US3375673A - Air separation process employing work expansion of high and low pressure nitrogen - Google Patents

Air separation process employing work expansion of high and low pressure nitrogen Download PDF

Info

Publication number
US3375673A
US3375673A US559475A US55947566A US3375673A US 3375673 A US3375673 A US 3375673A US 559475 A US559475 A US 559475A US 55947566 A US55947566 A US 55947566A US 3375673 A US3375673 A US 3375673A
Authority
US
United States
Prior art keywords
column
nitrogen
air
oxygen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US559475A
Inventor
Cimler Emil
Edward H Van Baush
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRI Inc
Original Assignee
Hydrocarbon Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrocarbon Research Inc filed Critical Hydrocarbon Research Inc
Priority to US559475A priority Critical patent/US3375673A/en
Application granted granted Critical
Publication of US3375673A publication Critical patent/US3375673A/en
Assigned to HRI, INC., A DE CORP. reassignment HRI, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HYDROCARBON RESEARCH, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end

Definitions

  • This invention relates to improvements in the separation of air into its various constituents by liquefaction and fractionation.
  • Waste gas usually nitrogen
  • nitrogen contains substantial energy and when expanded with work is available to supply substantial additional refrigeration.
  • the refrigeration is required to offset heat leaks and to ymake up for the hea-t di'erence between incoming air and the end products.
  • Our invention is based on the concept of a flexible air liquefaction system wherein a small percentage, usually from 2 to 3 percent, of the incoming yair may be made available as liquid oxygen or liquid nitrogen, or combinations thereof, and at the same time yield high purity oxygen vapor as well as relatively high purity nitrogen vapor.
  • Our invention is a process arrangement of heat exchangers, gas expanders, and fractionation columns that provide most economical yields of desired end products.
  • a particular feature of our invention is the use, in combination with the high pressure gas turbo-expander which supplies 'the majority of the refrigeration in the unit, of a second gas turbo-expander operating under a relatively low expansion ratio but supplying extra refrigeration at a very nominal increased cost.
  • Atmospheric air at 10 which has been filtered, compressed to approximately 140 p.s.i.a., and cooled to approximately F., ows to the reversing exchanger system through reversing valve 14, warm reversing exchanger 16, cold reversing exchanger 18 and by line 20 (or 20a) through check valve 21 (or 21a), emerging at a temperature of about 265 F.
  • the air at about its dewpoint then flows in line 22 to the bottom of the high pressure tower 24.
  • An important feature of the invention is the expansion of the nitrogen in ythe warm turbo-expander 30 as, for example, from a temperature of 120 F. to a temperature of 235 F. with a temperature difference of F. This is compared to a normal expansion in Va cold expander of from about 240 F. to about 295 F. or 300 F. and thus with a temperature diierence of but 55 to 60 F.; the difference in heat energy is nearly double.
  • Liquid bottoms in line 40 from the high pressure tower 24 containing approximately 35 oxygen is partially vaporized by passage through line 42 and exchanger 34 as previously described.
  • the net oxygen rich liquid 40 from the high pressure tower is subcooled in parallel exchangers 44a and 44b, passed by line 46 to the acetylene absorbers 48, let down in pressure to approximately 30 p.s.i.a. by reducing valve 50, passed through the nitrogen reflux exchanger 52, and finally fed by line 54 to an intermediate point in a low pressure tower 56.
  • Low purity nitrogen liquid containing approxima-tely 4% to 8% oxygen is withdrawn at 60 ⁇ from the high pressure tower 24, is subcooled in exchanger 52., let down in pressure by reducing valve 62 to approximately 30 p.s.i.a. and fed to vthe top of the low pressure tower 56.
  • Oxygen vapor is withdrawn at 64 from the lower part of the low pressure tower 56 just above the reboiler 66, and is then warmed up to ambient temperature by passing through reversing exchangers 18 and 1.6 in heat exchange with entering air and ultimately discharges as la product at 68.
  • Waste gas containing approximately 4% to 8% oxygen is withdrawn overhead at 70 from the top of the low pressure tower 56 at a pres-sure of approximately 30 p.s.i.a. and is passed through exchanger 44a where it is preheated to approximately 290 F. and then by line 72 is expanded doing work in turbo-expander 74 to a pressure of about 20 p.s.i.a. and a temperature of 305 F.
  • This cold waste gas in line 7.6 then flows through exchanger 4d!) and then by line 7-8 to the reversing exchanger system and reversing valves 21 (or 21a).
  • waste gas then ows through line 20 (or 20a) exchangers 18 and 16 also in heat exchange with entering 'air and through reversing valve 14 and dinally to atmosphere at 80.
  • the air and waste gas only, reverse in the well known manner in Order to reject water and carbon dioxide from the plant.
  • the ⁇ disclosed process utilizes the expanded waste gas to sub-cool liquid rich air in exchangers 44a and 44b. This results from the expansion 3 in the turbo-expander of gas already at 290 F. whereby a gas of 310 F. is developed.
  • the use of the dual exchangers 44a and 44h make possible, therefore, the cooling of the oxygen rich gas stream 40 to a temperature of 283 F. which, after passing through absorber 48, enters the low pressure tower S6.
  • turbo-expander 30 will expand approximately 15% of the air from a pressure of about 131 p.s.i.a. to about 20 p.s.i.a and will account for from about 70 to 80% of the refrigeration requirements.
  • Turbo-expander 74 will expand about 60% of the air from a pressure of about 33.5 p.s.i.a. to about 20 p.s.i.a. This will produce from 20 to 30% of the refrigeration.
  • the expanders 30 and 74 provide the refrigeration to maintain the plant in normal heat balance and, in addition, provide refrigeration to permit liquid withdrawal from the plant.
  • Liquid oxygen may -be withdrawn at 82 from the bottom of reboiler 66, subcooled in exchanger 84 and discharged as product.
  • Liquid nitrogen may be withdrawn at 86 from just below reboiler 66 and also used as product.
  • a primary air separation plant such as this normally produces a minimum of nitrogen vapor product and maximum vapor oxygen product of high purities. If it is desired to produce greater ratios of nitrogen to oxygen vapor, or a limited quantity of liquid product, either oxygen, nitrogen or argon, additional refrigeration may be required.
  • a greater amount of nitrogen can be withdrawn in line 26 from the tower 24 by adjusting valve 88 and passed through line 26h for supplemental expansion in the turboexpander 30.
  • a greater amount of expansion may also be accomplished by opening valve 28 or increasing the opening of the nozzles in expander 30 which will provide extra refrigeration.
  • the larger volume of cold gas is then passed in heat exchange at 34 with tower bottoms.
  • a part of the nitrogen reflux in stream 60 may be passed lby line 60a through exchanger 84 in the liquid oxygen line 82 to maintain its low temperature or to subcool it.
  • Oxygen vapor available at atmospheres pressure Oxygen liquid ⁇ available at normal boling point. Nitroeen vapor available at 1 atmosphere pressure,
  • Initial air pressure could be higher, i.e., 150 p.s.i.a. without improving the process. Also, if the ai-r could be cooler than F. this would be beneficial as less heat would have to be removed. Gener-ally, however, the use of p.s.i.a. air at 100 F. will Ibe sufficient for understanding of the invention Iby one skilled in the art.
  • the refrigeration capacity of the first expander being in the range of 70-80% of the total requirements of the plant.
  • the refrigeration capacity ⁇ of the second expander being in the range of 20-30% of the total requirements of the plant.

Description

Aprll 2, 1968 E, CIM'LER ET AL 3,375,673
AIR SEPARATION PROCESS EMPLOYING WORK EXPANSION OE HIGH AND Low PRESSURE NITROGEN Filed June 22, 1966 Unite Patented Apr. 2, i968 3,375,673 AIR SEPARATION PRUCESS EMPLOYHNG WORK EXPANSION OF HIGH AND LOW PRESSURE NITROGEN Emil Cimler, Port Washington, and Edward H. Van Baush, Pearl River, NX., assignors to Hydrocarbon Research, Inc., New York, NX., a corporation of New .lerse y Filed .lune 22, 1966, Ser. No. 559,475
6 (Claims. (Cl. 62-13) This invention relates to improvements in the separation of air into its various constituents by liquefaction and fractionation.
The recovery of oxygen vapor and nitrogen vapor from air by liquefaction, using reversing exchangers and double column fractionating equipment, is well known and is indicated in the Jenny Reissue Patent No. 23,463.
It has also been disclosed that the Waste gas, usually nitrogen, contains substantial energy and when expanded with work is available to supply substantial additional refrigeration. The refrigeration is required to offset heat leaks and to ymake up for the hea-t di'erence between incoming air and the end products.
As air liquefaction plants have increased in size, the requirement for low temperature refrigeration materially increases and becomes a substantial factor in the cost of the plant. The use of very high speed -turbo-expanders has proven to be an advantage in reducing the cost and it has been general practice to use either the nitrogen at high pressure or, as more recently suggested, the use of low pressure gases which can be utilized when the initial feed air is compressed to a higher pressure than usual. It `will be apparent that in any expansion step it is necessary to maintain a differential of pressure and in Order to have a sufliciently high pressure to permit expansion to `atmospheric pressure, added energy is required in the first instance.
More recently, it has been found desirable, for commerical purposes, to produce not only high purity oxygen vapors as well as high purity nitrogen vapors with a minimum of Waste gas, but also to produce some yields of either liquid oxygen or liquid nitrogen or both.
In each air liquefaction process there is, of course, a minimum quantity of air which must be worked on to produce the required end products and various suggestions have been made for limiting energy input to establish the necessary low temperature level. It does not usually pay to increase compression energy merely `to obtain expansion work.
Our invention is based on the concept of a flexible air liquefaction system wherein a small percentage, usually from 2 to 3 percent, of the incoming yair may be made available as liquid oxygen or liquid nitrogen, or combinations thereof, and at the same time yield high purity oxygen vapor as well as relatively high purity nitrogen vapor.
Our invention is a process arrangement of heat exchangers, gas expanders, and fractionation columns that provide most economical yields of desired end products.
A particular feature of our invention is the use, in combination with the high pressure gas turbo-expander which supplies 'the majority of the refrigeration in the unit, of a second gas turbo-expander operating under a relatively low expansion ratio but supplying extra refrigeration at a very nominal increased cost.
Further objects and advantages of this invention will appear from the following description of a preferred form of embodiment thereof when taken in connection with the attached drawing illustrative thereof, said drawing being a schematic flou/sheet of the air separation plant.
Atmospheric air at 10 which has been filtered, compressed to approximately 140 p.s.i.a., and cooled to approximately F., ows to the reversing exchanger system through reversing valve 14, warm reversing exchanger 16, cold reversing exchanger 18 and by line 20 (or 20a) through check valve 21 (or 21a), emerging at a temperature of about 265 F. The air at about its dewpoint then flows in line 22 to the bottom of the high pressure tower 24.
The primary air fractionation, in the presence of suitable reux, takes place in this tower and high purity nitrogen vapor is withdrawn at 26. This vapor is then passed by line 26a, through reversing exchanger 18 wherein it is heated and then, under control of valve 28, is expanded in turbo-expander 30 wherein work is done. This high purity nitrogen at a temperature of approximately 235 F. in line 32 may then be used to reboil the bottoms of the high pressure tower 24, in exchanger 34. The cold nitrogen in line 36, now at about 265 F., is then brought to ambient temperature by passing through reversing exchangers 18 and 16 in heat exchange with the incoming air. Vapor nitrogen discharges at 3S as a product.
An important feature of the invention is the expansion of the nitrogen in ythe warm turbo-expander 30 as, for example, from a temperature of 120 F. to a temperature of 235 F. with a temperature difference of F. This is compared to a normal expansion in Va cold expander of from about 240 F. to about 295 F. or 300 F. and thus with a temperature diierence of but 55 to 60 F.; the difference in heat energy is nearly double.
Liquid bottoms in line 40 from the high pressure tower 24 containing approximately 35 oxygen is partially vaporized by passage through line 42 and exchanger 34 as previously described. The net oxygen rich liquid 40 from the high pressure tower is subcooled in parallel exchangers 44a and 44b, passed by line 46 to the acetylene absorbers 48, let down in pressure to approximately 30 p.s.i.a. by reducing valve 50, passed through the nitrogen reflux exchanger 52, and finally fed by line 54 to an intermediate point in a low pressure tower 56.
Low purity nitrogen liquid containing approxima-tely 4% to 8% oxygen, is withdrawn at 60 `from the high pressure tower 24, is subcooled in exchanger 52., let down in pressure by reducing valve 62 to approximately 30 p.s.i.a. and fed to vthe top of the low pressure tower 56.
Oxygen vapor is withdrawn at 64 from the lower part of the low pressure tower 56 just above the reboiler 66, and is then warmed up to ambient temperature by passing through reversing exchangers 18 and 1.6 in heat exchange with entering air and ultimately discharges as la product at 68.
Waste gas containing approximately 4% to 8% oxygen is withdrawn overhead at 70 from the top of the low pressure tower 56 at a pres-sure of approximately 30 p.s.i.a. and is passed through exchanger 44a where it is preheated to approximately 290 F. and then by line 72 is expanded doing work in turbo-expander 74 to a pressure of about 20 p.s.i.a. and a temperature of 305 F. This cold waste gas in line 7.6 then flows through exchanger 4d!) and then by line 7-8 to the reversing exchanger system and reversing valves 21 (or 21a). The waste gas then ows through line 20 (or 20a) exchangers 18 and 16 also in heat exchange with entering 'air and through reversing valve 14 and dinally to atmosphere at 80. In the reversing exchangers, the air and waste gas only, reverse in the well known manner in Order to reject water and carbon dioxide from the plant.
It will be apparent that the `disclosed process utilizes the expanded waste gas to sub-cool liquid rich air in exchangers 44a and 44b. This results from the expansion 3 in the turbo-expander of gas already at 290 F. whereby a gas of 310 F. is developed. The use of the dual exchangers 44a and 44h make possible, therefore, the cooling of the oxygen rich gas stream 40 to a temperature of 283 F. which, after passing through absorber 48, enters the low pressure tower S6.
In a typical plant, turbo-expander 30 will expand approximately 15% of the air from a pressure of about 131 p.s.i.a. to about 20 p.s.i.a and will account for from about 70 to 80% of the refrigeration requirements. Turbo-expander 74 will expand about 60% of the air from a pressure of about 33.5 p.s.i.a. to about 20 p.s.i.a. This will produce from 20 to 30% of the refrigeration.
The expanders 30 and 74 provide the refrigeration to maintain the plant in normal heat balance and, in addition, provide refrigeration to permit liquid withdrawal from the plant. .Liquid oxygen may -be withdrawn at 82 from the bottom of reboiler 66, subcooled in exchanger 84 and discharged as product. Liquid nitrogen may be withdrawn at 86 from just below reboiler 66 and also used as product.
A primary air separation plant such as this normally produces a minimum of nitrogen vapor product and maximum vapor oxygen product of high purities. If it is desired to produce greater ratios of nitrogen to oxygen vapor, or a limited quantity of liquid product, either oxygen, nitrogen or argon, additional refrigeration may be required.
For example, when nitrogen vapor product is desired in large quantity, in lieu of oxygen vapor product, a greater amount of nitrogen can be withdrawn in line 26 from the tower 24 by adjusting valve 88 and passed through line 26h for supplemental expansion in the turboexpander 30. A greater amount of expansion may also be accomplished by opening valve 28 or increasing the opening of the nozzles in expander 30 which will provide extra refrigeration. The larger volume of cold gas is then passed in heat exchange at 34 with tower bottoms.
If desired, a part of the nitrogen reflux in stream 60 may be passed lby line 60a through exchanger 84 in the liquid oxygen line 82 to maintain its low temperature or to subcool it.
If the amount of vapors condensed in reboiler 66 is reduced due to the withdrawal of more nitrogen in line 26, less oxygen will be generated at a given purity since a definite relationship exists between reboiler duty and oxygen production. In a case such as this, 31% of the air as nitrogen can be expanded and delivered at line 3S as product with a simultaneous production of a limited amount of oxygen vapor. Approximately 1.5 to 2.0% of the Iair can be delivered also, as a purified liquid product representing a combination of oxygen, nitrogen and argon.
TABLE F PRODUCTS-TYPICAL BASIS 100 T/D AIR FEED TO PLANT TONS PER DAY Oxygen Vapor 99.6% Oxygen Liquid Nitrogen Vapor,
Purity ppm. Oz
Oxygen vapor available at atmospheres pressure. Oxygen liquid `available at normal boling point. Nitroeen vapor available at 1 atmosphere pressure,
Nitrogen liquid available at normal boiling point.
(6) Both expanders operate in a safe vapor region with no danger of carbon dioxide fouling.
Initial air pressure could be higher, i.e., 150 p.s.i.a. without improving the process. Also, ifthe ai-r could be cooler than F. this would be beneficial as less heat would have to be removed. Gener-ally, however, the use of p.s.i.a. air at 100 F. will Ibe sufficient for understanding of the invention Iby one skilled in the art.
While We have shown and described preferred forms;
of embodiment of our invention, we are aware that modifications may 'be made thereto and we, therefore, desire a broad interpretation of our invention within the scope and spirit of the description herein and of the claims appended hereinafter.
We claim:
1. In the method of producing oxygen at an elevated pressure from feed air lat a substantial superatmospheric pressure wherein the air is cooled in reversing exchangers which are periodically purged of carbon dioxide and moisture, to a temperature at which a minor portion thereof is liquefied, and the resulting cold air is passed to the base of the first column of a double fractionating column,
said first col-umn Ibeing maintained at a substantial superatmospheric pressure, and wherein oxygen-enriched liquid air from the base of said first column is withdrawn and expanded into an intermediate point of the second column of said double column, said second column being maintained at a superatmospheric pressure but less than the pressure of the first column, land wherein high pressure nitrogen is removed from the top of said first column; the improvement which comprises supplying refrigeration to the feed air by passing said high pressure nitrogen in indirect heat exchange relationship with the feed air and thereafter expanding said high pressure nitrogen with work through a high speed turbine to a slightly superatmospheric pressure and removing said expanded nitrogen as a first vapor product, withdrawing gaseous oxygen product at the pressure of said second column from the lower end of said second column, passing said withdrawn gaseous oxygen and said expanded gaseous high pressure nitrogen product in indirect heat exchange relationship with said feed air to cool said feed air in said air cooling step, and thereafter collecting said gaseous oxygen product at ambient temperature and at said elevated pressure as a second vapor product, removing a nitro gen rich vapor from the top of the second column, expanding said nitrogen rich vapor from the second column thro-ugh a second high. speed turbine doing work, passing said expanded nitrogen rich vapor from the second column in indirect heat exchange with the oxygen enriched liquid air to cool said oxygen enriched liquid air, and removing said expanded nitrogen rich vapor from the second column as waste.
2. In the method of producing oxygen as claimed in claim 1, the further step of removing liquid oxygen at substantially atmospheric pressure from the lower part of the second column.
3. In the method of producing oxygen. as claimed in claim 1, the further step of removing liquid nitrogen from the upper part of the first column.
4. In the method of producing oxygen as claimed in claim 1, the refrigeration capacity of the first expander being in the range of 70-80% of the total requirements of the plant.
5. In the method of producing oxygen as claimed in claim 1, the refrigeration capacity `of the second expander being in the range of 20-30% of the total requirements of the plant.
6. The method of separating air into its principal coni stituents which comprises passing said air through a series of reversing exchangers in heat exchange with a relatively cold waste gas, vapor oxygen product and vapor nitrogen product to reduce the temperature of the air to substantially its temperature of liquefaction, passing said cold air into a high pressure fractionation zone in the presence 5 of reflux to separate an oxygen enriched bottoms stream from a high pressure nitrogen vapor overhead, cooling said oxygen enriched liquid stream and passing said cold oxygen enriched liquid stream to a low pressure fractionation zone in the presence of reflux to produce a high purity oxygen stream and an impure low pressure waste gas overhead, expanding said l10W pressure waste gas overhead in a turbo-expander doing work to produce the cold waste gas for cooling oxygen enriched liquid stream and the incoming air, warming the high pressure nitrogen and thereafter expanding at least a part of said high pressure nitrogen vapor in a turbo-expander doing work to reduce the temperature thereof, and heat exchanging said reduced temperature expanded nitrogen vapor against bottoms of the high pressure fractionation zone to produce a 1iquefied normally gaseous product.
References Cited UNITED STATES PATENTS 2,918,802 12/ 1959 Grunberg 62-38 XR 3,070,966 1/1963 Ruhemann et al. o 62-39 XR 3,209,548 10/ 1965 Grunberg et al. 63-13 XR 3,216,206 11/1965 Kessler 62-38 XR 10 3,217,502 11/1965 Keith 62-39 XR WILBUR L. BASCOMB, JR., Primary Examiner. V. W. PRETKA, Assistant Examiner.

Claims (1)

1. IN THE METHOD OF PRODUCING OXYGEN AT AN ELEVATED PRESSURE FROM FEED AIR AT A SUBSTANTIAL SUPERATMOSPHERIC PRESSURE WHEREIN THE AIR IS COOLED IN REVERSING EXCHANGERS WHICH ARE PERIODICALLY PURGED OF CARBON DIOXIDE AND MOISTURE, TO A TEMPERATURE AT WHICH A MINOR PORTION THEREOF IS LIQUEFIED, AND THE RESULTING COLD AIR IS PASSED TO THE BASE OF THE FIRST COLUMN OF A DOUBLE FRACTIONATING COLUMN, SAID FIRST COLUMN BEING MAINTAINED AT A SUBSTANTIAL SUPERATMOSPHERIC PRESSURE, AND WHEREIN OXYGEN-ENRICHED LIQUID AIR FROM THE BASE OF SAID FIRST COLUMN IS WITHDRAWN AND EXPANDED INTO AN INTERMEDIATE POINT OF THE SECOND COLUMN OF SAID DOUBLE COLUMN, SAID SECOND COLUMN BEING MAINTAINED AT A SUPERATMOSPHERIC PRESSURE BUT LESS THAN THE PRESSURE OF THE FIRST COLUMN, AND WHEREIN HIGH PRESSURE NITROGEN IS REMOVED FROM THE TOP OF SAID FIRST COLUMN; THE IMPROVEMENT WHICH COMPRISES SUPPLYING REFRIGERATION TO THE FEED AIR BY PASSING SAID HIGH PRESSURE NITROGEN IN INDIRECT HEAT EXCHANGE RELATIONSHIP WITH THE FEED AIR AND THEREAFTER EXPANDING SAID HIGH PRESSURE NITROGEN WITH WORK THROUGH A HIGH SPEED TURBINE TO A SLIGHTLY SUPERATMOSPHERIC PRESSURE AND REMOVING SAID EXPANDED NITROGEN AS A FIRST VAPOR PRODUCT, WITHDRAWING GASEOUS OXYGEN PRODUCT AT THE PRESSURE OF SAID SECOND COLUMN FROM THE LOWER END OF SAID SECOND COLUMN, PASSING SAID WITHDRAWN GASEOUS OXYGEN AND SAID EXPANDED GASEOUS HIGH PRESSURE NITROGEN PRODUCT IN INDIRECT HEAT EXCHANGE RELATIONSHIP WITH SAID FEED AIR TO COOL SAID FEED AIR IN SAID AIR COOLING STEP, AND THEREAFTER COLLECTING SAID GASEOUS OXYGEN PRODUCT AT AMBIENT TEMPERATURE AND AT SAID ELEVATED PRESSURE AS A SECOND VAPOR PRODUCT, REMOVING A NITROGEN RICH VAPOR FROM THE TOP OF THE SECOND COLUMN, EXPANDING SAID NITROGEN RICH VAPOR FROM THE SECOND COLUMN THROUGH A SECOND HIGH SPEED TURBINE DOING WORK, PASSING SAID EXPANDED NITROGEN RICH VAPOR FROM THE SECOND COLUMN IN INDIRECT HEAT EXCHANGE WITH THE OXYGEN ENRICHED LIQUID AIR TO COOL SAID OXYGEN ENRICHED LIQUID AIR, AND REMOVING SAID EXPANDED NITROGEN RICH VAPOR FROM THE SECOND COLUMN AS WASTE.
US559475A 1966-06-22 1966-06-22 Air separation process employing work expansion of high and low pressure nitrogen Expired - Lifetime US3375673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US559475A US3375673A (en) 1966-06-22 1966-06-22 Air separation process employing work expansion of high and low pressure nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US559475A US3375673A (en) 1966-06-22 1966-06-22 Air separation process employing work expansion of high and low pressure nitrogen

Publications (1)

Publication Number Publication Date
US3375673A true US3375673A (en) 1968-04-02

Family

ID=24233733

Family Applications (1)

Application Number Title Priority Date Filing Date
US559475A Expired - Lifetime US3375673A (en) 1966-06-22 1966-06-22 Air separation process employing work expansion of high and low pressure nitrogen

Country Status (1)

Country Link
US (1) US3375673A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447331A (en) * 1966-06-01 1969-06-03 British Oxygen Co Ltd Air separation employing waste nitrogen reheated by incoming air in work expansion
US3735599A (en) * 1970-01-09 1973-05-29 Kobe Steel Ltd Process for automatic control of air separation apparatus
US3736762A (en) * 1969-10-20 1973-06-05 Kobe Steel Ltd Method of producing the gaseous and liquefied nitrogen and an apparatus used therefor
US4072023A (en) * 1975-10-03 1978-02-07 Linde Aktiengesellschaft Air-rectification process and apparatus
US4416677A (en) * 1982-05-25 1983-11-22 Union Carbide Corporation Split shelf vapor air separation process
US4439220A (en) * 1982-12-02 1984-03-27 Union Carbide Corporation Dual column high pressure nitrogen process
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
US4676812A (en) * 1984-11-12 1987-06-30 Linde Aktiengesellschaft Process for the separation of a C2+ hydrocarbon fraction from natural gas
US5036672A (en) * 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0589646A1 (en) * 1992-09-23 1994-03-30 Air Products And Chemicals, Inc. Distillation process for the production of carbon monoxide-free nitrogen
US5515688A (en) * 1993-02-25 1996-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
CN107606875A (en) * 2016-07-12 2018-01-19 林德股份公司 The method and apparatus that compressed nitrogen and liquid nitrogen are produced by low temperature air separating
US10852061B2 (en) 2017-05-16 2020-12-01 Terrence J. Ebert Apparatus and process for liquefying gases
US20210080171A1 (en) * 2019-09-18 2021-03-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude High-purity oxygen production system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918802A (en) * 1956-09-27 1959-12-29 Air Liquide Process of separation of air into its elements
US3070966A (en) * 1960-04-04 1963-01-01 Superior Air Products Co Production of oxygen
US3209548A (en) * 1962-02-27 1965-10-05 Air Liquide Process for the manufacture of oxygen-enriched air
US3216206A (en) * 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3217502A (en) * 1963-04-22 1965-11-16 Hydrocarbon Research Inc Liquefaction of air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918802A (en) * 1956-09-27 1959-12-29 Air Liquide Process of separation of air into its elements
US3070966A (en) * 1960-04-04 1963-01-01 Superior Air Products Co Production of oxygen
US3216206A (en) * 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3209548A (en) * 1962-02-27 1965-10-05 Air Liquide Process for the manufacture of oxygen-enriched air
US3217502A (en) * 1963-04-22 1965-11-16 Hydrocarbon Research Inc Liquefaction of air

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447331A (en) * 1966-06-01 1969-06-03 British Oxygen Co Ltd Air separation employing waste nitrogen reheated by incoming air in work expansion
US3736762A (en) * 1969-10-20 1973-06-05 Kobe Steel Ltd Method of producing the gaseous and liquefied nitrogen and an apparatus used therefor
US3735599A (en) * 1970-01-09 1973-05-29 Kobe Steel Ltd Process for automatic control of air separation apparatus
US4072023A (en) * 1975-10-03 1978-02-07 Linde Aktiengesellschaft Air-rectification process and apparatus
US4416677A (en) * 1982-05-25 1983-11-22 Union Carbide Corporation Split shelf vapor air separation process
US4439220A (en) * 1982-12-02 1984-03-27 Union Carbide Corporation Dual column high pressure nitrogen process
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
US4676812A (en) * 1984-11-12 1987-06-30 Linde Aktiengesellschaft Process for the separation of a C2+ hydrocarbon fraction from natural gas
US5036672A (en) * 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0589646A1 (en) * 1992-09-23 1994-03-30 Air Products And Chemicals, Inc. Distillation process for the production of carbon monoxide-free nitrogen
US5515688A (en) * 1993-02-25 1996-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
CN107606875A (en) * 2016-07-12 2018-01-19 林德股份公司 The method and apparatus that compressed nitrogen and liquid nitrogen are produced by low temperature air separating
US10488106B2 (en) * 2016-07-12 2019-11-26 Linde Aktiengesellschaft Method and apparatus for producing compressed nitrogen and liquid nitrogen by cryogenic separation of air
US10852061B2 (en) 2017-05-16 2020-12-01 Terrence J. Ebert Apparatus and process for liquefying gases
US20210080171A1 (en) * 2019-09-18 2021-03-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude High-purity oxygen production system
CN112524886A (en) * 2019-09-18 2021-03-19 乔治洛德方法研究和开发液化空气有限公司 High purity oxygen production system
US11879685B2 (en) * 2019-09-18 2024-01-23 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude High-purity oxygen production system

Similar Documents

Publication Publication Date Title
US5098457A (en) Method and apparatus for producing elevated pressure nitrogen
US3210951A (en) Method for low temperature separation of gaseous mixtures
US4615716A (en) Process for producing ultra high purity oxygen
US5655388A (en) Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
EP0706020B1 (en) Side column cryogenic rectification system for producing lower purity oxygen
US4560397A (en) Process to produce ultrahigh purity oxygen
US4222756A (en) Tonnage nitrogen generator
US3375673A (en) Air separation process employing work expansion of high and low pressure nitrogen
US4702757A (en) Dual air pressure cycle to produce low purity oxygen
US4783210A (en) Air separation process with modified single distillation column nitrogen generator
US5337570A (en) Cryogenic rectification system for producing lower purity oxygen
CA2131656C (en) Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
AU658515B2 (en) Air separation
US3327489A (en) Method for separating gaseous mixtures
US5546767A (en) Cryogenic rectification system for producing dual purity oxygen
US5657644A (en) Air separation
US5305611A (en) Cryogenic rectification system with thermally integrated argon column
US3113854A (en) Method and apparatus for separating gaseous mixtures
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
EP0381319A1 (en) Apparatus and method for separating air
US5467602A (en) Air boiling cryogenic rectification system for producing elevated pressure oxygen
US5263327A (en) High recovery cryogenic rectification system
US5697229A (en) Process to produce nitrogen using a double column plus an auxiliary low pressure separation zone
US5715706A (en) Air separation
US4762542A (en) Process for the recovery of argon

Legal Events

Date Code Title Description
AS Assignment

Owner name: HRI, INC., 1313 DOLLEY MADISON BLVD, MC LEANN, VA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HYDROCARBON RESEARCH, INC.;REEL/FRAME:004180/0621

Effective date: 19830331