EP3696486A1 - Method and apparatus for providing one or more gaseous oxygen rich air products - Google Patents

Method and apparatus for providing one or more gaseous oxygen rich air products Download PDF

Info

Publication number
EP3696486A1
EP3696486A1 EP19020068.3A EP19020068A EP3696486A1 EP 3696486 A1 EP3696486 A1 EP 3696486A1 EP 19020068 A EP19020068 A EP 19020068A EP 3696486 A1 EP3696486 A1 EP 3696486A1
Authority
EP
European Patent Office
Prior art keywords
air
process stream
level
pressure
pressure level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19020068.3A
Other languages
German (de)
French (fr)
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP19020068.3A priority Critical patent/EP3696486A1/en
Priority to EP20703140.2A priority patent/EP3924677A1/en
Priority to PCT/EP2020/025039 priority patent/WO2020164799A1/en
Publication of EP3696486A1 publication Critical patent/EP3696486A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution

Definitions

  • the invention relates to a method for providing one or more oxygen-rich, gaseous air products and a corresponding system according to the preambles of the independent claims.
  • air product is intended to refer to a fluid that is provided, at least in part, by the cryogenic decomposition of atmospheric air.
  • An air product has one or more air gases contained in atmospheric air in a different composition than in atmospheric air.
  • An air product can basically be in a gaseous, liquid or supercritical state and can be transferred from one of these states to another.
  • a liquid air product can be converted into the gaseous state (“evaporated”) or converted into the supercritical state (“pseudo-evaporated”) by heating to a certain pressure, depending on whether the pressure during the heating is below or above the critical pressure .
  • Air separation plants have rectification column systems which are conventionally designed as two-column systems, in particular as classic Linde double-column systems, but can also be designed as three- or multi-column systems.
  • rectification columns for obtaining nitrogen and / or oxygen in liquid and / or gaseous state, i.e. the rectification columns for nitrogen-oxygen separation
  • rectification columns can be provided for obtaining further air components, in particular the noble gases krypton, xenon and / or argon.
  • the terms “rectification” and “distillation” and “column” and “column” or terms composed thereof are used synonymously.
  • the rectification columns of the rectification column systems mentioned are operated at different pressures.
  • Known double column systems have what is known as a high pressure column (also referred to as a pressure column, medium pressure column or lower column) and a so-called low pressure column (also referred to as an upper column).
  • the high pressure column is typically operated at a pressure of 4 to 7 bar, in particular approx. 5.3 bar.
  • the low-pressure column is operated at a pressure of typically 1 to 2 bar, in particular about 1.4 bar. In certain cases, higher pressures can also be used in both rectification columns.
  • the pressures given here are absolute pressures at the top of the columns given.
  • main (air) compressors / booster Main Air Compressor / Booster Air Compressor, MAC-BAC processes or so-called high air pressure (HAP) processes
  • the main compressor / booster processes are the more conventional processes, while high-air pressure processes have been used more and more recently as alternatives.
  • the present invention is suitable for both variants of air separation, but can be used in particular in connection with HAP processes. Due to the significantly lower costs - main and booster compressors are integrated in one machine, so to speak - and comparable efficiency, high-air pressure processes can represent an advantageous alternative to the main compressor / booster processes.
  • Main compressor / booster processes are characterized in that only part of the total amount of feed air supplied to the rectification column system is compressed to a pressure which is significantly above, ie by at least 3, 4, 5, 6, 7, 8, 9 or 10 bar the pressure at which the high pressure column is operated. A further part of the feed air quantity is only compressed to this pressure or a pressure which differs therefrom by no more than 1 to 2 bar, and at this point it is fed into the high pressure column.
  • a main compressor / booster method is, for example, at Häring (see above) in Figure 2 .3A shown.
  • the entire amount of feed air supplied to the rectification column system is compressed to a pressure which is substantially, ie by at least 3, 4, 5, 6, 7, 8, 9 or 10 bar, and for example up to 14, 16, 18 or 20 bar, too above the pressure at which the high pressure column is operated.
  • High air pressure methods are, for example, from the EP 2 980 514 A1 and the EP 2 963 367 A1 known.
  • High air pressure processes are typically used with what is known as internal compression (IV, IC).
  • internal compression at least one gaseous, pressurized air product, which is provided by means of the air separation plant, is formed in that a cryogenic, liquid air product is removed from the rectification column system, subjected to a pressure increase to a product pressure, and the product pressure by heating into the gaseous or supercritical state is convicted.
  • gaseous, pressurized oxygen GOX IV, GOX IC
  • gaseous, pressurized nitrogen GAN IV, GAN IC
  • GAR IV, GAR IC gaseous, pressurized argon
  • the internal compression offers a number of advantages compared to an alternatively also possible external compression and is explained, for example, by Häring (see above) in Section 2.2.5.2, "Internal Compression". Systems for the low-temperature separation of air, in which internal compression is used, are also in the US 2007/0209389 A1 and in the WO 2015/127648 A1 shown.
  • the object of the present invention is to provide a cost-effective and efficient high-air pressure method, the aim being to use it advantageously under certain boundary conditions specified below.
  • the present invention proposes a method for providing one or more oxygen-rich, gaseous air products and a corresponding system with the respective features of the independent patent claims.
  • Refinements of the invention are the subject matter of the respective dependent claims and the following description.
  • feed air or “feed air” for short is understood here to mean all of the air supplied (“used”) to the rectification column system of an air separation plant. As already explained above, this feed air quantity is only partially compressed in a main compressor / booster process to a pressure level which is significantly above the pressure level of the high pressure column. In contrast, in a high-air pressure process, the entire amount of input air is compressed to such a high pressure level.
  • this feed air quantity is only partially compressed in a main compressor / booster process to a pressure level which is significantly above the pressure level of the high pressure column.
  • a high-air pressure process the entire amount of input air is compressed to such a high pressure level.
  • cryogenic liquid is understood here to mean a liquid medium whose boiling point is well below the ambient temperature, e.g. at -50 ° C or less, especially -100 ° C or less.
  • cryogenic liquids are liquid air, liquid oxygen, liquid nitrogen, liquid argon or liquids that are rich in the compounds mentioned.
  • turbo compressors which are referred to here as "main air compressors" are used to compress the amount of air used.
  • the mechanical structure of turbo compressors is basically known to the person skilled in the art.
  • the medium to be compressed is compressed by means of turbine blades which are arranged on a turbine wheel or directly on a shaft.
  • a turbo compressor forms a structural unit which, however, in a multi-stage turbo compressor can have several compressor stages.
  • a compressor stage usually comprises a turbine wheel or a corresponding arrangement of turbine blades. All of these compressor stages can be driven by a common shaft. However, it can also be provided that To drive compressor stages in groups with different shafts, whereby the shafts can also be connected to one another via gears.
  • the main air compressor is also characterized in that it compresses the entire amount of air fed into the distillation column system and used to produce air products, that is to say the entire amount of air used.
  • a "post-compressor" can also be provided, in which, however, only part of the feed air quantity compressed in the main air compressor is brought to an even higher pressure.
  • This can also be designed as a turbo compressor.
  • turbo compressors For the compression of partial amounts of air, further turbo compressors are typically provided, which are also referred to as boosters, but only perform compression to a relatively small extent in comparison to the main air compressor or the booster.
  • booster can also be present in a high-air pressure process, but this then compresses a portion of the amount of input air starting from a higher pressure level.
  • turbo expanders can also be coupled with turbo compressors and drive them.
  • turbo compressors are one or more turbo compressors without externally supplied energy, i. Driven only by one or more turbo expanders, the term “turbine booster” is also used for such an arrangement.
  • the turboexpander (the expansion turbine) and the turbo compressor (the booster) are mechanically coupled, with the coupling being able to take place at the same speed (for example via a common shaft) or at different speeds (for example via an interposed gearbox).
  • a “cold compressor” or “cold booster” is to be understood here as meaning a compressor or booster, the fluid at a temperature level below the ambient temperature, in particular at less than 0 ° C, -50 ° C or -100 ° C and possibly more than -150 ° C or -200 ° C.
  • Liquid, gaseous or even fluids present in the supercritical state can, in the language used here, be rich or poor in one or more Components, where "rich” for a content of at least 75%, 90%, 95%, 99%, 99.5%, 99.9% or 99.99% and “poor” for a content of at most 25%, May represent 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis.
  • the term “predominantly” can correspond to the definition of "rich” just made, but in particular denotes a content of more than 90%. If, for example, "nitrogen” is mentioned here, it can be a pure gas, but also a gas rich in nitrogen.
  • pressure level and “temperature level” are used below to characterize pressures and temperatures, which is intended to express that pressures and temperatures do not have to be used in the form of exact pressure or temperature values in order to implement an inventive concept. However, such pressures and temperatures typically move in certain ranges, for example ⁇ 1%, 5% or 10% around a mean value. Different pressure levels and temperature levels can be in disjoint areas or in areas that overlap. In particular, pressure levels include, for example, unavoidable or expected pressure losses, for example due to cooling effects. The same applies to temperature levels. The pressure levels given here in bar are absolute pressures.
  • liquid output denotes the amount of air products that are carried out in liquid form from the system or a corresponding process, which means that no evaporation or pseudo-evaporation takes place.
  • no feed streams into the plant or the process can be cooled. Therefore, if fewer air products are carried out in liquid form from the system or a corresponding process, but rather they are vaporized or pseudo-vaporized, there is, so to speak, excess cold.
  • a so-called cold booster can therefore be used, for example, to increase the process efficiency by converting such excess cold into higher air pressure:
  • the heat input through the cold booster partially destroys the excess cold;
  • the cold booster compresses part of the feed air so that, for example, the performance of the main air compressor can be reduced accordingly.
  • the intake temperature of a cold booster is below the ambient temperature, so that the power consumption is reduced with an ideal gas behavior assumed for the sake of simplicity.
  • the invention is now intended to be particularly suitable for a high-air pressure process in which gaseous oxygen is to be produced without (significant) liquid production.
  • the specialty is the division of the gaseous oxygen into two fractions of different pressures (almost unpressurized and pressurized, for example at approx. 31 bar) in a ratio of approx. 1 to 2.
  • An exemplary product range of air products (all gaseous) for which The invention is intended to be suitable is shown in Table 1 below. However, the invention is not limited to this specific example or even only to the orders of magnitude given here. ⁇ b> Table 1 ⁇ /b> product Amount (Nm 3 / h) Pressure (bar) oxygen 18,700 1.3 oxygen 44,750 31 argon 1,865 17th nitrogen 75,000 1.3
  • an air separation plant as proposed according to an embodiment of the invention, or a corresponding method comprises an interconnection as is customary in a main compressor / booster method, in which an injection turbine (Lachmann turbine) is also provided.
  • an injection turbine Lachmann turbine
  • a second turbine can also be used, which expands air into the high-pressure column in the manner of a Claude turbine.
  • the present invention proposes a method for the production of one or more oxygen-rich, gaseous air products, in which in an air separation plant a first process stream, which comprises predominantly or exclusively pressurized non-liquefied air, and a second process stream, which predominantly or exclusively liquefies pressurized air Comprises air, are formed, and in which the first and the second process stream are separately subjected to an expansion to an operating pressure level of a high pressure column of the air separation plant and are partially or completely fed into the high pressure column.
  • a first process stream which comprises predominantly or exclusively pressurized non-liquefied air
  • a second process stream which predominantly or exclusively liquefies pressurized air Comprises air
  • the first and the second process stream are separately subjected to an expansion to an operating pressure level of a high pressure column of the air separation plant and are partially or completely fed into the high pressure column.
  • the first process stream which predominantly or exclusively comprises pressurized, non-liquefied air, is expanded in particular in an expansion turbine, as will also be explained in detail below. It is a so-called turbine flow, as it is also formed in known methods of air separation.
  • the expansion turbine used to expand a corresponding turbine flow is a typical Claude turbine.
  • the second process flow which is formed within the scope of the present invention and comprises predominantly or exclusively pressurized liquefied air, corresponds to a known throttle flow, as it is also formed in the prior art.
  • an expansion valve can be used to relax the second process flow, that is to say the throttle flow; however, it can also, for example, be a so-called liquid turbine or a So-called sealing fluid expander (Dense Liquid Expander, DLE), as it is known from the prior art, are used.
  • DLE Sealing Fluid expander
  • Advantages of liquid turbines are extensively described in the prior art, for example in Häring (see above), Section 2.2.5.6, "Apparatus", pages 48 and 49.
  • the first and the second process stream are formed within the scope of the present invention at a pressure level which is above the operating pressure level of the high pressure column.
  • the operating pressure level of the high pressure column is understood to mean, in particular, a pressure level as is present at a feed point of the first or second process stream into the high pressure column, or a pressure range which includes the pressures at these feed points. It is known that rectification columns can have pressure gradients during operation. Therefore, as mentioned, the term “operating pressure level” denotes the pressure at the respective feed point or a corresponding pressure range.
  • air is used to form the first and the second process flow, which is provided as part of a total amount of air at a first pressure level and a first temperature level, the total amount of air using an air compressor and a booster, which runs parallel to the air compressor is arranged, is brought to the first pressure level, and wherein the booster is coupled to an expansion turbine used in the expansion of a third process stream and is driven by this.
  • the third process stream is also formed using part of the total amount of air, as explained in detail below.
  • the air that is used to form the first and the second process stream is, in the context of a particularly preferred embodiment of the present invention, which will now be explained in advance, a cooling to a second temperature level, a compression to a second pressure level, a cooling to a third temperature level and, while maintaining a liquid phase and a gas phase, is subjected to a phase separation.
  • the first temperature level is in particular above 0 ° C., for example at ambient temperature, typically in a range from 10 to 50 ° C.
  • the second temperature level is in the context of the present invention especially at -120 to -150 ° C; the compression to the second pressure level therefore takes place starting from a correspondingly low temperature level.
  • a compressor or booster used for the compression to the second pressure level which is advantageously driven by means of an expansion turbine, which expands the first process stream to the operating pressure level of the high pressure column, is therefore a so-called cold booster, as already explained in the introduction.
  • the first pressure level (upstream of the cold booster) is within the scope of the embodiment of the present invention just mentioned, in particular 7 to 13 bar
  • the second pressure level downstream of the cold booster to which the air used to form the first and second process streams after cooling is compressed to the second temperature level, in particular at 11 to 17 bar.
  • the third temperature level, to which the air used to form the first and the second process stream is cooled in this embodiment after compression to the second pressure level (after it has previously warmed up through compression) is in particular -140 to -170 ° C .
  • the first process stream is formed using at least part of the gas phase from the phase separation mentioned, and that the second process stream is formed using at least part of the liquid phase that is formed in the phase separation becomes.
  • the first process stream can comprise the entire gas phase and / or the second process stream can comprise the entire liquid phase, which are each formed in the phase separation.
  • the first process stream is supplied to the expansion to the pressure level of the high pressure column at the second pressure level and the third temperature level, and the second pressure level and the third temperature level are selected in the context of the present invention in particular such that the expansion of the first process stream to the operating pressure level of the high pressure column forms a liquid fraction of 5% to 15%, based on the entire first process stream.
  • the liquid content in the context of the present invention is approx. 10%.
  • the expansion turbine used for the expansion of the first process stream is operated in the context of the mentioned embodiment of the present invention with a defined (dew) state at the turbine inlet, which leads to a corresponding liquid content at the turbine outlet.
  • a defined (dew) state at the turbine inlet, which leads to a corresponding liquid content at the turbine outlet.
  • Corresponding operation allows the process potential to be optimally exploited and reliable operation results.
  • the mentioned liquid portion in particular denotes a portion that is calculated from the respective standard volumes of the portions formed.
  • the operation of the expansion turbine for expansion of the first process flow is to be considered in particular in connection with an injection turbine used or an expansion turbine which relaxes a further turbine flow, as explained below.
  • the turbine flow i.e. the first process stream and the second process stream, that is to say a throttle stream
  • the turbine flow i.e. the first process stream and the second process stream, that is to say a throttle stream
  • the resulting liquid is separated in a separator and in the form of the second process stream, in particular, is fed back into the heat exchanger for the purpose of subcooling.
  • the gas from a corresponding separator is fed directly into the turbine in the form of the first process stream, as already described above in other words.
  • the air used to provide the first and the second process stream is cooled to the second temperature level at the first pressure level and the first temperature level, the compression to the second pressure level at the second temperature level and the first pressure level, the cooling to the third temperature level at the second pressure level and a temperature level below the second temperature level, and the phase separation is supplied to the second pressure level and the third temperature level.
  • a further process stream can also be liquefied in a main heat exchanger of the air separation plant and partially or completely expanded in the high-pressure column, in particular together with the second process stream, with expansion being separate from the second process stream or can be done together with this.
  • the present invention comprises that a third process stream, which comprises predominantly or exclusively pressurized, non-liquefied air, is formed, the third process stream being expanded upon Operating pressure level of a low pressure column of the air separation plant and can be partially or fully fed into the low pressure column, or subjected to an expansion to the operating pressure level of the high pressure column of the air separation plant and can be partially or completely fed into the high pressure column.
  • the third process stream is fed to the expansion, in particular at a temperature level that is more than 10 K above the third temperature level and differs by less than 10 K from the second temperature level.
  • air is also used to form the third process flow, which air is provided as part of the total amount of air at the first pressure level and the first temperature level.
  • This air is then particularly subjected to cooling to a fourth temperature level.
  • the fourth temperature level can in particular be between -120 and -150 ° C.
  • the pressure used that is to say the first pressure level, it is selected in such a way that the outlet conditions explained are set at a turbine used to expand the third process flow.
  • the air provided at the first pressure level, which is used to form the first and the second process flow is, as mentioned, part of a total amount of air that is generated using an air compressor and a booster which is arranged in parallel with the air compressor , is brought to the first pressure level.
  • the air that is used to form the third process flow is also part of this total air volume.
  • the booster is coupled to an expansion machine used in the expansion of the third process stream and is driven by means of this expansion machine.
  • the drive of the booster can only or in part using this expansion machine, in other words, an additional motor drive can also be used, for example.
  • the coupling can also take place with the interposition of a brake, so that not all of the drive power that is released when the third process stream is released is used to drive the booster.
  • the air compressor can be driven exclusively by means of external energy, ie without the use of power that is released when a process flow of the air separation plant is expanded, and the booster can be driven exclusively by expansion of a corresponding process flow.
  • a first portion of the total amount of air is always passed through the air compressor and not through the booster, and that a second portion of the total amount of air is passed through the booster and not through the air compressor.
  • the first, second and third process streams are formed; however, in particular another process stream can also be formed in the form of a further throttle stream, the air of which can be cooled in a main heat exchanger of the air separation plant, liquefied and fed into the high pressure column.
  • the second portion of the total amount of air advantageously comprises 5% to 25% of the total amount of air and the first portion of the total amount of air comprises in particular the remainder of the total amount of air. These proportions are also based on standard volume flows. In the context of the present invention, in the evaluated case, the first portion can in particular comprise 13% to 17% of the total air volume.
  • the air compressor can in particular be designed in one stage in this way. In particular, it can be supplied with air which comes from an air supply network and which is already compressed to a certain pressure level in this air supply network. However, the air compressor can also be connected downstream of further compressor stages, for example as a compressor stage.
  • the booster is not used to compress an amount of air that has already been purified. Rather, within the scope of the present invention, the booster is used in particular upstream of a corresponding cleaning system.
  • the total amount of air is compressed using the air compressor and the booster in the water-containing state and then, i. after compaction, pre-cooled and dried.
  • the total amount of air can be fed to the air compressor and the booster at a pressure level above atmospheric. The total amount of air can be provided externally to this above-atmospheric output pressure level or compressed to this output pressure level in the air separation plant.
  • the present invention can be used in particular in air separation processes in which no or only extremely small amounts of liquid air products are formed.
  • the present invention comprises that an amount of one or more air products corresponding to a maximum of 2% of the total amount of air is discharged in liquid form from the air separation plant.
  • the diversion can also take place continuously or only temporarily.
  • the maximum amount can in particular also be 1.5%, 1% or 0.5%.
  • oxygen-rich, gaseous air products are provided.
  • a first of these oxygen-rich, gaseous air products can be provided by internal compression, as explained several times above.
  • oxygen-rich liquid is typically withdrawn from the low-pressure column, increased in pressure using an internal compression pump and converted into the gaseous or supercritical state in a main heat exchanger of the air separation plant under the pressure to which it was pressure increased by means of the internal compression pump.
  • a second of these oxygen-rich, gaseous air products is withdrawn in gaseous form from the low-pressure column in the context of the present invention, in particular without increasing the pressure.
  • the present invention also relates to an air separation plant for providing one or more oxygen-rich, gaseous air products.
  • an air separation plant for providing one or more oxygen-rich, gaseous air products.
  • express reference is made to the corresponding independent patent claim.
  • a corresponding air separation plant benefits from the advantages explained above with regard to the method according to the invention and its preferred configurations, to which reference is therefore expressly made.
  • such an air separation plant is set up to carry out a method according to one of the configurations explained above, and has means set up for this purpose.
  • Air separation plants according to preferred embodiments of the invention are illustrated, respectively labeled 100, 200 and 300.
  • the air separation plants 100, 200 and 300 have a number of identically designed components, but in practice they can also be structurally designed differ from each other.
  • the air separation plant 100 according to FIG Figure 1 explained; regarding the in the Figures 2 and 3 air separation plants 200 and 300 illustrated below, only the distinguishing features are discussed.
  • Air A which has already been pressurized outside the system 100, is provided in the form of a feed air flow a in the air separation plant 100 illustrated.
  • This air can, for example, come from a supply network and, for example, be at a pressure of approx. 6 bar. Deviating from the representation according to Figure 1 However, the air A can also be pressurized within the air separation plant 100.
  • the feed air A of the feed air flow a is divided into two partial flows b and c after precooling (required in certain cases) in a heat exchanger (not specifically designated), the partial flow b being compressed in an air compressor 101 and the partial flow c in a booster 102.
  • a pressure level upstream of the air compressor 101 and the booster 102 is referred to as the “initial pressure level”, while a pressure level downstream of the air compressor 101 and the booster 102 is referred to as the “first pressure level”.
  • the air compressor 101 is preferably designed in one stage. As explained above, the predominant portion of the feed air A is compressed in the form of the material flow b in the air compressor 101, but a smaller portion is compressed in the booster 102 in parallel.
  • the partial flows b and c are combined in the example shown to form a collective flow d, which is cooled in a basically known manner in a pre-cooling device 103 using cooling water (flow B, return C).
  • the cooled feed air flow is further designated by d and then fed to a cleaning device 104, for example comprising a pair of adsorber containers operated in alternation.
  • a substream e is fed to a main heat exchanger 105 of the air separation plant 100 (at the first pressure level and a temperature level referred to here as the “first temperature level”).
  • the partial flow e is the main heat exchanger 105 taken at a temperature level, which is referred to here as the "second temperature level”.
  • the partial flow e is initially still at the first pressure level.
  • the partial flow e is subjected to compression in a cold booster 106 at the first pressure level and the second temperature level. This brings it to a higher pressure level, which is referred to here as the "second pressure level”.
  • the temperature of the partial flow e increases due to the compression due to the heat of compression introduced, so that the partial flow e is fed back to the main heat exchanger 105 at an intermediate temperature level above the second temperature level.
  • the partial flow e is then further cooled in the main heat exchanger 105, specifically to a temperature level which is referred to here as the “third temperature level”.
  • the substream e is then fed into a separator 107 and subjected to a phase separation.
  • a gas phase in the form of a material flow f and a liquid phase in the form of a material flow g are withdrawn from the separator 107.
  • the material flow f is referred to here as the “first process flow”
  • the material flow g is correspondingly referred to as the “second process flow”.
  • the first process stream comprises non-liquefied, pressurized air as a result of the treatment explained above
  • the second process stream g comprises pressurized and liquefied air.
  • the first process stream f is expanded in an expansion turbine 108 and fed into a high pressure column 111 of the air separation plant 100.
  • the expansion turbine 108 is operated, as explained several times, in such a way that a liquid portion forms at its outlet to a defined extent as explained above.
  • the expansion in the expansion turbine 108 takes place to an operating pressure level of the high pressure column 111 or a pressure level present in the high pressure column 111 at the feed point.
  • the second process stream g is in the in Figure 1 illustrated example again supplied to the main heat exchanger 105 and removed from this at the cold end.
  • the second process stream g is passed through the main heat exchanger 105 with a partial stream h of the material stream d, which passes from the warm to the cold end and through this was liquefied, combined after the second process stream g and the substream h were each expanded in corresponding expansion devices, for example expansion valves, which are not separately designated here.
  • the expansion also takes place to a pressure level in the high pressure column 111 or a pressure level which is present at a feed point into the high pressure column 111.
  • a material flow formed from the second process flow g and the substream h is designated as a collective flow with the reference symbol i.
  • air is also blown into a low-pressure column 112 of the air separation plant 100, for which a basically known Lachmann turbine 109 is used.
  • the Lachmann turbine 109 is an expansion turbine that is used in the in Figure 1 illustrated embodiment of the air separation plant 100 is mechanically coupled to the booster 102 already explained above.
  • the air expanded in the expansion turbine 109 is a partial flow k of the material flow d, which was previously cooled to an intermediate temperature level in the main heat exchanger 105 (referred to here as the “fourth temperature level”).
  • the air of substream k expanded in expansion turbine 109 is fed (see link 2) into low-pressure column 112, as already mentioned.
  • the air separation plant 100 has a crude argon column 113 and pure argon column 114 in addition to the high pressure column 111 and the low pressure column 112 in a rectification column system, which is designated as a whole by 110. Operation of the rectification column system 110 is known in the art.
  • Air separation plants of the type shown are often described elsewhere, for example at Häring (see above) Figure 2 .3A.
  • An air separation plant for using the present invention can be designed in the most varied of ways.
  • two gaseous oxygen-rich air products are provided at different pressure levels.
  • gaseous fluid is withdrawn from the low-pressure column 112 above its bottom in the form of a stream I, which is heated in the main heat exchanger 105 without further pressure-influencing measures and is provided as a corresponding air product, which is additionally denoted by D here.
  • bottom liquid is withdrawn from the low-pressure column 112 in the form of a material flow m, which in the example shown can also be carried out in part as liquid oxygen, here additionally designated with K, in the form of a material flow n from the air separation plant 100 .
  • a material flow m which in the example shown can also be carried out in part as liquid oxygen, here additionally designated with K, in the form of a material flow n from the air separation plant 100 .
  • K liquid oxygen
  • discharge pressure level a higher pressure level
  • the main heat exchanger 105 transfers in the main heat exchanger 105 to the gaseous or, depending on the pressure level, supercritical state in the form of a material flow o as a corresponding air product, which is also designated here with E.
  • pressurized, gaseous, argon-rich fluid is provided as air product F as shown in the air separation plant 100 shown.
  • liquid is withdrawn from the pure argon column 114 in the form of a material flow p and, comparable to the material flow o, is brought to a higher pressure level in an internal compression pump 116, converted to a gaseous or supercritical state in the main heat exchanger 105 and provided in the form of the corresponding air product F.
  • the air separation plant 100 can also be used to provide low-pressure nitrogen in the form of an air product G, nitrogen from the top of the high-pressure column 111 in the form of an air product H and impure nitrogen from the top of the low-pressure column 112 in the form of an air product I. Further impure nitrogen can be withdrawn from the low-pressure column 112 in the form of a stream r and used, for example, as a regeneration gas in the cleaning device 104 or in the pre-cooling device 103 and then blown off to the atmosphere X.
  • a liquid nitrogen product L be provided.
  • the air separation plant 200 according to Figure 2 differs from air separation unit 100 according to Figure 1 in particular because the second process stream g is not further cooled in the main heat exchanger 105 before it is expanded and fed into the low-pressure column.
  • the partial flow k expanded in the expansion turbine 109 is only fed to the pressure level of the high pressure column 111; the partial flow k is therefore not blown into the low pressure column but is fed to the high pressure column 111 as a further turbine flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte vorgeschlagen, bei dem in einer Luftzerlegungsanlage (100-300) ein erster Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, und ein zweiter Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte verflüssigte Luft umfasst, gebildet werden, und bei dem der erste und der zweite Prozessstrom getrennt voneinander einer Entspannung auf ein Betriebsdruckniveau einer Hochdruckkolonne (111) der Luftzerlegungsanlage (100-300) unterworfen und teilweise oder vollständig in die Hochdruckkolonne (111) eingespeist werden. Es ist vorgesehen, dass zur Bildung des ersten und des zweiten Prozessstroms Luft verwendet wird, die als Teil einer Gesamtluftmenge auf einem ersten Druckniveau und einem ersten Temperaturniveau bereitgestellt wird, wobei die Gesamtluftmenge unter Verwendung eines Luftverdichters (101) und eines Boosters (102), der parallel zu dem Luftverdichter (101) angeordnet ist, auf das erste Druckniveau gebracht wird, wobei der Booster (102) mit einer bei der Entspannung eines dritten Prozessstroms verwendeten Entspannungsturbine (109) gekoppelt ist und von dieser angetrieben wird. Eine Luftzerlegungsanlage (100-300) ist ebenfalls Gegenstand der vorliegenden Erfindung.A method for producing one or more oxygen-rich, gaseous air products is proposed, in which in an air separation plant (100-300) a first process stream, which comprises predominantly or exclusively pressurized non-liquefied air, and a second process stream, which predominantly or exclusively pressurized liquefied air comprises, are formed, and in which the first and the second process stream are separately subjected to expansion to an operating pressure level of a high pressure column (111) of the air separation plant (100-300) and partially or completely fed into the high pressure column (111). It is provided that air is used to form the first and the second process stream, which is provided as part of a total amount of air at a first pressure level and a first temperature level, the total amount of air using an air compressor (101) and a booster (102), which is arranged parallel to the air compressor (101), is brought to the first pressure level, the booster (102) being coupled to an expansion turbine (109) used in the expansion of a third process stream and being driven by this. An air separation plant (100-300) is also the subject of the present invention.

Description

Die Erfindung betrifft ein Verfahren zur Bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte und eine entsprechende Anlage gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a method for providing one or more oxygen-rich, gaseous air products and a corresponding system according to the preambles of the independent claims.

Stand der TechnikState of the art

Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification ", beschrieben.The production of air products in the liquid or gaseous state by the low-temperature decomposition of air in air separation plants is known and for example at H.-W. Häring (Ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification ", described.

Der Begriff "Luftprodukt" soll sich hier auf ein Fluid beziehen, das zumindest teilweise durch Tieftemperaturzerlegung von atmosphärischer Luft bereitgestellt wird. Ein Luftprodukt weist ein oder mehrere in der atmosphärischen Luft enthaltene Luftgase in einer abweichenden Zusammensetzung als in der atmosphärischen Luft auf. Ein Luftprodukt kann grundsätzlich in gasförmigem, flüssigem oder überkritischem Zustand vorliegen und von einem dieser Zustände in einen anderen überführt werden. Insbesondere kann ein flüssiges Luftprodukt durch Erwärmen auf einem bestimmten Druck in den gasförmigen Zustand überführt ("verdampft") oder in den überkritischen Zustand überführt ("pseudoverdampft") werden, je nachdem, ob der Druck bei der Erwärmung unterhalb oder oberhalb des kritischen Drucks liegt.As used herein, the term "air product" is intended to refer to a fluid that is provided, at least in part, by the cryogenic decomposition of atmospheric air. An air product has one or more air gases contained in atmospheric air in a different composition than in atmospheric air. An air product can basically be in a gaseous, liquid or supercritical state and can be transferred from one of these states to another. In particular, a liquid air product can be converted into the gaseous state ("evaporated") or converted into the supercritical state ("pseudo-evaporated") by heating to a certain pressure, depending on whether the pressure during the heating is below or above the critical pressure .

Luftzerlegungsanlagen weisen Rektifikationskolonnensysteme auf, die herkömmlicherweise als Zweikolonnensysteme, insbesondere als klassische Linde-Doppelkolonnensysteme ausgebildet sind, aber auch als Drei- oder Mehrkolonnensysteme ausgebildet sein können. Neben den Rektifikationskolonnen zur Gewinnung von Stickstoff und/oder Sauerstoff in flüssigem und/oder gasförmigem Zustand, also den Rektifikationskolonnen zur Stickstoff-Sauerstoff-Trennung, können Rektifikationskolonnen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein. Häufig werden dabei die Begriffe "Rektifikation" und "Destillation" sowie "Kolonne" und "Säule" bzw. hieraus zusammengesetzte Begriffe synonym verwendet.Air separation plants have rectification column systems which are conventionally designed as two-column systems, in particular as classic Linde double-column systems, but can also be designed as three- or multi-column systems. In addition to the rectification columns for obtaining nitrogen and / or oxygen in liquid and / or gaseous state, i.e. the rectification columns for nitrogen-oxygen separation, rectification columns can be provided for obtaining further air components, in particular the noble gases krypton, xenon and / or argon. Often the The terms “rectification” and “distillation” and “column” and “column” or terms composed thereof are used synonymously.

Die Rektifikationskolonnen der genannten Rektifikationskolonnensysteme werden auf unterschiedlichen Drücken betrieben. Bekannte Doppelkolonnensysteme weisen eine sogenannte Hochdruckkolonne (auch als Druckkolonne, Mitteldruckkolonne oder untere Kolonne bezeichnet) und eine sogenannte Niederdruckkolonne (auch als obere Kolonne bezeichnet) auf. Die Hochdruckkolonne wird typischerweise auf einem Druck von 4 bis 7 bar, insbesondere ca. 5,3 bar, betrieben. Die Niederdruckkolonne wird auf einem Druck von typischerweise 1 bis 2 bar, insbesondere ca. 1,4 bar, betrieben. In bestimmten Fällen können in beiden Rektifikationskolonnen auch höhere Drücke eingesetzt werden. Bei den hier jeweils angegebenen Drücken handelt es sich um Absolutdrücke am Kopf der jeweils angegebenen Kolonnen.The rectification columns of the rectification column systems mentioned are operated at different pressures. Known double column systems have what is known as a high pressure column (also referred to as a pressure column, medium pressure column or lower column) and a so-called low pressure column (also referred to as an upper column). The high pressure column is typically operated at a pressure of 4 to 7 bar, in particular approx. 5.3 bar. The low-pressure column is operated at a pressure of typically 1 to 2 bar, in particular about 1.4 bar. In certain cases, higher pressures can also be used in both rectification columns. The pressures given here are absolute pressures at the top of the columns given.

Zur Luftzerlegung können sogenannte Haupt(luft)verdichter/Nachverdichter-(Main Air Compressor/Booster Air Compressor-, MAC-BAC-)Verfahren oder sogenannte Hochluftdruck-(High Air Pressure-, HAP-)Verfahren eingesetzt werden. Bei den Hauptverdichter/Nachverdichter-Verfahren handelt es sich um die eher konventionelleren Verfahren, Hochluftdruck-Verfahren kommen zunehmend in jüngerer Zeit als Alternativen zum Einsatz. Die vorliegende Erfindung eignet sich für beide Varianten der Luftzerlegung, kann jedoch insbesondere in Verbindung mit HAP-Verfahren eingesetzt werden. Aufgrund von deutlich geringeren Kosten - Haupt- und Nachverdichter sind gewissermaßen in einer Maschine integriert - und vergleichbarer Effizienz können Hochluftdruck-Verfahren eine vorteilhafte Alternative zu Hauptverdichter/Nachverdichter-Verfahren darstellen.For air separation, so-called main (air) compressors / booster (Main Air Compressor / Booster Air Compressor, MAC-BAC) processes or so-called high air pressure (HAP) processes can be used. The main compressor / booster processes are the more conventional processes, while high-air pressure processes have been used more and more recently as alternatives. The present invention is suitable for both variants of air separation, but can be used in particular in connection with HAP processes. Due to the significantly lower costs - main and booster compressors are integrated in one machine, so to speak - and comparable efficiency, high-air pressure processes can represent an advantageous alternative to the main compressor / booster processes.

Hauptverdichter/Nachverdichter-Verfahren zeichnen sich dadurch aus, dass nur ein Teil der dem Rektifikationskolonnensystem insgesamt zugeführten Einsatzluftmenge auf einen Druck verdichtet wird, der wesentlich, d.h. um mindestens 3, 4, 5, 6, 7, 8, 9 oder 10 bar, oberhalb des Drucks liegt, auf dem die Hochdruckkolonne betrieben wird. Ein weiterer Teil der Einsatzluftmenge wird lediglich auf diesen Druck oder einen Druck, der sich um nicht mehr als 1 bis 2 bar hiervon unterscheidet, verdichtet, und auf diesem in die Hochdruckkolonne eingespeist. Ein Hauptverdichter/Nachverdichter-Verfahren ist beispielsweise bei Häring (s.o.) in Figur 2.3A gezeigt.Main compressor / booster processes are characterized in that only part of the total amount of feed air supplied to the rectification column system is compressed to a pressure which is significantly above, ie by at least 3, 4, 5, 6, 7, 8, 9 or 10 bar the pressure at which the high pressure column is operated. A further part of the feed air quantity is only compressed to this pressure or a pressure which differs therefrom by no more than 1 to 2 bar, and at this point it is fed into the high pressure column. A main compressor / booster method is, for example, at Häring (see above) in Figure 2 .3A shown.

Bei einem Hochluftdruck-Verfahren wird hingegen die gesamte dem Rektifikationskolonnensystem insgesamt zugeführte Einsatzluftmenge auf einen Druck verdichtet, das wesentlich, d.h. um mindestens 3, 4, 5, 6, 7, 8, 9 oder 10 bar, und beispielsweise bis zu 14, 16, 18 oder 20 bar, zu oberhalb des Drucks liegt, auf dem die Hochdruckkolonne betrieben wird. Hochluftdruck-Verfahren sind beispielsweise aus der EP 2 980 514 A1 und der EP 2 963 367 A1 bekannt.In the case of a high-air pressure process, on the other hand, the entire amount of feed air supplied to the rectification column system is compressed to a pressure which is substantially, ie by at least 3, 4, 5, 6, 7, 8, 9 or 10 bar, and for example up to 14, 16, 18 or 20 bar, too above the pressure at which the high pressure column is operated. High air pressure methods are, for example, from the EP 2 980 514 A1 and the EP 2 963 367 A1 known.

Hochluftdruck-Verfahren kommen typischerweise mit der sogenannten Innenverdichtung (IV, Internal Compression, IC) zum Einsatz. Bei der Innenverdichtung wird wenigstens ein gasförmiges, druckbeaufschlagtes Luftprodukt, das mittels der Luftzerlegungsanlage bereitgestellt wird, dadurch gebildet, dass dem Rektifikationskolonnensystem ein tiefkaltes, flüssiges Luftprodukt entnommen, einer Druckerhöhung auf einen Produktdruck unterworfen, und auf dem Produktdruck durch Erwärmen in den gasförmigen oder überkritischen Zustand überführt wird. Beispielsweise können mittels Innenverdichtung gasförmiger, druckbeaufschlagter Sauerstoff (GOX IV, GOX IC) gasförmiger, druckbeaufschlagter Stickstoff (GAN IV, GAN IC) und/oder gasförmiges, druckbeaufschlagtes Argon (GAR IV, GAR IC) erzeugt werden. Die Innenverdichtung bietet eine Reihe von Vorteilen gegenüber einer alternativ ebenfalls möglichen externen Verdichtung und ist z.B. bei Häring (s.o.) in Abschnitt 2.2.5.2, "Internal Compression", erläutert. Anlagen zur Tieftemperaturzerlegung von Luft, bei der eine Innenverdichtung zum Einsatz kommt, sind auch in der US 2007/0209389 A1 und in der WO 2015/127648 A1 gezeigt.High air pressure processes are typically used with what is known as internal compression (IV, IC). During the internal compression, at least one gaseous, pressurized air product, which is provided by means of the air separation plant, is formed in that a cryogenic, liquid air product is removed from the rectification column system, subjected to a pressure increase to a product pressure, and the product pressure by heating into the gaseous or supercritical state is convicted. For example, gaseous, pressurized oxygen (GOX IV, GOX IC), gaseous, pressurized nitrogen (GAN IV, GAN IC) and / or gaseous, pressurized argon (GAR IV, GAR IC) can be generated by means of internal compression. The internal compression offers a number of advantages compared to an alternatively also possible external compression and is explained, for example, by Häring (see above) in Section 2.2.5.2, "Internal Compression". Systems for the low-temperature separation of air, in which internal compression is used, are also in the US 2007/0209389 A1 and in the WO 2015/127648 A1 shown.

Die vorliegende Erfindung stellt sich die Aufgabe, ein kostengünstiges und effizientes Hochluftdruck-Verfahren bereitzustellen, wobei ein vorteilhafter Einsatz unter bestimmten, unten angegebenen Randbedingungen angestrebt wird.The object of the present invention is to provide a cost-effective and efficient high-air pressure method, the aim being to use it advantageously under certain boundary conditions specified below.

Offenbarung der ErfindungDisclosure of the invention

Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Verfahren zur Bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte und eine entsprechende Anlage mit den jeweiligen Merkmalen der unabhängigen Patentansprüche vor. Ausgestaltungen der Erfindung sind Gegenstand der jeweiligen abhängigen Patentansprüche und der nachfolgenden Beschreibung.Against this background, the present invention proposes a method for providing one or more oxygen-rich, gaseous air products and a corresponding system with the respective features of the independent patent claims. Refinements of the invention are the subject matter of the respective dependent claims and the following description.

Es werden zunächst weitere Grundlagen der Erfindung näher erläutert und zur Beschreibung der Erfindung verwendete Begriffe definiert.Further principles of the invention are first explained in more detail and terms used to describe the invention are defined.

Unter einer "Einsatzluftmenge" oder kurz "Einsatzluft" wird hier die gesamte, dem Rektifikationskolonnensystem einer Luftzerlegungsanlage zugeführte ("eingesetzte") Luft verstanden. Wie bereits zuvor erläutert, wird diese Einsatzluftmenge in einem Hauptverdichter/Nachverdichter-Verfahren nur zu einem Teil auf ein Druckniveau verdichtet, das deutlich oberhalb des Druckniveaus der Hochdruckkolonne liegt. Hingegen wird in einem Hochluftdruck-Verfahren die gesamte Einsatzluftmenge auf ein derartig hohes Druckniveau verdichtet. Zur Bedeutung des Begriffs "deutlich" im Zusammenhang mit Hauptverdichter/Nachverdichter- und Hochluftdruck-Verfahren sei auf die obigen Erläuterungen verwiesen.An “amount of feed air” or “feed air” for short is understood here to mean all of the air supplied (“used”) to the rectification column system of an air separation plant. As already explained above, this feed air quantity is only partially compressed in a main compressor / booster process to a pressure level which is significantly above the pressure level of the high pressure column. In contrast, in a high-air pressure process, the entire amount of input air is compressed to such a high pressure level. For the meaning of the term “clearly” in connection with main compressor / booster and high-air pressure processes, reference is made to the explanations above.

Unter einer "tiefkalten" Flüssigkeit wird hier ein flüssiges Medium verstanden, dessen Siedepunkt deutlich unterhalb der Umgebungstemperatur liegt, z.B. bei -50 °C oder weniger, insbesondere bei -100 °C oder weniger. Beispiele für tiefkalte Flüssigkeiten sind flüssige Luft, flüssiger Sauerstoff, flüssiger Stickstoff, flüssiges Argon oder Flüssigkeiten, die reich an den genannten Verbindungen sind.A "cryogenic" liquid is understood here to mean a liquid medium whose boiling point is well below the ambient temperature, e.g. at -50 ° C or less, especially -100 ° C or less. Examples of cryogenic liquids are liquid air, liquid oxygen, liquid nitrogen, liquid argon or liquids that are rich in the compounds mentioned.

Zu den in Luftzerlegungsanlagen eingesetzten Vorrichtungen bzw. Apparaten sei auf Fachliteratur wie Häring (s.o.), insbesondere Abschnitt 2.2.5.6, "Apparatus" verwiesen. Nachfolgend werden zur Verdeutlichung und klareren Abgrenzung einige Aspekte entsprechender Vorrichtungen näher erläutert.Regarding the devices and apparatus used in air separation plants, reference is made to specialist literature such as Häring (see above), in particular Section 2.2.5.6, "Apparatus". In the following, some aspects of corresponding devices are explained in more detail for clarification and clearer delimitation.

In Luftzerlegungsanlagen kommen zur Verdichtung der Einsatzluftmenge mehrstufige Turboverdichter zum Einsatz, die hier als "Hauptluftverdichter" bezeichnet werden. Der mechanische Aufbau von Turboverdichtern ist dem Fachmann grundsätzlich bekannt. In einem Turboverdichter erfolgt die Verdichtung des zu verdichtenden Mediums mittels Turbinenschaufeln, die auf einem Turbinenrad oder direkt auf einer Welle angeordnet sind. Ein Turboverdichter bildet dabei eine bauliche Einheit, die jedoch bei einem mehrstufigen Turboverdichter mehrere Verdichterstufen aufweisen kann. Eine Verdichterstufe umfasst dabei in der Regel ein Turbinenrad oder eine entsprechende Anordnung von Turbinenschaufeln. Alle dieser Verdichterstufen können von einer gemeinsamen Welle angetrieben werden. Es kann jedoch auch vorgesehen sein, die Verdichterstufen gruppenweise mit unterschiedlichen Wellen anzutreiben, wobei die Wellen auch über Getriebe miteinander verbunden sein können.In air separation plants, multi-stage turbo compressors, which are referred to here as "main air compressors", are used to compress the amount of air used. The mechanical structure of turbo compressors is basically known to the person skilled in the art. In a turbo compressor, the medium to be compressed is compressed by means of turbine blades which are arranged on a turbine wheel or directly on a shaft. A turbo compressor forms a structural unit which, however, in a multi-stage turbo compressor can have several compressor stages. A compressor stage usually comprises a turbine wheel or a corresponding arrangement of turbine blades. All of these compressor stages can be driven by a common shaft. However, it can also be provided that To drive compressor stages in groups with different shafts, whereby the shafts can also be connected to one another via gears.

Der Hauptluftverdichter zeichnet sich ferner dadurch aus, dass durch diesen die gesamte in das Destillationskolonnensystem eingespeiste und zur Herstellung von Luftprodukten verwendete Luftmenge, also die gesamte Einsatzluftmenge, verdichtet wird. Entsprechend kann auch ein "Nachverdichter" vorgesehen sein, in dem aber nur ein Teil der im Hauptluftverdichter verdichteten Einsatzluftmenge auf einen nochmals höheren Druck gebracht wird. Auch dieser kann Turboverdichter ausgebildet sein. Zur Verdichtung von Teilluftmengen sind typischerweise weitere Turboverdichter vorgesehen, die auch als Booster bezeichnet werden, im Vergleich zu dem Hauptluftverdichter oder dem Nachverdichter jedoch nur eine Verdichtung in relativ geringem Umfang vornehmen. Auch in einem Hochluftdruck-Verfahren kann ein Nachverdichter vorhanden sein, dieser verdichtet jedoch eine Teilmenge der Einsatzluftmenge dann ausgehend von einem höheren Druckniveau.The main air compressor is also characterized in that it compresses the entire amount of air fed into the distillation column system and used to produce air products, that is to say the entire amount of air used. Correspondingly, a "post-compressor" can also be provided, in which, however, only part of the feed air quantity compressed in the main air compressor is brought to an even higher pressure. This can also be designed as a turbo compressor. For the compression of partial amounts of air, further turbo compressors are typically provided, which are also referred to as boosters, but only perform compression to a relatively small extent in comparison to the main air compressor or the booster. A booster can also be present in a high-air pressure process, but this then compresses a portion of the amount of input air starting from a higher pressure level.

An mehreren Stellen in Luftzerlegungsanlagen kann ferner Luft entspannt werden, wozu unter anderem Entspannungsmaschinen in Form von Turboexpandern, hier auch als "Entspannungsturbinen" bezeichnet, zum Einsatz kommen können. Turboexpander können auch mit Turboverdichtern gekoppelt sein und diese antreiben. Werden ein oder mehrere Turboverdichter ohne extern zugeführte Energie, d.h. nur über einen oder mehrere Turboexpander, angetrieben, wird für eine derartige Anordnung auch der Begriff "Turbinenbooster" verwendet. In einem Turbinenbooster sind der Turboexpander (die Entspannungsturbine) und der Turboverdichter (der Booster) mechanisch gekoppelt, wobei die Kopplung drehzahlgleich (beispielsweise über eine gemeinsame Welle) oder drehzahlunterschiedlich (beispielsweise über ein zwischengeschaltetes Getriebe) erfolgen kann.Furthermore, air can be expanded at several points in air separation plants, for which purpose, among other things, expansion machines in the form of turbo expanders, also referred to here as "expansion turbines", can be used. Turbo expanders can also be coupled with turbo compressors and drive them. Are one or more turbo compressors without externally supplied energy, i. Driven only by one or more turbo expanders, the term "turbine booster" is also used for such an arrangement. In a turbine booster, the turboexpander (the expansion turbine) and the turbo compressor (the booster) are mechanically coupled, with the coupling being able to take place at the same speed (for example via a common shaft) or at different speeds (for example via an interposed gearbox).

Unter einem "Kaltverdichter" bzw. "Kaltbooster" soll hier ein Verdichter bzw. Booster verstanden werden, dem Fluid auf einem Temperaturniveau unterhalb der Umgebungstemperatur, insbesondere bei weniger als 0 °C, -50 °C oder -100 °C und ggf. mehr als -150 °C oder -200 °C zugeführt wird.A “cold compressor” or “cold booster” is to be understood here as meaning a compressor or booster, the fluid at a temperature level below the ambient temperature, in particular at less than 0 ° C, -50 ° C or -100 ° C and possibly more than -150 ° C or -200 ° C.

Flüssige, gasförmige oder auch im überkritischen Zustand vorliegende Fluide können im hier verwendeten Sprachgebrauch reich oder arm an einer oder mehreren Komponenten sein, wobei "reich" für einen Gehalt von wenigstens 75%, 90%, 95%, 99%, 99,5%, 99,9% oder 99,99% und "arm" für einen Gehalt von höchstens 25%, 10%, 5%, 1%, 0,1% oder 0,01% auf Mol-, Gewichts- oder Volumenbasis stehen kann. Der Begriff "überwiegend" kann der soeben getroffenen Definition von "reich" entsprechen, bezeichnet jedoch insbesondere einen Gehalt von mehr als 90%. Ist hier beispielsweise von "Stickstoff" die Rede, kann es sich um ein Reingas, aber auch ein an Stickstoff reiches Gas handeln.Liquid, gaseous or even fluids present in the supercritical state can, in the language used here, be rich or poor in one or more Components, where "rich" for a content of at least 75%, 90%, 95%, 99%, 99.5%, 99.9% or 99.99% and "poor" for a content of at most 25%, May represent 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis. The term "predominantly" can correspond to the definition of "rich" just made, but in particular denotes a content of more than 90%. If, for example, "nitrogen" is mentioned here, it can be a pure gas, but also a gas rich in nitrogen.

Nachfolgend werden zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau" verwendet, wodurch zum Ausdruck gebracht werden soll, dass Drücke und Temperaturen nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um ein erfinderisches Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5% oder 10% um einen Mittelwert liegen. Unterschiedliche Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste, beispielsweise aufgrund von Abkühlungseffekten, ein. Entsprechendes gilt für Temperaturniveaus. Bei hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke.The terms “pressure level” and “temperature level” are used below to characterize pressures and temperatures, which is intended to express that pressures and temperatures do not have to be used in the form of exact pressure or temperature values in order to implement an inventive concept. However, such pressures and temperatures typically move in certain ranges, for example ± 1%, 5% or 10% around a mean value. Different pressure levels and temperature levels can be in disjoint areas or in areas that overlap. In particular, pressure levels include, for example, unavoidable or expected pressure losses, for example due to cooling effects. The same applies to temperature levels. The pressure levels given here in bar are absolute pressures.

Vorteile der ErfindungAdvantages of the invention

Bekannte Hochluftdruck-Verfahren werden häufig nach der sogenannten Flüssigleistung bzw. nach dem Verhältnis von innenverdichteten Produkten zu Flüssigprodukten klassifiziert und unterschieden. Die Flüssigleistung bezeichnet dabei die Menge an Luftprodukten, die flüssig aus der Anlage bzw. einem entsprechenden Verfahren ausgeführt werden, bei denen also keine Verdampfung oder Pseudoverdampfung erfolgt. Mittels derartiger Produkte können also keine Einsatzströme in die Anlage bzw. das Verfahren gekühlt werden. Daher ist dann, wenn weniger Luftprodukte flüssig aus der aus der Anlage bzw. einem entsprechenden Verfahren ausgeführt sondern diese verdampft bzw. pseudoverdampft werden, gewissermaßen Kälte im Überschuss vorhanden.Known high-air pressure processes are often classified and differentiated according to the so-called liquid performance or according to the ratio of internally compressed products to liquid products. The liquid output denotes the amount of air products that are carried out in liquid form from the system or a corresponding process, which means that no evaporation or pseudo-evaporation takes place. By means of such products, no feed streams into the plant or the process can be cooled. Therefore, if fewer air products are carried out in liquid form from the system or a corresponding process, but rather they are vaporized or pseudo-vaporized, there is, so to speak, excess cold.

Bei einer geringen Flüssigleistung kann daher beispielsweise ein sogenannter Kaltbooster eingesetzt werden, um die Prozesseffizienz durch die Umwandlung solcher überschüssiger Kälte in höheren Luftdruck zu steigern: Der Wärmeeintrag durch den Kaltbooster vernichtet die im Überschuss vorhandene Kälte zum Teil; der Kaltbooster verdichtet aber im Gegenzug dazu einen Teil der Einsatzluft, so dass beispielsweise die Leistung des Hauptluftverdichters entsprechend reduziert werden kann. Die Ansaugtemperatur eines Kaltboosters liegt, wie oben bereits angesprochen, unterhalb der Umgebungstemperatur, so dass sich die Leistungsaufnahme bei einem zur Vereinfachung angenommenen idealen Gasverhalten reduziert.In the case of a low liquid output, a so-called cold booster can therefore be used, for example, to increase the process efficiency by converting such excess cold into higher air pressure: The heat input through the cold booster partially destroys the excess cold; In return, however, the cold booster compresses part of the feed air so that, for example, the performance of the main air compressor can be reduced accordingly. As already mentioned above, the intake temperature of a cold booster is below the ambient temperature, so that the power consumption is reduced with an ideal gas behavior assumed for the sake of simplicity.

Die Erfindung soll sich nun insbesondere für ein Hochluftdruck-Verfahren eignen, bei dem gasförmiger Sauerstoff ohne (nennenswerte) Flüssigproduktion hergestellt werden soll. Die Besonderheit liegt dabei in der Aufteilung des gasförmigen Sauerstoffs in zwei Fraktionen unterschiedlicher Drücke (beinahe drucklos und druckbeaufschlagt, beispielsweise bei ca. 31 bar) in einem Verhältnis von ca. 1 zu 2. Ein beispielhaftes Produktspektrum von Luftprodukten (allesamt gasförmig), für das sich die Erfindung eignen soll, ist in der nachfolgenden Tabelle 1 angegeben. Die Erfindung ist jedoch nicht auf dieses spezifische Beispiel oder auch nur die hier angegebenen Größenordnungen beschränkt. Tabelle 1 Produkt Menge (Nm3/h) Druck (bar) Sauerstoff 18.700 1,3 Sauerstoff 44.750 31 Argon 1.865 17 Stickstoff 75.000 1,3 The invention is now intended to be particularly suitable for a high-air pressure process in which gaseous oxygen is to be produced without (significant) liquid production. The specialty is the division of the gaseous oxygen into two fractions of different pressures (almost unpressurized and pressurized, for example at approx. 31 bar) in a ratio of approx. 1 to 2. An exemplary product range of air products (all gaseous) for which The invention is intended to be suitable is shown in Table 1 below. However, the invention is not limited to this specific example or even only to the orders of magnitude given here. <b> Table 1 </b> product Amount (Nm 3 / h) Pressure (bar) oxygen 18,700 1.3 oxygen 44,750 31 argon 1,865 17th nitrogen 75,000 1.3

Das erfindungsgemäß vorgeschlagene Verfahren soll sich ferner insbesondere für die Verwendung von Einsatzluft eignen, die auf einem Druckniveau von ca. 6 bar bereitgestellt wird (beispielsweise aus einem vorhandenen Versorgungsnetz am Standort, einer sogenannten "Luftschiene"). Aus diesem Grund umfasst eine Luftzerlegungsanlage, wie sie gemäß einer Ausgestaltung der Erfindung vorgeschlagen wird, bzw. ein entsprechendes Verfahren, eine wie in einem Hauptverdichter/Nachverdichter-Verfahren übliche Verschaltung, bei der ferner eine Einblaseturbine (Lachmann-Turbine) vorgesehen ist. Wie nachfolgend erläutert, kann jedoch im Rahmen der vorliegenden Erfindung anstelle einer Einblase- bzw. Lachmann-Turbine auch eine zweite Turbine verwendet werden, die nach Art einer Claude-Turbine Luft in die Hochdruckkolonne entspannt. Zu den Begriffen "Claude-Turbine" und "Lachmann-Turbine" wird auf Fachliteratur, beispielsweise F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification, CRC Press, 2006 , insbesondere die Abschnitte 2.4, "Contemporary Liquefaction Cycles", 2.6, "Theoretical Analysis of the Claude Cycle" und 3.8.1, "The Lachmann Principle", verwiesen.The method proposed according to the invention should also be particularly suitable for the use of feed air which is provided at a pressure level of approx. 6 bar (for example from an existing supply network at the site, a so-called "air rail"). For this reason, an air separation plant as proposed according to an embodiment of the invention, or a corresponding method, comprises an interconnection as is customary in a main compressor / booster method, in which an injection turbine (Lachmann turbine) is also provided. As explained below, however, in the context of the present invention, instead of an injection or Lachmann turbine, a second turbine can also be used, which expands air into the high-pressure column in the manner of a Claude turbine. The terms "Claude-Turbine" and "Lachmann-Turbine" refer to specialist literature, for example FG Kerry, Industrial Gas Handbook: Gas Separation and Purification, CRC Press, 2006 , in particular Sections 2.4, "Contemporary Liquefaction Cycles", 2.6, "Theoretical Analysis of the Claude Cycle" and 3.8.1, "The Lachmann Principle".

Insgesamt schlägt die vorliegende Erfindung vor diesem Hintergrund ein Verfahren zur Herstellung eine oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte vor, bei dem in einer Luftzerlegungsanlage ein erster Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, und ein zweiter Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte verflüssigte Luft umfasst, gebildet werden, und bei dem der erste und der zweite Prozessstrom getrennt voneinander einer Entspannung auf ein Betriebsdruckniveau einer Hochdruckkolonne der Luftzerlegungsanlage unterworfen und teilweise oder vollständig in die Hochdruckkolonne eingespeist werden. Es versteht sich in diesem Zusammenhang jeweils, dass nach der Entspannung zu dem ersten und dem zweiten Prozessstrom jeweils noch weitere Stoffströme zugespeist und zusammen mit diesen in die Hochdruckkolonne eingespeist werden können. Ferner versteht sich, dass jeweils nicht der gesamte erste bzw. zweite Prozessstrom nach der Entspannung in die Hochdruckkolonne eingespeist werden muss.Overall, against this background, the present invention proposes a method for the production of one or more oxygen-rich, gaseous air products, in which in an air separation plant a first process stream, which comprises predominantly or exclusively pressurized non-liquefied air, and a second process stream, which predominantly or exclusively liquefies pressurized air Comprises air, are formed, and in which the first and the second process stream are separately subjected to an expansion to an operating pressure level of a high pressure column of the air separation plant and are partially or completely fed into the high pressure column. In this context it is understood that, after the expansion, further material flows can be fed to the first and the second process flow and can be fed into the high-pressure column together with these. Furthermore, it goes without saying that the entire first or second process stream does not have to be fed into the high-pressure column after the expansion.

Der erste Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, wird dabei insbesondere in einer Entspannungsturbine entspannt, wie auch nachfolgend noch im Detail erläutert. Es handelt sich damit um einen sogenannten Turbinenstrom, wie er auch in bekannten Verfahren der Luftzerlegung gebildet wird. Die zur Entspannung eines entsprechenden Turbinenstroms verwendete Entspannungsturbine ist eine typische Claude-Turbine. Der zweite Prozessstrom, der im Rahmen der vorliegenden Erfindung gebildet wird und überwiegend oder ausschließlich druckbeaufschlagte verflüssigte Luft umfasst, entspricht einem bekannten Drosselstrom, wie er auch im Stand der Technik gebildet wird. Zur Entspannung des zweiten Prozessstroms, also des Drosselstroms, kann im Rahmen der vorliegenden Erfindung beispielsweise ein Entspannungsventil verwendet werden; es kann jedoch auch beispielsweise eine sogenannte Flüssigturbine bzw. ein sogenannter Dichtfluid-Expander (Dense Liquid Expander, DLE), wie er aus dem Stand der Technik bekannt ist, zum Einsatz kommen. Vorteile von Flüssigturbinen sind im Stand der Technik umfangreich beschrieben, beispielsweise bei Häring (s.o.), Abschnitt 2.2.5.6, "Apparatus", Seite 48 und 49.The first process stream, which predominantly or exclusively comprises pressurized, non-liquefied air, is expanded in particular in an expansion turbine, as will also be explained in detail below. It is a so-called turbine flow, as it is also formed in known methods of air separation. The expansion turbine used to expand a corresponding turbine flow is a typical Claude turbine. The second process flow, which is formed within the scope of the present invention and comprises predominantly or exclusively pressurized liquefied air, corresponds to a known throttle flow, as it is also formed in the prior art. In the context of the present invention, for example, an expansion valve can be used to relax the second process flow, that is to say the throttle flow; however, it can also, for example, be a so-called liquid turbine or a So-called sealing fluid expander (Dense Liquid Expander, DLE), as it is known from the prior art, are used. Advantages of liquid turbines are extensively described in the prior art, for example in Häring (see above), Section 2.2.5.6, "Apparatus", pages 48 and 49.

Es versteht sich, dass der erste und der zweite Prozessstrom im Rahmen der vorliegenden Erfindung auf einem Druckniveau gebildet werden, das oberhalb des Betriebsdruckniveaus der Hochdruckkolonne liegt. Unter dem Betriebsdruckniveau der Hochdruckkolonne wird dabei im Rahmen der vorliegenden Erfindung insbesondere ein Druckniveau verstanden, wie es an einer Einspeisestelle des ersten bzw. zweiten Prozessstroms in die Hochdruckkolonne vorliegt, bzw. ein Druckbereich, der die Drücke an diesen Einspeisestellen umfasst. Es ist bekannt, dass Rektifikationskolonnen im Betrieb Druckgradienten aufweisen können. Daher bezeichnet, wie erwähnt, der Begriff des "Betriebsdruckniveaus" den Druck an der jeweiligen Einspeisestelle bzw. einen entsprechenden Druckbereich.It goes without saying that the first and the second process stream are formed within the scope of the present invention at a pressure level which is above the operating pressure level of the high pressure column. In the context of the present invention, the operating pressure level of the high pressure column is understood to mean, in particular, a pressure level as is present at a feed point of the first or second process stream into the high pressure column, or a pressure range which includes the pressures at these feed points. It is known that rectification columns can have pressure gradients during operation. Therefore, as mentioned, the term “operating pressure level” denotes the pressure at the respective feed point or a corresponding pressure range.

Erfindungsgemäß ist vorgesehen, dass zur Bildung des ersten und des zweiten Prozessstroms jeweils Luft verwendet wird, die als Teil einer Gesamtluftmenge auf einem ersten Druckniveau und einem ersten Temperaturniveau bereitgestellt wird, wobei die Gesamtluftmenge unter Verwendung eines Luftverdichters und eines Boosters, der parallel zu dem Luftverdichter angeordnet ist, auf das erste Druckniveau gebracht wird, und wobei der Booster mit einer bei der Entspannung eines dritten Prozessstroms verwendeten Entspannungsturbine gekoppelt ist und von dieser angetrieben wird. Der dritte Prozessstrom wird ebenfalls unter Verwendung eines Teils der Gesamtluftmenge gebildet, wie unten im Detail erläutert.According to the invention, it is provided that air is used to form the first and the second process flow, which is provided as part of a total amount of air at a first pressure level and a first temperature level, the total amount of air using an air compressor and a booster, which runs parallel to the air compressor is arranged, is brought to the first pressure level, and wherein the booster is coupled to an expansion turbine used in the expansion of a third process stream and is driven by this. The third process stream is also formed using part of the total amount of air, as explained in detail below.

Die Luft, die zur Bildung des ersten und des zweiten Prozessstroms verwendet wird, wird im Rahmen einer besonders bevorzugten Ausgestaltung der vorliegenden Erfindung, die nun vorab erläutert wird, nacheinander einer Abkühlung auf ein zweites Temperaturniveau, einer Verdichtung auf ein zweites Druckniveau, einer Abkühlung auf ein drittes Temperaturniveau und, unter Erhalt einer Flüssigphase und einer Gasphase, einer Phasentrennung unterworfen wird. Das erste Temperaturniveau liegt im Rahmen der vorliegenden Erfindung insbesondere oberhalb von 0 °C, beispielsweise bei Umgebungstemperatur, typischerweise in einem Bereich von 10 bis 50° C. Das zweite Temperaturniveau liegt im Rahmen der vorliegenden Erfindung insbesondere bei -120 is -150 °C; die Verdichtung auf das zweite Druckniveau erfolgt also ausgehend von einem entsprechend niedrigen Temperaturniveau. Ein für die Verdichtung auf das zweite Druckniveau verwendeter Verdichter bzw. Booster, welcher vorteilhafterweise mittels einer Entspannungsturbine angetrieben wird, die den ersten Prozessstrom auf das Betriebsdruckniveau der Hochdruckkolonne entspannt, ist daher ein sogenannter Kaltbooster, wie er einleitend bereits erläutert wurde.The air that is used to form the first and the second process stream is, in the context of a particularly preferred embodiment of the present invention, which will now be explained in advance, a cooling to a second temperature level, a compression to a second pressure level, a cooling to a third temperature level and, while maintaining a liquid phase and a gas phase, is subjected to a phase separation. In the context of the present invention, the first temperature level is in particular above 0 ° C., for example at ambient temperature, typically in a range from 10 to 50 ° C. The second temperature level is in the context of the present invention especially at -120 to -150 ° C; the compression to the second pressure level therefore takes place starting from a correspondingly low temperature level. A compressor or booster used for the compression to the second pressure level, which is advantageously driven by means of an expansion turbine, which expands the first process stream to the operating pressure level of the high pressure column, is therefore a so-called cold booster, as already explained in the introduction.

Das erste Druckniveau (stromauf des Kaltboosters) liegt im Rahmen der soeben angesprochenen Ausgestaltung der vorliegenden Erfindung insbesondere bei 7 bis 13 bar, das zweite Druckniveau (stromab des Kaltboosters), auf das die zur Bildung des ersten und des zweiten Prozessstroms verwendete Luft nach der Abkühlung auf das zweite Temperaturniveau verdichtet wird, bei insbesondere 11 bis 17 bar. Das dritte Temperaturniveau, auf das die zur Bildung des ersten und des zweiten Prozessstroms verwendete Luft in dieser Ausgestaltung nach der Verdichtung auf das zweite Druckniveau abgekühlt wird (nachdem sie sich zuvor durch die Verdichtung erwärmt hat) liegt insbesondere bei -140 bis -170 °C.The first pressure level (upstream of the cold booster) is within the scope of the embodiment of the present invention just mentioned, in particular 7 to 13 bar, the second pressure level (downstream of the cold booster) to which the air used to form the first and second process streams after cooling is compressed to the second temperature level, in particular at 11 to 17 bar. The third temperature level, to which the air used to form the first and the second process stream is cooled in this embodiment after compression to the second pressure level (after it has previously warmed up through compression) is in particular -140 to -170 ° C .

Im Rahmen der soeben angesprochenen Ausgestaltung der vorliegenden Erfindung ist vorgesehen, dass der erste Prozessstrom unter Verwendung zumindest eines Teils der Gasphase aus der erwähnten Phasentrennung gebildet wird, und dass der zweite Prozessstrom unter Verwendung zumindest eines Teils der Flüssigphase gebildet wird, die in der Phasentrennung gebildet wird. Insbesondere kann der erste Prozessstrom die gesamte Gasphase und/oder der zweite Prozessstrom die gesamte Flüssigphase umfassen, die jeweils in der Phasentrennung gebildet werden.In the context of the just mentioned embodiment of the present invention, it is provided that the first process stream is formed using at least part of the gas phase from the phase separation mentioned, and that the second process stream is formed using at least part of the liquid phase that is formed in the phase separation becomes. In particular, the first process stream can comprise the entire gas phase and / or the second process stream can comprise the entire liquid phase, which are each formed in the phase separation.

Der erste Prozessstrom wird in dieser Ausgestaltung der Erfindung der Entspannung auf das Druckniveau der Hochdruckkolonne auf dem zweiten Druckniveau und dem dritten Temperaturniveau zugeführt, und das zweite Druckniveau und das dritte Temperaturniveau werden im Rahmen der vorliegenden Erfindung insbesondere derart gewählt, dass sich bei der Entspannung des ersten Prozessstroms auf das Betriebsdruckniveau der Hochdruckkolonne ein Flüssiganteil von 5% bis 15%, bezogen auf den gesamten ersten Prozessstrom, bildet. Beispielsweise beträgt der Flüssiganteil im Rahmen der vorliegenden Erfindung ca. 10%.In this embodiment of the invention, the first process stream is supplied to the expansion to the pressure level of the high pressure column at the second pressure level and the third temperature level, and the second pressure level and the third temperature level are selected in the context of the present invention in particular such that the expansion of the first process stream to the operating pressure level of the high pressure column forms a liquid fraction of 5% to 15%, based on the entire first process stream. For example, the liquid content in the context of the present invention is approx. 10%.

Mit anderen Worten wird die für die Entspannung des ersten Prozessstroms verwendete Entspannungsturbine im Rahmen der erwähnten Ausgestaltung der vorliegenden Erfindung mit einem definierten (Tau-) Zustand am Turbineneintritt betrieben, die zu einem entsprechenden Flüssiganteil am Austritt der Turbine führt. Durch einen entsprechenden Betrieb kann das Verfahrenspotential optimal ausgeschöpft werden und es ergibt sich ein zuverlässiger Betrieb. Der erwähnte Flüssiganteil bezeichnet dabei insbesondere einen Anteil, der sich aus den jeweiligen Normvolumina der gebildeten Anteile berechnet.In other words, the expansion turbine used for the expansion of the first process stream is operated in the context of the mentioned embodiment of the present invention with a defined (dew) state at the turbine inlet, which leads to a corresponding liquid content at the turbine outlet. Corresponding operation allows the process potential to be optimally exploited and reliable operation results. The mentioned liquid portion in particular denotes a portion that is calculated from the respective standard volumes of the portions formed.

Der Betrieb der Entspannungsturbine zur Entspannung des ersten Prozessstroms ist dabei insbesondere im Zusammenhang mit einer verwendeten Einblaseturbine bzw. einer Entspannungsturbine, die einen weiteren Turbinenstrom entspannt, zu betrachten, wie nachfolgend erläutert.The operation of the expansion turbine for expansion of the first process flow is to be considered in particular in connection with an injection turbine used or an expansion turbine which relaxes a further turbine flow, as explained below.

Würde man das vorgeschlagene Verfahren konventionell, also mit üblicher Optimierung der Turbinen-Eintrittstemperaturen betrachten, so würde man feststellen, dass der Austrittszustand bei einer entsprechenden Einblaseturbine stark in die Vorverflüssigung geht, und der Eintrittszustand der zur Entspannung des ersten Prozessstroms verwendeten Turbine nur eine relativ geringe Überhitzung von ca. 2 bis 2,5 K gegenüber dem Taupunkt aufweist. Derartige Betriebszustände sind aus dem Blickwinkel der Betriebstechnik ungünstig, da zum einen zusätzliche Maßnahmen erforderlich wären, um die am Austritt der Einblaseturbine anfallende Flüssigkeit sicher mit in die Niederdruckkolonne zu befördern und zum anderen es zu einer Vorverflüssigung stromauf der zu Entspannung des ersten Prozessstroms verwendeten Entspannungsturbine kommen könnte. Bei einer derartigen Vorverflüssigung sind ggf. Schäden an den Eintrittsdüsen in eine entsprechende Entspannungsturbine sowie der Laufradoberfläche zu befürchten.If one were to look at the proposed method conventionally, i.e. with the usual optimization of the turbine inlet temperatures, one would find that the outlet state with a corresponding injection turbine goes heavily into pre-liquefaction, and the inlet state of the turbine used to expand the first process flow is only relatively low Has overheating of approx. 2 to 2.5 K compared to the dew point. Such operating states are unfavorable from the point of view of operating technology, since on the one hand additional measures would be required to safely convey the liquid occurring at the outlet of the injection turbine into the low-pressure column and, on the other hand, there is a pre-liquefaction upstream of the expansion turbine used to expand the first process stream could. With such a pre-liquefaction, damage to the inlet nozzles in a corresponding expansion turbine and the impeller surface may be feared.

Daher wird im Rahmen der erwähnten Ausgestaltung der vorliegenden Erfindung ferner vorgeschlagen, den Eintrittszustand eines entsprechenden Prozessstroms in die Einblaseturbine höher zu setzen bzw. derart zu wählen, dass keine Flüssigkeit an deren Austritt anfällt. Der Eintrittszustand in die zur Entspannung des ersten Prozessstroms verwendete Turbine wird im Gegenzug dazu niedriger gesetzt, so dass die aus Bilanzsicht "fehlende" Flüssigkeit von der Einblaseturbine praktisch bei der Entspannung des ersten Prozessstroms gebildet wird.Therefore, within the scope of the mentioned embodiment of the present invention, it is also proposed to set the entry state of a corresponding process flow into the injection turbine higher or to select it in such a way that no liquid occurs at its exit. The state of entry into the turbine used to relax the first process flow is set lower in return, so that the "missing" liquid from the blow-in turbine is practically formed when the first process flow is relaxed.

Ein wesentliches Merkmal der zuvor erläuterten Ausgestaltung der vorliegenden Erfindung besteht dabei darin, dass der Turbinenstrom, d.h. der erste Prozessstrom und der zweite Prozessstrom, also ein Drosselstrom, gemeinsam abgekühlt und vor dem Eintritt in die Turbine vorverflüssigt werden, wie zuvor erläutert. Die dabei anfallende Flüssigkeit wird in einem Abscheider abgeschieden und in Form des zweiten Prozessstroms insbesondere zurück in den Wärmetauscher zwecks Unterkühlung geleitet. Das Gas aus einem entsprechenden Abscheider wird in Form des ersten Prozessstroms direkt in die Turbine geführt, wie bereits zuvor mit anderen Worten beschrieben.An essential feature of the embodiment of the present invention explained above is that the turbine flow, i.e. the first process stream and the second process stream, that is to say a throttle stream, are cooled together and pre-liquefied before entering the turbine, as explained above. The resulting liquid is separated in a separator and in the form of the second process stream, in particular, is fed back into the heat exchanger for the purpose of subcooling. The gas from a corresponding separator is fed directly into the turbine in the form of the first process stream, as already described above in other words.

Lediglich zur Klarstellung sei nochmals zusammengefasst erwähnt, dass die zur Bereitstellung des ersten und des zweiten Prozessstroms verwendete Luft der Abkühlung auf das zweite Temperaturniveau auf dem ersten Druckniveau und dem ersten Temperaturniveau, der Verdichtung auf das zweite Druckniveau auf dem zweiten Temperaturniveau und dem ersten Druckniveau, die Abkühlung auf das dritte Temperaturniveau auf dem zweiten Druckniveau und einem Temperaturniveau unterhalb des zweiten Temperaturniveaus, und der Phasentrennung auf dem zweiten Druckniveau und dem dritten Temperaturniveau zugeführt wird.Merely for the sake of clarity, it should be mentioned again in summary that the air used to provide the first and the second process stream is cooled to the second temperature level at the first pressure level and the first temperature level, the compression to the second pressure level at the second temperature level and the first pressure level, the cooling to the third temperature level at the second pressure level and a temperature level below the second temperature level, and the phase separation is supplied to the second pressure level and the third temperature level.

In sämtlichen Fällen kann im Rahmen der vorliegenden Erfindung neben dem zweiten Prozessstrom auch ein weiterer Prozessstrom in einem Hauptwärmetauscher der Luftzerlegungsanlage verflüssigt und teilweise oder vollständig in die Hochdruckkolonne entspannt werden, und zwar insbesondere gemeinsam mit dem zweiten Prozessstrom, wobei eine Entspannung separat zu dem zweiten Prozessstrom oder gemeinsam mit diesem erfolgen kann.In all cases, in addition to the second process stream, a further process stream can also be liquefied in a main heat exchanger of the air separation plant and partially or completely expanded in the high-pressure column, in particular together with the second process stream, with expansion being separate from the second process stream or can be done together with this.

Wie bereits erläutert, wird im Rahmen der vorliegenden Erfindung vorteilhafterweise eine Einblaseturbine verwendet bzw. ein entsprechender Stoffstrom gebildet. Es kann aber auch ein zweiter Turbinenstrom bereitgestellt werden. Unter Verwendung eines entsprechenden Prozessstroms wird, wie erwähnt, ein Booster, der bei der Bereitstellung der Gesamtluftmenge auf dem ersten Druckniveau verwendet wird, angetrieben. Mit anderen Worten umfasst die vorliegende Erfindung, dass ein dritter Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, gebildet wird, wobei der dritte Prozessstrom einer Entspannung auf ein Betriebsdruckniveau einer Niederdruckkolonne der Luftzerlegungsanlage unterworfen und teilweise oder vollständig in die Niederdruckkolonne eingespeist werden kann, oder einer Entspannung auf das Betriebsdruckniveau der Hochdruckkolonne der Luftzerlegungsanlage unterworfen und teilweise oder vollständig in die Hochdruckkolonne eingespeist werden kann. Der dritte Prozessstrom wird der Entspannung insbesondere auf einem Temperaturniveau zugeführt, das mehr als 10 K oberhalb des dritten Temperaturniveaus liegt und sich um weniger als 10 K von dem zweiten Temperaturniveau unterscheidet.As already explained, an injection turbine is advantageously used within the scope of the present invention or a corresponding material flow is formed. However, a second turbine flow can also be provided. Using a corresponding process flow, as mentioned, a booster, which is used to provide the total amount of air at the first pressure level, is driven. In other words, the present invention comprises that a third process stream, which comprises predominantly or exclusively pressurized, non-liquefied air, is formed, the third process stream being expanded upon Operating pressure level of a low pressure column of the air separation plant and can be partially or fully fed into the low pressure column, or subjected to an expansion to the operating pressure level of the high pressure column of the air separation plant and can be partially or completely fed into the high pressure column. The third process stream is fed to the expansion, in particular at a temperature level that is more than 10 K above the third temperature level and differs by less than 10 K from the second temperature level.

Wie bereits erwähnt, wird die Entspannung eines derartigen dritten Prozessstroms im Rahmen der vorliegenden Erfindung insbesondere derart durchgeführt, dass sich am Austritt einer für diese Entspannung verwendete Entspannungsturbine kein bzw. kein nennenswerter Flüssigkeitsanteil bildet. Dieser Flüssigkeitsanteil, der aus Bilanzgründen erforderlich ist, wird im Rahmen der vorliegenden Erfindung stattdessen, wie zuvor bereits erwähnt, insbesondere in der für die Entspannung des ersten Prozessstroms verwendeten Entspannungsturbine gebildet.As already mentioned, the expansion of such a third process stream is carried out in the context of the present invention in particular in such a way that no or no significant portion of liquid is formed at the outlet of an expansion turbine used for this expansion. This liquid portion, which is necessary for balance reasons, is instead, as already mentioned above, formed in the context of the present invention in particular in the expansion turbine used for expanding the first process flow.

Im Rahmen der vorliegenden Erfindung wird auch zur Bildung des dritten Prozessstroms Luft verwendet, die als Teil der Gesamtluftmenge auf dem ersten Druckniveau und dem ersten Temperaturniveau bereitgestellt wird. Diese Luft wird sodann insbesondere einer Abkühlung auf ein viertes Temperaturniveau unterworfen. Das vierte Temperaturniveau kann insbesondere bei -120 bis -150 °C liegen. Es wird, in Kombination mit dem verwendeten Druck, also dem ersten Druckniveau, derart gewählt, dass sich die erläuterten Austrittsbedingungen an einer zur Entspannung des dritten Prozessstroms verwendeten Turbine einstellen.In the context of the present invention, air is also used to form the third process flow, which air is provided as part of the total amount of air at the first pressure level and the first temperature level. This air is then particularly subjected to cooling to a fourth temperature level. The fourth temperature level can in particular be between -120 and -150 ° C. In combination with the pressure used, that is to say the first pressure level, it is selected in such a way that the outlet conditions explained are set at a turbine used to expand the third process flow.

Im Rahmen der vorliegenden Erfindung ist die auf dem ersten Druckniveau bereitgestellte Luft, die zur Bildung des ersten und des zweiten Prozessstroms verwendet wird, wie erwähnt, ein Teil einer Gesamtluftmenge, die unter Verwendung eines Luftverdichters und eines Boosters, der parallel zu dem Luftverdichter angeordnet ist, auf das erste Druckniveau gebracht wird. Auch die Luft, die zur Bildung des dritten Prozessstroms verwendet wird, ist Teil dieser Gesamtluftmenge. Der Booster wird dabei mit einer bei der Entspannung des dritten Prozessstroms verwendeten Entspannungsmaschine gekoppelt und wird mittels dieser Entspannungsmaschine angetrieben. Der Antrieb des Boosters kann ausschließlich oder zum Teil unter Verwendung dieser Entspannungsmaschine erfolgen, mit anderen Worten kann auch beispielsweise ein zusätzlicher motorischer Antrieb eingesetzt werden. Die Kopplung kann auch unter Zwischenschaltung einer Bremse erfolgen, so dass nicht die gesamte Antriebsleistung, die bei der Entspannung des dritten Prozessstroms frei wird, zum Antreiben des Boosters verwendet wird. Insbesondere kann der Luftverdichter ausschließlich mittels externer Energie, d.h. ohne Verwendung von Leistung, die bei der Entspannung eines Prozessstroms der Luftzerlegungsanlage frei wird, und der Booster ausschließlich durch Entspannung eines entsprechenden Prozessstroms angetrieben werden.In the context of the present invention, the air provided at the first pressure level, which is used to form the first and the second process flow, is, as mentioned, part of a total amount of air that is generated using an air compressor and a booster which is arranged in parallel with the air compressor , is brought to the first pressure level. The air that is used to form the third process flow is also part of this total air volume. The booster is coupled to an expansion machine used in the expansion of the third process stream and is driven by means of this expansion machine. The drive of the booster can only or in part using this expansion machine, in other words, an additional motor drive can also be used, for example. The coupling can also take place with the interposition of a brake, so that not all of the drive power that is released when the third process stream is released is used to drive the booster. In particular, the air compressor can be driven exclusively by means of external energy, ie without the use of power that is released when a process flow of the air separation plant is expanded, and the booster can be driven exclusively by expansion of a corresponding process flow.

Es sei nochmals klargestellt, dass im Rahmen der vorliegenden Erfindung stets ein erster Anteil der Gesamtluftmenge durch den Luftverdichter und nicht durch den Booster geführt wird, und dass ein zweiter Anteil der Gesamtluftmenge durch den Booster und nicht durch den Luftverdichter geführt wird. Unter Verwendung der Gesamtluftmenge werden der erste, der zweite und der dritte Prozessstrom gebildet; es kann jedoch insbesondere auch noch ein weiterer Prozessstrom in Form eines weiteren Drosselstroms gebildet werden, dessen Luft in einem Hauptwärmetauscher der Luftzerlegungsanlage abgekühlt, verflüssigt und in die Hochdruckkolonne eingespeist werden kann. Zu weiteren Details sei auf die eingangs erläuterte Fachliteratur verwiesen.It should be made clear again that within the scope of the present invention, a first portion of the total amount of air is always passed through the air compressor and not through the booster, and that a second portion of the total amount of air is passed through the booster and not through the air compressor. Using the total amount of air, the first, second and third process streams are formed; however, in particular another process stream can also be formed in the form of a further throttle stream, the air of which can be cooled in a main heat exchanger of the air separation plant, liquefied and fed into the high pressure column. For further details, reference is made to the specialist literature explained at the beginning.

Vorteilhafterweise umfasst der zweite Anteil der Gesamtluftmenge 5% bis 25% der Gesamtluftmenge und der erste Anteil der Gesamtluftmenge umfasst insbesondere den Rest der Gesamtluftmenge. Auch diese Anteile sind jeweils auf Normvolumenströme bezogen. Der erste Anteil kann dabei im Rahmen der vorliegenden Erfindung im ausgewerteten Fall insbesondere 13% bis 17% der Gesamtluftmenge umfassen. Durch die Verdichtung dieses Anteils der Gesamtluftmenge in einem Booster kann im Rahmen der vorliegenden Erfindung eine Kostenreduzierung für den Luftverdichter erzielt werden. Der Luftverdichter kann auf diese Weise insbesondere einstufig ausgeführt werden. Er kann insbesondere mit Luft versorgt werden, welche aus einem Luftversorgungsnetz stammt, und welche in diesem Luftversorgungsnetz bereits auf ein bestimmtes Druckniveau verdichtet ist. Jedoch kann der Luftverdichter auch, beispielsweise als Verdichterstufe, weiteren Verdichterstufen nachgeschaltet sein.The second portion of the total amount of air advantageously comprises 5% to 25% of the total amount of air and the first portion of the total amount of air comprises in particular the remainder of the total amount of air. These proportions are also based on standard volume flows. In the context of the present invention, in the evaluated case, the first portion can in particular comprise 13% to 17% of the total air volume. By compressing this portion of the total amount of air in a booster, a cost reduction for the air compressor can be achieved within the scope of the present invention. The air compressor can in particular be designed in one stage in this way. In particular, it can be supplied with air which comes from an air supply network and which is already compressed to a certain pressure level in this air supply network. However, the air compressor can also be connected downstream of further compressor stages, for example as a compressor stage.

Insbesondere sei betont, dass im Rahmen der vorliegenden Erfindung der Booster nicht zur Verdichtung einer bereits einer Aufreinigung unterzogenen Luftmenge verwendet wird. Vielmehr wird der Booster im Rahmen der vorliegenden Erfindung insbesondere stromauf eines entsprechenden Reinigungssystems eingesetzt. Mit anderen Worten wird gemäß einer besonders bevorzugten Ausgestaltung die Gesamtluftmenge unter Verwendung des Luftverdichters und des Boosters in wasserhaltigem Zustand verdichtet und danach, d.h. nach der Verdichtung, vorgekühlt und getrocknet. Wie bereits erwähnt, kann die Gesamtluftmenge dem Luftverdichter und dem Booster auf einem überatmosphärischen Druckniveau zugeführt werden. Die Gesamtluftmenge kann anlagenextern auf diesen überatmosphärischen Ausgangsdruckniveau bereitgestellt oder in der Luftzerlegungsanlage auf dieses Ausgangsdruckniveau verdichtet werden.In particular, it should be emphasized that within the scope of the present invention, the booster is not used to compress an amount of air that has already been purified. Rather, within the scope of the present invention, the booster is used in particular upstream of a corresponding cleaning system. In other words, according to a particularly preferred embodiment, the total amount of air is compressed using the air compressor and the booster in the water-containing state and then, i. after compaction, pre-cooled and dried. As already mentioned, the total amount of air can be fed to the air compressor and the booster at a pressure level above atmospheric. The total amount of air can be provided externally to this above-atmospheric output pressure level or compressed to this output pressure level in the air separation plant.

Wie mehrfach erläutert, kann die vorliegende Erfindung insbesondere in Luftzerlegungsverfahren zum Einsatz kommen, im Rahmen derer keine oder nur ausgesprochen geringe Mengen an flüssigen Luftprodukten gebildet werden. Mit anderen Worten umfasst die vorliegende Erfindung gemäß einer besonders bevorzugten Ausführungsform, dass eine maximal 2% der Gesamtluftmenge entsprechende Menge eines oder mehrerer Luftprodukte flüssig aus der Luftzerlegungsanlage ausgeleitet wird. Die Ausleitung kann ferner kontinuierlich oder nur zeitweise erfolgen. Die Maximalmenge kann insbesondere auch 1.5%, 1% oder 0,5% betragen.As explained several times, the present invention can be used in particular in air separation processes in which no or only extremely small amounts of liquid air products are formed. In other words, according to a particularly preferred embodiment, the present invention comprises that an amount of one or more air products corresponding to a maximum of 2% of the total amount of air is discharged in liquid form from the air separation plant. The diversion can also take place continuously or only temporarily. The maximum amount can in particular also be 1.5%, 1% or 0.5%.

Im Rahmen der vorliegenden Erfindung werden insbesondere zwei oder mehr als zwei sauerstoffreiche, gasförmige Luftprodukte bereitgestellt. Ein erstes dieser sauerstoffreichen, gasförmigen Luftprodukte kann dabei durch Innenverdichtung bereitgestellt werden, wie zuvor mehrfach erläutert. Hierzu wird typischerweise der Niederdruckkolonne sauerstoffreiche Flüssigkeit entnommen, unter Verwendung einer Innenverdichtungspumpe druckerhöht und unter dem Druck, auf den sie mittels der Innnenverdichtungspumpe druckerhöht wurde, in einem Hauptwärmetauscher der Luftzerlegungsanlage in den gasförmigen oder überkritischen Zustand überführt. Ein zweites dieser sauerstoffreichen, gasförmigen Luftprodukte wird im Rahmen der vorliegenden Erfindung insbesondere ohne Druckerhöhung gasförmig aus der Niederdruckkolonne entnommen.In the context of the present invention, in particular two or more than two oxygen-rich, gaseous air products are provided. A first of these oxygen-rich, gaseous air products can be provided by internal compression, as explained several times above. For this purpose, oxygen-rich liquid is typically withdrawn from the low-pressure column, increased in pressure using an internal compression pump and converted into the gaseous or supercritical state in a main heat exchanger of the air separation plant under the pressure to which it was pressure increased by means of the internal compression pump. A second of these oxygen-rich, gaseous air products is withdrawn in gaseous form from the low-pressure column in the context of the present invention, in particular without increasing the pressure.

Die vorliegende Erfindung bezieht sich ferner auf eine Luftzerlegungsanlage zur Bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte. Zu den Merkmalen der erfindungsgemäß vorgeschlagenen Luftzerlegungsanlage sei auf den entsprechenden unabhängigen Patentanspruch ausdrücklich verwiesen. Eine entsprechende Luftzerlegungsanlage profitiert von den zuvor bezüglich des erfindungsgemäßen Verfahrens und seiner bevorzugten Ausgestaltungen erläuterten Vorteilen, auf die daher ausdrücklich verwiesen wird. Insbesondere ist eine derartige Luftzerlegungsanlage dafür eingerichtet, ein Verfahren gemäß einer der zuvor erläuterten Ausgestaltungen durchzuführen, und weist hierzu eingerichtete Mittel auf.The present invention also relates to an air separation plant for providing one or more oxygen-rich, gaseous air products. Regarding the features of the air separation plant proposed according to the invention, express reference is made to the corresponding independent patent claim. A corresponding air separation plant benefits from the advantages explained above with regard to the method according to the invention and its preferred configurations, to which reference is therefore expressly made. In particular, such an air separation plant is set up to carry out a method according to one of the configurations explained above, and has means set up for this purpose.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, welche bevorzugte Ausgestaltungen der vorliegenden Erfindung veranschaulichen.The invention is explained in more detail below with reference to the accompanying drawings, which illustrate preferred embodiments of the present invention.

Kurze Beschreibung der Zeichnungen

  • Figur 1 veranschaulicht eine Luftzerlegungsanlage gemäß einer besonders bevorzugten Ausführungsform der Erfindung.
  • Figur 2 veranschaulicht eine Luftzerlegungsanlage gemäß einer besonders bevorzugten Ausführungsform der Erfindung.
  • Figur 3 veranschaulicht eine Luftzerlegungsanlage gemäß einer besonders bevorzugten Ausführungsform der Erfindung.
Brief description of the drawings
  • Figure 1 illustrates an air separation plant according to a particularly preferred embodiment of the invention.
  • Figure 2 illustrates an air separation plant according to a particularly preferred embodiment of the invention.
  • Figure 3 illustrates an air separation plant according to a particularly preferred embodiment of the invention.

In den Figuren sind einander baulich oder funktionell entsprechende Elemente mit identischen Bezugszeichen veranschaulicht und werden der Übersichtlichkeit halber nicht wiederholt erläutert.In the figures, structurally or functionally corresponding elements are illustrated with identical reference symbols and are not explained repeatedly for the sake of clarity.

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

In den Figuren 1 bis 3 sind jeweils mit 100, 200 und 300 bezeichnete Luftzerlegungsanlagen gemäß bevorzugter Ausführungsformen der Erfindung veranschaulicht. Die Luftzerlegungsanlagen 100, 200 und 300 weisen dabei eine Reihe identisch ausgebildeter Komponenten auf, können in der Praxis jedoch auch baulich voneinander abweichen. Nachfolgend wird zunächst die Luftzerlegungsanlage 100 gemäß Figur 1 erläutert; bezüglich der in den Figuren 2 und 3 veranschaulichten Luftzerlegungsanlagen 200 und 300 werden nachfolgend nur die unterscheidenden Merkmale thematisiert.In the Figures 1 to 3 Air separation plants according to preferred embodiments of the invention are illustrated, respectively labeled 100, 200 and 300. The air separation plants 100, 200 and 300 have a number of identically designed components, but in practice they can also be structurally designed differ from each other. The air separation plant 100 according to FIG Figure 1 explained; regarding the in the Figures 2 and 3 air separation plants 200 and 300 illustrated below, only the distinguishing features are discussed.

In der in Figur 1 veranschaulichten Luftzerlegungsanlage 100 wird Luft A, die bereits außerhalb der Anlage 100 druckbeaufschlagt wurde, in Form eines Einsatzluftstroms a bereitgestellt. Diese Luft kann beispielsweise aus einem Versorgungsnetz stammen und beispielsweise auf einem Druck von ca. 6 bar vorliegen. Abweichend zu der Darstellung gemäß Figur 1 kann die Luft A jedoch auch innerhalb der Luftzerlegungsanlage 100 auf Druck gebracht werden.In the in Figure 1 Air A, which has already been pressurized outside the system 100, is provided in the form of a feed air flow a in the air separation plant 100 illustrated. This air can, for example, come from a supply network and, for example, be at a pressure of approx. 6 bar. Deviating from the representation according to Figure 1 However, the air A can also be pressurized within the air separation plant 100.

Die Einsatzluft A des Einsatzluftstroms a wird nach einer (in bestimmten Fällen erforderlichen) Vorkühlung in einem nicht gesondert bezeichneten Wärmetauscher in zwei Teilströme b und c aufgeteilt, wobei der Teilstrom b in einem Luftverdichter 101 und der Teilstrom c in einem Booster 102 verdichtet werden. Im hier verwendeten Sprachgebrauch wird ein Druckniveau stromauf des Luftverdichters 101 und des Boosters 102 als "Ausgangsdruckniveau", ein Druckniveau stromab des Luftverdichters 101 und des Boosters 102 hingegen als "erstes Druckniveau" bezeichnet. Der Luftverdichter 101 ist vorzugsweise einstufig ausgeführt. Wie zuvor erläutert, wird der überwiegende Anteil der Einsatzluft A in Form des Stoffstroms b in dem Luftverdichter 101, ein kleinerer Anteil jedoch parallel dazu in dem Booster 102 verdichtet.The feed air A of the feed air flow a is divided into two partial flows b and c after precooling (required in certain cases) in a heat exchanger (not specifically designated), the partial flow b being compressed in an air compressor 101 and the partial flow c in a booster 102. In the parlance used here, a pressure level upstream of the air compressor 101 and the booster 102 is referred to as the “initial pressure level”, while a pressure level downstream of the air compressor 101 and the booster 102 is referred to as the “first pressure level”. The air compressor 101 is preferably designed in one stage. As explained above, the predominant portion of the feed air A is compressed in the form of the material flow b in the air compressor 101, but a smaller portion is compressed in the booster 102 in parallel.

Nach der Verdichtung werden die Teilströme b und c im dargestellten Beispiel zu einem Sammelstrom d vereinigt, welcher in grundsätzlich bekannter Weise in einer Vorkühleinrichtung 103 unter Verwendung von Kühlwasser (Vorlauf B, Rücklauf C) gekühlt wird. Der gekühlte Einsatzluftstrom wird weiterhin mit d bezeichnet und anschließend einer Reinigungseinrichtung 104, beispielsweise umfassend ein Paar im Wechselbetrieb betriebener Adsorberbehälter, zugeführt.After the compression, the partial flows b and c are combined in the example shown to form a collective flow d, which is cooled in a basically known manner in a pre-cooling device 103 using cooling water (flow B, return C). The cooled feed air flow is further designated by d and then fed to a cleaning device 104, for example comprising a pair of adsorber containers operated in alternation.

Der entsprechend von Wasser und Kohlendioxid befreite Stoffstrom, der hier jedoch weiterhin mit d bezeichnet wird, wird in mehrere Teilströme aufgeteilt. Ein Teilstrom e wird dabei (auf dem ersten Druckniveau und einem hier als "erstes Temperaturniveau" bezeichneten Temperaturniveau) einem Hauptwärmetauscher 105 der Luftzerlegungsanlage 100 zugeführt. Der Teilstrom e wird dem Hauptwärmetauscher 105 auf einem Temperaturniveau entnommen, das hier als "zweites Temperaturniveau" bezeichnet wird. Der Teilstrom e liegt dabei zunächst noch auf dem ersten Druckniveau vor. Der Teilstrom e wird auf dem ersten Druckniveau und dem zweiten Temperaturniveau einer Verdichtung in einem Kaltbooster 106 unterworfen. Er wird hierdurch auf ein höheres Druckniveau gebracht, das hier als "zweites Druckniveau" bezeichnet wird.The stream of material which has been freed from water and carbon dioxide, but which is still referred to here as d, is divided into several substreams. A substream e is fed to a main heat exchanger 105 of the air separation plant 100 (at the first pressure level and a temperature level referred to here as the “first temperature level”). The partial flow e is the main heat exchanger 105 taken at a temperature level, which is referred to here as the "second temperature level". The partial flow e is initially still at the first pressure level. The partial flow e is subjected to compression in a cold booster 106 at the first pressure level and the second temperature level. This brings it to a higher pressure level, which is referred to here as the "second pressure level".

Die Temperatur des Teilstroms e erhöht sich durch die Verdichtung aufgrund der eingebrachten Verdichtungswärme, so dass der Teilstrom e dem Hauptwärmetauscher 105 auf einem Zwischentemperaturniveau oberhalb des zweiten Temperaturniveaus wieder zugeführt wird. Der Teilstrom e wird sodann in dem Hauptwärmetauscher 105 weiter abgekühlt, und zwar auf ein Temperaturniveau, das hier als "drittes Temperaturniveau" bezeichnet wird. Auf dem zweiten Druckniveau und dem durch die Abkühlung erhaltenen dritten Temperaturniveau wird der Teilstrom e sodann in einen Abscheider 107 eingespeist und einer Phasentrennung unterworfen.The temperature of the partial flow e increases due to the compression due to the heat of compression introduced, so that the partial flow e is fed back to the main heat exchanger 105 at an intermediate temperature level above the second temperature level. The partial flow e is then further cooled in the main heat exchanger 105, specifically to a temperature level which is referred to here as the “third temperature level”. At the second pressure level and the third temperature level obtained by the cooling, the substream e is then fed into a separator 107 and subjected to a phase separation.

Aus dem Abscheider 107 werden im hier dargestellten Beispiel eine Gasphase in Form eines Stoffstroms f und eine Flüssigphase in Form eines Stoffstroms g abgezogen. Der Stoffstrom f wird hier als "erster Prozessstrom" bezeichnet, der Stoffstrom g entsprechend als "zweiter Prozessstrom". Der erste Prozessstrom umfasst durch die zuvor erläuterte Behandlung unverflüssigte, druckbeaufschlagte Luft, der zweite Prozessstrom g druckbeaufschlagte und verflüssigte Luft.In the example shown here, a gas phase in the form of a material flow f and a liquid phase in the form of a material flow g are withdrawn from the separator 107. The material flow f is referred to here as the “first process flow”, and the material flow g is correspondingly referred to as the “second process flow”. The first process stream comprises non-liquefied, pressurized air as a result of the treatment explained above, and the second process stream g comprises pressurized and liquefied air.

Der erste Prozessstrom f wird in einer Entspannungsturbine 108 entspannt und in eine Hochdruckkolonne 111 der Luftzerlegungsanlage 100 eingespeist. Die Entspannungsturbine 108 wird dabei, wie mehrfach erläutert, derart betrieben, dass sich an ihrem Austritt ein Flüssiganteil in definiertem Umfang wie zuvor erläutert bildet. Die Entspannung in der Entspannungsturbine 108 erfolgt dabei auf ein Betriebsdruckniveau der Hochdruckkolonne 111 bzw. ein in der Hochdruckkolonne 111 an der Einspeisestelle vorliegendes Druckniveau.The first process stream f is expanded in an expansion turbine 108 and fed into a high pressure column 111 of the air separation plant 100. The expansion turbine 108 is operated, as explained several times, in such a way that a liquid portion forms at its outlet to a defined extent as explained above. The expansion in the expansion turbine 108 takes place to an operating pressure level of the high pressure column 111 or a pressure level present in the high pressure column 111 at the feed point.

Der zweite Prozessstrom g wird in dem in Figur 1 veranschaulichten Beispiel erneut dem Hauptwärmetauscher 105 zugeführt und diesem am kalten Ende entnommen. Der zweite Prozessstrom g wird mit einem Teilstrom h des Stoffstroms d, der vom warmen bis zum kalten Ende durch den Hauptwärmetauscher 105 geführt und hierdurch verflüssigt wurde, vereinigt, nachdem der zweite Prozessstrom g und der Teilstrom h jeweils in entsprechenden Entspannungseinrichtungen, beispielsweise Entspannungsventilen, die hier nicht gesondert bezeichnet sind, entspannt wurden. Die Entspannung erfolgt ebenfalls auf ein Druckniveau der Hochdruckkolonne 111 bzw. ein Druckniveau, das an einer Einspeisestelle in die Hochdruckkolonne 111 vorliegt. Ein aus dem zweiten Prozessstrom g und dem Teilstrom h gebildeter Stoffstrom ist als Sammelstrom mit dem Bezugszeichen i bezeichnet.The second process stream g is in the in Figure 1 illustrated example again supplied to the main heat exchanger 105 and removed from this at the cold end. The second process stream g is passed through the main heat exchanger 105 with a partial stream h of the material stream d, which passes from the warm to the cold end and through this was liquefied, combined after the second process stream g and the substream h were each expanded in corresponding expansion devices, for example expansion valves, which are not separately designated here. The expansion also takes place to a pressure level in the high pressure column 111 or a pressure level which is present at a feed point into the high pressure column 111. A material flow formed from the second process flow g and the substream h is designated as a collective flow with the reference symbol i.

In der Luftzerlegungsanlage 100 gemäß Figur 1 wird ferner in eine Niederdruckkolonne 112 der Luftzerlegungsanlage 100 Luft eingeblasen, wozu eine grundsätzlich bekannte Lachmann-Turbine 109 zum Einsatz kommt. Die Lachmann-Turbine 109 ist eine Entspannungsturbine, die in der in Figur 1 veranschaulichten Ausgestaltung der Luftzerlegungsanlage 100 mit dem bereits zuvor erläuterten Booster 102 mechanisch gekoppelt ist. Die in der Entspannungsturbine 109 entspannte Luft, ist ein Teilstrom k des Stoffstroms d, der zuvor in dem Hauptwärmetauscher 105 auf ein Zwischentemperaturniveau abgekühlt wurde (hier als "viertes Temperaturniveau" bezeichnet). Die in der Entspannungsturbine 109 entspannte Luft des Teilstroms k wird (siehe Verknüpfung 2) in die Niederdruckkolonne 112 eingespeist, wie bereits erwähnt.In the air separation plant 100 according to Figure 1 air is also blown into a low-pressure column 112 of the air separation plant 100, for which a basically known Lachmann turbine 109 is used. The Lachmann turbine 109 is an expansion turbine that is used in the in Figure 1 illustrated embodiment of the air separation plant 100 is mechanically coupled to the booster 102 already explained above. The air expanded in the expansion turbine 109 is a partial flow k of the material flow d, which was previously cooled to an intermediate temperature level in the main heat exchanger 105 (referred to here as the “fourth temperature level”). The air of substream k expanded in expansion turbine 109 is fed (see link 2) into low-pressure column 112, as already mentioned.

Die Luftzerlegungsanlage 100 weist im dargestellten Beispiel neben der Hochdruckkolonne 111 und der Niederdruckkolonne 112 in einem Rektifikationskolonnensystem, das insgesamt mit 110 bezeichnet ist, eine Rohargonkolonne 113 und Reinargonkolonne 114 auf. Der Betrieb des Rektifikationskolonnensystems 110 ist aus dem Stand der Technik bekannt.In the example shown, the air separation plant 100 has a crude argon column 113 and pure argon column 114 in addition to the high pressure column 111 and the low pressure column 112 in a rectification column system, which is designated as a whole by 110. Operation of the rectification column system 110 is known in the art.

Luftzerlegungsanlagen der gezeigten Art sind vielfach an anderer Stelle beschrieben, beispielsweise bei Häring (s.o.) zu Figur 2.3A. Für detaillierte Erläuterungen zu Aufbau und Funktionsweise sei daher auf entsprechende Fachliteratur verwiesen. Eine Luftzerlegungsanlage zum Einsatz der vorliegenden Erfindung kann auf unterschiedlichste Weise ausgebildet sein.Air separation plants of the type shown are often described elsewhere, for example at Häring (see above) Figure 2 .3A. For detailed explanations of the structure and mode of operation, reference is therefore made to the corresponding specialist literature. An air separation plant for using the present invention can be designed in the most varied of ways.

Im dargestellten Beispiel erfolgt die Bereitstellung zweier gasförmiger sauerstoffreicher Luftprodukte auf unterschiedlichen Druckniveaus. Zur Bereitstellung eines gasförmigen, sauerstoffreichen Luftprodukts auf knapp über atmosphärischem Druckniveau, d.h. dem Druckniveau, auf dem die Niederdruckkolonne 112 betrieben wird, wird der Niederdruckkolonne 112 oberhalb ihres Sumpfs gasförmiges Fluid in Form eines Stoffstroms I entnommen, welcher ohne weitere druckbeeinflussenden Maßnahmen in dem Hauptwärmetauscher 105 erwärmt und als entsprechendes Luftprodukt, das hier ergänzend mit D bezeichnet ist, bereitgestellt wird.In the example shown, two gaseous oxygen-rich air products are provided at different pressure levels. To provide a gaseous, oxygen-rich air product at just above atmospheric pressure level, ie the pressure level at which the low-pressure column 112 is operated is, gaseous fluid is withdrawn from the low-pressure column 112 above its bottom in the form of a stream I, which is heated in the main heat exchanger 105 without further pressure-influencing measures and is provided as a corresponding air product, which is additionally denoted by D here.

Zur Bereitstellung des druckbeaufschlagten, sauerstoffreichen, gasförmigen Luftprodukts wird Sumpfflüssigkeit der Niederdruckkolonne 112 in Form eines Stoffstroms m entnommen, welcher im dargestellten Beispiel zu einem Anteil auch als Flüssigsauerstoff, hier ergänzend mit K bezeichnet, in Form eines Stoffstroms n aus der Luftzerlegungsanlage 100 ausgeführt werden kann. Dies ist vorzugsweise im Rahmen der vorliegenden Erfindung nicht oder nur in geringem Umfang der Fall. Zur Bereitstellung des druckbeaufschlagten, sauerstoffreichen, gasförmigen Luftprodukts wird der verbleibende Rest hiervon unter Verwendung einer Innenverdichtungspumpe 115 auf ein höheres Druckniveau, hier als "Abgabedruckniveau" bezeichnet, gebracht, in dem Hauptwärmetauscher 105 in den gasförmigen oder, je nach Druckniveau, überkritischen Zustand überführt und in Form eines Stoffstroms o als entsprechendes Luftprodukt, das hier ergänzend mit E bezeichnet, ausgeführt.To provide the pressurized, oxygen-rich, gaseous air product, bottom liquid is withdrawn from the low-pressure column 112 in the form of a material flow m, which in the example shown can also be carried out in part as liquid oxygen, here additionally designated with K, in the form of a material flow n from the air separation plant 100 . This is preferably not the case or only to a small extent within the scope of the present invention. To provide the pressurized, oxygen-rich, gaseous air product, the remainder of this is brought to a higher pressure level, referred to here as the "discharge pressure level", using an internal compression pump 115, and transferred in the main heat exchanger 105 to the gaseous or, depending on the pressure level, supercritical state in the form of a material flow o as a corresponding air product, which is also designated here with E.

In der in Figur 1 dargestellten Luftzerlegungsanlage 100 wird ferner druckbeaufschlagtes, gasförmiges, argonreiches Fluid als Luftprodukt F bereitgestellt. Hierzu wird der Reinargonkolonne 114 Flüssigkeit in Form eines Stoffstroms p entnommen und, vergleichbar wie der Stoffstrom o, in einer Innenverdichtungspumpe 116 auf ein höheres Druckniveau gebracht, in dem Hauptwärmetauscher 105 einem gasförmigen oder überkritischen Zustand überführt und in Form des entsprechenden Luftprodukts F bereitgestellt.In the in Figure 1 In addition, pressurized, gaseous, argon-rich fluid is provided as air product F as shown in the air separation plant 100 shown. For this purpose, liquid is withdrawn from the pure argon column 114 in the form of a material flow p and, comparable to the material flow o, is brought to a higher pressure level in an internal compression pump 116, converted to a gaseous or supercritical state in the main heat exchanger 105 and provided in the form of the corresponding air product F.

Wie insoweit aus dem Bereich der Luftzerlegung bekannt, können mittels der Luftzerlegungsanlage 100 auch Niederdruckstickstoff in Form eines Luftprodukts G, Stickstoff vom Kopf der Hochdruckkolonne 111 in Form eines Luftprodukts H und Unreinstickstoff vom Kopf der Niederdruckkolonne 112 in Form eines Luftprodukts I bereitgestellt werden. Weiterer Unreinstickstoff kann in Form eines Stoffstroms r der Niederdruckkolonne 112 entnommen und beispielsweise als Regeneriergas in der Reinigungseinrichtung 104 bzw. in der Vorkühleinrichtung 103 verwendet und anschließend an die Atmosphäre X abgeblasen werden. Durch Ausschleusen von Flüssigkeit kann theoretisch, aber bevorzugt nicht im Rahmen der vorliegenden Erfindung, ein Flüssigstickstoffprodukt L bereitgestellt werden.As is known in the field of air separation, the air separation plant 100 can also be used to provide low-pressure nitrogen in the form of an air product G, nitrogen from the top of the high-pressure column 111 in the form of an air product H and impure nitrogen from the top of the low-pressure column 112 in the form of an air product I. Further impure nitrogen can be withdrawn from the low-pressure column 112 in the form of a stream r and used, for example, as a regeneration gas in the cleaning device 104 or in the pre-cooling device 103 and then blown off to the atmosphere X. By discharging Liquid can theoretically, but preferably not within the scope of the present invention, a liquid nitrogen product L be provided.

Die Luftzerlegungsanlage 200 gemäß Figur 2 unterscheidet sich von Luftzerlegungsanlage 100 gemäß Figur 1 insbesondere dadurch, dass der zweite Prozessstrom g vor seiner Entspannung und der Einspeisung in die Niederdruckkolonne nicht in dem Hauptwärmetauscher 105 weiter abgekühlt wird.The air separation plant 200 according to Figure 2 differs from air separation unit 100 according to Figure 1 in particular because the second process stream g is not further cooled in the main heat exchanger 105 before it is expanded and fed into the low-pressure column.

In der Luftzerlegungsanlage 300, die in Figur 3 veranschaulicht wird, ist im Gegensatz zu der Luftzerlegungsanlage 100 gemäß Figur 1 eine Einspeisung des in der Entspannungsturbine 109 entspannten Teilstroms k nur auf das Druckniveau der Hochdruckkolonne 111 vorgesehen, der Teilstrom k wird daher nicht in die Niederdruckkolonne eingeblasen, sondern als weiterer Turbinenstrom der Hochdruckkolonne 111 zugeführt.In the air separation plant 300, which is in Figure 3 is illustrated is in contrast to the air separation plant 100 of FIG Figure 1 the partial flow k expanded in the expansion turbine 109 is only fed to the pressure level of the high pressure column 111; the partial flow k is therefore not blown into the low pressure column but is fed to the high pressure column 111 as a further turbine flow.

Claims (15)

Verfahren zur Herstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte, bei dem in einer Luftzerlegungsanlage (100-300) ein erster Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, und ein zweiter Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte verflüssigte Luft umfasst, gebildet werden, und bei dem der erste und der zweite Prozessstrom getrennt voneinander einer Entspannung auf ein Betriebsdruckniveau einer Hochdruckkolonne (111) der Luftzerlegungsanlage (100-300) unterworfen und teilweise oder vollständig in die Hochdruckkolonne (111) eingespeist werden, dadurch gekennzeichnet, dass zur Bildung des ersten und des zweiten Prozessstroms Luft verwendet wird, die als Teil einer Gesamtluftmenge auf einem ersten Druckniveau und einem ersten Temperaturniveau bereitgestellt wird, wobei die Gesamtluftmenge unter Verwendung eines Luftverdichters (101) und eines Boosters (102), der parallel zu dem Luftverdichter (101) angeordnet ist, auf das erste Druckniveau gebracht wird, wobei der Booster (102) mit einer bei der Entspannung eines dritten Prozessstroms verwendeten Entspannungsturbine (109) gekoppelt ist und von dieser angetrieben wird.A method for producing one or more oxygen-rich, gaseous air products, in which a first process stream, which mainly or exclusively comprises pressurized non-liquefied air, and a second process stream, which predominantly or exclusively comprises pressurized liquefied air, are formed in an air separation plant (100-300) , and in which the first and the second process stream are separately subjected to an expansion to an operating pressure level of a high pressure column (111) of the air separation plant (100-300) and partially or completely fed into the high pressure column (111), characterized in that to form the first and the second process stream of air is used, which is provided as part of a total air volume at a first pressure level and a first temperature level, the total air volume using an air compressor (101) and a booster (102), which runs parallel to the air compressor hter (101) is arranged, is brought to the first pressure level, wherein the booster (102) is coupled to an expansion turbine (109) used in the expansion of a third process stream and is driven by this. Verfahren nach Anspruch 1, bei dem die Luft, die zur Bildung des ersten und des zweiten Prozessstroms verwendet wird, nacheinander einer Abkühlung auf ein zweites Temperaturniveau, einer Verdichtung auf ein zweites Druckniveau, einer Abkühlung auf ein drittes Temperaturniveau, und unter Erhalt einer Flüssigphase und einer Gasphase einer Phasentrennung unterworfen wird, wobei das zweite Temperaturniveau bei -120 °C bis -150 °C liegt, der erste Prozessstrom unter Verwendung zumindest eines Teils der Gasphase gebildet wird, der zweite Prozessstrom unter Verwendung zumindest eines Teils der Flüssigphase gebildet wird, der erste Prozessstrom der Entspannung auf dem zweiten Druckniveau und dem dritten Temperaturniveau zugeführt wird, und das zweite Druckniveau und das dritte Temperaturniveau derart gewählt werden, dass sich bei der Entspannung des ersten Prozessstroms auf das Betriebsdruckniveau der Hochdruckkolonne (111) ein Flüssiganteil von 5% bis 15%, bezogen auf den gesamten ersten Prozessstrom, bildet.Method according to claim 1, in which the air that is used to form the first and the second process stream is successively cooled to a second temperature level, compressed to a second pressure level, cooled to a third temperature level, and a liquid phase is obtained and a gas phase is subjected to phase separation, wherein the second temperature level is -120 ° C to -150 ° C, the first process stream is formed using at least a part of the gas phase, the second process stream is formed using at least a part of the liquid phase, the The first process stream is fed to the expansion at the second pressure level and the third temperature level, and the second pressure level and the third temperature level are selected such that when the first process stream is expanded to the operating pressure level of the high pressure column (111), a liquid content of 5% to 15 %, based on the entire first perc essstrom, forms. Verfahren nach Anspruch 2, bei dem ein dritter Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, gebildet wird, wobei der dritte Prozessstrom einer Entspannung auf ein Betriebsdruckniveau einer Niederdruckkolonne (112) der Luftzerlegungsanlage (100, 200) unterworfen und teilweise oder vollständig in die Niederdruckkolonne (112) eingespeist wird, oder einer Entspannung auf das Betriebsdruckniveau der Hochdruckkolonne (111) der Luftzerlegungsanlage (300) unterworfen und teilweise oder vollständig in die Hochdruckkolonne (111) eingespeist wird, wobei der dritte Prozessstrom der Entspannung insbesondere auf einem Temperaturniveau zugeführt wird, das mehr als 10 K oberhalb des dritten Temperaturniveaus liegt und sich um weniger als 10 K von dem zweiten Temperaturniveau unterscheidet.Method according to Claim 2, in which a third process stream, which comprises predominantly or exclusively pressurized, non-liquefied air, is formed, the third process stream being subjected to expansion to an operating pressure level of a low-pressure column (112) of the air separation plant (100, 200) and partially or completely in the low-pressure column (112) is fed in, or is subjected to an expansion to the operating pressure level of the high-pressure column (111) of the air separation plant (300) and partially or completely fed into the high-pressure column (111), the third process stream being supplied to the expansion, in particular at a temperature level , which is more than 10 K above the third temperature level and differs by less than 10 K from the second temperature level. Verfahren nach Anspruch 1 oder 2, bei dem zur Bildung des dritten Prozessstroms Luft verwendet wird, die auf dem ersten Druckniveau und dem ersten Temperaturniveau bereitgestellt und einer Abkühlung auf ein viertes Temperaturniveau unterworfen wird.Method according to Claim 1 or 2, in which air is used to form the third process flow, which air is provided at the first pressure level and the first temperature level and is subjected to cooling to a fourth temperature level. Verfahren nach Anspruch 4, bei dem ein erster Anteil der Gesamtluftmenge durch den Luftverdichter (101) und nicht durch den Booster (102) geführt wird, und bei dem ein zweiter Anteil der Gesamtluftmenge durch den Booster (102) und nicht durch den Luftverdichter (101) geführt wird.Method according to Claim 4, in which a first portion of the total amount of air is passed through the air compressor (101) and not through the booster (102), and in which a second portion of the total amount of air is passed through the booster (102) and not through the air compressor (101 ) to be led. Verfahren nach Anspruch 5, bei dem der zweite Anteil der Gesamtluftmenge 5% bis 25% der Gesamtluftmenge und der zweite Anteil der Gesamtluftmenge den Rest der Gesamtluftmenge umfasst.The method of claim 5, wherein the second portion of the total amount of air comprises 5% to 25% of the total amount of air and the second portion of the total amount of air comprises the remainder of the total amount of air. Verfahren nach einem der Ansprüche 4 bis 6, bei dem die Gesamtluftmenge unter Verwendung des Luftverdichters (101) und des Boosters (102) in wasserhaltigem Zustand verdichtet und danach gemeinsam vorgekühlt und getrocknet wird.Method according to one of Claims 4 to 6, in which the total amount of air is compressed in a water-containing state using the air compressor (101) and the booster (102) and is then jointly pre-cooled and dried. Verfahren nach einem der Ansprüche 4 bis 7, bei dem als der Luftverdichter (101) ein einstufiger Luftverdichter verwendet wird.Method according to one of Claims 4 to 7, in which a single-stage air compressor is used as the air compressor (101). Verfahren nach einem der Ansprüche 4 bis 8, bei dem die Gesamtluftmenge dem Luftverdichter (101) und dem Booster (102) auf einem überatmosphärischen Ausgangsdruckniveau zugeführt wird.Method according to one of Claims 4 to 8, in which the total amount of air is supplied to the air compressor (101) and the booster (102) at a superatmospheric output pressure level. Verfahren nach Anspruch 9, bei dem die Gesamtluftmenge von anlagenextern auf dem überatmosphärischen Ausgangsdruckniveau bereitgestellt oder in der Luftzerlegungsanlage auf das Ausgangsdruckniveau verdichtet wird.Method according to Claim 9, in which the total amount of air is provided externally to the system at the above-atmospheric output pressure level or is compressed to the output pressure level in the air separation unit. Verfahren nach einem der Ansprüche 4 bis 10, bei dem eine maximal 2% der Gesamtluftmenge entsprechende Menge eines oder mehrerer Luftprodukte kontinuierlich oder nur zeitweise flüssig aus der Luftzerlegungsanlage (100-300) ausgeleitet wird.Method according to one of Claims 4 to 10, in which an amount of one or more air products corresponding to a maximum of 2% of the total amount of air is discharged continuously or only temporarily in liquid form from the air separation plant (100-300). Verfahren nach einem der Ansprüche 2 bis 10, bei dem zwei oder mehr als zwei sauerstoffreiche, gasförmige Luftprodukte bereitgestellt werden, wobei ein erstes der sauerstoffreichen, gasförmigen Luftprodukte durch Innenverdichtung bereitgestellt wird, und wobei ein zweites der sauerstoffreichen, gasförmigen Luftprodukt ohne Druckerhöhung aus der Niederdruckkolonne (112) gasförmig entnommen wird.Process according to one of claims 2 to 10, in which two or more than two oxygen-rich, gaseous air products are provided, a first of the oxygen-rich, gaseous air products being provided by internal compression, and a second of the oxygen-rich, gaseous air products being provided without pressure increase from the low-pressure column (112) is taken in gaseous form. Verfahren nach einem der vorstehenden Ansprüche, bei dem die zur Bereitstellung des ersten und des zweiten Prozessstroms verwendete Luft der Abkühlung auf das zweite Temperaturniveau auf dem ersten Druckniveau und dem ersten Temperaturniveau, der Verdichtung auf das zweite Druckniveau auf dem zweiten Temperaturniveau und dem ersten Druckniveau, der Abkühlung auf das dritte Temperaturniveau auf dem zweiten Druckniveau und einem Temperaturniveau unterhalb des zweiten Temperaturniveaus, und der Phasentrennung auf dem zweiten Druckniveau und dem dritten Temperaturniveau zugeführt wird.Method according to one of the preceding claims, in which the air used to provide the first and the second process stream is cooled to the second temperature level at the first pressure level and the first temperature level, the compression to the second pressure level at the second temperature level and the first pressure level, the cooling to the third temperature level at the second pressure level and a temperature level below the second temperature level, and the phase separation at the second pressure level and the third temperature level. Luftzerlegungsanlage (100-300) zur Bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger Luftprodukte, wobei Mittel bereitgestellt sind, die dafür eingerichtet sind, einen ersten Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte unverflüssigte Luft umfasst, und einen zweiten Prozessstrom, der überwiegend oder ausschließlich druckbeaufschlagte verflüssigte Luft umfasst, zu bilden, und den ersten und den zweiten Prozessstrom getrennt voneinander einer Entspannung auf ein Betriebsdruckniveau einer Hochdruckkolonne (111) der Luftzerlegungsanlage (100-300) zu unterwerfen und danach teilweise oder vollständig in die Hochdruckkolonne (111) einzuspeisen, dadurch gekennzeichnet, dass Mittel bereitgestellt sind, die dafür eingerichtet sind, zur Bildung des ersten und des zweiten Prozessstroms Luft zu verwenden, die als Teil einer Gesamtluftmenge auf einem ersten Druckniveau und einem ersten Temperaturniveau bereitgestellt wird, wobei ein Luftverdichter (101) und ein Booster (102), der parallel zu dem Luftverdichter (101) angeordnet ist, bereitgestellt sind, die dafür eingerichtet sind, die Gesamtluftmenge auf das erste Druckniveau zu bringen, wobei der Booster (102) mit einer zur Entspannung eines dritten Prozessstroms eingerichteten Entspannungsturbine (109) gekoppelt ist und zum Antrieb durch diese eingerichtet ist.Air separation plant (100-300) for providing one or more oxygen-rich, gaseous air products, wherein means are provided which are set up to include a first process stream that predominantly or exclusively comprises pressurized non-liquefied air, and a second process stream that predominantly or exclusively liquefies pressurized air Comprises air, and the first and second process streams separately from one another to a relaxation to an operating pressure level of a high pressure column (111) of the air separation plant (100-300) and then partially or completely fed into the high pressure column (111), characterized in that means are provided which are set up to form the to use first and second process stream air, which is provided as part of a total amount of air at a first pressure level and a first temperature level, an air compressor (101) and a booster (102), which is arranged parallel to the air compressor (101), being provided which are set up to bring the total amount of air to the first pressure level, wherein the booster (102) is coupled to an expansion turbine (109) set up to expand a third process stream and is set up to be driven by this. Luftzerlegungsanlage (100-300) nach Anspruch 14, die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 13 eingerichtet ist.Air separation plant (100-300) according to Claim 14, which is set up to carry out a method according to one of Claims 1 to 13.
EP19020068.3A 2019-02-13 2019-02-13 Method and apparatus for providing one or more gaseous oxygen rich air products Withdrawn EP3696486A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19020068.3A EP3696486A1 (en) 2019-02-13 2019-02-13 Method and apparatus for providing one or more gaseous oxygen rich air products
EP20703140.2A EP3924677A1 (en) 2019-02-13 2020-01-30 Method and system for providing one or more oxygen-rich, gaseous air products
PCT/EP2020/025039 WO2020164799A1 (en) 2019-02-13 2020-01-30 Method and system for providing one or more oxygen-rich, gaseous air products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19020067 2019-02-13
EP19020068.3A EP3696486A1 (en) 2019-02-13 2019-02-13 Method and apparatus for providing one or more gaseous oxygen rich air products

Publications (1)

Publication Number Publication Date
EP3696486A1 true EP3696486A1 (en) 2020-08-19

Family

ID=65440754

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19020068.3A Withdrawn EP3696486A1 (en) 2019-02-13 2019-02-13 Method and apparatus for providing one or more gaseous oxygen rich air products
EP20703140.2A Pending EP3924677A1 (en) 2019-02-13 2020-01-30 Method and system for providing one or more oxygen-rich, gaseous air products

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20703140.2A Pending EP3924677A1 (en) 2019-02-13 2020-01-30 Method and system for providing one or more oxygen-rich, gaseous air products

Country Status (2)

Country Link
EP (2) EP3696486A1 (en)
WO (1) WO2020164799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022263013A1 (en) * 2021-06-17 2022-12-22 Linde Gmbh Method and plant for providing a pressurized oxygen-rich, gaseous air product
WO2023110142A1 (en) * 2021-12-13 2023-06-22 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758150A (en) * 2021-09-18 2021-12-07 乔治洛德方法研究和开发液化空气有限公司 Method for low-temperature separation of air and air separation plant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060184A1 (en) * 1969-09-10 1971-06-18 Air Liquide
GB1425450A (en) * 1972-01-21 1976-02-18 Air Prod & Chem Air separation
JPS54162678A (en) * 1978-06-14 1979-12-24 Hitachi Ltd Air separating apparatus taking out liquid product utilizing coldness of lng
DE19620453A1 (en) * 1995-06-01 1996-12-05 Linde Ag Procedure for dissociation of gases at low temperature
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US20070209389A1 (en) 2006-03-10 2007-09-13 Prosser Neil M Cryogenic air separation system for enhanced liquid production
WO2009095188A2 (en) * 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
WO2015127648A1 (en) 2014-02-28 2015-09-03 Praxair Technology, Inc. Pressurized product stream delivery
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
FR3058785A1 (en) * 2016-11-17 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION USING GAS RELAXATION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB864855A (en) * 1958-05-19 1961-04-12 Air Prod Inc Improvements in and relating to methods and apparatus for fractionating gaseous mixtures
DE102011121314A1 (en) * 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060184A1 (en) * 1969-09-10 1971-06-18 Air Liquide
GB1425450A (en) * 1972-01-21 1976-02-18 Air Prod & Chem Air separation
JPS54162678A (en) * 1978-06-14 1979-12-24 Hitachi Ltd Air separating apparatus taking out liquid product utilizing coldness of lng
DE19620453A1 (en) * 1995-06-01 1996-12-05 Linde Ag Procedure for dissociation of gases at low temperature
US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
US20070209389A1 (en) 2006-03-10 2007-09-13 Prosser Neil M Cryogenic air separation system for enhanced liquid production
WO2009095188A2 (en) * 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
WO2015127648A1 (en) 2014-02-28 2015-09-03 Praxair Technology, Inc. Pressurized product stream delivery
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
FR3058785A1 (en) * 2016-11-17 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION USING GAS RELAXATION

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH
"Natural Gas Expansion and Integration with Air Separation Units", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 23 September 2003 (2003-09-23), XP013012940, ISSN: 1533-0001 *
F.G. KERRY: "Industrial Gas Handbook: Gas Separation and Purification", 2006, CRC PRESS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022263013A1 (en) * 2021-06-17 2022-12-22 Linde Gmbh Method and plant for providing a pressurized oxygen-rich, gaseous air product
WO2023110142A1 (en) * 2021-12-13 2023-06-22 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Also Published As

Publication number Publication date
WO2020164799A1 (en) 2020-08-20
EP3924677A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
EP1067345B1 (en) Process and device for cryogenic air separation
EP3175192A1 (en) Method for the cryogenic separation of air and air separation plant
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP3179187B1 (en) Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
WO2020164799A1 (en) Method and system for providing one or more oxygen-rich, gaseous air products
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
DE202021002895U1 (en) Plant for the low-temperature separation of air
EP3870917B1 (en) Method and installation for cryogenic separation of air
WO2022053173A1 (en) Method and plant for cryogenic fractionation of air
EP1199532A1 (en) Three-column system for the cryogenic separation of air
WO2019214847A9 (en) Method for obtaining one or more air products and air separation system
EP3870916B1 (en) Method for producing one or more air products and air separation unit
WO2022263013A1 (en) Method and plant for providing a pressurized oxygen-rich, gaseous air product
EP1284403B1 (en) Process and apparatus for the production of oxygen by low temperature air separation
EP4211409A1 (en) Method for obtaining one or more air products, and air fractionation plant
WO2023051946A1 (en) Method for the cryogenic separation of air, and air separation plant
WO2023030689A1 (en) Method for recovering one or more air products, and air separation plant
WO2018219501A1 (en) Method for obtaining one or more air products and air separation plant
WO2021204418A1 (en) Method for producing a gaseous and a liquid nitrogen product by means of a low-temperature separation of air, and air separation system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210220