EP2600090B1 - Method and device for generating pressurised oxygen by cryogenic decomposition of air - Google Patents

Method and device for generating pressurised oxygen by cryogenic decomposition of air Download PDF

Info

Publication number
EP2600090B1
EP2600090B1 EP12007828.2A EP12007828A EP2600090B1 EP 2600090 B1 EP2600090 B1 EP 2600090B1 EP 12007828 A EP12007828 A EP 12007828A EP 2600090 B1 EP2600090 B1 EP 2600090B1
Authority
EP
European Patent Office
Prior art keywords
air
pressure
substream
heat exchanger
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12007828.2A
Other languages
German (de)
French (fr)
Other versions
EP2600090A1 (en
Inventor
Alexander Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47191487&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2600090(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP12007828.2A priority Critical patent/EP2600090B1/en
Publication of EP2600090A1 publication Critical patent/EP2600090A1/en
Application granted granted Critical
Publication of EP2600090B1 publication Critical patent/EP2600090B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system) or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery
  • a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product.
  • This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • the "main heat exchanger system” serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
  • the method of the invention belongs to the class of high pressure processes in which the total air in a main air compressor is compressed to well above high pressure column pressure.
  • the system works with a single externally driven machine, namely this main air compressor.
  • the configuration in which the compressed cooled and purified air is split into two streams - turbine stream ("second substream") and inductor stream ("first substream”).
  • the turbine stream is cooled in the heat exchanger and then relaxed in a turbine, for example, to the pressure of the high pressure column and passed into this.
  • the throttle flow is in a booster stage (“compressor"), driven by the turbine, recompressed, passed through the heat exchanger and thereby cooled and is then passed into the rectification section.
  • the invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable, especially at a relatively small inductor current ("first partial flow").
  • a recirculation flow which is formed by a part of the first partial flow of air (the throttle flow) guided through the after-compressor, flows in a circle through the after-compressor. This increases the amount of air to be compressed in the booster.
  • the recycle stream is preferably withdrawn at the exit from the main heat exchanger (at the cold end), depressurized in a throttle valve to a pressure slightly higher than the pressure before entry into the reboiler.
  • the relaxed recycle stream is passed through the main heat exchanger and mixed again with the first part stream before entering the reboiler.
  • This recirculation of the inductor current causes the amount of gas to be compressed in the booster stage (the booster) to increase, the pressure ratio being smaller and the booster and turbine volumes match better.
  • a conventional buildable and particularly efficient booster turbine can be used.
  • the heating of the return flow can be carried out up to the warm end of the main heat exchanger or up to an intermediate temperature.
  • the introduction of the recirculation stream into the first partial stream upstream of the postcompressor can in principle also be effected by introducing the recycle stream into the total air stream before it is divided; the "return to the first partial flow" is then performed upstream of the branch of the first partial flow from the second partial flow.
  • the recycle stream is introduced into the first substream immediately before the postcompressor.
  • the system has only a single externally driven compressor, the main air compressor, and only a single expansion machine (turbine). Despite this comparatively simple structure, it is very energy-efficient by the process of the invention.
  • the total air is compressed in the invention to a first air pressure, which is for example 10 to 30 bar and preferably between 10 and 20 bar.
  • the invention also relates to a device according to claim 4.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • Atmospheric air 1 is sucked in via a filter from a main air compressor 3 and compressed there to a first air pressure of about 18 bar.
  • the main air compressor preferably has several stages with intermediate cooling.
  • the compressed total air is then cooled in a pre-cooler 4 and cleaned in a cleaning device 5.
  • the purified feed air 6 is divided under the first air pressure into a first partial flow 7 and a second partial flow 8.
  • approximately 45% of the total air 6 forms the first partial flow 7, the remainder the second partial flow 8.
  • the first partial flow 7 is fed via line 9 to a secondary compressor 10 with aftercooler 11 and further compressed there to a second air pressure of about 28 bar.
  • the booster 10 is formed in one stage.
  • the post-compressed first partial flow 12 is fed to a main heat exchanger 13 at the warm end, where it is cooled and liquefied and finally withdrawn again at the cold end via line 14.
  • Most of the liquefied first substream is introduced via line 15 and throttle valve 16 in the distillation column system for nitrogen-oxygen separation, which has a high pressure column 17, a low pressure column 18 and a main condenser 19, which is designed as a condenser-evaporator.
  • the operating pressures are 5 to 6 bar in the high-pressure column and 1.2 to 1.6 bar in the low-pressure column.
  • a portion of the introduced into the high-pressure column 17 liquid air is removed again via line 20, cooled in a supercooling countercurrent 21 and fed via throttle valve 22 in the low-pressure column 18.
  • the second partial stream 8 of the feed air is cooled in the main heat exchanger 13 only to an intermediate temperature.
  • the cooled second partial flow 23 is introduced into a relaxation machine, which is formed here by a turbine 24.
  • the second air stream is working expanded relaxed to something about high pressure column pressure.
  • the expanded second partial stream 25 is fed in completely gaseous or substantially completely gaseous state of the high-pressure column immediately above the sump.
  • the expansion machine 24 is directly mechanically coupled to the booster compressor 10, in particular sit after-compressor and turbine on a common shaft.
  • Argon portion 30 comprises a split crude argon column and a pure argon column, is fed by an argon transition fraction 31 and provides a liquid pure argon (LAR) product 32. Otherwise, it operates according to known principles.
  • the top nitrogen 33 of the high-pressure column 17 is condensed at least to a part 34 in the main condenser 19.
  • the liquid nitrogen obtained is fed to a first part 36 as reflux to the high-pressure column 17.
  • a second part 37 is cooled in the subcooling countercurrent 21 and fed via throttle valve 38 into the top of the low pressure column 18. At least a part of it is used as a liquid reflux in the low-pressure column 18.
  • an oxygen product stream is produced 39 withdrawn liquid and brought in liquid state to an elevated pressure of about 30 bar.
  • the high-pressure oxygen 41 is vaporized in the main heat exchanger 13 and warmed to approximately ambient temperature. Via line 42, it is finally recovered as an internally compressed pressure oxygen product (GOX-IC).
  • a portion 60 of the warm residual gas 54 can be used as a regeneration gas (regas gas) in the cleaning device 5.
  • liquid argon 32 can be internally compressed from the argon part 30 in a pump 55 and recovered after (pseudo) evaporation via line 56 as gaseous pressure product (GAR-IC).
  • GAR-IC gaseous pressure product
  • a recycle stream 57 is branched off from the liquefied first substream 14, here downstream of the cold end of the main heat exchanger 12.
  • the recycle stream 57 when depressurized in a throttle valve 58 to a pressure of slightly more than 18 bar, returns to the cold end of the main heat exchanger fed and warmed there to an intermediate temperature of 260 K.
  • the warmed recycle stream 59 is finally fed to the first part stream 7 upstream of the post-compressor 10.
  • the booster 10 in FIG. 1 is operated in warm conditions, ie with an inlet temperature no more than 20 K below ambient temperature.
  • FIG. 2 differs from FIG. 1 in that the after-compressor 110 is operated as a cold compressor, that is to say with an inlet temperature which is more than 20 K below the ambient temperature, in the example at 210 ° K.
  • the recirculation flow 159 also becomes at a lower intermediate temperature of approximately 205 K taken from the main heat exchanger 13 and only downstream of the cooling of the first partial flow 107 combined with this.
  • the division into first partial flow 107 and second partial flow 123 takes place here within the main heat exchanger 13.
  • the recompressed first substream 112 is fed to the main heat exchanger 13 at an intermediate temperature.
  • the expansion machine 124 is not only mechanically coupled to the cold booster 110. Rather, there is an additional oil brake 161 on the common shaft (alternative to the oil brake, a generator could also be used).
  • a second turbine 224 is used instead of the oil brake, which is coupled to a generator 261.
  • a dissipative brake for example an oil brake.
  • the first turbine 124 is mechanically connected only to the cold secondary compressor 110.
  • the two turbines 124, 224 each have the same pressures and temperatures at the inlet and outlet.
  • FIG. 4 differs from the previous embodiments in that the recycle stream 357 is branched off from the first part stream already before the cold end of the main heat exchanger, ie at something at a higher temperature, which may not be higher than dew point, in the example under 130 K. Die During the expansion in the throttle valve 358 generated cold can thus contribute to the cooling of feed air in the main heat exchanger 13.
  • the pre-cooling 4 and the cleaning 5 can be performed at a lower pressure than the first air pressure, as in FIG. 5 is shown.
  • the system must then in addition to the main air compressor 403 another externally driven air compressor 463 having the total purified air 462 from this lower air pressure of, for example, 18 bar to the first air pressure recompressed.
  • the air compressor 463 has an aftercooler, which is not shown in the drawing, and may be of one or more stages and may have an intermediate cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method according to the preamble of patent claim 1.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehr-Säulen-System ausgebildet sein. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-GewinnungThe distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system) or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery

Bei dem Prozess wird ein flüssig auf Druck gebrachter Sauerstoff-Produktstrom gegen einen Wärmeträger verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft".In the process, a liquid pressurized oxygen product stream is vaporized against a heat carrier and finally recovered as a gaseous pressure product. This method is also called internal compression. It serves for the production of pressure oxygen. In the case of a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated".

Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.Against the (pseudo) evaporating product stream, a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure). The heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.

Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , A1, EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355 A1 .Internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 253132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 . DE 10334559 A1 . DE 10334560 A1 . DE 10332863 A1 . EP 1544559 A1 . EP 1585926 A1 . DE 102005029274 A1 EP 1666824 A1 . EP 1672301 A1 . DE 102005028012 A1 . WO 2007033838 A1 . WO 2007104449 A1 . EP 1845324 A1 . DE 102006032731 A1 . EP 1892490 A1 . DE 102007014643 A1 , A1, EP 2015012 A2 . EP 2015013 A2 . EP 2026024 A1 . WO 2009095188 A2 or DE 102008016355 A1 ,

Neben dem Drucksauerstoffprodukt können andere typische Luftzerlegungsprodukte in Form von innenverdichteten, flüssigen oder gasförmigen Strömen gewonnen werden.In addition to the pressure oxygen product, other typical air separation products can be obtained in the form of internally compressed, liquid or gaseous streams.

Das "Hauptwärmetauscher-System" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destilliersäulen-System. Es kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.The "main heat exchanger system" serves to cool feed air in indirect heat exchange with return streams from the distillation column system. It may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.

Das Verfahren der Erfindung gehört zur Klasse der Hochdruckverfahren, bei der die Gesamtluft in einem Hauptluftverdichter auf deutlich über Hochdrucksäulendruck verdichtet wird. Das System kommt insbesondere mit einer einzigen extern angetriebenen Maschine, eben diesem Hauptluftverdichter, aus.The method of the invention belongs to the class of high pressure processes in which the total air in a main air compressor is compressed to well above high pressure column pressure. In particular, the system works with a single externally driven machine, namely this main air compressor.

Besonders effizient ist die Konfiguration, bei welcher die verdichtete gekühlte und gereinigte Luft in zwei Ströme aufgeteilt wird - Turbinenstrom ("zweiter Teilstrom") und Drosselstrom ("erster Teilstrom"). Der Turbinenstrom wird im Wärmetauscher gekühlt und danach in einer Turbine zum Beispiel auf den Druck der Hochdrucksäule entspannt und in diese geleitet. Der Drosselstrom wird in einer Boosterstufe ("Nachverdichter"), angetrieben durch die Turbine, nachverdichtet, durch den Wärmetauscher geführt und dabei gekühlt und wird danach in das Rektifikationsteil geleitet.Particularly efficient is the configuration in which the compressed cooled and purified air is split into two streams - turbine stream ("second substream") and inductor stream ("first substream"). The turbine stream is cooled in the heat exchanger and then relaxed in a turbine, for example, to the pressure of the high pressure column and passed into this. The throttle flow is in a booster stage ("compressor"), driven by the turbine, recompressed, passed through the heat exchanger and thereby cooled and is then passed into the rectification section.

Ein Verfahren der eingangs genannten Art ist aus US 5329776 und aus EP 2 299 221 bekannt.A method of the type mentioned is out US 5,329,776 and from EP 2 299 221 known.

Es ist häufig maschinentechnisch nicht möglich, ein derartiges Verfahren zu realisieren, besonders wenn der Drosselstrom relativ klein (weniger als 1/3 der Gesamtluft) ist und damit der Turbinenstrom entsprechend groß wird (entsprechend größer als 2/3 der Gesamtluft). Eine derartige Turbine ist nämlich nicht ohne Weiteres baubar, weil die Drossel- und Turbinenmengen zu unterschiedlich und das Druckverhältnis in der Boosterstufe zu groß wären. Auch wenn die Turbine baubar ist, führen Missverhältnisse zwischen Booster- und Turbinen-Seite zu Wirkungsgradeinbußen, die den Gesamtwirkungsgrad der Anlage verschlechtern.It is often not technically possible to implement such a method, especially if the inductor current is relatively small (less than 1/3 of the total air) and thus the turbine current becomes correspondingly large (corresponding to greater than 2/3 of the total air). Namely, such a turbine can not be readily constructed because the throttle and turbine quantities are too different and the pressure ratio in the booster stage would be too great. Even if the turbine is buildable, mismatches between booster and turbine side lead to efficiency losses, which worsen the overall efficiency of the system.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich besonders günstig sind, insbesondere auch bei einem relativ kleinen Drosselstrom ("ersten Teilstrom").The invention is therefore based on the object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable, especially at a relatively small inductor current ("first partial flow").

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is solved by the characterizing features of claim 1.

Ein Rückführstrom, der durch einen Teil des durch den Nachverdichter geführten ersten Teilstroms der Luft (des Drosselstroms) gebildet wird, strömt im Kreis durch den Nachverdichter. Damit wird die im Nachverdichter zu verdichtende Luftmenge vergrößert. Der Rückführstrom wird vorzugsweise am Austritt aus dem Hauptwärmetauscher (am kalten Ende) entnommen, in einem Drosselventil auf einen Druck entspannt, der etwas höher als der Druck vor dem Eintritt in den Nachverdichter ist. Der entspannte Rückführstrom wird durch den Hauptwärmetauscher geleitet und mit dem ersten Teilstrom vor Eintritt in den Nachverdichter wieder gemischt. Diese Rezirkulation des Drosselstromes führt dazu, dass die in der Boosterstufe (dem Nachverdichter) zu verdichtende Gasmenge größer wird, das Druckverhältnis kleiner und die Booster- und Turbinenmenge besser zueinander passen. Somit kann eine mit konventionellen Mitteln baubare und besonders effiziente Boosterturbine verwendet werden.A recirculation flow, which is formed by a part of the first partial flow of air (the throttle flow) guided through the after-compressor, flows in a circle through the after-compressor. This increases the amount of air to be compressed in the booster. The recycle stream is preferably withdrawn at the exit from the main heat exchanger (at the cold end), depressurized in a throttle valve to a pressure slightly higher than the pressure before entry into the reboiler. The relaxed recycle stream is passed through the main heat exchanger and mixed again with the first part stream before entering the reboiler. This recirculation of the inductor current causes the amount of gas to be compressed in the booster stage (the booster) to increase, the pressure ratio being smaller and the booster and turbine volumes match better. Thus, a conventional buildable and particularly efficient booster turbine can be used.

Die Anwärmung des Rückführstroms kann bis zum warmen Ende des Hauptwärmetauschers oder bis zu einer Zwischentemperatur durchgeführt werden.The heating of the return flow can be carried out up to the warm end of the main heat exchanger or up to an intermediate temperature.

Die Einführung des Rückführstroms in den ersten Teilstrom stromaufwärts des Nachverdichters kann grundsätzlich auch dadurch geschehen, dass der Rückführstrom in dem Gesamtluftstrom vor seiner Aufteilung eingeleitet wird; die "Rückführung in den ersten Teilstrom" wird dann stromaufwärts der Abzweigung des ersten Teilstroms vom zweiten Teilstrom durchgeführt. Vorzugsweise wird der Rückführstrom jedoch unmittelbar vor dem Nachverdichter in den ersten Teilstrom eingeleitet.The introduction of the recirculation stream into the first partial stream upstream of the postcompressor can in principle also be effected by introducing the recycle stream into the total air stream before it is divided; the "return to the first partial flow" is then performed upstream of the branch of the first partial flow from the second partial flow. Preferably, however, the recycle stream is introduced into the first substream immediately before the postcompressor.

Es erscheint zunächst unlogisch, durch das Drosselentspannen und Wiederverdichten eines Stroms (des Rückführstroms) das Verfahren wirtschaftlich günstiger zu machen. Im Rahmen der Erfindung hat sich jedoch überraschenderweise herausgestellt, dass die Effizienz durch diese Maßnahme erhöht werden kann. Dies ist durch die überraschend effiziente Entspannung im flüssigen beziehungsweise überkritischen Zustand zu erklären und dadurch, dass die Anwärmung des Rückführstroms überraschend deutlich zur Verbesserung des Wärmeaustauschprozesses im Hauptwärmetauscher beiträgt.It seems illogical at first to make the process more economical by throttling and recompressing a stream (the recycle stream). In the context of the invention, however, it has surprisingly been found that the efficiency can be increased by this measure. This can be explained by the surprisingly efficient relaxation in the liquid or supercritical state and in that the heating of the recycle stream surprisingly contributes significantly to the improvement of the heat exchange process in the main heat exchanger.

Vorzugsweise weist das System nur einen einzigen extern angetriebenen Verdichter, den Hauptluftverdichter, und nur eine einzige Entspannungsmaschine (Turbine) auf. Trotz dieses vergleichsweise einfachen Aufbaus ist es durch die erfindungsgemäße Verfahrensführung sehr energieeffizient.Preferably, the system has only a single externally driven compressor, the main air compressor, and only a single expansion machine (turbine). Despite this comparatively simple structure, it is very energy-efficient by the process of the invention.

Die Gesamtluft wird bei der Erfindung auf einen ersten Luftdruck verdichtet, der beispielsweise 10 bis 30 bar beträgt und vorzugsweise zwischen 10 und 20 bar liegt.The total air is compressed in the invention to a first air pressure, which is for example 10 to 30 bar and preferably between 10 and 20 bar.

Weitere Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den abhängigen Verfahrensansprüchen beschrieben.Further embodiments of the method according to the invention are described in the dependent method claims.

Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 4. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen der abhängigen Verfahrensansprüche entsprechen.The invention also relates to a device according to claim 4. The device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel der Erfindung mit einer einzigen Turbine und einem warmen Nachverdichter,
Figur 2
ein zweites Ausführungsbeispiel, bei dem der Nachverdichter als Kaltverdichter ausgebildet ist,
Figur 3
ein drittes Ausführungsbeispiel mit zwei Turbinen,
Figur 4
eine Variante mit Abzweigung des Rückführstroms stromaufwärts des kalten Endes des Hauptwärmetauschers und
Figur 5
eine weitere Variante mit Nachverdichtung der Gesamtluft.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments illustrated in the drawings. Hereby show:
FIG. 1
a first embodiment of the invention with a single turbine and a warm booster,
FIG. 2
A second embodiment in which the after-compressor is designed as a cold compressor,
FIG. 3
a third embodiment with two turbines,
FIG. 4
a variant with branching of the return flow upstream of the cold end of the main heat exchanger and
FIG. 5
Another variant with re-compression of the total air.

In dem Verfahren und der Vorrichtung von Figur 1 wird atmosphärische Luft 1 über ein Filter von einem Hauptluftverdichter 3 angesaugt und dort auf einen ersten Luftdruck von ca. 18 bar verdichtet. Der Hauptluftverdichter weist vorzugsweise mehrere Stufen mit Zwischenkühlung auf. Die verdichtete Gesamtluft wird anschließen in einer Vorkühleinrichtung 4 gekühlt und in einer Reinigungseinrichtung 5 gereinigt. Die gereinigte Einsatzluft 6 wird unter dem ersten Luftdruck in einen ersten Teilstrom 7 und einen zweiten Teilstrom 8 aufgeteilt. Weitere Luftteilströme, die in die Zerlegung geführt werden, gibt es bei dem Ausführungsbeispiel nicht; die Einsatzluft wird vollständig auf den ersten und den zweiten Teilstrom 7, 8 aufgeteilt. (Dies schließt die Verwendung kleinerer Teile der Gesamtluft 6 für andere Zwecke nicht aus, beispielsweise als Instrumentenluft.) In dem Ausführungsbeispiel bilden ca. 45 % der Gesamtluft 6 den ersten Teilstrom 7, der Rest den zweiten Teilstrom 8.In the method and apparatus of FIG. 1 Atmospheric air 1 is sucked in via a filter from a main air compressor 3 and compressed there to a first air pressure of about 18 bar. The main air compressor preferably has several stages with intermediate cooling. The compressed total air is then cooled in a pre-cooler 4 and cleaned in a cleaning device 5. The purified feed air 6 is divided under the first air pressure into a first partial flow 7 and a second partial flow 8. Other air streams that are performed in the decomposition, there is not in the embodiment; the feed air is completely divided between the first and the second partial flow 7, 8. (This does not preclude the use of smaller parts of the total air 6 for other purposes, for example as instrument air.) In the exemplary embodiment, approximately 45% of the total air 6 forms the first partial flow 7, the remainder the second partial flow 8.

Der erste Teilstrom 7 wird über Leitung 9 einem Nachverdichter 10 mit Nachkühler 11 zugeführt und dort weiter auf einen zweiten Luftdruck von ca. 28 bar verdichtet. Der Nachverdichter 10 ist einstufig ausgebildet. Der nachverdichtete erste Teilstrom 12 wird einem Hauptwärmetauscher 13 am warmen Ende zugeleitet, dort abgekühlt und verflüssigt und schließlich am kalten Ende über Leitung 14 wieder abgezogen. Der größte Teil des verflüssigten ersten Teilstroms wird über Leitung 15 und Drosselventil 16 in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeführt, das eine Hochdrucksäule 17, eine Niederdrucksäule 18 und einen Hauptkondensator 19 aufweist, der als kondensator-Verdampfer ausgebildet ist. Die Betriebsdrücke (jeweils am Kopf) betragen 5 bis 6 bar in der Hochdrucksäule und 1,2 bis 1,6 bar in der Niederdrucksäule. Ein Teil der in die Hochdrucksäule 17 eingeleiteten Flüssigluft wird über Leitung 20 wieder entnommen, in einem Unterkühlungs-Gegenströmer 21 abgekühlt und über Drosselventil 22 in die Niederdrucksäule 18 eingespeist.The first partial flow 7 is fed via line 9 to a secondary compressor 10 with aftercooler 11 and further compressed there to a second air pressure of about 28 bar. The booster 10 is formed in one stage. The post-compressed first partial flow 12 is fed to a main heat exchanger 13 at the warm end, where it is cooled and liquefied and finally withdrawn again at the cold end via line 14. Of the Most of the liquefied first substream is introduced via line 15 and throttle valve 16 in the distillation column system for nitrogen-oxygen separation, which has a high pressure column 17, a low pressure column 18 and a main condenser 19, which is designed as a condenser-evaporator. The operating pressures (in each case at the top) are 5 to 6 bar in the high-pressure column and 1.2 to 1.6 bar in the low-pressure column. A portion of the introduced into the high-pressure column 17 liquid air is removed again via line 20, cooled in a supercooling countercurrent 21 and fed via throttle valve 22 in the low-pressure column 18.

Der zweite Teilstrom 8 der Einsatzluft wird in dem Hauptwärmetauscher 13 lediglich auf eine Zwischentemperatur abgekühlt. Der abgekühlte zweite Teilstrom 23 wird in eine Entspannungsmaschine eingeführt, die hier durch eine Turbine 24 gebildet wird. In der Turbine 24 wird der zweite Luftstrom arbeitsleistend entspannt auf etwas über Hochdrucksäulendruck. Der entspannte zweite Teilstrom 25 wird in vollständig gasförmigem oder im Wesentlichen vollständig gasförmigem Zustand der Hochdrucksäule unmittelbar über dem Sumpf zugeleitet. Die Entspannungsmaschine 24 ist unmittelbar mechanisch mit dem Nachverdichter 10 gekoppelt, insbesondere sitzen Nachverdichter und Turbine auf einer gemeinsamen Welle.The second partial stream 8 of the feed air is cooled in the main heat exchanger 13 only to an intermediate temperature. The cooled second partial flow 23 is introduced into a relaxation machine, which is formed here by a turbine 24. In the turbine 24, the second air stream is working expanded relaxed to something about high pressure column pressure. The expanded second partial stream 25 is fed in completely gaseous or substantially completely gaseous state of the high-pressure column immediately above the sump. The expansion machine 24 is directly mechanically coupled to the booster compressor 10, in particular sit after-compressor and turbine on a common shaft.

Die Sumpfflüssigkeit 26 der Hochdrucksäule 17 wird im Unterkühlungs-Gegenströmer 21 abgekühlt und über einen Argonteil 22 und die Leitungen 27, 28 und 29 in die Niederdrucksäule 18 eingeleitet. Der Argonteil 30 weist eine geteilte Rohargonsäule und eine Reinargonsäule auf, wird von einer Argonübergangsfraktion 31 gespeist und liefert ein flüssiges Reinargonprodukt (LAR) 32. Im Übrigen arbeitet er nach den bekannten Prinzipien.The bottoms liquid 26 of the high-pressure column 17 is cooled in the subcooling countercurrent 21 and introduced into the low-pressure column 18 via an argon part 22 and the lines 27, 28 and 29. Argon portion 30 comprises a split crude argon column and a pure argon column, is fed by an argon transition fraction 31 and provides a liquid pure argon (LAR) product 32. Otherwise, it operates according to known principles.

Der Kopfstickstoff 33 der Hochdrucksäule 17 wird mindestens zu einem Teil 34 im Hauptkondensator 19 kondensiert. Der dabei gewonnene flüssige Stickstoff wird zu einem ersten Teil 36 als Rücklauf auf die Hochdrucksäule 17 aufgegeben. Ein zweiter Teil 37 wird im Unterkühlungs-Gegenströmer 21 abgekühlt und über Drosselventil 38 in den Kopf der Niederdrucksäule 18 eingespeist. Mindestes ein Teil davon wird als flüssiger Rücklauf in der Niederdrucksäule 18 eingesetzt.The top nitrogen 33 of the high-pressure column 17 is condensed at least to a part 34 in the main condenser 19. The liquid nitrogen obtained is fed to a first part 36 as reflux to the high-pressure column 17. A second part 37 is cooled in the subcooling countercurrent 21 and fed via throttle valve 38 into the top of the low pressure column 18. At least a part of it is used as a liquid reflux in the low-pressure column 18.

Vom Sumpf der Niederdrucksäule 18 (deren unterer Abschnitt hier gleichzeitig den Verdampfungsraum des Hauptkondensators 19 bildet) wird ein Sauerstoff-Produktstrom 39 flüssig abgezogen und in flüssigem Zustand auf einen erhöhten Druck von ca. 30 bar gebracht. Der Hochdrucksauerstoff 41 wird im Hauptwärmetauscher 13 verdampft und auf etwa Umgebungstemperatur angewärmt. Über Leitung 42 wird er schließlich als innenverdichtetes Drucksauerstoffprodukt (GOX-IC) gewonnen.From the bottom of the low-pressure column 18 (the lower portion of which simultaneously forms the evaporation space of the main condenser 19), an oxygen product stream is produced 39 withdrawn liquid and brought in liquid state to an elevated pressure of about 30 bar. The high-pressure oxygen 41 is vaporized in the main heat exchanger 13 and warmed to approximately ambient temperature. Via line 42, it is finally recovered as an internally compressed pressure oxygen product (GOX-IC).

Weitere mögliche Produkte des Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung sind:

  • Flüssiger Sauerstoff 43 (LOX) - Teil des Sumpf-Sauerstoffs 39 der Niederdrucksäule 18.
  • Flüssiger Stickstoff 44 (LIN) - Teil des zweiten Teils 37, 38 des flüssigen Stickstoffs 35 aus dem Hauptkondensator 19.
  • Innenverdichteter gasförmiger Druckstickstoff 47 (GAN-IC) - dritter Teil 45 des flüssigen Stickstoffs 35 aus dem Hauptkondensator 19.
  • Gasförmiger Druckstickstoff 49 (PGAN) direkt aus der Hochdrucksäule 17 als Teil 48 des gasförmigen Kopfstickstoffs 33 der Hochdrucksäule 17.
  • Druckloser gasförmiger Stickstoff 50, 61, 62 (GAN) vom Kopf der Niederdrucksäule 18.
  • Stickstoffreiches Restgas 51, 52, 53, 54 von einer Zwischenstelle der Niederdrucksäule 18.
Other possible products of the distillation column system for nitrogen-oxygen separation are:
  • Liquid oxygen 43 (LOX) - part of the bottom oxygen 39 of the low-pressure column 18.
  • Liquid nitrogen 44 (LIN) - part of the second part 37, 38 of the liquid nitrogen 35 from the main condenser 19th
  • Internal compressed gaseous nitrogen 47 (GAN-IC) - third part 45 of the liquid nitrogen 35 from the main condenser 19th
  • Gaseous pressure nitrogen 49 (PGAN) directly from the high pressure column 17 as part 48 of the gaseous nitrogen head 33 of the high pressure column 17th
  • Non-pressurized gaseous nitrogen 50, 61, 62 (GAN) from the top of the low-pressure column 18.
  • Nitrogen-rich residual gas 51, 52, 53, 54 from an intermediate point of the low-pressure column 18th

Ein Teil 60 des warmen Restgases 54 kann als Regeneriergas (Reggas) in der Reinigungseinrichtung 5 eingesetzt werden.A portion 60 of the warm residual gas 54 can be used as a regeneration gas (regas gas) in the cleaning device 5.

Außerdem kann auch das flüssige Argon 32 aus dem Argonteil 30 in einer Pumpe 55 innenverdichtet und nach (Pseudo-)Verdampfung über Leitung 56 als gasförmiges Druckprodukt (GAR-IC) gewonnen werden.In addition, the liquid argon 32 can be internally compressed from the argon part 30 in a pump 55 and recovered after (pseudo) evaporation via line 56 as gaseous pressure product (GAR-IC).

Erfindungsgemäß wird ein Rückführstrom 57 aus dem verflüssigten ersten Teilstrom 14 abgezweigt, hier stromabwärts des kalten Endes des Hauptwärmetauschers 12. Der Rückführstrom 57 wird, im Kalten in einem Drosselventil 58 auf einen Druck von etwas mehr als 18 bar entspannt, wieder dem kalten Ende des Hauptwärmetauschers zugeführt und dort auf eine Zwischentemperatur von 260 K angewärmt. Der angewärmte Rückführstrom 59 wird schließlich dem ersten Teilstrom 7 stromaufwärts des Nachverdichters 10 zugeführt.According to the invention, a recycle stream 57 is branched off from the liquefied first substream 14, here downstream of the cold end of the main heat exchanger 12. The recycle stream 57, when depressurized in a throttle valve 58 to a pressure of slightly more than 18 bar, returns to the cold end of the main heat exchanger fed and warmed there to an intermediate temperature of 260 K. The warmed recycle stream 59 is finally fed to the first part stream 7 upstream of the post-compressor 10.

Der Nachverdichter 10 in Figur 1 wird im Warmen betrieben, das heißt mit einer Eintrittstemperatur, die nicht mehr als 20 K unterhalb der Umgebungstemperatur liegt.The booster 10 in FIG. 1 is operated in warm conditions, ie with an inlet temperature no more than 20 K below ambient temperature.

Figur 2 unterscheidet sich von Figur 1 dadurch, dass der Nachverdichter 110 als Kaltverdichter betrieben wird, das heißt mit einer Eintrittstemperatur, die mehr als 20 K unterhalb der Umgebungstemperatur liegt, in dem Beispiel bei 210. K. Entsprechend wird der Rückführstrom 159 auch bei einer niedrigeren Zwischentemperatur von ca. 205 K aus dem Hauptwärmetauscher 13 entnommen und erst stromabwärts der Abkühlung des ersten Teilstroms 107 mit diesem vereinigt. Die Aufteilung in ersten Teilstrom 107 und zweiten Teilstrom 123 findet hier innerhalb des Hauptwärmetauschers 13 statt. Der nachverdichtete erste Teilstrom 112 wird dem Hauptwärmetauscher 13 bei einer Zwischentemperatur zugeleitet. FIG. 2 differs from FIG. 1 in that the after-compressor 110 is operated as a cold compressor, that is to say with an inlet temperature which is more than 20 K below the ambient temperature, in the example at 210 ° K. Correspondingly, the recirculation flow 159 also becomes at a lower intermediate temperature of approximately 205 K taken from the main heat exchanger 13 and only downstream of the cooling of the first partial flow 107 combined with this. The division into first partial flow 107 and second partial flow 123 takes place here within the main heat exchanger 13. The recompressed first substream 112 is fed to the main heat exchanger 13 at an intermediate temperature.

Um Wärme an die Umgebung abführen zu können, ist die Entspannungsmaschine 124 nicht nur mit dem kalten Nachverdichter 110 mechanisch gekoppelt. Auf der gemeinsamen Welle sitzt vielmehr zusätzlich eine Ölbremse 161. (Alternativ zur Ölbremse könnte auch ein Generator eingesetzt werden.)In order to dissipate heat to the environment, the expansion machine 124 is not only mechanically coupled to the cold booster 110. Rather, there is an additional oil brake 161 on the common shaft (alternative to the oil brake, a generator could also be used).

In Figur 3 wird statt der Ölbremse eine zweite Turbine 224 eingesetzt, die an einen Generator 261 gekoppelt ist. (Alternativ zum Generator kann auch eine dissipative Bremse eingesetzt werden, zum Beispiel eine Ölbremse.) Die erste Turbine 124 ist nur mit dem kalten Nachverdichter 110 mechanisch verbunden. Die beiden Turbinen 124, 224 weisen am Ein- und Austritt jeweils gleiche Drücke und Temperaturen auf.In FIG. 3 a second turbine 224 is used instead of the oil brake, which is coupled to a generator 261. (As an alternative to the generator, it is also possible to use a dissipative brake, for example an oil brake.) The first turbine 124 is mechanically connected only to the cold secondary compressor 110. The two turbines 124, 224 each have the same pressures and temperatures at the inlet and outlet.

Figur 4 unterscheidet sich dadurch von den vorhergehenden Ausführungsbeispielen, dass der Rückführstrom 357 schon vor dem kalten Ende des Hauptwärmetauschers aus dem ersten Teilstrom abgezweigt wird, also bei etwas bei höherer Temperatur, die jedoch nicht höher als Taupunkt sein darf, in dem Beispiel unter 130 K. Die bei der Entspannung im Drosselventil 358 erzeugte Kälte kann damit zur Abkühlung von Einsatzluft im Hauptwärmetauscher 13 beitragen. FIG. 4 differs from the previous embodiments in that the recycle stream 357 is branched off from the first part stream already before the cold end of the main heat exchanger, ie at something at a higher temperature, which may not be higher than dew point, in the example under 130 K. Die During the expansion in the throttle valve 358 generated cold can thus contribute to the cooling of feed air in the main heat exchanger 13.

Abweichend von den bisherigen Ausführungsbeispielen kann die Vorkühlung 4 und die Reinigung 5 bei einem niedrigeren Druck als dem ersten Luftdruck durchgeführt werden, wie es in Figur 5 dargestellt ist. Das System muss dann neben dem Hauptluftverdichter 403 einen weiteren extern angetriebenen Luftnachverdichter 463 aufweisen, der die gereinigte Gesamtluft 462 von diesem niedrigeren Luftdruck von beispielsweise 18 bar auf den ersten Luftdruck nachverdichtet. (Der Luftnachverdichter 463 weist einen Nachkühler auf, der in der Zeichnung nicht dargestellt ist. Er kann ein oder mehrstufig ausgebildet sein und gegebenenfalls eine Zwischenkühlung aufweisen.)Notwithstanding the previous embodiments, the pre-cooling 4 and the cleaning 5 can be performed at a lower pressure than the first air pressure, as in FIG. 5 is shown. The system must then in addition to the main air compressor 403 another externally driven air compressor 463 having the total purified air 462 from this lower air pressure of, for example, 18 bar to the first air pressure recompressed. (The air compressor 463 has an aftercooler, which is not shown in the drawing, and may be of one or more stages and may have an intermediate cooling.)

Claims (4)

  1. Method for generating pressurized oxygen by cryogenic separation of air in a distillation column system for nitrogen-oxygen separation which has a low-pressure column (17) and a high-pressure column (18), in which
    - all of the feed air (1) is compressed (3; 403, 463) to a first air pressure which is at least 4 bar above the working pressure of the high-pressure column (18),
    - at least some of the compressed feed air (6) is cooled in a main heat exchanger (13),
    - a first substream (7, 9; 107) of the feed air (6) compressed to the first air pressure is boosted in a booster compressor (10; 110) to a second air pressure which is higher than the first air pressure,
    - the boosted first substream (12; 112) is liquefied or pseudo-liquefied in the main heat exchanger and then is introduced at least in part (15) into the distillation column system for nitrogen-oxygen separation,
    - a second substream (8, 23; 123) of the feed air (6) compressed to the first air pressure is cooled in the main heat exchanger (13) to an intermediate temperature and then work-producingly expanded in an expansion machine (24; 124), wherein the expansion machine (24; 124) drives the booster compressor (10, 110),
    - the expanded second substream (25) is introduced into the distillation column system for nitrogen-oxygen separation
    - an oxygen product stream (39) is withdrawn in the liquid state from the distillation column system for nitrogen-oxygen separation and in the liquid state is brought (40) to an elevated pressure and
    - the oxygen product stream pressurized in the liquid state is vaporized or pseudo-vaporized and warmed at the elevated pressure in the main heat exchanger (13) and finally obtained as pressurized oxygen product (42),
    characterized in that
    - a return stream (57; 357) is branched off from the (pseudo-)liquefied first substream (14),
    - the return stream (57; 357) is expanded in a throttle valve (58; 358) and warmed in the main heat exchanger (13) and
    - the warmed return stream (59; 159) is fed to the first substream (7; 107) upstream of the booster compressor (10; 110).
  2. Method according to Claim 1, characterized in that the feed air (1) is compressed to the first air pressure in a main air compressor (3).
  3. Method according to Claim 1, characterized in that the feed air (1) is compressed to the first air compressor in a main air compressor (403) and in an air booster compressor (463).
  4. Device for generating pressurized oxygen by cryogenic separation having
    - a distillation column system for nitrogen-oxygen separation which has a low-pressure column (17) and a high-pressure column (18),
    - having means for compressing all of the feed air (1) compressed to a first air pressure (3; 403, 463) which is at least 4 bar above the working pressure of the high-pressure column (18),
    - having a main heat exchanger (13) for cooling at least some of the compressed feed air (6),
    - having a booster compressor (10; 110) for boosting a first substream (7, 9; 107) of the feed air (6) compressed to the first air pressure to a second air pressure which is higher than the first air pressure,
    - having means for liquefying or pseudo-liquefying the boosted first substream (12; 112) in the main heat exchanger and having means for introducing at least some of the (pseudo-)liquefied first substream into the distillation column system for nitrogen-oxygen separation,
    - having means for cooling a second substream (8, 23; 123) of the feed air (6) compressed to the first air pressure to an intermediate temperature in the main heat exchanger (13),
    - having an expansion machine (24; 124) for the work-producing expansion of the cooled second substream, wherein the expansion machine (24; 124) is mechanically coupled to the booster compressor (10, 110),
    - having means for introducing the expanded second substream (25) into the distillation column system for nitrogen-oxygen separation,
    - having means for withdrawing an oxygen product stream 39 in the liquid state from the distillation column system for nitrogen-oxygen separation,
    - having means (40) for pressure elevation of the oxygen product stream 39 in the liquid state to an elevated pressure and
    - having means for vaporizing or pseudo-vaporizing and warming the oxygen product stream pressurized in the liquid state at the elevated pressure in the main heat exchanger (13) and for obtaining the warmed oxygen product stream as pressurized oxygen product (42),
    characterized by
    - means for branching off a return stream (57; 357) from the (pseudo-)liquefied first substream (14),
    - a throttle valve (58; 358) for expanding the return stream (57; 357),
    - means for warming the expanded return stream in the main heat exchanger (13) and by
    - means for feeding the warmed return stream (59; 159) to the first substream (7; 107) upstream of the booster compressor (10; 110).
EP12007828.2A 2011-12-01 2012-11-20 Method and device for generating pressurised oxygen by cryogenic decomposition of air Not-in-force EP2600090B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12007828.2A EP2600090B1 (en) 2011-12-01 2012-11-20 Method and device for generating pressurised oxygen by cryogenic decomposition of air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11009537 2011-12-01
EP12007828.2A EP2600090B1 (en) 2011-12-01 2012-11-20 Method and device for generating pressurised oxygen by cryogenic decomposition of air

Publications (2)

Publication Number Publication Date
EP2600090A1 EP2600090A1 (en) 2013-06-05
EP2600090B1 true EP2600090B1 (en) 2014-07-16

Family

ID=47191487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12007828.2A Not-in-force EP2600090B1 (en) 2011-12-01 2012-11-20 Method and device for generating pressurised oxygen by cryogenic decomposition of air

Country Status (2)

Country Link
US (1) US20130139548A1 (en)
EP (1) EP2600090B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
FR3066809B1 (en) 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP3438585A3 (en) 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1815532A1 (en) * 1968-12-18 1970-06-25 Linde Ag Process for generating cold
DE2535132C3 (en) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
GB1520103A (en) * 1977-03-19 1978-08-02 Air Prod & Chem Production of liquid oxygen and/or liquid nitrogen
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP0383994A3 (en) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Air rectification process and apparatus
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
DE4109945A1 (en) 1991-03-26 1992-10-01 Linde Ag METHOD FOR DEEP TEMPERATURE DISPOSAL OF AIR
DE4443190A1 (en) 1994-12-05 1996-06-13 Linde Ag Method and apparatus for the cryogenic separation of air
GB9513766D0 (en) * 1995-07-06 1995-09-06 Boc Group Plc Air separation
DE19526785C1 (en) 1995-07-21 1997-02-20 Linde Ag Method and device for the variable production of a gaseous printed product
DE19529681C2 (en) 1995-08-11 1997-05-28 Linde Ag Method and device for air separation by low-temperature rectification
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
US5911388A (en) * 1997-01-15 1999-06-15 Sundstrand Corporation Environmental control system with energy recovery and bleed air assist
DE19732887A1 (en) 1997-07-30 1999-02-04 Linde Ag Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
DE19815885A1 (en) 1998-04-08 1999-10-14 Linde Ag Air separation method producing gas, or gas and liquid e.g. for steel plant
EP0955509B1 (en) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
DE19908451A1 (en) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh A low temperature air fractionating system uses a rectification unit comprising pressure and low pressure columns and a nitrogen fraction recycle to the system air feed inlet, to provide bulk nitrogen
EP1031804B1 (en) 1999-02-26 2004-02-04 Linde AG Air separation process with nitrogen recycling
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345B1 (en) 1999-07-05 2004-06-16 Linde Aktiengesellschaft Process and device for cryogenic air separation
DE19936816A1 (en) 1999-08-05 2001-02-08 Linde Ag Method and device for extracting oxygen under superatmospheric pressure
FR2798075B1 (en) * 1999-09-03 2001-11-09 Air Liquide CONDUCTING A THERMAL REGENERATION AIR PURIFICATION SYSTEM
DE19954593B4 (en) 1999-11-12 2008-04-10 Linde Ag Method and apparatus for the cryogenic separation of air
DE10013075A1 (en) 2000-03-17 2001-09-20 Linde Ag Process for recovering gaseous nitrogen by the decomposition of air in a distillation column system comprises removing a part of the nitrogen-rich liquid from the condenser-vaporizer as a liquid product
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
DE10015602A1 (en) 2000-03-29 2001-10-04 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10018200A1 (en) 2000-04-12 2001-10-18 Linde Gas Ag Method and device for obtaining pressurized nitrogen by low-temperature separation of air
DE10021081A1 (en) 2000-04-28 2002-01-03 Linde Ag Heat exchange method and apparatus
DE10060678A1 (en) 2000-12-06 2002-06-13 Linde Ag Machine system for work relaxation of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10139727A1 (en) 2001-08-13 2003-02-27 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10153252A1 (en) 2001-10-31 2003-05-15 Linde Ag Process for recovering krypton and/or xenon by low temperature decomposition of air, comprises passing compressed purified process air to a rectifier system, removing a fraction containing krypton and xenon, and further processing
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10217091A1 (en) 2002-04-17 2003-11-06 Linde Ag Three-column system for low-temperature air separation with argon extraction
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
CN1748114A (en) 2002-12-19 2006-03-15 卡格斯-福尔康布里奇股份有限公司 System for liquid extraction, and methods
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
US6694776B1 (en) * 2003-05-14 2004-02-24 Praxair Technology, Inc. Cryogenic air separation system for producing oxygen
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666823A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
DE102006012241A1 (en) * 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
EP1845323A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic separation of air
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102007031765A1 (en) 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102007031759A1 (en) 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
KR101541742B1 (en) 2008-01-28 2015-08-04 린데 악티엔게젤샤프트 Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
WO2011018207A2 (en) * 2009-08-11 2011-02-17 Linde Aktiengesellschaft Method and device for producing a gaseous pressurized oxygen product by cryogenic separation of air
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air

Also Published As

Publication number Publication date
US20130139548A1 (en) 2013-06-06
EP2600090A1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
EP2235460B1 (en) Process and device for the cryogenic separation of air
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP1357342B1 (en) Cryogenic triple column air separation system with argon recovery
EP2015012A2 (en) Process for the cryogenic separation of air
EP2015013A2 (en) Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP1994344A1 (en) Method and apparatus for fractionating air at low temperatures
EP2458311A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2466236A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102007014643A1 (en) Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102009048456A1 (en) Method and apparatus for the cryogenic separation of air
EP2603754B1 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
EP2236964A1 (en) Method and device for low-temperature air separation
EP1482266A1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP2914913B1 (en) Process for the low-temperature separation of air in an air separation plant and air separation plant
EP1750074A1 (en) Process and device for the cryogenic separation of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
EP3067650B1 (en) Installation and method for producing gaseous oxygen by cryogenic air decomposition
EP1199532B1 (en) Three-column system for the cryogenic separation of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20131107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20131129BHEP

INTG Intention to grant announced

Effective date: 20131217

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140410

INTG Intention to grant announced

Effective date: 20140417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 677897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000986

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140716

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141017

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012000986

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: L AIR LIQIDE, SOCIETE ANONYME POUR L ETUDE ET L EX

Effective date: 20150416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141120

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012000986

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 677897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012000986

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211119

Year of fee payment: 10

Ref country code: DE

Payment date: 20211122

Year of fee payment: 10

Ref country code: GB

Payment date: 20211123

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012000986

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221120

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130