EP1199532A1 - Three-column system for the cryogenic separation of air - Google Patents

Three-column system for the cryogenic separation of air Download PDF

Info

Publication number
EP1199532A1
EP1199532A1 EP01103828A EP01103828A EP1199532A1 EP 1199532 A1 EP1199532 A1 EP 1199532A1 EP 01103828 A EP01103828 A EP 01103828A EP 01103828 A EP01103828 A EP 01103828A EP 1199532 A1 EP1199532 A1 EP 1199532A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
oxygen
medium
column
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01103828A
Other languages
German (de)
French (fr)
Other versions
EP1199532B1 (en
Inventor
Christian Kunz
Dietrich Dipl.-Ing. Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1199532A1 publication Critical patent/EP1199532A1/en
Application granted granted Critical
Publication of EP1199532B1 publication Critical patent/EP1199532B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery

Definitions

  • the invention relates to a method for the low-temperature decomposition of air and Power generation.
  • the air separation is carried out in a three-pillar system.
  • a gas turbine system which is a gas turbine, is used to generate energy (Gas turbine expander), a gas turbine compressor driven by the gas turbine and has a combustion chamber.
  • one or more Air separation products used in the energy generation system for example, oxygen generated in the air separator can be used to generate a Fuel gas can be used with which the combustion chamber is loaded, in particular as an oxidizing agent in a coal or heavy oil gasification.
  • nitrogen from the air separator can be used to extract coal and / or used in the gas turbine stream; in the latter case Nitrogen is fed into the combustion chamber or into the gas turbine or with the Gas turbine exhaust gas between the combustion chamber and the gas turbine of the combustion chamber mixed.
  • the basics of low temperature air separation in general are in the Monograph "Low Temperature Technology” by Hausen / Linde (2nd edition, 1985) and in one Article by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35) described.
  • the three-pillar system is preferably one Triple column, in which the head of the high pressure column and the bottom of the Medium pressure column and on the other hand the head of the medium pressure column and the sump of the Low pressure column are in heat-exchanging connection.
  • triple columns are also from DE 1041989 or from Springmann, Chem.-Ing.-Techn., 46 (1974), 881 known.
  • the invention is also with other column arrangements and / or others Capacitor configurations applicable (see for example EP 768503 A2, DE 2920270 or EP 572962 A or EP 634617 A).
  • Capacitor configurations applicable (see for example EP 768503 A2, DE 2920270 or EP 572962 A or EP 634617 A).
  • Devices for extracting other air components, in particular from Noble gases can be provided, for example argon extraction.
  • the gas turbine compressor brings air to a very high pressure of over about 7 bar, for example of 17 bar.
  • This air usually serves as a part Combustion air for the combustion chamber of the gas turbine system.
  • Another part is the first feed air stream to be led into air separation.
  • a second feed air flow independent of the first in a separate air compressor compressed, preferably to a pressure lower than that Outlet pressure of the gas turbine compressor; this is in itself from EP 717249 A2 known.
  • the air compressor is not driven by the gas turbine, but rather for example from an engine or a steam turbine. (The term “not from the However, gas turbine driven "does not exclude that generated in the gas turbine electrical energy is transmitted to an electric motor, which in turn the drives a separate air compressor.)
  • such a double column system is based on three columns reduced, which preserves its essential advantages, but the expenditure on equipment greatly reduced.
  • the medium-pressure column of the three-column system simultaneously the low pressure part of the double column for the air under the higher pressure as well represents the high pressure part of the double column for the air under the lower pressure So the first feed air flow is introduced into the high pressure column, and the Medium pressure column is both with oxygen-enriched liquid from the High pressure column as well as the second feed air flow.
  • Return for the Low pressure column can come from one or more of the following sources: im first condenser formed condensate, in the second main condenser condensate formed, liquid nitrogen flow from an intermediate point of High pressure column, liquid nitrogen flow from an intermediate point of the medium pressure column.
  • a liquid nitrogen stream has at least one theoretical bottom below the head of the medium pressure column and the Low pressure column is fed. This is particularly advantageous if in the Low pressure column no pure nitrogen is generated. Between the medium pressure column head and the liquid nitrogen discharge to the low pressure column are, for example, 5 to 20, preferably 10 to 15 practical floors.
  • the second oxygen-enriched fraction which is in the Low pressure column is initiated, withdrawn from the high pressure column.
  • the first oxygen-enriched fraction (insert for the medium pressure column) and the second oxygen-enriched fraction (insert for the low pressure column) preferably withdrawn together from the bottom of the high pressure column and before their introduction into the medium pressure column or low pressure column.
  • an oxygen fraction 1 is generated in the low pressure column is, at least part of the oxygen fraction liquid from the low pressure column removed, brought to an increased pressure in the liquid state and into the Medium pressure column is introduced and that the medium pressure column is an oxygen product is removed.
  • the oxygen product is therefore already in the process of being removed from the three-pillar system at an increased pressure. The effort for Further compression on the product pressure is noticeably reduced or can even drop completely.
  • the pressurized liquid oxygen fraction from the Low pressure column at least one theoretical floor (for example one to five practical trays) is introduced into the medium pressure column above the sump. This can result in a lower purity in the bottom of the low pressure column than in Medium pressure column sump prevail. With thermal coupling of low pressure column and medium pressure column this enables a relatively high pressure in the low pressure column or a particularly low operating air pressure.
  • the oxygen product is liquid from the Stripped medium pressure column, introduced into a secondary condenser and through there indirect heat exchange with a heating medium, especially with nitrogen the high pressure column is at least partially evaporated.
  • the oxygen product is often required under a pressure higher than that Operating pressure of the medium pressure column.
  • a pressure higher than that Operating pressure of the medium pressure column for example be compressed outside by being gaseous from the medium pressure column or a Secondary condenser, which is operated under medium-pressure column pressure, removed, warmed to about ambient temperature and in an oxygen compressor is compressed.
  • the oxygen product or part of it compress inside by flowing it out of the medium pressure column or out of the Secondary condenser is removed, brought to a pressure in the liquid state, which is higher than the operating pressure of the medium pressure column, and under this pressure indirect heat exchange is evaporated.
  • the evaporation of the liquid under pressure brought oxygen product can be carried out in the main heat exchanger in which the cooling of the feed air for the high pressure column and the Heating of other products takes place; alternatively, this can be indirect Heat exchange step take place in a separate heat exchanger.
  • the heat of vaporization is available through a high pressure flow provided, either by a correspondingly highly compressed part of the feed air or is formed by circulating nitrogen. Because the inner compression also on supercritical pressures, the term "evaporation" is here in another To understand the meaning that also includes pseudo-evaporation.
  • a nitrogen fraction can be drawn directly from the high pressure column and / or the Medium pressure column removed, warmed up and obtained as a pressure nitrogen product become.
  • the high-pressure column nitrogen can also be internally compressed if necessary, by making the nitrogen fraction liquid from the high pressure column or their Head condenser removed, is brought to a pressure in the liquid state, the is higher than the operating pressure of the high pressure column, and under this pressure indirect heat exchange is evaporated.
  • the indirect heat exchange will preferably carried out in the main heat exchanger with high pressure air as the heating fluid.
  • the second Feed air flow separate from the first feed air flow only to approximately Operating pressure of the medium pressure column (plus line losses) compressed and without further pressure-changing measures are introduced into the medium pressure column.
  • (only) part of the separation air from a gas turbine compressor is delivered (for example the first feed air flow), this saves How energy works.
  • a third feed air stream can be compressed to generate process cold, cleaned, cooled, relieved of work and into the low pressure column or in the Medium pressure column are introduced.
  • Work relaxation Mechanical energy generated can be used to recompress the third feed air flow be used, for example by using a turbine-booster combination.
  • the invention also relates to a combined device for cryogenic decomposition of air and for energy generation according to claim 14.
  • An air stream 10 is brought to a pressure in a gas turbine compressor 11, which is at least equal to the operating pressure of the high pressure column 1.
  • the gas turbine compressor 11 is part of a gas turbine system. (Part of the air compressed in 11 is branched off as combustion air to the combustion chamber of the gas turbine unit, what is not shown in the drawing).
  • a cleaning device 13 preferably a molecular sieve station.
  • a first feed air stream 15 is branched off from the cleaned high-pressure air 14, in a main heat exchanger 40 cooled and via line 16 of the high pressure column 1 fed.
  • a partial air flow (not shown here) has to be described in detail higher pressure further compressed and downstream of the main heat exchanger 40 be throttled.
  • a second feed air stream 20, 24 is through an air compressor 21, a Aftercooler 22 and a separate cleaning device 23 performed, also in Main heat exchanger 40 cooled, but then led into the medium pressure column 2 (25), without throttling or other pressure-changing measures downstream of the second air compressor.
  • the second feed air flow needs in the second Air compressor 21 only compresses to approximately the operating pressure of the medium pressure column 2 become.
  • the air compressor is not driven by the gas turbine, but rather preferably by means of external energy, for example by an electric motor.
  • This is in a post-compressor 31 further compresses and occurs after post-cooling 32 in the Main heat exchanger 40. After cooling to an intermediate temperature, it becomes led out of the main heat exchanger 40 via line 33, in one Turbine 34 relaxed while working and blown into the low-pressure column 3 (35).
  • the turbine 34 is mechanically coupled to the post-compressor 31.
  • Gaseous nitrogen 41 is generated at the top of the high-pressure column 1. He's going to liquefied a first part 42 in the first main condenser 4. The one won Liquid nitrogen 43 is returned to the high pressure column 1 (line 44) or abandoned to the medium pressure column 2 (line 45). The Liquid nitrogen 45 is in one before the feed 46 into the medium pressure column Supercooling counterflow 47 supercooled. A second part 48 of the top nitrogen 41 the high pressure column is at least partially in a secondary condenser 49 condenses and flows back via line 50 to the high pressure column 1. A third Part 51 of the high pressure column nitrogen 41 is in the main heat exchanger 40 warmed up and obtained via line 52 as a pressure nitrogen product GAN.
  • Liquid crude oxygen is obtained in the sump of the high-pressure column 1. This is called deducted oxygen-enriched fraction 53 and - after hypothermia 47 - to one first part 54 as the first oxygen-enriched fraction in the medium pressure column 2 initiated. A second part 56, 57 is after further supercooling 55 in the Throttled low pressure column.
  • a second part 61 of the top nitrogen 58 of the medium pressure column is in the Main heat exchanger 40 warmed up and via line 62 - if necessary after Further compression 63 with after-cooling 64 - as a further pressure nitrogen product PGAN won.
  • Liquid oxygen of 95% purity is generated in the bottom of the low pressure column. That part of the bottom liquid that is not in the second main condenser 5 is evaporated, flows as an oxygen fraction 67 to a pump 68 and is in there brought liquid state to about medium pressure column pressure. The oxygen fraction 69 is heated under this increased pressure in the supercooling counterflow 47 and introduced into the medium pressure column 2 via line 70. The feed is here immediately above the sump of the medium pressure column. In the swamp, the represents the evaporation space of the first main condenser 4, the Oxygen fraction 70 from the low pressure column with that within the medium pressure column flowing down liquid mixed. The mixture is liquid as line 71 Oxygen product taken, slightly throttled (72), in the Evaporation chamber of the secondary condenser 49 initiated and there partially evaporated.
  • a first part 73 of the oxygen product 71 is gaseous from the Auxiliary condenser removed, warmed up in the main heat exchanger and finally delivered via line 74 as a product (GOX). If product printing is desired, which is higher than the medium pressure column pressure, the warmed oxygen product be further compressed in a product compressor 75 (with aftercooler 78) (Outer compression).
  • the liquid portion of the oxygen product 71 is discharged via line 79 deducted the evaporation space of the secondary condenser 49 and one Subjected to internal compression. To do this, it is pumped to product pressure in a pump 80 brought about the same as the product pressure of the outer compression or different of this is.
  • the high pressure oxygen product 81 is in the main heat exchanger evaporates (or pseudo-evaporates if the product pressure is above the critical pressure lies) and warmed to ambient temperature. This leaves via line 76 internally compressed oxygen product (GOX-IC) the plant. If desired, he can be combined with the oxygen product 74, which is compressed in 75.
  • impure nitrogen 82 Another product of the low pressure column 3 is impure nitrogen 82 from the head deducted, in the supercooling countercurrent 55 and 47 and in Main heat exchanger 40 warmed up.
  • the warm impure nitrogen 83 (UN2) can be used as unpressurized by-product used as regeneration gas for the cleaning devices 13 and / or 23 used and / or released into the atmosphere.
  • Figure 2 is largely identical to Figure 1. However, here is the third Feed air flow 230, 233 in the expansion machine 234 only approximately Medium pressure column pressure relaxed. The relaxed third feed airflow 235 will via line 236 together with the second feed air flow 225 downstream of the Main heat exchanger 40 fed into the medium pressure column 2. A direct air introduction there is no low pressure column 3 in this process variant.
  • the cleaning of the two air streams 10, 20 can in principle also be carried out in one be carried out common device. For example, it is possible to Compress the total air initially only to approximately medium pressure column pressure, below this medium pressure, and then the first (and possibly the third) to further compress the air flow from the medium pressure.
  • the for the Processes also require cold from work-relieving nitrogen the medium pressure column 2 can be obtained.
  • the relaxed medium pressure column nitrogen can then be mixed with the impure nitrogen from the low pressure column 3 and be heated together with this in the main heat exchanger 40.

Abstract

Process for low temperature decomposition of air is carried out in a three column system consisting of a high pressure column (1), a middle pressure column (2) and a low pressure column (3). Process for low temperature decomposition of air comprises: (i) compressing a first air stream (10, 14, 15, 16) in a gas turbine compressor (11), purifying, cooling and feeding to the high pressure column; (ii) compressing a second air stream in an air compressor (21) operated by the gas turbine, purifying, cooling and feeding to the middle pressure column; (iii) producing a first oxygen-enriched fraction (53, 54) in the high pressure column; (iv) feeding the first oxygen-enriched fraction to the middle pressure column; and (v) feeding a second oxygen-enriched fraction (57) from the middle pressure column to the low pressure column. An Independent claim is also included for a device for carrying out the low temperature decomposition of air.

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperatur-Zeriegung von Luft und zur Energie-Erzeugung. Die Luftzerlegung wird in einem Drei-Säulen-System durchgeführt. Zur Energie-Erzeugung dient ein Gasturbinen-System, das eine Gasturbine (Gasturbinen-Expander), einen von der Gasturbine angetriebenen Gasturbinen-Verdichter und eine Brennkammer aufweist. Vorzugsweise werden ein oder mehrere Produkte der Luftzerlegung in dem Energie-Erzeugungs-System eingesetzt. Beispielsweise kann im Luftzerleger erzeugter Sauerstoff zur Erzeugung eines Brenngases genutzt werden, mit dem die Brennkammer beschickt wird, insbesondere als Oxidationsmittel in einer Kohle- oder Schweröl-Vergasung. Alternativ oder zusätzlich kann Stickstoff aus dem Luftzerleger für die Förderung von Kohle verwendet und/oder in den Gasturbinen-Strom eingeführt verwendet werden; im letzteren Fall wird Stickstoff in die Brennkammer oder in die Gasturbine eingespeist oder mit dem Gasturbinen-Abgas zwischen Brennkammer und Gasturbine der Brennkammer vermischt.The invention relates to a method for the low-temperature decomposition of air and Power generation. The air separation is carried out in a three-pillar system. A gas turbine system, which is a gas turbine, is used to generate energy (Gas turbine expander), a gas turbine compressor driven by the gas turbine and has a combustion chamber. Preferably one or more Air separation products used in the energy generation system. For example, oxygen generated in the air separator can be used to generate a Fuel gas can be used with which the combustion chamber is loaded, in particular as an oxidizing agent in a coal or heavy oil gasification. Alternatively or In addition, nitrogen from the air separator can be used to extract coal and / or used in the gas turbine stream; in the latter case Nitrogen is fed into the combustion chamber or into the gas turbine or with the Gas turbine exhaust gas between the combustion chamber and the gas turbine of the combustion chamber mixed.

Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Bei dem Drei-Säulen-System handelt es sich vorzugsweise um eine Dreifachsäule, bei der einerseits der Kopf der Hochdrucksäule und der Sumpf der Mitteldrucksäule und andererseits der Kopf der Mitteldrucksäule und der Sumpf der Niederdrucksäule in wärmetauschender Verbindung stehen. Solche Dreifachsäulen sind auch aus DE 1041989 oder aus Springmann, Chem.-Ing.-Techn., 46 (1974), 881 bekannt. Die Erfindung ist auch bei anderen Säulen-Anordnungen und/oder anderen Kondensator-Konfigurationen anwendbar (siehe zum Beispiel EP 768503 A2, DE 2920270 oder EP 572962 A oder EP 634617 A). Zusätzlich zu den drei genannten Kolonnen zur Stickstoff-Sauerstoff-Trennung können bei der Erfindung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen, vorgesehen sein, beispielsweise eine Argongewinnung. Die Kombination eines Drei-Säulen-Systems mit einem Gasturbinen-System zur Energie-Erzeugung ist in JP 11132652 A beschrieben. The basics of low temperature air separation in general are in the Monograph "Low Temperature Technology" by Hausen / Linde (2nd edition, 1985) and in one Article by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35) described. The three-pillar system is preferably one Triple column, in which the head of the high pressure column and the bottom of the Medium pressure column and on the other hand the head of the medium pressure column and the sump of the Low pressure column are in heat-exchanging connection. Such triple columns are also from DE 1041989 or from Springmann, Chem.-Ing.-Techn., 46 (1974), 881 known. The invention is also with other column arrangements and / or others Capacitor configurations applicable (see for example EP 768503 A2, DE 2920270 or EP 572962 A or EP 634617 A). In addition to the three mentioned Columns for nitrogen-oxygen separation can be used in the invention Devices for extracting other air components, in particular from Noble gases can be provided, for example argon extraction. The combination of a three-pillar system with a gas turbine system for energy generation in JP 11132652 A.

Der Gasturbinen-Verdichter bringt Luft auf einen sehr hohen Druck von über etwa 7 bar, beispielsweise von 17 bar. Diese Luft dient in der Regel zu einem Teil als Verbrennungsluft für die Brennkammer des Gasturbinen-Systems. Ein anderer Teil wird als erster Einsatzluftstrom in die Luftzerlegung geführt. Bei der Erfindung wird ein zweiter Einsatzluftstrom unabhängig vom ersten in einem separaten Luftverdichter komprimiert, und zwar vorzugsweise auf einen Druck, der niedriger als der Auslassdruck des Gasturbinen-Verdichters ist; dies ist an sich aus EP 717249 A2 bekannt. Der Luftverdichter wird nicht von der Gasturbine angetrieben, sondem beispielsweise von einem Motor oder einer Dampfturbine. (Der Begriff "nicht von der Gasturbine angetrieben" schließt jedoch nicht aus, dass in der Gasturbine erzeugte elektrische Energie an einen Elektromotor übertragen wird, der seinerseits den separaten Luftverdichter antreibt.)The gas turbine compressor brings air to a very high pressure of over about 7 bar, for example of 17 bar. This air usually serves as a part Combustion air for the combustion chamber of the gas turbine system. Another part is the first feed air stream to be led into air separation. In the invention, a second feed air flow independent of the first in a separate air compressor compressed, preferably to a pressure lower than that Outlet pressure of the gas turbine compressor; this is in itself from EP 717249 A2 known. The air compressor is not driven by the gas turbine, but rather for example from an engine or a steam turbine. (The term "not from the However, gas turbine driven "does not exclude that generated in the gas turbine electrical energy is transmitted to an electric motor, which in turn the drives a separate air compressor.)

Unter solchen Umständen wären zwei Doppelsäulen-Systeme optimal, der Hochdrucksäulen unter den Austrittsdrücken von Gasturbinen-Verdichter und separatem Luftverdichter betrieben werden. Allerdings wäre ein solches System mit insgesamt vier Säulen apparativ sehr aufwändig.In such circumstances, two double-column systems would be optimal High pressure columns under the discharge pressures of gas turbine compressors and separate air compressor can be operated. However, such a system would be included a total of four columns in terms of equipment, very complex.

Bei der Erfindung wird ein solches zweifaches Doppelsäulen-System auf drei Säulen reduziert, was dessen wesentliche Vorteile bewahrt, den apparativen Aufwand aber stark vermindert. Dabei stellt die Mitteldrucksäule des Drei-Säulen-Systems gleichzeitig den Niederdruckteil der Doppelsäule für die Luft unter dem höheren Druck als auch den Hochdruckteil der Doppelsäule für die Luft unter dem niedrigeren Druck dar. Es wird also der erste Einsatzluftstrom in die Hochdrucksäule eingeleitet, und die Mitteldrucksäule wird sowohl mit sauerstoffangereicherter Flüssigkeit aus der Hochdrucksäule als auch mit dem zweiten Einsatzluftstrom beschickt.In the invention, such a double column system is based on three columns reduced, which preserves its essential advantages, but the expenditure on equipment greatly reduced. The medium-pressure column of the three-column system simultaneously the low pressure part of the double column for the air under the higher pressure as well represents the high pressure part of the double column for the air under the lower pressure So the first feed air flow is introduced into the high pressure column, and the Medium pressure column is both with oxygen-enriched liquid from the High pressure column as well as the second feed air flow.

Zur Erzeugung von Rücklauf für die Säulen ist es günstig, wenn gasförmiger Stickstoff aus der Hochdrucksäule in einem ersten Hauptkondensator durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule kondensiert wird und/oder wenn gasförmiger Stickstoff aus der Mitteldrucksäule in einem zweiten Hauptkondensator durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule kondensiert wird. Rücklauf für die Niederdrucksäule kann aus einer oder mehreren der folgenden Quellen stammen: im ersten Hauptkondensator gebildetes Kondensat, im zweiten Hauptkondensator gebildetes Kondensat, Flüssigstickstoff-Strom von einer Zwischenstelle der Hochdrucksäule, Flüssigstickstoff-Strom von einer Zwischenstelle der Mitteldrucksäule.To generate reflux for the columns, it is favorable if gaseous nitrogen from the high pressure column in a first main condenser by indirect Heat exchange with an oxygen-rich fraction from the low pressure column is condensed and / or when gaseous nitrogen from the medium pressure column in a second main condenser by indirect heat exchange with a oxygen-rich fraction is condensed from the low pressure column. Return for the Low pressure column can come from one or more of the following sources: im first condenser formed condensate, in the second main condenser condensate formed, liquid nitrogen flow from an intermediate point of High pressure column, liquid nitrogen flow from an intermediate point of the medium pressure column.

Besonders günstig ist es, wenn ein Flüssigstickstoff-Strom mindestens einen theoretischen Boden unterhalb des Kopfs der Mitteldrucksäule entnommen und der Niederdrucksäule zugeleitet wird. Dies ist insbesondere dann von Vorteil, wenn in der Niederdrucksäule kein reiner Stickstoff erzeugt wird. Zwischen dem Mitteldrucksäulen-Kopf und dem Flüssigstickstoff-Abzug zur Niederdrucksäule liegen beispielsweise 5 bis 20, vorzugsweise 10 bis 15 praktische Böden.It is particularly favorable if a liquid nitrogen stream has at least one theoretical bottom below the head of the medium pressure column and the Low pressure column is fed. This is particularly advantageous if in the Low pressure column no pure nitrogen is generated. Between the medium pressure column head and the liquid nitrogen discharge to the low pressure column are, for example, 5 to 20, preferably 10 to 15 practical floors.

Vorzugsweise wird die zweite sauerstoffangereicherte Fraktion, die in die Niederdrucksäule eingeleitet wird, aus der Hochdrucksäule abgezogen. Die erste sauerstoffangereicherte Fraktion (Einsatz für die Mitteldrucksäule) und die zweite sauerstoffangereicherte Fraktion (Einsatz für die Niederdrucksäule) werden vorzugsweise gemeinsam aus dem Sumpf der Hochdrucksäule abgezogen und vor ihrer Einleitung in Mitteldrucksäule beziehungsweise Niederdrucksäule unterkühlt.Preferably, the second oxygen-enriched fraction which is in the Low pressure column is initiated, withdrawn from the high pressure column. The first oxygen-enriched fraction (insert for the medium pressure column) and the second oxygen-enriched fraction (insert for the low pressure column) preferably withdrawn together from the bottom of the high pressure column and before their introduction into the medium pressure column or low pressure column.

Es ist femer günstig, wenn in der Niederdrucksäule eine Sauerstoff-Fraktion 1 erzeugt wird, mindestens ein Teil der Sauerstoff-Fraktion flüssig aus der Niederdrucksäule entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und in die Mitteldrucksäule eingeleitet wird und dass der Mitteldrucksäule ein Sauerstoff-Produkt entnommen wird. Das Sauerstoff-Produkt befindet sich damit bereits bei der Entnahme aus dem Drei-Säulen-System auf einem erhöhten Druck. Der Aufwand zur Weiterverdichtung auf den Produktdruck wird dadurch spürbar verringert oder kann sogar ganz wegfallen.It is also favorable if an oxygen fraction 1 is generated in the low pressure column is, at least part of the oxygen fraction liquid from the low pressure column removed, brought to an increased pressure in the liquid state and into the Medium pressure column is introduced and that the medium pressure column is an oxygen product is removed. The oxygen product is therefore already in the process of being removed from the three-pillar system at an increased pressure. The effort for Further compression on the product pressure is noticeably reduced or can even drop completely.

Es ist vorteilhaft, wenn die flüssig auf Druck gebrachte Sauerstoff-Fraktion aus der Niederdrucksäule mindestens einen theoretischen Boden (beispielsweise ein bis fünf praktische Böden) oberhalb des Sumpfs in die Mitteldrucksäule eingeleitet wird. Dadurch kann im Sumpf der Niederdrucksäule eine niedrigere Reinheit als im Mitteldrucksäulen-Sumpf herrschen. Bei thermischer Kopplung von Niederdrucksäule und Mitteldrucksäule ermöglicht dies einen relativ hohen Druck in der Niederdrucksäule beziehungsweise eine besonders niedrigen Einsatzluftdruck. It is advantageous if the pressurized liquid oxygen fraction from the Low pressure column at least one theoretical floor (for example one to five practical trays) is introduced into the medium pressure column above the sump. This can result in a lower purity in the bottom of the low pressure column than in Medium pressure column sump prevail. With thermal coupling of low pressure column and medium pressure column this enables a relatively high pressure in the low pressure column or a particularly low operating air pressure.

Insbesondere bei mäßiger Sauerstoff-Reinheit (beispielsweise 85 bis 99,5 %, vorzugsweise 90 bis 98 %) ist es günstig, wenn das Sauerstoff-Produkt flüssig aus der Mitteldrucksäule abgezogen, in einen Nebenkondensator eingeleitet und dort durch indirekten Wärmeaustausch mit einem Heizmedium, insbesondere mit Stickstoff aus der Hochdrucksäule, mindestens teilweise verdampft wird.Especially with moderate oxygen purity (for example 85 to 99.5%, preferably 90 to 98%), it is advantageous if the oxygen product is liquid from the Stripped medium pressure column, introduced into a secondary condenser and through there indirect heat exchange with a heating medium, especially with nitrogen the high pressure column is at least partially evaporated.

Häufig wird das Sauerstoff-Produkt unter einem Druck benötigt, der höher als der Betriebsdruck der Mitteldrucksäule ist. In diesem Fall kann es beispielsweise außenverdichtet werden, indem es gasförmig aus der Mitteldrucksäule oder einem Nebenkondensator, der etwa unter Mitteldrucksäulen-Druck betrieben wird, abgezogen, auf etwa Umgebungstemperatur angewärmt und in einem Sauerstoff-Verdichter verdichtet wird.The oxygen product is often required under a pressure higher than that Operating pressure of the medium pressure column. In this case, for example be compressed outside by being gaseous from the medium pressure column or a Secondary condenser, which is operated under medium-pressure column pressure, removed, warmed to about ambient temperature and in an oxygen compressor is compressed.

In vielen Fällen ist es jedoch günstiger, das Sauerstoff-Produkt oder einen Teil davon innenzuverdichten, indem es flüssig aus der Mitteldrucksäule oder aus dem Nebenkondensator abgezogen, in flüssigem Zustand auf einen Druck gebracht wird, der höher als der Betriebsdruck der Mitteldrucksäule ist, und unter diesem Druck durch indirekten Wärmeaustausch verdampft wird. Die Verdampfung des flüssig auf Druck gebrachten Sauerstoff-Produkts kann in dem Hauptwärmetauscher durchgeführt werden, in dem auch die Abkühlung der Einsatzluft für die Hochdrucksäule und die Anwärmung anderer Produkte stattfindet; alternativ kann dieser indirekte Wärmeaustausch-Schritt in einem separaten Wärmetauscher stattfinden. In beiden Fällen wird die Verdampfungswärme durch einen Hochdruckstrom zur Verfügung gestellt, der entweder durch einen entsprechend hoch verdichteten Teil der Einsatzluft oder durch Kreislaufstickstoff gebildet wird. Da die Innenverdichtung auch auf überkritische Drücke führen kann, ist der Begriff "Verdampfung" hier in einem weiteren Sinne zu verstehen, der auch Pseudo-Verdampfen einschließt.In many cases, however, it is cheaper to use the oxygen product or part of it compress inside by flowing it out of the medium pressure column or out of the Secondary condenser is removed, brought to a pressure in the liquid state, which is higher than the operating pressure of the medium pressure column, and under this pressure indirect heat exchange is evaporated. The evaporation of the liquid under pressure brought oxygen product can be carried out in the main heat exchanger in which the cooling of the feed air for the high pressure column and the Heating of other products takes place; alternatively, this can be indirect Heat exchange step take place in a separate heat exchanger. In both In some cases, the heat of vaporization is available through a high pressure flow provided, either by a correspondingly highly compressed part of the feed air or is formed by circulating nitrogen. Because the inner compression also on supercritical pressures, the term "evaporation" is here in another To understand the meaning that also includes pseudo-evaporation.

Eine Stickstoff-Fraktion kann direkt aus der Hochdrucksäule und/oder der Mitteldrucksäule entnommen, angewärmt und als Druckstickstoff-Produkt gewonnen werden. Auch der Hochdrucksäulen-Stickstoff kann bei Bedarf innenverdichtet werden, indem die Stickstoff-Fraktion flüssig aus der Hochdrucksäule oder ihrem Kopfkondensator entnommen, in flüssigem Zustand auf einen Druck gebracht wird, der höher als der Betriebsdruck der Hochdrucksäule ist, und unter diesem Druck durch indirekten Wärmeaustausch verdampft wird. Der indirekte Wärmeaustausch wird vorzugsweise im Hauptwärmetauscher mit Hochdruckluft als Heizfluid durchgeführt.A nitrogen fraction can be drawn directly from the high pressure column and / or the Medium pressure column removed, warmed up and obtained as a pressure nitrogen product become. The high-pressure column nitrogen can also be internally compressed if necessary, by making the nitrogen fraction liquid from the high pressure column or their Head condenser removed, is brought to a pressure in the liquid state, the is higher than the operating pressure of the high pressure column, and under this pressure indirect heat exchange is evaporated. The indirect heat exchange will preferably carried out in the main heat exchanger with high pressure air as the heating fluid.

Bei dem erfindungsgemäßen Verfahren ist es günstig, wenn der zweite Einsatzluftstrom separat vom ersten Einsatzluftstrom lediglich etwa auf den Betriebsdruck der Mitteldrucksäule (plus Leitungsverlusten) verdichtet und ohne weitere druckverändemde Maßnahmen in die Mitteldrucksäule eingeleitet wird. Insbesondere dann, wenn (nur) ein Teil der Zerlegungsluft von einem Gasturbinen-Verdichter geliefert wird (zum Beispiel der erste Einsatzluftstrom), spart diese Verfahrensweise Energie.In the method according to the invention, it is advantageous if the second Feed air flow separate from the first feed air flow only to approximately Operating pressure of the medium pressure column (plus line losses) compressed and without further pressure-changing measures are introduced into the medium pressure column. Especially when (only) part of the separation air from a gas turbine compressor is delivered (for example the first feed air flow), this saves How energy works.

Zur Erzeugung von Verfahrenskälte kann ein dritter Einsatzluftstrom verdichtet, gereinigt, abgekühlt, arbeitsleistend entspannt und in die Niederdrucksäule oder in die Mitteldrucksäule eingeführt werden. Die bei der arbeitsleistenden Entspannung erzeugte mechanische Energie kann zur Nachverdichtung des dritten Einsatzluftstroms genutzt werden, beispielsweise durch Einsatz einer Turbinen-Booster-Kombination.A third feed air stream can be compressed to generate process cold, cleaned, cooled, relieved of work and into the low pressure column or in the Medium pressure column are introduced. Work relaxation Mechanical energy generated can be used to recompress the third feed air flow be used, for example by using a turbine-booster combination.

Die Erfindung betrifft außerdem eine kombinierte Vorrichtung zur Tieftemperatur-Zerlegung von Luft und zur Energie-Erzeugung gemäß Patentanspruch 14.The invention also relates to a combined device for cryogenic decomposition of air and for energy generation according to claim 14.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel der Erfindung mit Einblasung von Turbinenluft in die Niederdrucksäule,
Figur 2
eine Abwandlung dieses Prozesses mit Einblasung von Turbinenluft in die Mitteldrucksäule und
Figur 3
eine weiteres Ausführungsbeispiel der Erfindung mit Einspeisung von gepumptem Niederdrucksäule-Sauerstoff an einer Zwischenstelle der Mitteldrucksäule.
The invention and further details of the invention are explained in more detail below on the basis of exemplary embodiments schematically illustrated in the drawings. Here show:
Figure 1
a first embodiment of the invention with the injection of turbine air into the low pressure column,
Figure 2
a modification of this process with the injection of turbine air into the medium pressure column and
Figure 3
a further embodiment of the invention with feeding pumped low pressure column oxygen at an intermediate point of the medium pressure column.

Bei dem Drei-Säulen-System der Figur 1 sind Hochdrucksäule 1, Mitteldrucksäule 2 und Niederdrucksäule 3 übereinander angeordnet. Ein erster Hauptkondensator 4 bildet gleichzeitig die Kopfkühlung der Hochdrucksäule 1 und die Sumpfheizung der Mitteldrucksäule 2. Als Kopfkühlung der Mitteldrucksäule 2 und Sumpfheizung der Niederdrucksäule 3 dient ein zweiter Hauptkondensator 5. Die beiden Hauptkondensatoren sind vorzugsweise als Fallfilm-Verdampfer ausgebildet, können aber auch als Umlauf-Verdampfer realisiert sein. Die Betriebsdrücke der Säulen (jeweils am Sumpf) betragen in dem Beispiel etwa:

  • Hochdrucksäule 16 bar
  • Mitteldrucksäule 5,7 bar
  • Niederdrucksäule 1,3 bis 1,5 bar
  • In the three-column system of FIG. 1 , high-pressure column 1, medium-pressure column 2 and low-pressure column 3 are arranged one above the other. A first main condenser 4 simultaneously forms the head cooling of the high pressure column 1 and the bottom heating of the medium pressure column 2. A second main condenser 5 serves as head cooling of the medium pressure column 2 and bottom heating of the low pressure column 3. The two main condensers are preferably designed as falling film evaporators, but can also be used as circulation -Evaporator can be realized. In the example, the operating pressures of the columns (each at the sump) are approximately:
  • High pressure column 16 bar
  • Medium pressure column 5.7 bar
  • Low pressure column 1.3 to 1.5 bar
  • Ein Luftstrom 10 wird in einem Gasturbinen-Verdichter 11 auf einen Druck gebracht, der mindestens gleich dem Betriebsdruck der Hochdrucksäule 1 ist. Der Gasturbinen-Verdichter 11 ist Teil eines Gasturbinen-Systems. (Ein Teil der in 11 verdichteten Luft wird als Verbrennungsluft zur Brennkammer der Gasturbinen-Einheit abgezweigt, was in der Zeichnung nicht dargestellt ist). Nach Nachkühlung 12 wird der erste Luftstrom einer Reinigungsvorrichtung 13 zugeführt, vorzugsweise einer Molekularsieb-Station. Aus der gereinigten Hochdruckluft 14 wird ein erster Einsatzluftstrom 15 abgezweigt, in einem Hauptwärmetauscher 40 abgekühlt und über Leitung 16 der Hochdrucksäule 1 zugeführt. Je nach Menge und Druck der innenverdichteten Fraktion 81, die unten im Detail beschrieben wird, muss ein Teilluftstrom (hier nicht dargestellt) auf einen höheren Druck weiter verdichtet und stromabwärts des Hauptwärmetauschers 40 gedrosselt werden.An air stream 10 is brought to a pressure in a gas turbine compressor 11, which is at least equal to the operating pressure of the high pressure column 1. The gas turbine compressor 11 is part of a gas turbine system. (Part of the air compressed in 11 is branched off as combustion air to the combustion chamber of the gas turbine unit, what is not shown in the drawing). After cooling 12, the first airflow fed to a cleaning device 13, preferably a molecular sieve station. A first feed air stream 15 is branched off from the cleaned high-pressure air 14, in a main heat exchanger 40 cooled and via line 16 of the high pressure column 1 fed. Depending on the amount and pressure of the internally compressed fraction 81, which is shown below in A partial air flow (not shown here) has to be described in detail higher pressure further compressed and downstream of the main heat exchanger 40 be throttled.

    Ein zweiter Einsatzluftstrom 20, 24 wird durch einen Luftverdichter 21, einen Nachkühler 22 und eine separate Reinigungsvorrichtung 23 geführt, ebenfalls im Hauptwärmetauscher 40 abgekühlt, dann aber in die Mitteldrucksäule 2 geführt (25), und zwar ohne Drosselung oder andere druckverändemde Maßnahmen stromabwärts des zweiten Luftverdichters. Dadurch braucht der zweite Einsatzluftstrom im zweiten Luftverdichter 21 nur auf etwa den Betriebsdruck der Mitteldrucksäule 2 verdichtet zu werden. Der Luftverdichter wird nicht von der Gasturbine angetrieben, sondern vorzugsweise mittels externer Energie, beispielsweise durch einen Elektromotor.A second feed air stream 20, 24 is through an air compressor 21, a Aftercooler 22 and a separate cleaning device 23 performed, also in Main heat exchanger 40 cooled, but then led into the medium pressure column 2 (25), without throttling or other pressure-changing measures downstream of the second air compressor. As a result, the second feed air flow needs in the second Air compressor 21 only compresses to approximately the operating pressure of the medium pressure column 2 become. The air compressor is not driven by the gas turbine, but rather preferably by means of external energy, for example by an electric motor.

    Der Rest der gereinigten Hochdruckluft 14, der nicht als erster Einsatzluftstrom 15, 16 in die Hochdrucksäule 1 strömt, bildet einen dritten Einsatzluftstrom 30. Dieser wird in einem Nachverdichter 31 weiterverdichtet und tritt nach Nachkühlung 32 in den Hauptwärmetauscher 40 ein. Nach Abkühlung auf eine Zwischentemperatur wird er über Leitung 33 wieder aus dem Hauptwärmetauscher 40 herausgeführt, in einer Turbine 34 arbeitsleistend entspannt und in die Niederdrucksäule 3 eingeblasen (35). Die Turbine 34 ist mechanisch mit dem Nachverdichter 31 gekoppelt.The rest of the cleaned high-pressure air 14, which is not the first feed air stream 15, 16 flows into the high pressure column 1, forms a third feed air stream 30. This is in a post-compressor 31 further compresses and occurs after post-cooling 32 in the Main heat exchanger 40. After cooling to an intermediate temperature, it becomes led out of the main heat exchanger 40 via line 33, in one Turbine 34 relaxed while working and blown into the low-pressure column 3 (35). The turbine 34 is mechanically coupled to the post-compressor 31.

    Am Kopf der Hochdrucksäule 1 wird gasförmiger Stickstoff 41 erzeugt. Er wird zu einem ersten Teil 42 im ersten Hauptkondensator 4 verflüssigt. Der dabei gewonnene Flüssigstickstoff 43 wird als Rücklauf auf die Hochdrucksäule 1 (Leitung 44) beziehungsweise auf die Mitteldrucksäule 2 (Leitung 45) aufgegeben. Der Flüssigstickstoff 45 wird vor der Einspeisung 46 in die Mitteldrucksäule in einem Unterkühlungs-Gegenströmer 47 unterkühlt. Ein zweiter Teil 48 des Kopfstickstoffs 41 der Hochdrucksäule wird in einem Nebenkondensator 49 mindestens teilweise kondensiert und strömt über Leitung 50 wieder zur Hochdrucksäule 1 zurück. Ein dritter Teil 51 der Hochdrucksäulen-Stickstoffs 41 wird im Hauptwärmetauscher 40 angewärmt und über Leitung 52 als Druckstickstoff-Produkt GAN gewonnen.Gaseous nitrogen 41 is generated at the top of the high-pressure column 1. He's going to liquefied a first part 42 in the first main condenser 4. The one won Liquid nitrogen 43 is returned to the high pressure column 1 (line 44) or abandoned to the medium pressure column 2 (line 45). The Liquid nitrogen 45 is in one before the feed 46 into the medium pressure column Supercooling counterflow 47 supercooled. A second part 48 of the top nitrogen 41 the high pressure column is at least partially in a secondary condenser 49 condenses and flows back via line 50 to the high pressure column 1. A third Part 51 of the high pressure column nitrogen 41 is in the main heat exchanger 40 warmed up and obtained via line 52 as a pressure nitrogen product GAN.

    Im Sumpf der Hochdrucksäule 1 fällt flüssiger Rohsauerstoff an. Dieser wird als sauerstoffangereicherte Fraktion 53 abgezogen und - nach Unterkühlung 47 - zu einem ersten Teil 54 als erste sauerstoffangereicherte Fraktion in die Mitteldrucksäule 2 eingeleitet. Ein zweiter Teil 56, 57 wird nach weiterer Unterkühlung 55 in die Niederdrucksäule eingedrosselt.Liquid crude oxygen is obtained in the sump of the high-pressure column 1. This is called deducted oxygen-enriched fraction 53 and - after hypothermia 47 - to one first part 54 as the first oxygen-enriched fraction in the medium pressure column 2 initiated. A second part 56, 57 is after further supercooling 55 in the Throttled low pressure column.

    Der gasförmige Stickstoff 58, der am Kopf der Mitteldrucksäule 2 erzeugt wird, kondensiert zu einem ersten Teil 59 im zweiten Hauptkondensator 5. Der dabei gewonnene Flüssigstickstoff 60 wird als Rücklauf auf die Mitteldrucksäule 2 aufgegeben. Ein zweiter Teil 61 des Kopfstickstoffs 58 der Mitteldrucksäule wird im Hauptwärmetauscher 40 angewärmt und über Leitung 62 - gegebenenfalls nach Weiterverdichtung 63 mit Nachkühlung 64 - als weiteres Druckstickstoff-Produkt PGAN gewonnen.The gaseous nitrogen 58 which is generated at the top of the medium pressure column 2 condenses to a first part 59 in the second main capacitor 5 Liquid nitrogen 60 obtained is returned to the medium pressure column 2 given up. A second part 61 of the top nitrogen 58 of the medium pressure column is in the Main heat exchanger 40 warmed up and via line 62 - if necessary after Further compression 63 with after-cooling 64 - as a further pressure nitrogen product PGAN won.

    Elf praktische Böden unterhalb des Mitteldrucksäulen-Kopfs wird ein Flüssigstickstoff-Strom 65 abgenommen und nach Unterkühlung 55 auf den Kopf der Niederdrucksäule 3 aufgegeben (66). A liquid nitrogen flow becomes eleven practical floors below the head of the medium pressure column 65 removed and after hypothermia 55 on the head of the low pressure column 3 abandoned (66).

    Im Sumpf der Niederdrucksäule wird flüssiger Sauerstoff 95 %-iger Reinheit erzeugt. Derjenige Teil der Sumpfflüssigkeit, der nicht im zweiten Hauptkondensator 5 verdampft wird, fließt als Sauerstoff-Fraktion 67 zu einer Pumpe 68 und wird dort in flüssigem Zustand auf etwa Mitteldrucksäulen-Druck gebracht. Die Sauerstoff-Fraktion 69 wird unter diesem erhöhtem Druck im Unterkühlungs-Gegenströmer 47 angewärmt und über Leitung 70 in die Mitteldrucksäule 2 eingeleitet. Die Einspeisung wird hier unmittelbar oberhalb des Mitteldrucksäulen-Sumpfs vorgenommen. Im Sumpf, der gleichzeitig den Verdampfungsraum des ersten Hauptkondensators 4 darstellt, wird die Sauerstoff-Fraktion 70 aus der Niederdrucksäule mit der innerhalb der Mitteldrucksäule herabfließenden Flüssigkeit vermischt. Das Gemisch wird über Leitung 71 flüssig als Sauerstoff-Produkt entnommen, geringfügig gedrosselt (72), in den Verdampfungsraum des Nebenkondensators 49 eingeleitet und dort teilweise verdampft.Liquid oxygen of 95% purity is generated in the bottom of the low pressure column. That part of the bottom liquid that is not in the second main condenser 5 is evaporated, flows as an oxygen fraction 67 to a pump 68 and is in there brought liquid state to about medium pressure column pressure. The oxygen fraction 69 is heated under this increased pressure in the supercooling counterflow 47 and introduced into the medium pressure column 2 via line 70. The feed is here immediately above the sump of the medium pressure column. In the swamp, the represents the evaporation space of the first main condenser 4, the Oxygen fraction 70 from the low pressure column with that within the medium pressure column flowing down liquid mixed. The mixture is liquid as line 71 Oxygen product taken, slightly throttled (72), in the Evaporation chamber of the secondary condenser 49 initiated and there partially evaporated.

    Ein erster Teil 73 des Sauerstoff-Produkts 71 wird gasförmig aus dem Nebenkondensator abgezogen, im Hauptwärmetauscher angewärmt und schließlich über Leitung 74 als Produkt (GOX) abgegeben. Falls ein Produktdruck gewünscht ist, der höher als der Mitteldrucksäulen-Druck ist, kann das angewärmte Sauerstoff-Produkt in einem Produktverdichter 75 (mit Nachkühler 78) weiterverdichtet werden (Außenverdichtung).A first part 73 of the oxygen product 71 is gaseous from the Auxiliary condenser removed, warmed up in the main heat exchanger and finally delivered via line 74 as a product (GOX). If product printing is desired, which is higher than the medium pressure column pressure, the warmed oxygen product be further compressed in a product compressor 75 (with aftercooler 78) (Outer compression).

    Der flüssig verbliebene Anteil des Sauerstoff-Produkts 71 wird über Leitung 79 aus dem Verdampfungsraum des Nebenkondensators 49 abgezogen und einer Innenverdichtung unterzogen. Dazu wird er in einer Pumpe 80 auf einen Produktdruck gebracht, der etwa gleich dem Produktdruck der Außenverdichtung oder verschieden von diesem ist. Das Hochdruck-Sauerstoff-Produkt 81 wird im Hauptwärmetauscher verdampft (oder pseudo-verdampft, falls der Produktdruck über dem kritischen Druck liegt) und auf Umgebungstemperatur angewärmt. Über Leitung 76 verlässt das innenverdichtete Sauerstoff-Produkt (GOX-IC) die Anlage. Falls gewünscht, kann er mit dem in 75 außenverdichteten Sauerstoff-Produkt 74 vereinigt werden.The liquid portion of the oxygen product 71 is discharged via line 79 deducted the evaporation space of the secondary condenser 49 and one Subjected to internal compression. To do this, it is pumped to product pressure in a pump 80 brought about the same as the product pressure of the outer compression or different of this is. The high pressure oxygen product 81 is in the main heat exchanger evaporates (or pseudo-evaporates if the product pressure is above the critical pressure lies) and warmed to ambient temperature. This leaves via line 76 internally compressed oxygen product (GOX-IC) the plant. If desired, he can be combined with the oxygen product 74, which is compressed in 75.

    Als weiteres Produkt der Niederdrucksäule 3 wird Unrein-Stickstoff 82 vom Kopf abgezogen, in den Unterkühlungs-Gegenströmem 55 und 47 sowie im Hauptwärmetauscher 40 angewärmt. Der warme Unrein-Stickstoff 83 (UN2) kann als druckloses Nebenprodukt genutzt, als Regeneriergas für die Reinigungsvorrichtungen 13 und/oder 23 verwendet und/oder in die Atmosphäre abgelassen werden.Another product of the low pressure column 3 is impure nitrogen 82 from the head deducted, in the supercooling countercurrent 55 and 47 and in Main heat exchanger 40 warmed up. The warm impure nitrogen 83 (UN2) can be used as unpressurized by-product used as regeneration gas for the cleaning devices 13 and / or 23 used and / or released into the atmosphere.

    Figur 2 ist weitgehend identisch mit Figur 1. Allerdings wird hier der dritte Einsatzluftstrom 230, 233 in der Entspannungsmaschine 234 nur auf etwa Mitteldrucksäulen-Druck entspannt. Der entspannte dritte Einsatzluftstrom 235 wird über Leitung 236 gemeinsam mit dem zweiten Einsatzluftstrom 225 stromabwärts des Hauptwärmetauschers 40 in die Mitteldrucksäule 2 eingespeist. Eine Direktluft-Einleitung in die Niederdrucksäule 3 gibt es bei dieser Verfahrensvariante nicht.Figure 2 is largely identical to Figure 1. However, here is the third Feed air flow 230, 233 in the expansion machine 234 only approximately Medium pressure column pressure relaxed. The relaxed third feed airflow 235 will via line 236 together with the second feed air flow 225 downstream of the Main heat exchanger 40 fed into the medium pressure column 2. A direct air introduction there is no low pressure column 3 in this process variant.

    Der einzige Unterschied zwischen Figur 3 und Figur 2 besteht in der Stelle der Einleitung der Sauerstoff-Fraktion 370 aus der Niederdrucksäule 3 in die Mitteldrucksäule 2. Während diese Einspeisung in den Figuren 1 und 2 unmittelbar über dem Sumpf der Mitteldrucksäule stattfindet, liegen bei Figur 3 drei praktische Böden zwischen Einspeisung der Sauerstoff-Fraktion 370 und Mitteldrucksäulen-Sumpf. Selbstverständlich kann dieses Detail auch mit der in Figur 1 gezeigten Einblasung der Turbinenluft in die Niederdrucksäule kombiniert werden.The only difference between Figure 3 and Figure 2 is in the place of Introduction of the oxygen fraction 370 from the low pressure column 3 in the Medium pressure column 2. During this feed in Figures 1 and 2 immediately 3 practical three lie above the sump of the medium pressure column Soils between the oxygen fraction 370 feed and the medium pressure column sump. Of course, this detail can also be done with that shown in FIG Blowing the turbine air into the low pressure column can be combined.

    Die Reinigung der beiden Luftströme 10, 20 kann grundsätzlich auch in einer gemeinsamen Vorrichtung durchgeführt werden. Zum Beispiel ist es möglich, die Gesamtluft zunächst nur auf etwa Mitteldrucksäulen-Druck zu verdichten, unter diesem mittleren Druck zu reinigen, und anschließend den ersten (und gegebenenfalls den dritten) Einsatzluftstrom von dem mittleren Druck aus weiterzuverdichten.The cleaning of the two air streams 10, 20 can in principle also be carried out in one be carried out common device. For example, it is possible to Compress the total air initially only to approximately medium pressure column pressure, below this medium pressure, and then the first (and possibly the third) to further compress the air flow from the medium pressure.

    Altemativ zu den in den Zeichnungen dargestellten Luftturbinen kann die für das Verfahren benötigte Kälte auch durch arbeitsleistende Entspannung von Stickstoff aus der Mitteldrucksäule 2 gewonnen werden. Der entspannte Mitteldrucksäulen-Stickstoff kann dann mit dem Unrein-Stickstoff aus der Niederdrucksäule 3 vermischt und gemeinsam mit diesem im Hauptwärmetauscher 40 angewärmt werden.Alternatively to the air turbines shown in the drawings, the for the Processes also require cold from work-relieving nitrogen the medium pressure column 2 can be obtained. The relaxed medium pressure column nitrogen can then be mixed with the impure nitrogen from the low pressure column 3 and be heated together with this in the main heat exchanger 40.

    Claims (14)

    Verfahren zur Tieftemperatur-Zerlegung von Luft in einem Drei-Säulen-System, das eine Hochdrucksäule (1), eine Mitteldrucksäule (2) und eine Niederdrucksäule (3) aufweist, und zur Energie-Erzeugung in einem Gasturbinen-System, das eine Gasturbine, einen von der Gasturbine angetriebenen Gasturbinen-Verdichter (11) und eine Brennkammer aufweist, bei dem (a) ein erster Einsatzluftstrom (10, 14, 15, 16) im Gasturbinen-Verdichter (11) verdichtet, gereinigt (13), abgekühlt (40) und in die Hochdrucksäule (1) eingeleitet wird, (b) ein zweiter Einsatzluftstrom (20, 24, 25, 225) in einem nicht von der Gasturbine angetriebenen Luftverdichter (21) verdichtet, gereinigt (23), abgekühlt (40) und in die Mitteldrucksäule (2) eingeführt wird, (c) in der Hochdrucksäule (1) eine erste sauerstoffangereicherte Fraktion (53, 54) erzeugt wird, (d) die erste sauerstoffangereicherte Fraktion (53, 54) in die Mitteldrucksäule (2) eingeleitet wird und bei dem (e) eine zweite sauerstoffangereicherte Fraktion (53, 57) in die Niederdrucksäule (3) eingeleitet wird. Method for the low-temperature separation of air in a three-column system which has a high-pressure column (1), a medium-pressure column (2) and a low-pressure column (3), and for energy generation in a gas turbine system which comprises a gas turbine, has a gas turbine compressor (11) driven by the gas turbine and a combustion chamber in which (a) a first feed air stream (10, 14, 15, 16) in the gas turbine compressor (11) is compressed, cleaned (13), cooled (40) and introduced into the high-pressure column (1), (b) a second feed air stream (20, 24, 25, 225) is compressed, cleaned (23), cooled (40) and introduced into the medium-pressure column (2) in an air compressor (21) that is not driven by the gas turbine, (c) a first oxygen-enriched fraction (53, 54) is generated in the high-pressure column (1), (d) the first oxygen-enriched fraction (53, 54) is introduced into the medium pressure column (2) and at which (e) a second oxygen-enriched fraction (53, 57) is introduced into the low-pressure column (3). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass gasförmiger Stickstoff (41, 42) aus der Hochdrucksäule (1) in einem ersten Hauptkondensator (4) durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule (3) kondensiert wird.A method according to claim 1, characterized in that gaseous nitrogen (41, 42) from the high pressure column (1) is condensed in a first main condenser (4) by indirect heat exchange with an oxygen-rich fraction from the low pressure column (3). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass gasförmiger Stickstoff (58, 59) aus der Mitteldrucksäule (2) in einem zweiten Hauptkondensator (5) durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule (3) kondensiert wird.Method according to Claim 1 or 2, characterized in that gaseous nitrogen (58, 59) from the medium pressure column (2) is condensed in a second main condenser (5) by indirect heat exchange with an oxygen-rich fraction from the low pressure column (3). Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass im ersten Hauptkondensator (4) und/oder im zweiten Hauptkondensator (5) gebildetes Kondensat (43; 60) und/oder eine oder mehrere Flüssigstickstoff-Ströme (65) von einer Zwischenstelle der Hochdrucksäule oder der Mitteldrucksäule der Niederdrucksäule (3) zugeleitet (66) werden. A method according to claim 2 or 3, characterized in that in the first main condenser (4) and / or in the second main condenser (5) formed condensate (43; 60) and / or one or more liquid nitrogen streams (65) from an intermediate point of the high pressure column or the medium pressure column of the low pressure column (3) are fed (66). Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein Flüssigstickstoff-Strom (65) mindestens einen theoretischen Boden unterhalb des Kopfs der Mitteldrucksäule (2) entnommen und der Niederdrucksäule (3) zugeleitet (66) wird.Method according to claim 4, characterized in that a liquid nitrogen stream (65) is taken from at least one theoretical base below the head of the medium pressure column (2) and fed (66) to the low pressure column (3). Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zweite sauerstoffangereicherte Fraktion (53, 57), die in die Niederdrucksäule (3) eingeleitet wird, aus der Hochdrucksäule (1) abgezogen wird.Method according to one of claims 1 to 5, characterized in that the second oxygen-enriched fraction (53, 57) which is introduced into the low pressure column (3) is withdrawn from the high pressure column (1). Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Niederdrucksäule (3) eine Sauerstoff-Fraktion (67) erzeugt wird, mindestens ein Teil der Sauerstoff-Fraktion (67) flüssig aus der Niederdrucksäule (3) entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (68) und in die Mitteldrucksäule (2) eingeleitet (69, 70, 370) wird und dass der Mitteldrucksäule (2) ein Sauerstoff-Produkt (71) entnommen wird.Method according to one of claims 1 to 6, characterized in that an oxygen fraction (67) is generated in the low pressure column (3), at least a portion of the oxygen fraction (67) withdrawn in liquid form from the low pressure column (3), in liquid form Condition brought to an increased pressure (68) and introduced into the medium pressure column (2) (69, 70, 370) and that an oxygen product (71) is removed from the medium pressure column (2). Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die flüssig auf Druck gebrachte Sauerstoff-Fraktion (370) aus der Niederdrucksäule mindestens einen theoretischen Boden oberhalb des Sumpfs in die Mitteldrucksäule (2) eingeleitet wird.Method according to Claim 7, characterized in that the oxygen fraction (370), which is brought under pressure in liquid form, is introduced from the low-pressure column at least one theoretical plate above the sump into the medium-pressure column (2). Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Sauerstoff-Produkt (71) flüssig aus der Mitteldrucksäule (2) abgezogen, in einen Nebenkondensator (49) eingeleitet und dort durch indirekten Wärmeaustausch mit einem Heizmedium, insbesondere mit Stickstoff (48) aus der Hochdrucksäule (1), mindestens teilweise verdampft wird.Method according to one of claims 1 to 8, characterized in that an oxygen product (71) is drawn off in liquid form from the medium pressure column (2), introduced into a secondary condenser (49) and there by indirect heat exchange with a heating medium, in particular with nitrogen (48 ) is at least partially evaporated from the high pressure column (1). Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens ein Teil (79) des Sauerstoff-Produkts (71) flüssig aus der Mitteldrucksäule (2) oder aus dem Nebenkondensator (49) abgezogen, in flüssigem Zustand auf einen Druck gebracht (80) wird, der höher als der Betriebsdruck der Mitteldrucksäule (2) ist, und unter diesem Druck durch indirekten Wärmeaustausch (40) verdampft wird. Method according to one of claims 1 to 9, characterized in that at least a portion (79) of the oxygen product (71) is drawn off in liquid form from the medium pressure column (2) or from the secondary condenser (49), brought to a pressure in the liquid state ( 80), which is higher than the operating pressure of the medium pressure column (2), and is evaporated under this pressure by indirect heat exchange (40). Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine Stickstoff-Fraktion (51) aus der Hochdrucksäule (1) und/oder Stickstoff-Fraktion (61) aus der Mitteldrucksäule (2) angewärmt (40) und als Druckstickstoff-Produkt (52, 62) gewonnen wird.Method according to one of claims 1 to 10, characterized in that a nitrogen fraction (51) from the high pressure column (1) and / or nitrogen fraction (61) from the medium pressure column (2) warmed (40) and as a pressure nitrogen product (52, 62) is obtained. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Stickstoff-Fraktion flüssig aus der Hochdrucksäule (1) entnommen, in flüssigem Zustand auf einen Druck gebracht wird, der höher als der Betriebsdruck der Hochdrucksäule (1) ist, und unter diesem Druck durch indirekten Wärmeaustausch verdampft wird.A method according to claim 11, characterized in that the nitrogen fraction is taken liquid from the high pressure column (1), brought to a pressure in the liquid state which is higher than the operating pressure of the high pressure column (1), and under this pressure by indirect heat exchange is evaporated. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der zweite Einsatzluftstrom (20) in dem Luftverdichter (21) auf etwa den Betriebsdruck der Mitteldrucksäule (2) verdichtet und ohne weitere druckverändernde Maßnahmen in die Mitteldrucksäule (2) eingeleitet (24, 25, 225, 236) wird.Method according to one of claims 1 to 12, characterized in that the second feed air flow (20) in the air compressor (21) compresses to approximately the operating pressure of the medium pressure column (2) and is introduced into the medium pressure column (2) without further pressure-changing measures. 25, 225, 236). Kombinierte Vorrichtung zur Tieftemperatur-Zerlegung von Luft und zur Energie-Erzeugung mit einem Drei-Säulen-System, das eine Hochdrucksäule (1), eine Mitteldrucksäule (2) und eine Niederdrucksäule (3) aufweist, und mit einem Gasturbinen-System, das eine Gasturbine, einen von der Gasturbine angetriebenen Gasturbinen-Verdichter (11) und eine Brennkammer aufweist, und mit (a) einer ersten Einsatzluftleitung (10, 14, 15, 16), die vom Austritt des Gasturbinen-Verdichters (11) in die Hochdrucksäule (1) führt, mit (b) einem mit von der Gasturbine gekoppelten Luftverdichter (21) und einer zweiten Einsatzluftleitung (25, 225, 236), die vom Austritt des Luftverdichters (21) in die Mitteldrucksäule (2) führt, mit (c) einer ersten Rohsauerstoffleitung (53, 54) zur Einleitung einer ersten sauerstoffangereicherten Fraktion aus der Hochdrucksäule (1) in die Mitteldrucksäule (2), und mit (d) einer zweiten Rohsauerstoffleitung (53, 57) zur Einleitung einer zweiten sauerstoffangereicherten Fraktion in die Niederdrucksäule (3). Combined device for low-temperature separation of air and for energy generation with a three-column system, which has a high-pressure column (1), a medium-pressure column (2) and a low-pressure column (3), and with a gas turbine system, the one Gas turbine, having a gas turbine compressor (11) driven by the gas turbine and a combustion chamber, and with (a) a first feed air line (10, 14, 15, 16) which leads from the outlet of the gas turbine compressor (11) into the high pressure column (1) (b) with an air compressor (21) coupled to the gas turbine and a second feed air line (25, 225, 236) leading from the outlet of the air compressor (21) into the medium pressure column (2) (c) a first raw oxygen line (53, 54) for introducing a first oxygen-enriched fraction from the high-pressure column (1) into the medium-pressure column (2), and with (d) a second raw oxygen line (53, 57) for introducing a second oxygen-enriched fraction into the low-pressure column (3).
    EP01103828A 2000-10-20 2001-02-15 Three-column system for the cryogenic separation of air Expired - Lifetime EP1199532B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10052180A DE10052180A1 (en) 2000-10-20 2000-10-20 Three-column system for the low-temperature separation of air
    DE10052180 2000-10-20

    Publications (2)

    Publication Number Publication Date
    EP1199532A1 true EP1199532A1 (en) 2002-04-24
    EP1199532B1 EP1199532B1 (en) 2005-08-03

    Family

    ID=7660531

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01103828A Expired - Lifetime EP1199532B1 (en) 2000-10-20 2001-02-15 Three-column system for the cryogenic separation of air

    Country Status (4)

    Country Link
    EP (1) EP1199532B1 (en)
    AT (1) ATE301271T1 (en)
    DE (2) DE10052180A1 (en)
    ES (1) ES2246945T3 (en)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1120617A2 (en) * 2000-01-28 2001-08-01 The BOC Group plc Air separation
    EP1120616A2 (en) * 2000-01-28 2001-08-01 The BOC Group plc Air separation method
    EP2634517A1 (en) * 2012-02-29 2013-09-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
    US20130340476A1 (en) * 2011-03-18 2013-12-26 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Apparatus and method for separating air by cryogenic distillation
    CN104067079B (en) * 2011-03-18 2016-11-30 乔治洛德方法研究和开发液化空气有限公司 For by the equipment of separating air by cryogenic distillation and method
    US20220090855A1 (en) * 2020-09-18 2022-03-24 L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedeseorges Claude Method and apparatus for producing high-purity nitrogen and low-purity oxygen

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102009023900A1 (en) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Method for cryogenic separation of air with distillation column system for nitrogen-oxygen separation, involves producing oxygen-enriched fraction and nitrogen fraction in high pressure column, and supplying nitrogen to low pressure column
    EP3438585A3 (en) * 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0476989A1 (en) * 1990-09-20 1992-03-25 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers
    EP0694745A1 (en) * 1994-07-25 1996-01-31 The BOC Group plc Air separation
    EP0717249A2 (en) * 1994-12-16 1996-06-19 The BOC Group plc Air Separation
    JPH11132652A (en) * 1997-10-27 1999-05-21 Nippon Sanso Kk Method and device for manufacturing low-purity oxygen
    DE19936962A1 (en) * 1999-08-05 2000-09-28 Linde Tech Gase Gmbh Process to extract nitrogen and oxygen from ambient air by fractionated cryogenic distillation reduces complexity and expense of apparatus

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0476989A1 (en) * 1990-09-20 1992-03-25 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers
    EP0694745A1 (en) * 1994-07-25 1996-01-31 The BOC Group plc Air separation
    EP0717249A2 (en) * 1994-12-16 1996-06-19 The BOC Group plc Air Separation
    JPH11132652A (en) * 1997-10-27 1999-05-21 Nippon Sanso Kk Method and device for manufacturing low-purity oxygen
    DE19936962A1 (en) * 1999-08-05 2000-09-28 Linde Tech Gase Gmbh Process to extract nitrogen and oxygen from ambient air by fractionated cryogenic distillation reduces complexity and expense of apparatus

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10 31 August 1999 (1999-08-31) *

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1120617A2 (en) * 2000-01-28 2001-08-01 The BOC Group plc Air separation
    EP1120616A2 (en) * 2000-01-28 2001-08-01 The BOC Group plc Air separation method
    EP1120617A3 (en) * 2000-01-28 2002-08-28 The BOC Group plc Air separation
    EP1120616A3 (en) * 2000-01-28 2002-08-28 The BOC Group plc Air separation method
    US20130340476A1 (en) * 2011-03-18 2013-12-26 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Apparatus and method for separating air by cryogenic distillation
    CN104067079A (en) * 2011-03-18 2014-09-24 乔治洛德方法研究和开发液化空气有限公司 Device and method for separating air by cryogenic distillation
    CN104067079B (en) * 2011-03-18 2016-11-30 乔治洛德方法研究和开发液化空气有限公司 For by the equipment of separating air by cryogenic distillation and method
    AU2012230171B2 (en) * 2011-03-18 2017-03-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for separating air by cryogenic distillation
    EP2634517A1 (en) * 2012-02-29 2013-09-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
    US9360250B2 (en) 2012-02-29 2016-06-07 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
    US20220090855A1 (en) * 2020-09-18 2022-03-24 L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedeseorges Claude Method and apparatus for producing high-purity nitrogen and low-purity oxygen

    Also Published As

    Publication number Publication date
    EP1199532B1 (en) 2005-08-03
    ES2246945T3 (en) 2006-03-01
    DE10052180A1 (en) 2002-05-02
    ATE301271T1 (en) 2005-08-15
    DE50106958D1 (en) 2005-09-08

    Similar Documents

    Publication Publication Date Title
    EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
    EP1139046B1 (en) Process and device for producing high pressure oxygen product by cryogenic air separation
    EP2015012A2 (en) Process for the cryogenic separation of air
    EP2980514A1 (en) Method for the low-temperature decomposition of air and air separation plant
    DE10139727A1 (en) Method and device for obtaining a printed product by low-temperature separation of air
    EP2015013A2 (en) Process and device for producing a gaseous pressurised product by cryogenic separation of air
    DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
    EP1067345A1 (en) Process and device for cryogenic air separation
    EP2963370B1 (en) Method and device for the cryogenic decomposition of air
    EP1357342A1 (en) Cryogenic triple column air separation system with argon recovery
    EP2603754B1 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
    DE10238282A1 (en) Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
    EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
    EP2963369B1 (en) Method and device for the cryogenic decomposition of air
    DE10103968A1 (en) Three-pillar system for the low-temperature separation of air
    DE19537913A1 (en) Triple column process for the low temperature separation of air
    EP1199532B1 (en) Three-column system for the cryogenic separation of air
    WO2020164799A1 (en) Method and system for providing one or more oxygen-rich, gaseous air products
    EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
    EP1189001B1 (en) Process and apparatus for the production of high purity nitrogen through cryogenic air separation
    DE102017010001A1 (en) Process and installation for the cryogenic separation of air
    EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
    EP1284403B1 (en) Process and apparatus for the production of oxygen by low temperature air separation
    DE10045121A1 (en) Method and device for obtaining a gaseous product by low-temperature separation of air
    EP2906889A2 (en) Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020926

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20040408

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050803

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050803

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050803

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050803

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50106958

    Country of ref document: DE

    Date of ref document: 20050908

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051103

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051103

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051103

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060103

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2246945

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060504

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BECA Be: change of holder's address

    Owner name: *LINDE A.G.LEOPOLDSTRASSE 252, D-80807 MUENCHEN

    Effective date: 20050803

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050803

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20100312

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100220

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20100215

    Year of fee payment: 10

    Ref country code: GB

    Payment date: 20100202

    Year of fee payment: 10

    BERE Be: lapsed

    Owner name: *LINDE A.G.

    Effective date: 20110228

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110215

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110215

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120411

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110216

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120221

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120208

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20131031

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50106958

    Country of ref document: DE

    Effective date: 20130903

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130903

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130228