 | Linde Eismasch Ag | Low temperature distillation of normally gaseous substances |
DE1226616B (en) | 1961-11-29 | 1966-10-13 | Linde Ag | Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation |
US3222878A (en) | 1962-12-21 | 1965-12-14 | Linde Eismasch Ag | Method and apparatus for fractionation of air |
DE1229561B (en) | 1962-12-21 | 1966-12-01 | Linde Ag | Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle |
US3371496A (en) | 1963-03-29 | 1968-03-05 | Linde Ag | Wash liquid production by heat exchange with low pressure liquid oxygen |
DE1187248B (en) | 1963-03-29 | 1965-02-18 | Linde Eismasch Ag | Process and device for the production of oxygen gas with 70 to 98% O-content |
DE1199293B (en) | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
US3426543A (en) | 1963-06-19 | 1969-02-11 | Linde Ag | Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing |
DE1258882B (en) | 1963-06-19 | 1968-01-18 | Linde Ag | Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen |
DE1235347B (en) | 1964-05-13 | 1967-03-02 | Linde Ag | Method and device for the operation of switchable heat exchangers in low-temperature gas separation |
DE1263037B (en) | 1965-05-19 | 1968-03-14 | Linde Ag | Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen |
US3401531A (en) | 1965-05-19 | 1968-09-17 | Linde Ag | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production |
DE1501722A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen |
DE1501723A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air |
US3416323A (en) | 1966-01-13 | 1968-12-17 | Linde Ag | Low temperature production of highly compressed gaseous and/or liquid oxygen |
US3500651A (en) | 1966-01-13 | 1970-03-17 | Linde Ag | Production of high pressure gaseous oxygen by low temperature rectification of air |
DE2535132A1 (en) | 1975-08-06 | 1977-02-10 | Linde Ag | PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR |
US4279631A (en) | 1975-08-06 | 1981-07-21 | Linde Aktiengesellschaft | Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air |
DE2646690A1 (en) | 1976-10-15 | 1978-04-20 | Linde Ag | Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle |
US4555256A (en) | 1982-05-03 | 1985-11-26 | Linde Aktiengesellschaft | Process and device for the production of gaseous oxygen at elevated pressure |
EP0093448B1 (en) | 1982-05-03 | 1986-10-15 | Linde Aktiengesellschaft | Process and apparatus for obtaining gaseous oxygen at elevated pressure |
US5036672A (en) | 1989-02-23 | 1991-08-06 | Linde Aktiengesellschaft | Process and apparatus for air fractionation by rectification |
EP0384483B1 (en) | 1989-02-23 | 1992-07-22 | Linde Aktiengesellschaft | Air rectification process and apparatus |
US5263328A (en) | 1991-03-26 | 1993-11-23 | Linde Aktiengesellschaft | Process for low-temperature air fractionation |
EP0505812B1 (en) | 1991-03-26 | 1995-10-18 | Linde Aktiengesellschaft | Low temperature air separation process |
US5644934A (en) | 1994-12-05 | 1997-07-08 | Linde Aktiengesellchaft | Process and device for low-temperature separation of air |
EP0716280B1 (en) | 1994-12-05 | 2001-05-16 | Linde Aktiengesellschaft | Method and apparatus for the low temperature air separation |
US5953937A (en) | 1995-07-21 | 1999-09-21 | Linde Aktiengesellschaft | Process and apparatus for the variable production of a gaseous pressurized product |
EP0842385B1 (en) | 1995-07-21 | 2001-04-18 | Linde Aktiengesellschaft | Method and device for the production of variable amounts of a pressurized gaseous product |
US5845517A (en) | 1995-08-11 | 1998-12-08 | Linde Aktiengesellschaft | Process and device for air separation by low-temperature rectification |
EP0758733B1 (en) | 1995-08-11 | 2000-11-02 | Linde Aktiengesellschaft | Air separation process and apparatus by low temperature rectification |
EP0895045B1 (en) | 1997-07-30 | 2002-11-27 | Linde Aktiengesellschaft | Air separation process |
US6038885A (en) | 1997-07-30 | 2000-03-21 | Linde Aktiengesellschaft | Air separation process |
DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
EP0949471B1 (en) | 1998-04-08 | 2002-12-18 | Linde AG | Cryogenic air separation plant with two different operation modes |
US6185960B1 (en) | 1998-04-08 | 2001-02-13 | Linde Aktiengesellschaft | Process and device for the production of a pressurized gaseous product by low-temperature separation of air |
US6196022B1 (en) | 1998-04-30 | 2001-03-06 | Linde Aktiengesellschaft | Process and device for recovering high-purity oxygen |
EP0955509A1 (en) | 1998-04-30 | 1999-11-10 | Linde Aktiengesellschaft | Process and apparatus to produce high purity nitrogen |
JP2000130928A (en) * | 1998-10-22 | 2000-05-12 | Nippon Sanso Corp | Method and apparatus for manufacturing oxygen |
EP1031804A1 (en) | 1999-02-26 | 2000-08-30 | Linde Technische Gase GmbH | Air separation process with nitrogen recycling |
US6314755B1 (en) | 1999-02-26 | 2001-11-13 | Linde Aktiengesellschaft | Double column system for the low-temperature fractionation of air |
DE19909744A1 (en) | 1999-03-05 | 2000-05-04 | Linde Ag | Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating. |
EP1067345A1 (en) | 1999-07-05 | 2001-01-10 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
US6336345B1 (en) | 1999-07-05 | 2002-01-08 | Linde Aktiengesellschaft | Process and apparatus for low temperature fractionation of air |
EP1074805A1 (en) | 1999-08-05 | 2001-02-07 | Linde Aktiengesellschaft | Process for producing oxygen under pressure and device therefor |
US6332337B1 (en) | 1999-08-05 | 2001-12-25 | Linde Aktiengesellschaft | Method and apparatus for recovering oxygen at hyperbaric pressure |
DE19954593A1 (en) | 1999-11-12 | 2000-09-28 | Linde Ag | Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level |
EP1134525A1 (en) | 2000-03-17 | 2001-09-19 | Linde Aktiengesellschaft | Process for producing gaseous and liquid nitrogen with a variable quantity of liquid |
DE10013073A1 (en) | 2000-03-17 | 2000-10-19 | Linde Ag | Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction |
US6477860B2 (en) | 2000-03-17 | 2002-11-12 | Linde Aktiengesellschaft | Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product |
EP1139046A1 (en) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
EP1146301A1 (en) | 2000-04-12 | 2001-10-17 | Linde Gas Aktiengesellschaft | Process and apparatus for the production of high pressure nitrogen from air separation |
EP1150082A1 (en) | 2000-04-28 | 2001-10-31 | Linde Aktiengesellschaft | Method and apparatus for heat exchange |
EP1202012A1 (en) * | 2000-10-30 | 2002-05-02 | L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude | Process and installation for cryogenic air separation integrated with an associated process |
EP1213552A1 (en) | 2000-12-06 | 2002-06-12 | Linde Aktiengesellschaft | Engine system for the work expansion of two process streams |
DE10115258A1 (en) | 2001-03-28 | 2002-07-18 | Linde Ag | Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form |
EP1284403A1 (en) * | 2001-08-09 | 2003-02-19 | Linde Aktiengesellschaft | Process and apparatus for the production of oxygen by low temperature air separation |
EP1284404A1 (en) | 2001-08-13 | 2003-02-19 | Linde Aktiengesellschaft | Process and device for recovering a product under pressure by cryogenic air separation |
US20030051504A1 (en) | 2001-08-13 | 2003-03-20 | Linde Aktiengesellschaft | Process and device for obtaining a compressed product by low temperature separation of air |
US6612129B2 (en) | 2001-10-31 | 2003-09-02 | Linde Aktiengesellschaft | Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air |
EP1308680A1 (en) | 2001-10-31 | 2003-05-07 | Linde AG | Process and system for production of krypton and/or xenon by cryogenic air separation |
DE10213212A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump |
DE10213211A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid |
EP1357342A1 (en) | 2002-04-17 | 2003-10-29 | Linde Aktiengesellschaft | Cryogenic triple column air separation system with argon recovery |
DE10238282A1 (en) | 2002-08-21 | 2003-05-28 | Linde Ag | Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing |
EP1585926A1 (en) | 2002-12-19 | 2005-10-19 | Karges-Faulconbridge, Inc. | System for liquid extraction, and methods |
DE10302389A1 (en) | 2003-01-22 | 2003-06-18 | Linde Ag | Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column |
DE10334560A1 (en) | 2003-05-28 | 2004-12-16 | Linde Ag | Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column |
DE10334559A1 (en) | 2003-05-28 | 2004-12-16 | Linde Ag | Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator |
DE10332863A1 (en) | 2003-07-18 | 2004-02-26 | Linde Ag | Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream |
US20050126221A1 (en) * | 2003-12-10 | 2005-06-16 | Bao Ha | Process and apparatus for the separation of air by cryogenic distillation |
EP1544559A1 (en) | 2003-12-20 | 2005-06-22 | Linde AG | Process and device for the cryogenic separation of air |
DE102005029274A1 (en) | 2004-08-17 | 2006-02-23 | Linde Ag | Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation |
EP1666824A1 (en) | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Process and device for the recovery of Argon by cryogenic separation of air |
EP1672301A1 (en) | 2004-12-03 | 2006-06-21 | Linde AG | Apparatus for the cryogenic separation of a gaseous mixture in particular of air |
DE102005028012A1 (en) | 2005-06-16 | 2006-09-14 | Linde Ag | Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas |
WO2007033838A1 (en) | 2005-09-23 | 2007-03-29 | Linde Aktiengesellschaft | Air cryogenic separation method and device |
WO2007104449A1 (en) | 2006-03-15 | 2007-09-20 | Linde Aktiengesellschaft | Method and apparatus for fractionating air at low temperatures |
EP1845324A1 (en) | 2006-04-13 | 2007-10-17 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
DE102006032731A1 (en) | 2006-07-14 | 2007-01-18 | Linde Ag | Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir |
EP1892490A1 (en) | 2006-08-16 | 2008-02-27 | Linde Aktiengesellschaft | Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation |
DE102007014643A1 (en) | 2007-03-27 | 2007-09-20 | Linde Ag | Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors |
EP2015012A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process for the cryogenic separation of air |
EP2015013A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process and device for producing a gaseous pressurised product by cryogenic separation of air |
EP2026024A1 (en) | 2007-07-30 | 2009-02-18 | Linde Aktiengesellschaft | Process and device for producing argon by cryogenic separation of air |
DE102007042462A1 (en) | 2007-09-06 | 2008-10-30 | Linde Ag | Method and apparatus for the cryogenic separation of air |
WO2009095188A2 (en) | 2008-01-28 | 2009-08-06 | Linde Aktiengesellschaft | Method and device for low-temperature air separation |
DE102008016355A1 (en) | 2008-03-29 | 2009-10-01 | Linde Ag | Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator |
EP2299221A2 (en) * | 2009-09-21 | 2011-03-23 | Linde Aktiengesellschaft | Method and device for cryogenic decomposition of air |
Non-Patent Citations (1)
Title |
---|
HAUSEN, LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3014545A1 (en) * | 2013-12-05 | 2015-06-12 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
WO2015082860A3 (en) * | 2013-12-05 | 2015-12-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and device for separating air by cryogenic distillation |
EP2963370A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
CN106489059A (en) * | 2014-07-05 | 2017-03-08 | 林德股份公司 | Method and apparatus with variable energy consumption low temperature air separating |
RU2690550C2 (en) * | 2014-07-05 | 2019-06-04 | Линде Акциенгезелльшафт | Method and device for low-temperature air separation with variable power consumption |
WO2016005030A1 (en) * | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
WO2016005031A1 (en) * | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
US11193710B2 (en) | 2014-07-05 | 2021-12-07 | Linde Aktiengesellschaft | Method and apparatus for the cryogenic separation of air |
EP2963369A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
CN105318661A (en) * | 2014-07-05 | 2016-02-10 | 林德股份公司 | Method and apparatus for the cryogenic separation of air |
US11175091B2 (en) | 2014-07-05 | 2021-11-16 | Linde Aktiengesellschaft | Method and apparatus for the cryogenic separation of air |
EP2963367A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
CN106662394A (en) * | 2014-07-05 | 2017-05-10 | 林德股份公司 | Method and device for the low-temperature separation of air at variable energy consumption |
CN106662394B (en) * | 2014-07-05 | 2019-11-05 | 林德股份公司 | Method and apparatus can be changed energy consumption low temperature air separating |
CN106489059B (en) * | 2014-07-05 | 2019-11-05 | 林德股份公司 | Method and apparatus can be changed energy consumption low temperature air separating |
US10458702B2 (en) | 2014-07-05 | 2019-10-29 | Linde Aktingesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
RU2698378C2 (en) * | 2014-07-05 | 2019-08-26 | Линде Акциенгезелльшафт | Method and device for low-temperature air separation |
RU2691210C2 (en) * | 2014-07-05 | 2019-06-11 | Линде Акциенгезелльшафт | Method and device for low-temperature air separation with variable power consumption |
US10215489B2 (en) | 2014-07-05 | 2019-02-26 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
WO2016015860A1 (en) * | 2014-07-31 | 2016-02-04 | Linde Aktiengesellschaft | Method for the cryogenic separation of air and air separation plant |
US10480853B2 (en) | 2014-07-31 | 2019-11-19 | Linde Aktiengesellschaft | Method for the cryogenic separation of air and air separation plant |
EP2980514A1 (en) * | 2014-07-31 | 2016-02-03 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
CN106716033B (en) * | 2014-07-31 | 2020-03-31 | 林德股份公司 | Method for the cryogenic separation of air and air separation plant |
CN106716033A (en) * | 2014-07-31 | 2017-05-24 | 林德股份公司 | Method for the cryogenic separation of air and air separation plant |
EP3101374A2 (en) | 2015-06-03 | 2016-12-07 | Linde Aktiengesellschaft | Method and installation for cryogenic decomposition of air |
EP3179188A1 (en) * | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
RU2721195C2 (en) * | 2015-12-07 | 2020-05-18 | Линде Акциенгезелльшафт | Low-temperature air separation method and air separation plant |
CN106931721B (en) * | 2015-12-07 | 2020-12-01 | 林德股份公司 | Method for the cryogenic separation of air and air separation plant |
EP3179185A1 (en) * | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
CN106931721A (en) * | 2015-12-07 | 2017-07-07 | 林德股份公司 | The method and air separation equipment of low temperature air separating |
CN108240734A (en) * | 2018-03-08 | 2018-07-03 | 李佳晨 | Booster expansion machine air supply system and air separation plant |
CN108240734B (en) * | 2018-03-08 | 2024-03-26 | 李佳晨 | Air supply system of booster expander and air separation equipment |
WO2020083520A1 (en) * | 2018-10-26 | 2020-04-30 | Linde Aktiengesellschaft | Method for obtaining one or more air products, and air separation unit |
RU2783184C2 (en) * | 2018-10-26 | 2022-11-09 | Линде Гмбх | Method for producing one or more air separation products and air separation unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2520886A1 (en) | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air | |
EP1067345B1 (en) | Process and device for cryogenic air separation | |
WO2007104449A1 (en) | Method and apparatus for fractionating air at low temperatures | |
DE102010052545A1 (en) | Method and apparatus for recovering a gaseous product by cryogenic separation of air | |
EP2015012A2 (en) | Process for the cryogenic separation of air | |
EP2963370B1 (en) | Method and device for the cryogenic decomposition of air | |
EP2466236A1 (en) | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air | |
EP2299221A2 (en) | Method and device for cryogenic decomposition of air | |
EP3410050B1 (en) | Method for producing one or more air products and air separation system | |
EP2603754B1 (en) | Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air | |
EP2963369B1 (en) | Method and device for the cryogenic decomposition of air | |
EP2053331A1 (en) | Method and device for low-temperature air separation | |
EP2489968A1 (en) | Method and device for cryogenic decomposition of air | |
EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
EP2758735A2 (en) | Method and device for generating two purified partial air streams | |
EP4065910A1 (en) | Process and plant for low-temperature fractionation of air | |
WO2021078405A1 (en) | Method and system for low-temperature air separation | |
DE102007042462A1 (en) | Method and apparatus for the cryogenic separation of air | |
EP3980705A1 (en) | Method and system for low-temperature air separation | |
WO2017108187A1 (en) | Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air | |
WO2011110301A2 (en) | Method and device for cryogenic separation of air | |
EP2600090B1 (en) | Method and device for generating pressurised oxygen by cryogenic decomposition of air | |
EP2963371B1 (en) | Method and device for creating a pressurised gas product by the cryogenic decomposition of air | |
DE102011121314A1 (en) | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator | |
EP2770286B1 (en) | Method and apparatus for the production of high pressure oxygen and high pressure nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130508 |