EP3290843A2 - Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air - Google Patents
Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air Download PDFInfo
- Publication number
- EP3290843A2 EP3290843A2 EP17020268.3A EP17020268A EP3290843A2 EP 3290843 A2 EP3290843 A2 EP 3290843A2 EP 17020268 A EP17020268 A EP 17020268A EP 3290843 A2 EP3290843 A2 EP 3290843A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitrogen
- pressure column
- pressure
- stream
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04454—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/0403—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04321—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04381—Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04448—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04745—Krypton and/or Xenon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04836—Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/56—Ultra high purity oxygen, i.e. generally more than 99,9% O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
Definitions
- the invention relates to a process for the production of pressurized nitrogen and liquid nitrogen by cryogenic separation of air according to the preamble of patent claim 1.
- the production of air products in the liquid or gaseous state by cryogenic separation of air in air separation plants is known.
- Such air separation plants have distillation column systems which can be designed, for example, as two-column systems, in particular as classic Linde double-column systems, but also as three-column or multi-column systems.
- devices for obtaining further air components in particular the noble gases krypton, xenon and / or argon, may be provided (cf., for example FG Kerry, Industrial Gas Handbook: Gas Separation and Purification, Boca Raton: CRC Press, 2006; Chapter 3: Air Separation Technology ).
- the distillation column system of the invention may be designed as a classical double column system, but also as a three or more column system.
- there may be other means for obtaining other air components for example, to obtain impure, pure or high purity oxygen or noble gases.
- a “main heat exchanger” serves to cool feed air in indirect heat exchange with recycle streams from the distillation column system. It may be formed from a single or a plurality of parallel and / or serially connected and functionally connected heat exchanger sections, for example one or more plate heat exchanger blocks.
- condenser-evaporator refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream.
- Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages.
- Liquefaction space the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space, the evaporation of the second fluid stream.
- Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
- the evaporation space of a condenser-evaporator can be designed as a bath evaporator, falling-film evaporator or forced-flow evaporator.
- a “relaxation machine” can have any design. Turbines (turboexpanders) are preferably used here.
- the invention has for its object to provide a method of the type mentioned above and a corresponding device for a relatively high liquid production of 6 to 10 mol% of the nitrogen product amount or more with a relatively high nitrogen product yield in the process of approx. 60% are suitable and moreover efficient to operate. (The nitrogen yield depends on other parameters, for example product purity.)
- a second pressure nitrogen stream is withdrawn from the top of the high pressure column and expanded in a second expansion machine to a pressure that still allows the withdrawal of this stream as a printed product, preferably at about the pressure of the first pressure nitrogen stream from the head of the low pressure column.
- a part of the liquefied in the low-pressure column overhead condenser nitrogen withdrawn as liquid nitrogen product.
- the second turbine with a different inlet temperature from the first turbine also improves the temperature profile in the main heat exchanger (lower thermodynamic losses due to lower temperature differences).
- the process according to the invention can be operated particularly favorably if the first pressure nitrogen stream is withdrawn from the top of the low-pressure column under a pressure of 8.0 to 9.0 bar, in particular 8.4 to 9.0 bar.
- the second pressure nitrogen stream is expanded in the expansion machine to about the pressure of the first pressure nitrogen stream; Subsequently, the two pressure nitrogen streams are combined and withdrawn as a common pressure nitrogen product stream.
- the merge is most easily done within the main heat exchanger; In principle, however, it can also be carried out in the warm, ie downstream of the main heat exchanger.
- the two inlet temperatures of the expansion machines are preferably different, in particular the second intermediate temperature is at least 10 K higher than the first intermediate temperature.
- the temperature difference is 90 to 30 K, preferably 70 to 50 K.
- both expansion machines are coupled to a generator or a dissipative brake.
- generator turbines are used. Although no energy is returned directly to the process here.
- This variant is particularly flexible with regard to different load cases.
- the two expansion machines each drive a compressor stage, and a process stream is compressed successively in the two compressor stages.
- only one of the two turbines for example the pressurized nitrogen turbine (“second expansion machine"), may be coupled to a compressor stage and the other one (eg the residual gas turbine (“first expansion machine”) to a generator.
- the two condenser-evaporator can be designed as a classic bath evaporator.
- low-pressure column top condenser is designed on its evaporation side as a forced-flow evaporator. This results in no hydrostatic pressure loss on the evaporation side and also a comparatively low pressure on the liquefaction side.
- the main condenser is formed on its evaporation side as a forced-flow evaporator. This results in comparison with a bath evaporator, a lower hydrostatic pressure loss on the evaporation side and also a comparatively low pressure on the liquefaction side.
- the liquefied nitrogen in the first mode of operation, at least a portion of the liquefied nitrogen is vaporized under pressure and subsequently recovered as a pressurized nitrogen product.
- the corresponding evaporation device is operated with external heat, that is, the heat source is in particular no process stream of the cryogenic separation.
- no liquefied nitrogen or only a lesser amount than in the first mode of operation eg, less than 50%
- the evaporation device has, in particular, an air-heated evaporator, a water bath evaporator and / or a solid-state cold storage.
- the invention also relates to a device for generating pressurized nitrogen and liquid nitrogen by cryogenic separation of air according to claim 14.
- the device according to the invention can be supplemented by device features which correspond to the characteristics of individual, several or all dependent method claims.
- FIG. 1 is the total feed air (AIR) via a filter 1 of a main air compressor 2 with aftercooling 3 (and unillustrated intermediate cooling) on compressed a pressure of about 14.6 bar.
- the subsequent pre-cooling system has a direct contact cooler 4.
- the pre-cooled feed air 5 is fed to a cleaning device 6, preferably a switchable molecular sieve adsorber.
- the entire purified feed air flows to the main heat exchanger 8. It is cooled down to the cold end.
- the cold, completely or almost completely gaseous air 8 is introduced into the high-pressure column 9.
- the high-pressure column 9 is part of a distillation column system, which also has a low-pressure column 10, a main condenser 11 and a low-pressure column top condenser 12.
- the two condenser-evaporators 11, 12 are formed on the evaporation side as a forced-flow evaporator.
- Liquid raw oxygen 13 from the bottom of the high pressure column 9 is cooled in a subcooling countercurrent 14 and fed via line 15 of the low pressure column 10 at an intermediate point.
- the gaseous nitrogen head 16 of the high pressure column 9 is withdrawn to a first part 17 as the first pressure nitrogen stream and fed to the main heat exchanger 8.
- a second part 20 of the gaseous top nitrogen 16 is at least partially liquefied in the liquefaction space of the main condenser 11.
- the liquid nitrogen 21 produced in the process is used to a first part as reflux in the high-pressure column 9.
- the remainder 22/23 is cooled in the subcooling countercurrent 14 and fed to the top of the low pressure column 10.
- a liquid oxygen-rich fraction 24 from the bottom of the low-pressure column or from the evaporation space of the main condenser 11 is cooled in the subcooling countercurrent 14 and introduced via line 25 as a coolant flow in the evaporation chamber of the low-pressure column top condenser 12 and there at least partially evaporated.
- the vapor generated in the evaporation chamber of the low-pressure column top condenser 12 is withdrawn as residual gas stream 26 and heated in the main heat exchanger 8 to a first intermediate temperature of, for example, 142 K.
- the residual gas stream 27 is introduced at the first intermediate temperature in a first expansion machine 28, which is designed here as a generator turbine, where it works to just above Atmospheric pressure relaxes.
- the work-performing relaxed residual gas stream 29 is in the main heat exchanger 8 completely, that is heated to approximately ambient temperature.
- the warm residual gas 30 can be discharged via line 31 directly into the atmosphere (ATM). Alternatively or in part, it can be used as regeneration gas in the purification device 6 via line 32, optionally after heating in a regeneration gas heater 33. Used regeneration gas is discharged via line 34 into the atmosphere.
- a first portion 44 of the gaseous overhead nitrogen of the low-pressure column 10 is taken as the first pressure nitrogen stream, warmed in the main heat exchanger 8 and withdrawn as the first pressure nitrogen product (PGAN) 18, 19.
- a second part 45 of the gaseous nitrogen head of the low-pressure column 10 is in the liquefaction space low-pressure column top condenser 12th at least partially liquefied.
- a portion 47 of the nitrogen 46 liquefied in the low-pressure column top condenser 12 is withdrawn as liquid nitrogen product (PLIN).
- the second pressure nitrogen stream 17 from the high-pressure column 9 is heated in the main heat exchanger 8 to a second intermediate temperature of 207 K.
- the second pressure nitrogen stream 40 is introduced under the second intermediate temperature in a second expansion machine 41 and there relaxes work to about the operating pressure at the top of the low-pressure column 10.
- the second expansion machine 41 is also designed here as a generator turbine.
- the working expanded second pressure nitrogen stream 42 is completely warmed in the main heat exchanger.
- the warm second pressurized nitrogen stream 43 is combined with the warm first pressurized nitrogen stream 18 and withdrawn via line 19 together with the first pressurized nitrogen product as the second pressurized nitrogen product (PGAN).
- FIG. 1 The procedures of the two Figures 2 and 3 differ from it by FIG. 1 in that they use the work done on the turbines to compress a process stream.
- This is accomplished by two compressor stages (booster) 70, 72, which are coupled to the turbines 28 and 41 and connected to one another in series, and each having an aftercooler 71, 73.
- boost 70, 72 can compressors and Instead of the illustrated configuration, turbines can also be connected in reverse, that is to say the first expansion machine 41 with the first compressor stage 70 and the second expansion machine 41 with the second compressor stage 72.
- a portion 50 of the second pressurized nitrogen stream 17 may be passed from the high pressure column 9 to the warm end of the main heat exchanger 8 and discharged as a high pressure product HPGAN at a pressure of 13 to 14 bar (not shown).
- part of the compression of the total air 7A, 7B is taken over by these turbine-driven compressor stages 70, 72.
- the main air compressor for example, only has to compress this to 12.5 bar. Accordingly, a stage can be saved on the main air compressor.
- FIG. 4 is identical to FIG. 1 with the exception of an additional subcooling countercurrent 414, in which the liquid nitrogen 47 withdrawn from the low pressure column 10 is subcooled against an evaporating nitrogen stream 415/416.
- a small portion of the supercooled liquid nitrogen is branched off via a valve 417.
- the vaporized nitrogen 416 is added to the exhaust 29 of the residual gas turbine 28 and heated together with this in the main heat exchanger 8.
- FIG. 5 contains in addition to FIG. 1 a pure oxygen column 550, in whose sump highly pure liquid oxygen is produced, which is withdrawn via line 551 and recovered as a high-purity liquid oxygen product HLOX. Via line 552, an oxygen fraction is withdrawn from the low-pressure column 10, which is free of less volatile constituents. It is undercooled in the bottom evaporator 553 of the pure oxygen column 550 and fed via line 554 and throttle valve 555 to the top of the pure oxygen column 550. There, the more volatile components are separated. The sump evaporator 553 is also from a part 556 of heated gaseous nitrogen head 16 of the high pressure column 9; Resulting liquid nitrogen 557 is applied to the low-pressure column 10. The impure gaseous oxygen 558 from the top of the pure oxygen column 550 is mixed with the residual gas 26 upstream of the residual gas turbine 28.
- the air at the entrance to the high pressure column is already pre-liquefied (for example to about 1% or more).
- the existing because of this Vorverminuteung liquid is deposited in the sump and can be discarded together with the rinsing liquid. As a result, the efficiency of the process is significantly reduced, as it is lost a lot of cold and nitrogen molecules.
- the high pressure column has one to five practical trays as barrier bottoms 663.
- the crude liquid oxygen 13 is withdrawn above the barrier bottoms, the high pressure column flushing liquid 661 below, namely directly from the sump; it contains both the return liquid from the high-pressure column or from the barrier floors, as well as the introduced via line 8 pre-liquefied air.
- the stream 661 is fed to the top of the additional column 660 (possibly after subcooling), accumulates in the mass transfer within the column to gravitational and finally - withdrawn in much lesser amount from the bottom of the additional column 660 via line 662.
- the deducted amount is for example, about 40 to 50 Nm 3 / h; Relatively, at 100,000 Nm 3 / h of total air quantity, the ratio of amounts of electricity 662 to 661 is for example between 1 and 10%.
- the sump evaporator 664 of the additional column 660 is heated with gaseous air 665 from the high-pressure column 9.
- the condensed in the bottom evaporator 664 666 air is supplied to the low pressure column 10.
- the head gas 667 formed in the additional column 660 is likewise supplied to the low-pressure column 10 at a suitable point.
- the C 3 H 8 from the partial air flow 665 to the condenser of the additional column 660 is retained in the system.
- this amount of air is relatively small compared to the amount of feed air (about 1%), so that the reliability is not affected.
- the flushing 662 being removed from the additional column 660, the return flow rate to the blocking section 663 in the high-pressure column can be increased.
- more xenon is washed out and the actual purging 662 from the additional column can also be used and processed as a xenon concentrate;
- the xenon yield can in a method according to FIG. 6 over 50%.
- the high pressure column purge fluid 661 in the subcooler countercurrent 14 may be subcooled.
- the liquid stream 666 from the sump evaporator 664 may be subcooled in the subcooling countercurrent 14 before being introduced into the low pressure column 10.
- FIG. 7 is different from this FIG. 6 in that the purge stream 662 is not discarded in the liquid state. Rather, it is introduced via line 762 into the hot residual gas line 763, evaporates there abruptly and is then blown very dilute into the atmosphere.
- the method described so far has only limited flexibility in operating cases with relatively low liquid production (ie deviating from the design case).
- the pressure in the evaporation space of the upper condenser and thus also the inlet pressure of the residual gas turbine and the suction pressure in a downstream downstream compressor fall; for example, this refers to the use of blending natural gas to adjust the calorific value.
- a significantly reduced intake pressure in the supercharger is heavily involved in the dimensioning of the machine and also means a limitation of the usual underload behavior.
- FIG. 8 A relatively inexpensive and yet relatively efficient way out of this situation is with the in FIG. 8 shown interconnection possible.
- a first mode of operation with reduced liquid delivery the liquid production in the plant is not significantly reduced, but a part of the applied separation or liquefaction energy is recovered from the liquid.
- This can be realized either by the use of an air- or steam-heated emergency supply evaporator or by incorporating one or more cold storage. In the latter case, the cold of the liquefaction process is also partially stored - for example, to increase the liquid production in other operating cases.
- an air partial flow can also be liquefied.
- a second mode less or no liquid product is vaporized.
- the additional process steps that are used in the first mode of operation are shut down.
- FIG. 8 a portion 830 of the relaxed stream in the residual gas turbine 28 is warmed separately before being vented to the atmosphere (ATM).
- the nitrogen product 44, 18 from the low pressure column 10 is further densified by two two-stage (820, 821) nitrogen product compressors before being discharged via line 819 as a pressurized product.
- the product compressor 820, 821 as a whole thus has four stages. (Alternatively, one or three nitrogen product compressors with one, three, or more stages may be used.)
- the compressed stream may be either fully pressurized to final pressure; alternatively, a part between the two nitrogen product compressors 820 and 821 are taken on an intermediate pressure (not shown).
- liquid nitrogen 871 is pressurized by a pump 872 (eg, approximately the pressure between the two nitrogen product compressors 820, 821); alternatively, the pump delivers to the pressure before the first nitrogen product compressor 820 or to the pressure behind the second nitrogen product compressor 821 (not shown).
- the high pressure nitrogen is vaporized in an atmospheric evaporator 873; Alternatively, a steam-heated water bath evaporator can be used.
- the gaseous high pressure nitrogen is mixed via one of the lines 875a, 875b, 875c with the hot gaseous nitrogen 18 from the low pressure column 10.
- the atmospheric evaporator 873 is shut down and all liquid production PLIN is delivered as an end product or stored in the liquid nitrogen tank 870.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Das Verfahren und die Vorrichtung dienen zur Erzeugung von Druckstickstoff und Flüssigstickstoff durch Tieftemperaturzerlegung von Luft in einem DestillationssäulenSystem, das eine Hochdrucksäule (9) und eine Niederdrucksäule (10) sowie einen Hauptkondensator (11) und einen Niederdrucksäulen-Kopfkondensator (12) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind. Luft (AIR) wird in einem Hauptluftverdichter (2) verdichtet, gereinigt (6), in einem Hauptwärmetauscher (8) abgekühlt und in die Hochdrucksäule (9) eingeleitet (8). Ein erster Teil (44) des gasförmigen Kopfstickstoffs der Niederdrucksäule (10) wird als erstes Druckstickstoffprodukt (18, 19, PGAN) abgezogen. Ein zweiter Teil (45) des gasförmigen Kopfstickstoffs der Niederdrucksäule (10) wird in dem Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators (12) mindestens teilweise verflüssigt. Der im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (12) erzeugte Dampf wird als Restgasstrom (26) abgezogen und in einer ersten Entspannungsmaschine (28) arbeitsleistend entspannt. Ein zweiter Druckstickstoffstrom (17) vom Kopf der Hochdrucksäule (9) wird in einer zweiten Entspannungsmaschine (41) arbeitsleistend entspannt und anschließend als zweites Druckstickstoffprodukt (43, 19, PGAN) abgezogen. Ein Teil (47) des im Niederdrucksäulen-Kopfkondensator (12) verflüssigten Stickstoffs (46) wird als Flüssigstickstoffprodukt (PLIN) abgezogen.The method and apparatus are for producing pressurized nitrogen and liquid nitrogen by cryogenic separation of air in a distillation column system comprising a high pressure column (9) and a low pressure column (10) and a main condenser (11) and a low pressure column top condenser (12), both are formed as a condenser-evaporator. Air (AIR) is compressed in a main air compressor (2), cleaned (6), cooled in a main heat exchanger (8) and introduced into the high-pressure column (9) (8). A first portion (44) of the gaseous overhead nitrogen of the low pressure column (10) is withdrawn as the first pressurized nitrogen product (18, 19, PGAN). A second part (45) of the gaseous top nitrogen of the low-pressure column (10) is at least partially liquefied in the liquefaction space of the low-pressure column top condenser (12). The vapor generated in the evaporation chamber of the low-pressure column top condenser (12) is withdrawn as residual gas stream (26) and expanded in a first expansion machine (28) to perform work. A second pressure nitrogen stream (17) from the head of the high-pressure column (9) is expanded in a second expansion machine (41) to perform work and then withdrawn as a second pressure nitrogen product (43, 19, PGAN). A portion (47) of the nitrogen (46) liquefied in the low-pressure column top condenser (12) is withdrawn as liquid nitrogen product (PLIN).
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung von Druckstickstoff und Flüssigstickstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a process for the production of pressurized nitrogen and liquid nitrogen by cryogenic separation of air according to the preamble of
Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt. Derartige Luftzerlegungsanlagen weisen Destillationssäulen-Systeme auf, die beispielsweise als Zweisäulensysteme, insbesondere als klassische Linde-Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein können. Ferner können Vorrichtungen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein (vgl. beispielsweise
Ein "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft in indirektem Wärmeaustausch mit Rückströmen aus dem Destillationssäulen-System. Er kann aus einem einzelnen oder mehreren parallel und/oder seriell geschalteten und funktionell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.A "main heat exchanger" serves to cool feed air in indirect heat exchange with recycle streams from the distillation column system. It may be formed from a single or a plurality of parallel and / or serially connected and functionally connected heat exchanger sections, for example one or more plate heat exchanger blocks.
Als "Kondensator-Verdampfer" wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) des ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung des zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen. Der Verdampfungsraum eines Kondensator-Verdampfers kann als Badverdampfer, Fallfilmverdampfer oder Forced-Flow-Verdampfer ausgebildet sein.The term "condenser-evaporator" refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream. Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages. By doing Liquefaction space, the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space, the evaporation of the second fluid stream. Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other. The evaporation space of a condenser-evaporator can be designed as a bath evaporator, falling-film evaporator or forced-flow evaporator.
Eine "Entspannungsmaschine" kann eine beliebige Bauweise aufweisen. Vorzugsweise werden hier Turbinen (Turboexpander) eingesetzt.A "relaxation machine" can have any design. Turbines (turboexpanders) are preferably used here.
Übliche Doppelsäulenverfahren weisen lediglich einen einzigen Kondensator-Verdampfer, den Hauptkondensator, auf und werden unter relativ niedrigem Druck betrieben, nämlich knapp über Atmosphärendruck am Kopf der Niederdrucksäule. Wenn große Mengen an Druckstickstoff gewonnen werden sollen, kommt ein abgewandeltes Doppelsäulenverfahren zum Einsatz, das unter höherem Druck betrieben wird. Dadurch ist es möglich, einen Niederdrucksäulen-Kopfkondensator einzusetzen und mit einer sauerstoffreichen Restfraktion aus dem Destillationssäulen-System zu kühlen. Ein derartiges Verfahren ist aus
Bisher wurden derartige Verfahren nicht für eine nennenswerte Flüssigproduktion von mehr als 5 mol-% der Stickstoff-Produktmenge in Erwägung gezogen.So far, such processes have not been considered for significant liquid production of more than 5 mol% of the nitrogen product amount.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die für eine relativ hohe Flüssigproduktion von 6 bis 10 mol-% der Stickstoff-Produktmenge oder mehr mit einer relativ hoher Stickstoffprodukt-Ausbeute im Verfahren von ca. 60 % geeignet sind und überdies effizient zu betreiben sind. (Die Stickstoff-Ausbeute hängt von weiteren Parametern ab, zum Beispiel von der Produktreinheit.)The invention has for its object to provide a method of the type mentioned above and a corresponding device for a relatively high liquid production of 6 to 10 mol% of the nitrogen product amount or more with a relatively high nitrogen product yield in the process of approx. 60% are suitable and moreover efficient to operate. (The nitrogen yield depends on other parameters, for example product purity.)
Diese Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruchs 1 gelöst.This object is solved by the entirety of the features of
Hierbei wird ein zweiter Druckstickstoffstrom vom Kopf der Hochdrucksäule abgezogen und in einer zweiten Entspannungsmaschine auf einen Druck entspannt, der noch den Abzug dieses Stroms als Druckprodukt erlaubt, vorzugsweise auf etwa des Druck des ersten Druckstickstoffstroms vom Kopf der Niederdrucksäule. Außerdem wird ein Teil des im Niederdrucksäulen-Kopfkondensator verflüssigten Stickstoffs als Flüssigstickstoffprodukt abgezogen.Here, a second pressure nitrogen stream is withdrawn from the top of the high pressure column and expanded in a second expansion machine to a pressure that still allows the withdrawal of this stream as a printed product, preferably at about the pressure of the first pressure nitrogen stream from the head of the low pressure column. In addition, a part of the liquefied in the low-pressure column overhead condenser nitrogen withdrawn as liquid nitrogen product.
Auf diese Weise kann die für die höhere Flüssigproduktion benötigte Kälte mit minimalem zusätzlichem Aufwand effizient erzeugt werden. Die zweite Turbine mit einer von der ersten Turbine abweichenden Eintrittstemperatur verbessert außerdem das Temperaturprofil im Hauptwärmetauscher (geringerer thermodynamische Verluste in Folge von geringeren Temperaturdifferenzen).In this way, the cold required for higher liquid production can be efficiently produced with minimal additional effort. The second turbine with a different inlet temperature from the first turbine also improves the temperature profile in the main heat exchanger (lower thermodynamic losses due to lower temperature differences).
Bei der Erfindung werden vorzugsweise mehr als 90 mol-% des gasförmigen Stickstoffprodukts unter demselben Druck gewonnen, nämlich demjenigen der Niederdrucksäule.In the invention, preferably more than 90 mol% of the gaseous nitrogen product is recovered under the same pressure, namely that of the low pressure column.
Es sind Anwendungen bekannt, bei denen neben großen Mengen an Druckstickstoff unter etwa 8 bar auch relativ viel an flüssigem Produkt (LIN) benötigt wird. Zu diesen Anwendungen zählen zum Beispiel Petrochemie-Komplexe oder Gas-Standorte mit Onsite-Gaseversorgung von Kunden aus dem Bereich Halbleiterindustrie. Das flüssige Produkt wird dabei entweder zur Deckung von Bedarfsspitzen (speziell im Falle von Petrochemie-Anlagen fallen diese sehr groß aus) und/oder zum Bedienen des externen Flüssigmarktes verwendet. (Die obige Druckangabe ist - wie alle folgenden, soweit nichts Anderes angegeben ist - als Absolutdruck zu verstehen.)There are known applications in which in addition to large amounts of pressurized nitrogen below about 8 bar and relatively much liquid product (LIN) is needed. These applications include, for example, petrochemical complexes or onsite gas supply gas sites for semiconductor industry customers. The liquid product is used either to cover demand peaks (especially in the case of petrochemical plants they are very large) and / or to operate the external liquid market. (The above print information is - as all the following, unless otherwise stated - to be understood as absolute pressure.)
Diese Aufgaben wurden bis jetzt beispielsweise durch Einsatz von "Spectra"-Verfahren (siehe z. B.
Besonders günstig lässt sich das erfindungsgemäße Verfahren betreiben, wenn der erste Druckstickstoffstrom unter einem Druck von 8,0 bis 9,0 bar insbesondere 8,4 bis 9,0 bar vom Kopf der Niederdrucksäule abgezogen wird.The process according to the invention can be operated particularly favorably if the first pressure nitrogen stream is withdrawn from the top of the low-pressure column under a pressure of 8.0 to 9.0 bar, in particular 8.4 to 9.0 bar.
Vorzugsweise wird der zweite Druckstickstoffstrom in der Entspannungsmaschine auf etwa den Druck der ersten Druckstickstoffstroms entspannt; anschließend werden die beiden Druckstickstoffströme zusammengeführt und als ein gemeinsamer Druckstickstoffproduktstrom abgezogen. Die Zusammenführung erfolgt am einfachsten innerhalb des Hauptwärmetauschers; grundsätzlich kann sie jedoch auch im Warmen, also stromabwärts des Hauptwärmetauschers durchgeführt werden.Preferably, the second pressure nitrogen stream is expanded in the expansion machine to about the pressure of the first pressure nitrogen stream; Subsequently, the two pressure nitrogen streams are combined and withdrawn as a common pressure nitrogen product stream. The merge is most easily done within the main heat exchanger; In principle, however, it can also be carried out in the warm, ie downstream of the main heat exchanger.
Die beiden Eintrittstemperaturen der Entspannungsmaschinen sind vorzugsweise verschieden, insbesondere ist die zweite Zwischentemperatur mindestens 10 K höher als erste Zwischentemperatur. Beispielsweise liegt die Temperaturdifferenz bei 90 bis 30 K, vorzugsweise 70 bis 50 K.The two inlet temperatures of the expansion machines are preferably different, in particular the second intermediate temperature is at least 10 K higher than the first intermediate temperature. For example, the temperature difference is 90 to 30 K, preferably 70 to 50 K.
In einer ersten Variante der Erfindung sind beide Entspannungsmaschinen mit einem Generator oder einer dissipative Bremse gekoppelt. Bevorzugt werden Generatorturbinen eingesetzt. Hier wird zwar keine Energie unmittelbar in den Prozess zurückgeführt. Dafür ist diese Variante besonders flexibel hinsichtlich unterschiedlicher Lastfälle.In a first variant of the invention, both expansion machines are coupled to a generator or a dissipative brake. Preferably, generator turbines are used. Although no energy is returned directly to the process here. This variant is particularly flexible with regard to different load cases.
Weniger flexibel, dafür kostengünstiger ist eine zweite Variante des erfindungsgemäßen Verfahrens. Dabei treiben die beiden Entspannungsmaschinen je eine Verdichterstufe an, und ein Prozessstrom wird nacheinander in den beiden Verdichterstufen verdichtet. Alternativ kann nur eine der beiden Turbinen, zum Beispiel die Druckstickstoffturbine ("zweite Entspannungsmaschine"), mit einer Verdichterstufe gekoppelt sein und die andere, (zum Beispiel die Restgasturbine ("erste Entspannungsmaschine"), mit einem Generator.Less flexible, but cheaper is a second variant of the method according to the invention. The two expansion machines each drive a compressor stage, and a process stream is compressed successively in the two compressor stages. Alternatively, only one of the two turbines, for example the pressurized nitrogen turbine ("second expansion machine"), may be coupled to a compressor stage and the other one (eg the residual gas turbine ("first expansion machine") to a generator.
Dieser Prozessstrom kann zum Beispiel durch einen der folgenden Ströme gebildet werden:
- Mindestens einen Teil der gereinigten Einsatzluft, der dann stromabwärts der beiden Verdichterstufen in den Hauptwärmetauscher eingeleitet wird.
- Mindestens einen Teil des ersten und/oder zweiten Druckstickstoffproduktstroms, der dann stromabwärts der beiden Verdichterstufen als Druckstickstoffprodukt abgezogen wird.
- At least a portion of the purified feed air, which is then introduced downstream of the two compressor stages in the main heat exchanger.
- At least a portion of the first and / or second pressurized nitrogen product stream, which is then withdrawn downstream of the two compressor stages as a pressurized nitrogen product.
Grundsätzlich können die beiden Kondensator-Verdampfer als klassische Badverdampfer ausgebildet sein.In principle, the two condenser-evaporator can be designed as a classic bath evaporator.
Vorzugsweise ist Niederdrucksäulen-Kopfkondensator jedoch auf seiner Verdampfungsseite als Forced-Flow-Verdampfer ausgebildet. Dadurch entstehen kein hydrostatischer Druckverlust auf der Verdampfungsseite und auch ein vergleichsweise niedriger Druck auf der Verflüssigungsseite.Preferably, however, low-pressure column top condenser is designed on its evaporation side as a forced-flow evaporator. This results in no hydrostatic pressure loss on the evaporation side and also a comparatively low pressure on the liquefaction side.
Alternativ oder zusätzlich ist der Hauptkondensator auf seiner Verdampfungsseite als Forced-Flow-Verdampfer ausgebildet. Dadurch entstehen im Vergleich mit einem Badverdampfer ein geringerer hydrostatischer Druckverlust auf der Verdampfungsseite und auch ein vergleichsweise niedriger Druck auf der Verflüssigungsseite.Alternatively or additionally, the main condenser is formed on its evaporation side as a forced-flow evaporator. This results in comparison with a bath evaporator, a lower hydrostatic pressure loss on the evaporation side and also a comparatively low pressure on the liquefaction side.
In einer anderen Ausführungsform der Erfindung wird im ersten Betriebsmodus mindestens ein Teil des verflüssigten Stickstoffs unter Druck verdampft und anschließend als Druckstickstoffprodukt gewonnen. Die entsprechende Verdampfungseinrichtung wird mit externer Wärme betrieben, das heißt die Wärmequelle ist insbesondere kein Prozessstrom der Tieftemperaturzerlegung. Im zweiten Betriebsmodus wird kein verflüssigter Stickstoff oder nur eine geringere Menge als im ersten Betriebsmodus (beispielsweise weniger als 50 %) in der Verdampfungseinrichtung verdampft. Die Verdampfungseinrichtung weist insbesondere einen luftbeheizten Verdampfer, einen Wasserbadverdampfer und/oder einen Feststoffkältespeicher auf.In another embodiment of the invention, in the first mode of operation, at least a portion of the liquefied nitrogen is vaporized under pressure and subsequently recovered as a pressurized nitrogen product. The corresponding evaporation device is operated with external heat, that is, the heat source is in particular no process stream of the cryogenic separation. In the second mode of operation, no liquefied nitrogen or only a lesser amount than in the first mode of operation (eg, less than 50%) is vaporized in the evaporator. The evaporation device has, in particular, an air-heated evaporator, a water bath evaporator and / or a solid-state cold storage.
Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung von Druckstickstoff und Flüssigstickstoff durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 14. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen einzelner, mehrerer oder aller abhängigen Verfahrensansprüche entsprechen.The invention also relates to a device for generating pressurized nitrogen and liquid nitrogen by cryogenic separation of air according to
Bei dem erfindungsgemäßen Verfahren werden beispielsweise die folgenden Drücke und Temperaturen eingesetzt:
- Betriebsdrücke (jeweils am Kopf der Säulen):
- Hochdrucksäule: beispielsweise 12
bis 17 bar, vorzugsweise 13bis 15 bar Niederdrucksäule: beispielsweise 6bis 10 bar, vorzugsweise 7bis 9 bar
- Hochdrucksäule: beispielsweise 12
- Niederdrucksäulen-Kopfkondensator:
- Verdampfungsraum: beispielsweise 2
bis 5 bar, vorzugsweise 3 bis 4 bar
- Verdampfungsraum: beispielsweise 2
- Luftdrücke:
- Eintrittstemperaturen der beiden Turbinen (Entspannungsmaschinen):
- "Erste Zwischentemperatur" (Restgasturbine): beispielsweise 160 bis 120 K, vorzugsweise 150 bis 130 K
- "Zweite Zwischentemperatur" (Stickstoffturbine): beispielsweise 220 bis 180 K, vorzugsweise 210 bis 190 K
- Eintrittstemperaturen der beiden Turbinen (Entspannungsmaschinen):
- Operating pressures (at the top of each column):
- High-pressure column: for example, 12 to 17 bar, preferably 13 to 15 bar low pressure column: for example, 6 to 10 bar, preferably 7 to 9 bar
- Low-pressure column top condenser:
- Evaporation space: for example, 2 to 5 bar, preferably 3 to 4 bar
- Air pressures:
- Inlet temperatures of the two turbines (expansion machines):
- "First intermediate temperature" (residual gas turbine): for example 160 to 120 K, preferably 150 to 130 K.
- "Second intermediate temperature" (nitrogen turbine): for example 220 to 180 K, preferably 210 to 190 K.
- Inlet temperatures of the two turbines (expansion machines):
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1- ein erstes Ausführungsbeispiel mit Generatorturbinen,
Figur 2- ein zweites Ausführungsbeispiel mit Turbinen-Boostern, die seriell geschaltet sind und Luft verdichten,
Figur 3- ein drittes Ausführungsbeispiel mit Turbinen-Boostern, die seriell geschaltet sind und Stickstoff verdichten,
- Figur 4
- eine erste
Variante von Figur 1 mit Unterkühlung des Flüssigstickstoffprodukts, Figur 5- eine zweite
Variante von Figur 1 mit Reinsauerstoffgewinnung, Figur 6- eine dritte
Variante von Figur 1 mit einer Zusatzsäule für Spülflüssigkeit aus der Hochdrucksäule, - Figur 7
- eine Abwandlung des
Systems von Figur 6 und Figur 8- ein System mit zeitweiser externer Verdampfung von Flüssigstickstoff.
- FIG. 1
- a first embodiment with generator turbines,
- FIG. 2
- A second embodiment with turbine boosters, which are connected in series and compress air,
- FIG. 3
- A third embodiment with turbine boosters, which are connected in series and compress nitrogen,
- FIG. 4
- a first variant of
FIG. 1 with subcooling of the liquid nitrogen product, - FIG. 5
- a second variant of
FIG. 1 with pure oxygen production, - FIG. 6
- a third variant of
FIG. 1 with an additional column for rinsing liquid from the high-pressure column, - FIG. 7
- a modification of the system of
FIG. 6 and - FIG. 8
- a system with temporary external evaporation of liquid nitrogen.
In
Über Leitung 7 strömt die gesamte gereinigte Einsatzluft (bis auf kleinere Abzweigungen, zum Beispiel für Instrumentenluft) dem Hauptwärmetauscher 8 zu. Sie wird dort bis zum kalten Ende abgekühlt. Die kalte, vollständig oder fast vollständig gasförmige Luft 8 wird in die Hochdrucksäule 9 eingeleitet. Die Hochdrucksäule 9 ist Teil eines Destillationssäulen-Systems, das außerdem eine Niederdrucksäule 10, einen Hauptkondensator 11 und einen Niederdrucksäulen-Kopfkondensator 12 aufweist. Die beiden Kondensator-Verdampfer 11, 12 sind verdampfungsseitig als Forced-Flow-Verdampfer ausgebildet.Via line 7, the entire purified feed air (except for smaller branches, for example for instrument air) flows to the
Flüssiger Rohsauerstoff 13 vom Sumpf der Hochdrucksäule 9 wird in einem Unterkühlungs-Gegenströmer 14 abgekühlt und über Leitung 15 der Niederdrucksäule 10 an einer Zwischenstelle zugeleitet. Der gasförmige Kopfstickstoff 16 der Hochdrucksäule 9 wird zu einem ersten Teil 17 als erster Druckstickstoffstrom abgezogen und zum Hauptwärmetauscher 8 geführt. Ein zweiter Teil 20 des gasförmigen Kopfstickstoffs 16 wird in dem Verflüssigungsraum des Hauptkondensators 11 mindestens teilweise verflüssigt. Der dabei erzeugte flüssige Stickstoff 21 wird zu einem ersten Teil als Rücklauf in der Hochdrucksäule 9 eingesetzt. Der Rest 22/23 wird im Unterkühlungs-Gegenströmer 14 abgekühlt und auf den Kopf der Niederdrucksäule 10 aufgegeben.Liquid
Eine flüssige sauerstoffreiche Fraktion 24 vom Sumpf der Niederdrucksäule beziehungsweise aus dem Verdampfungsraum des Hauptkondensators 11 wird im Unterkühlungs-Gegenströmer 14 abgekühlt und über Leitung 25 als Kühlmittelstrom in den Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 12 eingeleitet und dort mindestens teilweise verdampft. Der im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 12 erzeugte Dampf wird als Restgasstrom 26 abgezogen und im Hauptwärmetauscher 8 auf eine erste Zwischentemperatur von beispielsweise 142 K angewärmt. Der Restgasstrom 27 wird bei der ersten Zwischentemperatur in eine erste Entspannungsmaschine 28 eingeleitet, die hier als Generatorturbine ausgebildet ist, und dort arbeitsleistend auf knapp über Atmosphärendruck entspannt. Der arbeitsleistend entspannte Restgasstrom 29 wird im Hauptwärmetauscher 8 vollständig, das heißt auf etwa Umgebungstemperatur, angewärmt.A liquid oxygen-
Das warme Restgas 30 kann über Leitung 31 direkt in die Atmosphäre (ATM) abgelassen werden. Alternativ oder teilweise kann es über Leitung 32 als Regeneriergas in der Reinigungseinrichtung 6 eingesetzt werden, gegebenenfalls nach Erwärmung in einem Regeneriergaserhitzer 33. Verbrauchtes Regeneriergas wird über Leitung 34 in die Atmosphäre entlassen.The warm
Ein erster Teil 44 des gasförmigen Kopfstickstoffs der Niederdrucksäule 10 wird als erster Druckstickstoffstrom entnommen, im Hauptwärmetauscher 8 angewärmt und als erstes Druckstickstoffprodukt (PGAN) abgezogen 18, 19. Ein zweiter Teil 45 des gasförmigen Kopfstickstoffs der Niederdrucksäule 10 wird in dem Verflüssigungsraum Niederdrucksäulen-Kopfkondensators 12 mindestens teilweise verflüssigt. Ein Teil 47 des im Niederdrucksäulen-Kopfkondensator 12 verflüssigten Stickstoffs 46 wird als Flüssigstickstoffprodukt (PLIN) abgezogen.A
Der zweite Druckstickstoffstrom 17 aus der Hochdrucksäule 9 wird im Hauptwärmetauscher 8 auf eine zweite Zwischentemperatur von 207 K angewärmt. Der zweite Druckstickstoffstrom 40 wird unter der zweiten Zwischentemperatur in eine zweite Entspannungsmaschine 41 eingeleitet und dort auf etwa den Betriebsdruck am Kopf der Niederdrucksäule 10 arbeitsleistend entspannt. Die zweite Entspannungsmaschine 41 ist hier ebenfalls als Generatorturbine ausgebildet. Der arbeitsleistend entspannte zweite Druckstickstoffstrom 42 wird im Hauptwärmetauscher vollständig angewärmt. Der warme zweite Druckstickstoffstrom 43 wird mit dem warmen ersten Druckstickstoffstrom 18 vereinigt und über Leitung 19 gemeinsam mit dem ersten Druckstickstoffprodukt als zweites Druckstickstoffprodukt abgezogen (PGAN).The second
Die Verfahren der beiden
Fakultativ kann ein Teil 50 des zweiten Druckstickstoffstroms 17 aus der Hochdrucksäule 9 bis zum warmen Ende des Hauptwärmetauschers 8 geführt und als Hochdruckprodukt HPGAN unter einem Druck von 13 bis 14 bar abgegeben werden (nicht dargestellt).Optionally, a portion 50 of the second
In
Dagegen wird in
Im Falle von relativ geringen Drucken (zum Beispiel unter 3 bar) im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators 12 ist es günstig, zusätzliche Maßnahmen zu treffen, zum Beispiel die Anreicherung von Propan an einer unbedenklichen Stelle in der Anlage und die Entsorgung dieser angereicherten Flüssigkeit aus dem Rektifikationssystem (zum Beispiel zum Ejektor, ins Freie oder in den Unreinstickstoffstrom vor der Abblasung in die Atmosphäre). Die Anreicherung kann dabei auf bekannte Weise direkt in der Hochdrucksäule mittels des Einsatzes von den Sperrböden erfolgen.In the case of relatively low pressures (for example, below 3 bar) in the evaporation space of the low-pressure column
Wegen der relativ hohen Flüssigproduktion ist die Luft am Eintritt in die Hochdrucksäule bereits vorverflüssigt (zum Beispiel zu etwa 1 % oder auch mehr). Die wegen dieser Vorverflüssigung vorhandene Flüssigkeit wird dabei im Sumpf abgeschieden und kann zusammen mit der Spülflüssigkeit verworfen werden. Dadurch wird aber die Effizienz des Verfahrens deutlich reduziert, da dabei sehr viel an Kälte und auch an Stickstoffmolekülen verloren geht.Because of the relatively high liquid production, the air at the entrance to the high pressure column is already pre-liquefied (for example to about 1% or more). The existing because of this Vorverflüssigung liquid is deposited in the sump and can be discarded together with the rinsing liquid. As a result, the efficiency of the process is significantly reduced, as it is lost a lot of cold and nitrogen molecules.
Eine Lösung für dieses Problem bietet das Verfahren von
Die Hochdrucksäule weist ein bis fünf praktische Böden als Sperrböden 663 auf. Der flüssige Rohsauerstoff 13 wird oberhalb der Sperrböden abgezogen, die Hochdrucksäulen-Spülflüssigkeit 661 unterhalb, nämlich direkt aus dem Sumpf; sie enthält sowohl die Rücklaufflüssigkeit aus der Hochdrucksäule beziehungsweise von den Sperrböden, als auch die über Leitung 8 eingeführte vorverflüssigte Luft. Der Strom 661 wird auf den Kopf der Zusatzsäule 660 aufgegeben (gegebenenfalls nach Unterkühlung), reichert sich bei dem Stoffaustausch innerhalb der Säule an Schwererflüchtigen an und wird schließlich - in deutlich geringerer Menge vom Sumpf der Zusatzsäule 660 über Leitung 662 abgezogen. Die abgezogene Menge beträgt beispielsweise etwa 40 bis 50 Nm3/h; relativ liegt bei 100.000 Nm3/h Gesamtluftmenge das Verhältnis der Strommengen 662 zu 661 beispielsweise zwischen 1 und 10 %. Der Sumpfverdampfer 664 der Zusatzsäule 660 wird mit gasförmiger Luft 665 aus der Hochdrucksäule 9 beheizt. Die im Sumpfverdampfer 664 kondensierte Luft 666 wird der Niederdrucksäule 10 zugeleitet. Das in der Zusatzsäule 660 entstehende Kopfgas 667 wird ebenfalls an geeigneter Stelle der Niederdrucksäule 10 zugeführt.The high pressure column has one to five practical trays as
Das C3H8 aus dem Luft-Teilstrom 665 zum Kondensator der Zusatzsäule 660 bleibt im System erhalten. Diese Luftmenge ist jedoch im Vergleich zur Einsatzluftmenge relativ klein (ca. 1 %), sodass die Betriebssicherheit damit nicht beeinflusst wird. Dadurch dass die Spülung 662 jetzt aus der Zusatzsäule 660 entnommen wird, kann die Rücklaufmenge auf den Sperrabschnitt 663 in der Hochdrucksäule erhöht werden. Somit wird mehr Xenon ausgewaschen und die tatsächliche Spülmenge 662 aus der Zusatzsäule kann auch als Xenon-Konzentrat weiterverwendet und -verarbeitet werden; die Xenonausbeute kann bei einem Verfahren nach
Abweichend von der Darstellung in
Das bisher beschriebene Verfahren hat in Betriebsfällen mit relativ geringer Flüssigproduktion (also abweichend vom Auslegungsfall) nur begrenzte Flexibilität. In solchen Fällen sinkt der Druck im Verdampfungsraum des oberen Kondensators und damit auch der Eintrittsdruck der Restgasturbine sowie der Ansaugdruck bei einem eventuell nachgeschaltetem Nachverdichter; dies bezieht sich beispielsweise auf die Verwendung zum Verschneiden von Erdgas zur Einstellung des Brennwerts. Ein deutlich verringerter Ansaugdruck beim Nachverdichter geht aber stark in die Dimensionierung der Maschine ein und bedeutet auch eine Begrenzung des üblichen Unterlastverhaltens.The method described so far has only limited flexibility in operating cases with relatively low liquid production (ie deviating from the design case). In such cases, the pressure in the evaporation space of the upper condenser and thus also the inlet pressure of the residual gas turbine and the suction pressure in a downstream downstream compressor fall; for example, this refers to the use of blending natural gas to adjust the calorific value. However, a significantly reduced intake pressure in the supercharger is heavily involved in the dimensioning of the machine and also means a limitation of the usual underload behavior.
Ein vergleichsweise kostengünstiger und dabei doch relativ effizienter Ausweg aus dieser Situation ist mit der in
In der Ausspeisephase wird entweder die Leistung des Hauptluftverdichters oder die Leistung des oder der Stickstoff-Produktverdichter reduziert oder es wird alternativ mit unveränderten Leistungen mehr gasförmiges Produkt gewonnen. Selbstverständlich können auch zwei oder drei dieser Maßnahmen in Kombination angewandt werden.In the exit phase, either the performance of the main air compressor or the performance of the nitrogen product compressor (s) is reduced or, alternatively, more gaseous product is recovered with unchanged performance. Of course, two or three of these measures can be used in combination.
Vor allem bei relativ hohen Produktabgabe- bzw. Zwischendrücken kann es sinnvoll sein diese Lösung anzuwenden, da das Einsparen der Verdichterleistung am Produktverdichter mit steigendem Druck immer höher wird.Especially with relatively high Produktabgabe- or intermediate pressures, it may be useful to apply this solution, since the savings in compressor performance on the product compressor with increasing pressure is always higher.
In einer zweiten Betriebsweise wird weniger oder kein Flüssigprodukt verdampft. Zum Beispiel werden die zusätzlichen Verfahrensschritte stillgelegt, die in der ersten Betriebsweise genutzt werden.In a second mode, less or no liquid product is vaporized. For example, the additional process steps that are used in the first mode of operation are shut down.
Im Unterschied zu
Mindestens ein Teil des Flüssigstickstoffs 47 wird in einem Flüssigstickstofftank 870 gespeichert. Aus diesem Flüssigstickstofftank 870 erfolgt vorzugsweise auch die Flüssigproduktabgabe (in
In einem zweiten Betriebsmodus wird der atmosphärische Verdampfer 873 stillgelegt und die gesamte Flüssigkeitsproduktion PLIN wird als Endprodukt abgegeben oder in dem Flüssigstickstofftank 870 gespeichert.In a second mode of operation, the
Claims (14)
wobei die mit externer Wärme betriebene Verdampfungseinrichtung (873) insbesondere
wherein the external heat driven evaporation device (873) in particular
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16001534 | 2016-07-12 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3290843A2 true EP3290843A2 (en) | 2018-03-07 |
| EP3290843A3 EP3290843A3 (en) | 2018-06-13 |
Family
ID=56409452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP17020268.3A Pending EP3290843A3 (en) | 2016-07-12 | 2017-06-23 | Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US10488106B2 (en) |
| EP (1) | EP3290843A3 (en) |
| CN (1) | CN107606875A (en) |
| TW (1) | TWI737770B (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3757493A1 (en) | 2019-06-25 | 2020-12-30 | Linde GmbH | Method and installation for the production of nitrogen-rich and an oxygen-rich air product using a cryogenic decomposition of air |
| WO2021190784A1 (en) * | 2020-03-23 | 2021-09-30 | Linde Gmbh | Process and plant for low-temperature separation of air |
| EP4450910A1 (en) * | 2023-04-18 | 2024-10-23 | Linde GmbH | Method for the low-temperature separation of air, and air separation plant |
| WO2024217721A1 (en) * | 2023-04-18 | 2024-10-24 | Linde Gmbh | Method of cryogenic fractionation of air and air fractionation plant |
| EP4567360A3 (en) * | 2023-12-06 | 2025-09-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | High-purity oxygen production method, and air separation device for producing high-purity oxygen |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018000842A1 (en) * | 2018-02-02 | 2019-08-08 | Linde Aktiengesellschaft | Process and apparatus for obtaining pressurized nitrogen by cryogenic separation of air |
| KR20220015406A (en) * | 2019-06-04 | 2022-02-08 | 린데 게엠베하 | Method and system for cold air separation |
| CN116018491A (en) * | 2020-09-08 | 2023-04-25 | 林德有限责任公司 | Process and air separation plant for extracting one or more air products |
| CN112066644A (en) * | 2020-09-18 | 2020-12-11 | 乔治洛德方法研究和开发液化空气有限公司 | Method and device for producing high-purity nitrogen and low-purity oxygen |
| KR20230171441A (en) * | 2021-04-09 | 2023-12-20 | 린데 게엠베하 | Method and plant for low temperature separation of air |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4453957A (en) | 1982-12-02 | 1984-06-12 | Union Carbide Corporation | Double column multiple condenser-reboiler high pressure nitrogen process |
| US4966002A (en) | 1989-08-11 | 1990-10-30 | The Boc Group, Inc. | Process and apparatus for producing nitrogen from air |
| US5582034A (en) | 1995-11-07 | 1996-12-10 | The Boc Group, Inc. | Air separation method and apparatus for producing nitrogen |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3375673A (en) * | 1966-06-22 | 1968-04-02 | Hydrocarbon Research Inc | Air separation process employing work expansion of high and low pressure nitrogen |
| US4617036A (en) * | 1985-10-29 | 1986-10-14 | Air Products And Chemicals, Inc. | Tonnage nitrogen air separation with side reboiler condenser |
| FR2692664A1 (en) * | 1992-06-23 | 1993-12-24 | Lair Liquide | Process and installation for producing gaseous oxygen under pressure. |
| DE4441920C1 (en) * | 1994-11-24 | 1996-04-04 | Linde Ag | Method and appliance for obtaining nitrogen by cryogenic separation of air |
| DE19735154A1 (en) * | 1996-10-30 | 1998-05-07 | Linde Ag | Producing compressed nitrogen@ by low temperature distillation of air in rectifier system |
| US5901576A (en) * | 1998-01-22 | 1999-05-11 | Air Products And Chemicals, Inc. | Single expander and a cold compressor process to produce oxygen |
| DE19902255A1 (en) * | 1999-01-21 | 2000-07-27 | Linde Tech Gase Gmbh | Process and device for the production of pressurized nitrogen |
| US6694775B1 (en) * | 2002-12-12 | 2004-02-24 | Air Products And Chemicals, Inc. | Process and apparatus for the recovery of krypton and/or xenon |
| US6962062B2 (en) * | 2003-12-10 | 2005-11-08 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
| DE102006012241A1 (en) * | 2006-03-15 | 2007-09-20 | Linde Ag | Method and apparatus for the cryogenic separation of air |
| DE102007051184A1 (en) * | 2007-10-25 | 2009-04-30 | Linde Aktiengesellschaft | Method and apparatus for cryogenic air separation |
| EP2236964B1 (en) * | 2009-03-24 | 2019-11-20 | Linde AG | Method and device for low-temperature air separation |
| EP2312247A1 (en) | 2009-10-09 | 2011-04-20 | Linde AG | Method and device for generating liquid nitrogen from low temperature air separation |
| FR2953915B1 (en) * | 2009-12-11 | 2011-12-02 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
| US9726427B1 (en) * | 2010-05-19 | 2017-08-08 | Cosmodyne, LLC | Liquid nitrogen production |
| FR2973487B1 (en) * | 2011-03-31 | 2018-01-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | PROCESS AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS BY CRYOGENIC DISTILLATION |
| DE102011113262A1 (en) * | 2011-09-13 | 2013-03-14 | Linde Aktiengesellschaft | Process and apparatus for recovering pressure oxygen by cryogenic separation of air |
| EP2963370B1 (en) * | 2014-07-05 | 2018-06-13 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
| EP3026380A1 (en) * | 2014-11-27 | 2016-06-01 | Linde Aktiengesellschaft | Method and device for discharging heavier than air volatile components from an air separation facility |
-
2017
- 2017-06-23 EP EP17020268.3A patent/EP3290843A3/en active Pending
- 2017-07-07 US US15/643,509 patent/US10488106B2/en active Active
- 2017-07-11 CN CN201710560154.XA patent/CN107606875A/en active Pending
- 2017-07-11 TW TW106123199A patent/TWI737770B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4453957A (en) | 1982-12-02 | 1984-06-12 | Union Carbide Corporation | Double column multiple condenser-reboiler high pressure nitrogen process |
| US4966002A (en) | 1989-08-11 | 1990-10-30 | The Boc Group, Inc. | Process and apparatus for producing nitrogen from air |
| US5582034A (en) | 1995-11-07 | 1996-12-10 | The Boc Group, Inc. | Air separation method and apparatus for producing nitrogen |
Non-Patent Citations (1)
| Title |
|---|
| F.G. KERRY: "Industrial Gas Handbook: Gas Separation and Purification", 2006, CRC PRESS |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3757493A1 (en) | 2019-06-25 | 2020-12-30 | Linde GmbH | Method and installation for the production of nitrogen-rich and an oxygen-rich air product using a cryogenic decomposition of air |
| WO2021190784A1 (en) * | 2020-03-23 | 2021-09-30 | Linde Gmbh | Process and plant for low-temperature separation of air |
| EP4450910A1 (en) * | 2023-04-18 | 2024-10-23 | Linde GmbH | Method for the low-temperature separation of air, and air separation plant |
| WO2024217721A1 (en) * | 2023-04-18 | 2024-10-24 | Linde Gmbh | Method of cryogenic fractionation of air and air fractionation plant |
| EP4567360A3 (en) * | 2023-12-06 | 2025-09-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | High-purity oxygen production method, and air separation device for producing high-purity oxygen |
Also Published As
| Publication number | Publication date |
|---|---|
| US10488106B2 (en) | 2019-11-26 |
| CN107606875A (en) | 2018-01-19 |
| EP3290843A3 (en) | 2018-06-13 |
| TW201809563A (en) | 2018-03-16 |
| US20180017322A1 (en) | 2018-01-18 |
| TWI737770B (en) | 2021-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3290843A2 (en) | Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air | |
| EP1134525B1 (en) | Process for producing gaseous and liquid nitrogen with a variable quantity of liquid | |
| EP2235460B1 (en) | Process and device for the cryogenic separation of air | |
| EP1308680B1 (en) | Process and system for production of krypton and/or xenon by cryogenic air separation | |
| EP1067345B1 (en) | Process and device for cryogenic air separation | |
| EP2015012A2 (en) | Process for the cryogenic separation of air | |
| DE102010052545A1 (en) | Method and apparatus for recovering a gaseous product by cryogenic separation of air | |
| DE102007014643A1 (en) | Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors | |
| DE102010052544A1 (en) | Process for obtaining a gaseous product by cryogenic separation of air | |
| DE10139727A1 (en) | Method and device for obtaining a printed product by low-temperature separation of air | |
| EP1074805B1 (en) | Process for producing oxygen under pressure and device therefor | |
| EP2236964A1 (en) | Method and device for low-temperature air separation | |
| EP1357342A1 (en) | Cryogenic triple column air separation system with argon recovery | |
| DE102009048456A1 (en) | Method and apparatus for the cryogenic separation of air | |
| DE10238282A1 (en) | Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing | |
| EP2963369B1 (en) | Method and device for the cryogenic decomposition of air | |
| EP2053331A1 (en) | Method and device for low-temperature air separation | |
| DE10103968A1 (en) | Three-pillar system for the low-temperature separation of air | |
| EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
| EP3696486A1 (en) | Method and apparatus for providing one or more gaseous oxygen rich air products | |
| EP2600090B1 (en) | Method and device for generating pressurised oxygen by cryogenic decomposition of air | |
| DE102007042462A1 (en) | Method and apparatus for the cryogenic separation of air | |
| EP1189001B1 (en) | Process and apparatus for the production of high purity nitrogen through cryogenic air separation | |
| WO2011110301A2 (en) | Method and device for cryogenic separation of air | |
| EP1134524B1 (en) | Process for producing gaseous nitrogen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 3/04 20060101AFI20180508BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20181210 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20200211 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE GMBH |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20240726 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| INTC | Intention to grant announced (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20250627 |