EP1199532B1 - Three-column system for the cryogenic separation of air - Google Patents

Three-column system for the cryogenic separation of air Download PDF

Info

Publication number
EP1199532B1
EP1199532B1 EP01103828A EP01103828A EP1199532B1 EP 1199532 B1 EP1199532 B1 EP 1199532B1 EP 01103828 A EP01103828 A EP 01103828A EP 01103828 A EP01103828 A EP 01103828A EP 1199532 B1 EP1199532 B1 EP 1199532B1
Authority
EP
European Patent Office
Prior art keywords
pressure column
medium
pressure
oxygen
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01103828A
Other languages
German (de)
French (fr)
Other versions
EP1199532A1 (en
Inventor
Christian Kunz
Dietrich Dipl.-Ing. Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1199532A1 publication Critical patent/EP1199532A1/en
Application granted granted Critical
Publication of EP1199532B1 publication Critical patent/EP1199532B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery

Definitions

  • the invention relates to a method for the low-temperature decomposition of air and Power generation.
  • the air separation is carried out in a three-pillar system
  • a gas turbine system which is a gas turbine (Gas Turbine Expander), a gas turbine driven by the gas turbine compressor and a combustion chamber.
  • gas turbine Gas Turbine Expander
  • one or more Products of air separation used in the energy production system for example, oxygen produced in the air fractionator can be used to generate a Fuel gas can be used, with which the combustion chamber is charged, in particular as an oxidant in a coal or heavy oil gasification.
  • nitrogen from the air separator can be used to extract coal and / or introduced into the gas turbine power; in the latter case Nitrogen fed into the combustion chamber or in the gas turbine or with the Gas turbine exhaust gas between combustion chamber and gas turbine of the combustion chamber mixed.
  • the basics of cryogenic decomposition of air in general are in the Monograph "Tiefftemperaturtechnik” by Hausen / Linde (2nd edition, 1985) and in one Review by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35) described.
  • the three-pillar system is preferably one Triple column, on the one hand, the head of the high pressure column and the bottom of the Medium pressure column and on the other hand the head of the medium pressure column and the swamp of the Low pressure column are in heat exchanging connection.
  • triple columns are also known from DE 1041989 or from Springmann, Chem. Ing. Techn., 46 (1974), 881 known.
  • the invention is also applicable to other column arrangements and / or others Capacitor configurations applicable (see, for example, EP 768503 A2, DE 2920270, EP 572962 A, EP 634617 A.
  • Capacitor configurations applicable (see, for example, EP 768503 A2, DE 2920270, EP 572962 A, EP 634617 A.
  • the gas turbine compressor brings air to a very high pressure of above about 7 bar, for example, 17 bar. This air is usually used as part of Combustion air for the combustion chamber of the gas turbine system. Another part is fed as the first feed air stream in the air separation. In the invention is a second feed air flow independent of the first in a separate air compressor compressed, preferably to a pressure lower than that Outlet pressure of the gas turbine compressor is; this is per se from EP 717249 A2 known.
  • the air compressor is not powered by the gas turbine, but otherwise for example, from a motor or a steam turbine. (The term “not from the Gas turbine driven "does not exclude, however, that generated in the gas turbine electrical energy is transmitted to an electric motor, in turn, the driving a separate air compressor.)
  • the medium-pressure column of the three-pillar system simultaneously represents this the low pressure part of the double column for the air under the higher pressure as well the high pressure part of the double column for the air under the lower pressure
  • the first feed air stream is introduced into the high-pressure column, and the Medium pressure column is made with both oxygenated liquid from the High-pressure column and fed with the second feed air stream.
  • Rewind for the Low pressure column can come from one or more of the following sources: condensate formed in the first main condenser, in the second main condenser formed condensate, liquid nitrogen flow from an intermediate point of High-pressure column, liquid nitrogen flow from an intermediate point of the medium-pressure column.
  • a liquid nitrogen stream has at least one taken from the theoretical bottom below the top of the medium pressure column and the Low pressure column is supplied. This is particularly advantageous when in the Low-pressure column no pure nitrogen is produced.
  • Between the medium-pressure column head and the liquid nitrogen deduction to the low pressure column are, for example, 5 to 20, preferably 10 to 15 practical trays.
  • the second oxygen-enriched fraction included in the Low pressure column is initiated, withdrawn from the high pressure column.
  • the first oxygen-enriched fraction (insert for the medium-pressure column) and the second oxygenated fraction (use for the low pressure column) preferably withdrawn together from the bottom of the high pressure column and before subcooled their introduction in medium pressure column or low pressure column.
  • an oxygen fraction 1 is generated in the low-pressure column at least part of the oxygen fraction is liquid from the low pressure column taken out, brought to an elevated pressure in the liquid state and in the Medium-pressure column is introduced and that the medium-pressure column is an oxygen product is removed.
  • the oxygen product is thus already at the time of removal from the three-pillar system at an elevated pressure. The effort to Further compression on the product pressure is thereby noticeably reduced or can even completely eliminated.
  • the liquid fraction brought to pressure from the Low pressure column at least one theoretical soil (for example one to five practical soils) is introduced above the sump in the medium-pressure column.
  • a lower purity than in Medium pressure column swamp prevail.
  • the oxygen product is liquid from the Submitted medium-pressure column, introduced into a secondary condenser and there by indirect heat exchange with a heating medium, in particular with nitrogen the high pressure column is at least partially evaporated.
  • the oxygen product is needed under a pressure higher than that Operating pressure of the medium-pressure column is.
  • the medium-pressure column for example be compressed outside, by gaseous from the medium-pressure column or a Secondary condenser, which operates at about medium pressure column pressure, withdrawn, warmed to about ambient temperature and in an oxygen compressor is compressed.
  • a nitrogen fraction can be taken directly from the high-pressure column and / or the Medium pressure column taken, warmed and recovered as a pressure nitrogen product become.
  • the high-pressure column nitrogen can also be internally compressed if required, by making the nitrogen fraction liquid from the high pressure column or its Top condenser removed, is brought to a pressure in the liquid state, the is higher than the operating pressure of the high-pressure column, and under this pressure through indirect heat exchange is evaporated.
  • the indirect heat exchange is preferably carried out in the main heat exchanger with high pressure air as the heating fluid.
  • the second Feed air flow separately from the first feed air flow only approximately to the Operating pressure of the medium-pressure column (plus line losses) compressed and without further pressure-changing measures in the medium-pressure column is initiated.
  • the decomposition air from a gas turbine compressor delivered for example, the first feed air stream
  • a third feed air stream can be compressed, cleaned, cooled, work relaxed and in the low pressure column or in the Medium pressure column are introduced.
  • the at work performing relaxation generated mechanical energy can be used for recompression of the third feed air stream be used, for example by using a turbine-booster combination.
  • the invention also relates to a combined apparatus for cryogenic separation of air and for energy generation according to claim 14.
  • high-pressure column 1, medium-pressure column 2 and low-pressure column 3 are arranged one above the other.
  • a first main capacitor 4 simultaneously forms the head cooling of the high-pressure column 1 and the sump heater of the medium-pressure column 2.
  • the head cooling of the medium-pressure column 2 and sump heating of the low-pressure column 3 is a second main capacitor 5.
  • the two main capacitors are preferably designed as falling-film evaporators, but can also be used as circulation -Verdampfer be realized.
  • the operating pressures of the columns (each at the sump) in the example are approximately: High-pressure column 16 bar Medium pressure column 5.7 bar Low-pressure column 1.3 to 1.5 bar
  • An airflow 10 is pressurized in a gas turbine compressor 11, which is at least equal to the operating pressure of the high-pressure column 1.
  • the gas turbine compressor 11 is part of a gas turbine system. (Part of the air compressed in 11 is branched off as combustion air to the combustion chamber of the gas turbine unit, which not shown in the drawing).
  • the first air flow a cleaning device 13, preferably a molecular sieve station.
  • a first feed air stream 15 is branched off, in cooled a main heat exchanger 40 and via line 16 of the high-pressure column. 1 fed.
  • a partial air flow (not shown here) on a higher pressure and downstream of the main heat exchanger 40th be throttled.
  • a second feed air stream 20, 24 is through an air compressor 21, a Aftercooler 22 and a separate cleaning device 23 out, also in Main heat exchanger 40 cooled, but then led into the medium-pressure column 2 (25), without throttling or other pressure-changing measures downstream of the second air compressor.
  • the second feed air flow in the second needs Air compressor 21 only to about the operating pressure of the medium-pressure column 2 compressed become.
  • the air compressor is not powered by the gas turbine, but preferably by means of external energy, for example by an electric motor.
  • This is in a secondary compressor 31 further compressed and occurs after aftercooling 32 in the Main heat exchanger 40 a. After cooling to an intermediate temperature he will via line 33 again led out of the main heat exchanger 40, in a Turbine 34 work relaxed and blown into the low pressure column 3 (35).
  • the turbine 34 is mechanically coupled to the booster 31.
  • Gaseous nitrogen 41 is generated at the top of the high-pressure column 1. He becomes too a first part 42 in the first main capacitor 4 liquefied. The won Liquid nitrogen 43 is as reflux to the high-pressure column 1 (line 44) or on the medium-pressure column 2 (line 45) abandoned. Of the Liquid nitrogen 45 is in front of the feed 46 in the medium-pressure column in a Subcooling countercurrent 47 undercooled. A second part 48 of the top nitrogen 41 the high-pressure column is at least partially in a secondary condenser 49 condenses and flows via line 50 back to the high-pressure column 1 back. A third Part 51 of the high-pressure column nitrogen 41 is in the main heat exchanger 40th warmed up and recovered via line 52 as pressure nitrogen product GAN.
  • the gaseous nitrogen 58 which is generated at the top of the medium-pressure column 2, condenses to a first part 59 in the second main capacitor 5.
  • the case recovered liquid nitrogen 60 is as reflux to the medium-pressure column. 2 given up.
  • a second part 61 of the head nitrogen 58 of the medium-pressure column is in Main heat exchanger 40 warmed up and via line 62 - possibly after Further compression 63 with aftercooling 64 - as another pressurized nitrogen product PGAN won.
  • liquid oxygen of 95% purity is produced in the bottom of the low-pressure column. That part of the bottoms liquid that is not in the second main capacitor 5 is evaporated, flows as an oxygen fraction 67 to a pump 68 and is there in liquid state brought to about medium pressure column pressure.
  • the oxygen fraction 69 is heated under this increased pressure in the subcooling countercurrent 47 and introduced via line 70 into the medium-pressure column 2.
  • the feed is here made just above the medium pressure column bottom.
  • the at the same time represents the evaporation space of the first main capacitor 4, the Oxygen fraction 70 from the low pressure column with the within the medium pressure column mixed down liquid.
  • the mixture is liquid via line 71 as Taken oxygen product, slightly throttled (72), in the Evaporating space of the secondary condenser 49 introduced and there partially evaporated.
  • a first portion 73 of the oxygen product 71 is gaseous from the Sub-condenser withdrawn, warmed in the main heat exchanger and finally delivered via line 74 as a product (GOX). If product printing is desired, higher than the medium pressure column pressure can be the warmed oxygen product be further compressed in a product compressor 75 (with aftercooler 78) (Outer compression).
  • the remaining liquid portion of the oxygen product 71 is discharged via line 79 withdrawn from the evaporation space of the secondary condenser 49 and a Subjected to internal compression. For this he is in a pump 80 to a product pressure brought about equal to the product pressure of external compression or different from this one is.
  • the high-pressure oxygen product 81 is in the main heat exchanger Evaporates (or pseudo-vaporizes if the product pressure is above the critical pressure is warmed) and warmed to ambient temperature.
  • Over line 76 leaves the internally compressed oxygen product (GOX-IC) the plant. If desired, he can are combined with the 75 externally compressed oxygen product 74.
  • impure nitrogen 82 As another product of the low pressure column 3 is impure nitrogen 82 from the head deducted, in the subcooling countercurrents 55 and 47 and in Main heat exchanger 40 warmed up.
  • the warm impure nitrogen 83 (UN2) can be used as used as a regeneration gas for the cleaning devices 13 and / or 23 used and / or discharged into the atmosphere.
  • Figure 2 is largely identical to Figure 1. However, here is the third Use air flow 230, 233 in the expansion machine 234 only to about Medium pressure column pressure relaxed.
  • the relaxed third feed air stream 235 is via line 236 together with the second feed air stream 225 downstream of the Main heat exchanger 40 fed into the medium-pressure column 2.
  • Figure 3 The only difference between Figure 3 and Figure 2 is in the place of Introduction of the oxygen fraction 370 from the low pressure column 3 in the Medium-pressure column 2. While this feed in Figures 1 and 2 directly takes place above the bottom of the medium-pressure column, are three practical in Figure 3 Trays between feed of oxygen fraction 370 and medium pressure column bottoms. Of course, this detail can also be shown with the one shown in FIG Injection of the turbine air into the low pressure column are combined.
  • the cleaning of the two air streams 10, 20 can basically in one common device are performed. For example, it is possible the Total air initially only to compress about medium-pressure column pressure, below this medium pressure, and then the first (and possibly the third) continue to compress the feed air flow from the mean pressure.
  • the for the Method required cold also by work-performing relaxation of nitrogen the medium-pressure column 2 are obtained.
  • the relaxed medium pressure column nitrogen can then be mixed with the impure nitrogen from the low pressure column 3 and be warmed up with this in the main heat exchanger 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Process for low temperature decomposition of air is carried out in a three column system consisting of a high pressure column (1), a middle pressure column (2) and a low pressure column (3). Process for low temperature decomposition of air comprises: (i) compressing a first air stream (10, 14, 15, 16) in a gas turbine compressor (11), purifying, cooling and feeding to the high pressure column; (ii) compressing a second air stream in an air compressor (21) operated by the gas turbine, purifying, cooling and feeding to the middle pressure column; (iii) producing a first oxygen-enriched fraction (53, 54) in the high pressure column; (iv) feeding the first oxygen-enriched fraction to the middle pressure column; and (v) feeding a second oxygen-enriched fraction (57) from the middle pressure column to the low pressure column. An Independent claim is also included for a device for carrying out the low temperature decomposition of air.

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperatur-Zerlegung von Luft und zur Energie-Erzeugung. Die Luftzerlegung wird in einem Drei-Säulen-System durchgeführt Zur Energie-Erzeugung dient ein Gasturbinen-System, das eine Gasturbine (Gasturbinen-Expander), einen von der Gasturbine angetriebenen Gasturbinen-Verdichter und eine Brennkammer aufweist. Vorzugsweise werden ein oder mehrere Produkte der Luftzerlegung in dem Energie-Erzeugungs-System eingesetzt. Beispielsweise kann im Luftzerleger erzeugter Sauerstoff zur Erzeugung eines Brenngases genutzt werden, mit dem die Brennkammer beschickt wird, insbesondere als Oxidationsmittel in einer Kohle- oder Schweröl-Vergasung. Alternativ oder zusätzlich kann Stickstoff aus dem Luftzerleger für die Förderung von Kohle verwendet und/oder in den Gasturbinen-Strom eingeführt verwendet werden; im letzteren Fall wird Stickstoff in die Brennkammer oder in die Gasturbine eingespeist oder mit dem Gasturbinen-Abgas zwischen Brennkammer und Gasturbine der Brennkammer vermischt.The invention relates to a method for the low-temperature decomposition of air and Power generation. The air separation is carried out in a three-pillar system For energy generation is a gas turbine system, which is a gas turbine (Gas Turbine Expander), a gas turbine driven by the gas turbine compressor and a combustion chamber. Preferably, one or more Products of air separation used in the energy production system. For example, oxygen produced in the air fractionator can be used to generate a Fuel gas can be used, with which the combustion chamber is charged, in particular as an oxidant in a coal or heavy oil gasification. Alternatively or In addition, nitrogen from the air separator can be used to extract coal and / or introduced into the gas turbine power; in the latter case Nitrogen fed into the combustion chamber or in the gas turbine or with the Gas turbine exhaust gas between combustion chamber and gas turbine of the combustion chamber mixed.

Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Bei dem Drei-Säulen-System handelt es sich vorzugsweise um eine Dreifachsäule, bei der einerseits der Kopf der Hochdrucksäule und der Sumpf der Mitteldrucksäule und andererseits der Kopf der Mitteldrucksäule und der Sumpf der Niederdrucksäule in wärmetauschender Verbindung stehen. Solche Dreifachsäulen sind auch aus DE 1041989 oder aus Springmann, Chem.-Ing.-Techn., 46 (1974), 881 bekannt. Die Erfindung ist auch bei anderen Säulen-Anordnungen und/oder anderen Kondensator-Konfigurationen anwendbar (siehe zum Beispiel EP 768503 A2, DE 2920270, EP 572962 A, EP 634617 A. Zusätzlich zu den drei genannten Kolonnen zur Stickstoff-Sauerstoff-Trennung können bei der Erfindung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen, vorgesehen sein, beispielsweise eine Argongewinnung. Die Kombination eines Drei-Säulen-Systems mit einem Gasturbinen-System zur Energie-Erzeugung ist in JP 11132652 A beschrieben. The basics of cryogenic decomposition of air in general are in the Monograph "Tiefftemperaturtechnik" by Hausen / Linde (2nd edition, 1985) and in one Review by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35) described. The three-pillar system is preferably one Triple column, on the one hand, the head of the high pressure column and the bottom of the Medium pressure column and on the other hand the head of the medium pressure column and the swamp of the Low pressure column are in heat exchanging connection. Such triple columns are also known from DE 1041989 or from Springmann, Chem. Ing. Techn., 46 (1974), 881 known. The invention is also applicable to other column arrangements and / or others Capacitor configurations applicable (see, for example, EP 768503 A2, DE 2920270, EP 572962 A, EP 634617 A. In addition to the three mentioned Columns for nitrogen-oxygen separation can be used in the invention Devices for obtaining other air components, in particular of Noble gases, be provided, for example, an argon production. The combination a three-pillar system with a gas turbine power generation system in JP 11132652 A.

Der Gasturbinen-Verdichter bringt Luft auf einen sehr hohen Druck von über etwa 7 bar, beispielsweise von 17 bar. Diese Luft dient in der Regel zu einem Teil als Verbrennungsluft für die Brennkammer des Gasturbinen-Systems. Ein anderer Teil wird als erster Einsatzluftstrom in die Luftzerlegung geführt. Bei der Erfindung wird ein zweiter Einsatzluftstrom unabhängig vom ersten in einem separaten Luftverdichter komprimiert, und zwar vorzugsweise auf einen Druck, der niednger als der Auslassdruck des Gasturbinen-Verdichters ist; dies ist an sich aus EP 717249 A2 bekannt. Der Luftverdichter wird nicht von der Gasturbine angetrieben, sondem beispielsweise von einem Motor oder einer Dampfturbine. (Der Begriff "nicht von der Gasturbine angetrieben" schließt jedoch nicht aus, dass in der Gasturbine erzeugte elektrische Energie an einen Elektromotor übertragen wird, der seinerseits den separaten Luftverdichter antreibt.)The gas turbine compressor brings air to a very high pressure of above about 7 bar, for example, 17 bar. This air is usually used as part of Combustion air for the combustion chamber of the gas turbine system. Another part is fed as the first feed air stream in the air separation. In the invention is a second feed air flow independent of the first in a separate air compressor compressed, preferably to a pressure lower than that Outlet pressure of the gas turbine compressor is; this is per se from EP 717249 A2 known. The air compressor is not powered by the gas turbine, but otherwise for example, from a motor or a steam turbine. (The term "not from the Gas turbine driven "does not exclude, however, that generated in the gas turbine electrical energy is transmitted to an electric motor, in turn, the driving a separate air compressor.)

Unter solchen Umständen wären zwei Doppelsäulen-Systeme optimal, der Hochdrucksäulen unter den Austrittsdrücken von Gasturbinen-Verdichter und separatem Luftverdichter betrieben werden. Allerdings wäre ein solches System mit insgesamt vier Säulen apparativ sehr aufwändig.Under such circumstances, two double-column systems would be optimal, the High-pressure columns below the discharge pressures of gas turbine compressors and operated separately air compressor. However, such a system would be with a total of four columns very complex equipment.

Bei wird ein solches zweifaches Doppelsäulen-System auf drei Säulen reduziert, was dessen wesentliche Vorteile bewahrt, den apparativen Aufwand aber stark vermindert. Dabei stellt die Mitteldrucksäule des Drei-Säulen-Systems gleichzeitig den Niederdruckteil der Doppelsäule für die Luft unter dem höheren Druck als auch den Hochdruckteil der Doppelsäule für die Luft unter dem niedrigeren Druck dar. Es wird also der erste Einsatzluftstrom in die Hochdrucksäule eingeleitet, und die Mitteldrucksäule wird sowohl mit sauerstoffangereicherter Flüssigkeit aus der Hochdrucksäule als auch mit dem zweiten Einsatzluftstrom beschickt.At such a double double column system is on three columns reduced, which preserves its essential advantages, but the expenditure on equipment greatly reduced. The medium-pressure column of the three-pillar system simultaneously represents this the low pressure part of the double column for the air under the higher pressure as well the high pressure part of the double column for the air under the lower pressure Thus, the first feed air stream is introduced into the high-pressure column, and the Medium pressure column is made with both oxygenated liquid from the High-pressure column and fed with the second feed air stream.

Zur Erzeugung von Rücklauf für die Säulen ist es günstig, wenn gasförmiger Stickstoff aus der Hochdrucksäule in einem ersten Hauptkondensator durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule kondensiert wird und/oder wenn gasförmiger Stickstoff aus der Mitteldrucksäule in einem zweiten Hauptkondensator durch indirekten Wärmeaustausch mit einer sauerstoffreichen Fraktion aus der Niederdrucksäule kondensiert wird. Rücklauf für die Niederdrucksäule kann aus einer oder mehreren der folgenden Quellen stammen: im ersten Hauptkondensator gebildetes Kondensat, im zweiten Hauptkondensator gebildetes Kondensat, Flüssigstickstoff-Strom von einer Zwischenstelle der Hochdrucksäule, Flüssigstickstoff-Strom von einer Zwischenstelle der Mitteldrucksäule.To generate reflux for the columns, it is favorable if gaseous nitrogen from the high-pressure column in a first main capacitor by indirect Heat exchange with an oxygen-rich fraction from the low-pressure column is condensed and / or when gaseous nitrogen from the medium pressure column in a second main capacitor by indirect heat exchange with a oxygen-rich fraction from the low-pressure column is condensed. Rewind for the Low pressure column can come from one or more of the following sources: condensate formed in the first main condenser, in the second main condenser formed condensate, liquid nitrogen flow from an intermediate point of High-pressure column, liquid nitrogen flow from an intermediate point of the medium-pressure column.

Besonders günstig ist es, wenn ein Flüssigstickstoff-Strom mindestens einen theoretischen Boden unterhalb des Kopfs der Mitteldrucksäule entnommen und der Niederdrucksäule zugeleitet wird. Dies ist insbesondere dann von Vorteil, wenn in der Niederdrucksäule kein reiner Stickstoff erzeugt wird. Zwischen dem Mitteldrucksäulen-Kopf und dem Flüssigstickstoff-Abzug zur Niederdrucksäule liegen beispielsweise 5 bis 20, vorzugsweise 10 bis 15 praktische Böden.It is particularly favorable if a liquid nitrogen stream has at least one taken from the theoretical bottom below the top of the medium pressure column and the Low pressure column is supplied. This is particularly advantageous when in the Low-pressure column no pure nitrogen is produced. Between the medium-pressure column head and the liquid nitrogen deduction to the low pressure column are, for example, 5 to 20, preferably 10 to 15 practical trays.

Vorzugsweise wird die zweite sauerstoffangereicherte Fraktion, die in die Niederdrucksäule eingeleitet wird, aus der Hochdrucksäule abgezogen. Die erste sauerstoffangereicherte Fraktion (Einsatz für die Mitteldrucksäule) und die zweite sauerstoffangereicherte Fraktion (Einsatz für die Niederdrucksäule) werden vorzugsweise gemeinsam aus dem Sumpf der Hochdrucksäule abgezogen und vor ihrer Einleitung in Mitteldrucksäule beziehungsweise Niederdrucksäule unterkühlt.Preferably, the second oxygen-enriched fraction included in the Low pressure column is initiated, withdrawn from the high pressure column. The first oxygen-enriched fraction (insert for the medium-pressure column) and the second oxygenated fraction (use for the low pressure column) preferably withdrawn together from the bottom of the high pressure column and before subcooled their introduction in medium pressure column or low pressure column.

Es ist femer günstig, wenn in der Niederdrucksäule eine Sauerstoff-Fraktion 1 erzeugt wird, mindestens ein Teil der Sauerstoff-Fraktion flüssig aus der Niederdrucksäule entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und in die Mitteldrucksäule eingeleitet wird und dass der Mitteldrucksäule ein Sauerstoff-Produkt entnommen wird. Das Sauerstoff-Produkt befindet sich damit bereits bei der Entnahme aus dem Drei-Säulen-System auf einem erhöhten Druck. Der Aufwand zur Weiterverdichtung auf den Produktdruck wird dadurch spürbar verringert oder kann sogar ganz wegfallen.It is also favorable if an oxygen fraction 1 is generated in the low-pressure column at least part of the oxygen fraction is liquid from the low pressure column taken out, brought to an elevated pressure in the liquid state and in the Medium-pressure column is introduced and that the medium-pressure column is an oxygen product is removed. The oxygen product is thus already at the time of removal from the three-pillar system at an elevated pressure. The effort to Further compression on the product pressure is thereby noticeably reduced or can even completely eliminated.

Es ist vorteilhaft, wenn die flüssig auf Druck gebrachte Sauerstoff-Fraktion aus der Niederdrucksäule mindestens einen theoretischen Boden (beispielsweise ein bis fünf praktische Böden) oberhalb des Sumpfs in die Mitteldrucksäule eingeleitet wird. Dadurch kann im Sumpf der Niederdrucksäule eine niedrigere Reinheit als im Mitteldrucksäulen-Sumpf herrschen. Bei thermischer Kopplung von Niederdrucksäule und Mitteldrucksäule ermöglicht dies einen relativ hohen Druck in der Niederdrucksäule beziehungsweise eine besonders niedrigen Einsatzluftdruck. It is advantageous if the liquid fraction brought to pressure from the Low pressure column at least one theoretical soil (for example one to five practical soils) is introduced above the sump in the medium-pressure column. As a result, in the bottom of the low pressure column, a lower purity than in Medium pressure column swamp prevail. For thermal coupling of low pressure column and medium-pressure column this allows a relatively high pressure in the low-pressure column or a particularly low feed air pressure.

Insbesondere bei mäßiger Sauerstoff-Reinheit (beispielsweise 85 bis 99,5 %, vorzugsweise 90 bis 98 %) ist es günstig, wenn das Sauerstoff-Produkt flüssig aus der Mitteldrucksäule abgezogen, in einen Nebenkondensator eingeleitet und dort durch indirekten Wärmeaustausch mit einem Heizmedium, insbesondere mit Stickstoff aus der Hochdrucksäule, mindestens teilweise verdampft wird.Especially at moderate oxygen purity (for example 85 to 99.5%, preferably 90 to 98%), it is advantageous if the oxygen product is liquid from the Submitted medium-pressure column, introduced into a secondary condenser and there by indirect heat exchange with a heating medium, in particular with nitrogen the high pressure column is at least partially evaporated.

Häufig wird das Sauerstoff-Produkt unter einem Druck benötigt, der höher als der Betriebsdruck der Mitteldrucksäule ist. In diesem Fall kann es beispielsweise außenverdichtet werden, indem es gasförmig aus der Mitteldrucksäule oder einem Nebenkondensator, der etwa unter Mitteldrucksäulen-Druck betrieben wird, abgezogen, auf etwa Umgebungstemperatur angewärmt und in einem Sauerstoff-Verdichter verdichtet wird.Often the oxygen product is needed under a pressure higher than that Operating pressure of the medium-pressure column is. In this case, for example be compressed outside, by gaseous from the medium-pressure column or a Secondary condenser, which operates at about medium pressure column pressure, withdrawn, warmed to about ambient temperature and in an oxygen compressor is compressed.

In vielen Fällen ist es jedoch günstiger, das Sauerstoff-Produkt oder einen Teil davon innenzuverdichten, indem es flüssig aus der Mitteldrucksäule oder aus dem Nebenkondensator abgezogen, in flüssigem Zustand auf einen Druck gebracht wird, der höher als der Betriebsdruck der Mitteldrucksäule ist, und unter diesem Druck durch indirekten Wärmeaustausch verdampft wird. Die Verdampfung des flüssig auf Druck gebrachten Sauerstoff-Produkts kann in dem Hauptwärmetauscher durchgeführt werden, in dem auch die Abkühlung der Einsatzluft für die Hochdrucksäule und die Anwärmung anderer Produkte stattfindet; alternativ kann dieser indirekte Wärmeaustausch-Schritt in einem separaten Wärmetauscher stattfinden. In beiden Fällen wird die Verdampfungswärme durch einen Hochdruckstrom zur Verfügung gestellt, der entweder durch einen entsprechend hoch verdichteten Teil der Einsatzluft oder durch Kreislaufstickstoff gebildet wird. Da die Innenverdichtung auch auf überkritische Drücke führen kann, ist der Begriff "Verdampfung" hier in einem weiteren Sinne zu verstehen, der auch Pseudo-Verdampfen einschließt.In many cases, however, it is better to use the oxygen product or part of it internally by liquid from the medium pressure column or from the Withdrawn secondary condenser, is brought to a pressure in the liquid state, which is higher than the operating pressure of the medium-pressure column, and under this pressure indirect heat exchange is evaporated. The evaporation of the liquid on pressure brought oxygen product can be carried out in the main heat exchanger in which the cooling of the feed air for the high-pressure column and the Warming up of other products takes place; alternatively this can be indirect Heat exchange step take place in a separate heat exchanger. In both Cases, the heat of vaporization through a high-pressure flow is available placed either by a correspondingly high-density part of the feed air or is formed by circulating nitrogen. As the internal compression also on can lead to supercritical pressures, the term "evaporation" is here in another Meaning, which also includes pseudo-vaporization.

Eine Stickstoff-Fraktion kann direkt aus der Hochdrucksäule und/oder der Mitteldrucksäule entnommen, angewärmt und als Druckstickstoff-Produkt gewonnen werden. Auch der Hochdrucksäulen-Stickstoff kann bei Bedarf innenverdichtet werden, indem die Stickstoff-Fraktion flüssig aus der Hochdrucksäule oder ihrem Kopfkondensator entnommen, in flüssigem Zustand auf einen Druck gebracht wird, der höher als der Betriebsdruck der Hochdrucksäule ist, und unter diesem Druck durch indirekten Wärmeaustausch verdampft wird. Der indirekte Wärmeaustausch wird vorzugsweise im Hauptwärmetauscher mit Hochdruckluft als Heizfluid durchgeführt.A nitrogen fraction can be taken directly from the high-pressure column and / or the Medium pressure column taken, warmed and recovered as a pressure nitrogen product become. The high-pressure column nitrogen can also be internally compressed if required, by making the nitrogen fraction liquid from the high pressure column or its Top condenser removed, is brought to a pressure in the liquid state, the is higher than the operating pressure of the high-pressure column, and under this pressure through indirect heat exchange is evaporated. The indirect heat exchange is preferably carried out in the main heat exchanger with high pressure air as the heating fluid.

Bei dem erfindungsgemäßen Verfahren ist es günstig, wenn der zweite Einsatzluftstrom separat vom ersten Einsatzluftstrom lediglich etwa auf den Betriebsdruck der Mitteldrucksäule (plus Leitungsverlusten) verdichtet und ohne weitere druckverändemde Maßnahmen in die Mitteldrucksäule eingeleitet wird. Insbesondere dann, wenn (nur) ein Teil der Zerlegungsluft von einem Gasturbinen-Verdichter geliefert wird (zum Beispiel der erste Einsatzluftstrom), spart diese Verfahrensweise Energie.In the method according to the invention, it is advantageous if the second Feed air flow separately from the first feed air flow only approximately to the Operating pressure of the medium-pressure column (plus line losses) compressed and without further pressure-changing measures in the medium-pressure column is initiated. In particular, when (only) part of the decomposition air from a gas turbine compressor delivered (for example, the first feed air stream), saves them Procedure Energy.

Zur Erzeugung von Verfahrenskälte kann ein dritter Einsatzluftstrom verdichtet, gereinigt, abgekühlt, arbeitsleistend entspannt und in die Niederdrucksäule oder in die Mitteldrucksäule eingeführt werden. Die bei der arbeitsleistenden Entspannung erzeugte mechanische Energie kann zur Nachverdichtung des dritten Einsatzluftstroms genutzt werden, beispielsweise durch Einsatz einer Turbinen-Booster-Kombination.To generate process refrigeration, a third feed air stream can be compressed, cleaned, cooled, work relaxed and in the low pressure column or in the Medium pressure column are introduced. The at work performing relaxation generated mechanical energy can be used for recompression of the third feed air stream be used, for example by using a turbine-booster combination.

Die Erfindung betrifft außerdem eine kombinierte Vorrichtung zur Tieftemperatur-Zerlegung von Luft und zur Energie-Erzeugung gemäß Patentanspruch 14.The invention also relates to a combined apparatus for cryogenic separation of air and for energy generation according to claim 14.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel der Erfindung mit Einblasung von Turbinenluft in die Niederdrucksäule,
Figur 2
eine Abwandlung dieses Prozesses mit Einblasung von Turbinenluft in die Mitteldrucksäule und
Figur 3
eine weiteres Ausführungsbeispiel der Erfindung mit Einspeisung von gepumptem Niederdrucksäule-Sauerstoff an einer Zwischenstelle der Mitteldrucksäule.
The invention and further details of the invention are explained below with reference to embodiments schematically illustrated in the drawings. Hereby show:
FIG. 1
A first embodiment of the invention with injection of turbine air into the low-pressure column,
FIG. 2
a modification of this process with injection of turbine air into the medium-pressure column and
FIG. 3
a further embodiment of the invention with feeding of pumped low-pressure column oxygen at an intermediate point of the medium-pressure column.

Bei dem Drei-Säulen-System der Figur 1 sind Hochdrucksäule 1, Mitteldrucksäule 2 und Niederdrucksäule 3 übereinander angeordnet. Ein erster Hauptkondensator 4 bildet gleichzeitig die Kopfkühlung der Hochdrucksäule 1 und die Sumpfheizung der Mitteldrucksäule 2. Als Kopfkühlung der Mitteldrucksäule 2 und Sumpfheizung der Niederdrucksäule 3 dient ein zweiter Hauptkondensator 5. Die beiden Hauptkondensatoren sind vorzugsweise als Fallfilm-Verdampfer ausgebildet, können aber auch als Umlauf-Verdampfer realisiert sein. Die Betriebsdrücke der Säulen (jeweils am Sumpf) betragen in dem Beispiel etwa: Hochdrucksäule 16 bar Mitteldrucksäule 5,7 bar Niederdrucksäule 1,3 bis 1,5 bar In the three-column system of FIG. 1, high-pressure column 1, medium-pressure column 2 and low-pressure column 3 are arranged one above the other. A first main capacitor 4 simultaneously forms the head cooling of the high-pressure column 1 and the sump heater of the medium-pressure column 2. The head cooling of the medium-pressure column 2 and sump heating of the low-pressure column 3 is a second main capacitor 5. The two main capacitors are preferably designed as falling-film evaporators, but can also be used as circulation -Verdampfer be realized. The operating pressures of the columns (each at the sump) in the example are approximately: High-pressure column 16 bar Medium pressure column 5.7 bar Low-pressure column 1.3 to 1.5 bar

Ein Luftstrom 10 wird in einem Gasturbinen-Verdichter 11 auf einen Druck gebracht, der mindestens gleich dem Betriebsdruck der Hochdrucksäule 1 ist. Der Gasturbinen-Verdichter 11 ist Teil eines Gasturbinen-Systems. (Ein Teil der in 11 verdichteten Luft wird als Verbrennungsluft zur Brennkammer der Gasturbinen-Einheit abgezweigt, was in der Zeichnung nicht dargestellt ist). Nach Nachkühlung 12 wird der erste Luftstrom einer Reinigungsvorrichtung 13 zugeführt, vorzugsweise einer Molekularsieb-Station. Aus der gereinigten Hochdruckluft 14 wird ein erster Einsatzluftstrom 15 abgezweigt, in einem Hauptwärmetauscher 40 abgekühlt und über Leitung 16 der Hochdrucksäule 1 zugeführt. Je nach Menge und Druck der innenverdichteten Fraktion 81, die unten im Detail beschrieben wird, muss ein Teilluftstrom (hier nicht dargestellt) auf einen höheren Druck weiter verdichtet und stromabwärts des Hauptwärmetauschers 40 gedrosselt werden.An airflow 10 is pressurized in a gas turbine compressor 11, which is at least equal to the operating pressure of the high-pressure column 1. The gas turbine compressor 11 is part of a gas turbine system. (Part of the air compressed in 11 is branched off as combustion air to the combustion chamber of the gas turbine unit, which not shown in the drawing). After aftercooling 12, the first air flow a cleaning device 13, preferably a molecular sieve station. From the purified high-pressure air 14, a first feed air stream 15 is branched off, in cooled a main heat exchanger 40 and via line 16 of the high-pressure column. 1 fed. Depending on the amount and pressure of the inner-compressed fraction 81, the bottom of the Detail is described, a partial air flow (not shown here) on a higher pressure and downstream of the main heat exchanger 40th be throttled.

Ein zweiter Einsatzluftstrom 20, 24 wird durch einen Luftverdichter 21, einen Nachkühler 22 und eine separate Reinigungsvorrichtung 23 geführt, ebenfalls im Hauptwärmetauscher 40 abgekühlt, dann aber in die Mitteldrucksäule 2 geführt (25), und zwar ohne Drosselung oder andere druckverändemde Maßnahmen stromabwärts des zweiten Luftverdichters. Dadurch braucht der zweite Einsatzluftstrom im zweiten Luftverdichter 21 nur auf etwa den Betriebsdruck der Mitteldrucksäule 2 verdichtet zu werden. Der Luftverdichter wird nicht von der Gasturbine angetrieben, sondern vorzugsweise mittels externer Energie, beispielsweise durch einen Elektromotor.A second feed air stream 20, 24 is through an air compressor 21, a Aftercooler 22 and a separate cleaning device 23 out, also in Main heat exchanger 40 cooled, but then led into the medium-pressure column 2 (25), without throttling or other pressure-changing measures downstream of the second air compressor. As a result, the second feed air flow in the second needs Air compressor 21 only to about the operating pressure of the medium-pressure column 2 compressed become. The air compressor is not powered by the gas turbine, but preferably by means of external energy, for example by an electric motor.

Der Rest der gereinigten Hochdruckluft 14, der nicht als erster Einsatzluftstrom 15, 16 in die Hochdrucksäule 1 strömt, bildet einen dritten Einsatzluftstrom 30. Dieser wird in einem Nachverdichter 31 weiterverdichtet und tritt nach Nachkühlung 32 in den Hauptwärmetauscher 40 ein. Nach Abkühlung auf eine Zwischentemperatur wird er über Leitung 33 wieder aus dem Hauptwärmetauscher 40 herausgeführt, in einer Turbine 34 arbeitsleistend entspannt und in die Niederdrucksäule 3 eingeblasen (35). Die Turbine 34 ist mechanisch mit dem Nachverdichter 31 gekoppelt.The remainder of the purified high-pressure air 14, which is not the first feed air stream 15, 16 flows into the high-pressure column 1, forms a third feed air stream 30. This is in a secondary compressor 31 further compressed and occurs after aftercooling 32 in the Main heat exchanger 40 a. After cooling to an intermediate temperature he will via line 33 again led out of the main heat exchanger 40, in a Turbine 34 work relaxed and blown into the low pressure column 3 (35). The turbine 34 is mechanically coupled to the booster 31.

Am Kopf der Hochdrucksäule 1 wird gasförmiger Stickstoff 41 erzeugt. Er wird zu einem ersten Teil 42 im ersten Hauptkondensator 4 verflüssigt. Der dabei gewonnene Flüssigstickstoff 43 wird als Rücklauf auf die Hochdrucksäule 1 (Leitung 44) beziehungsweise auf die Mitteldrucksäule 2 (Leitung 45) aufgegeben. Der Flüssigstickstoff 45 wird vor der Einspeisung 46 in die Mitteldrucksäule in einem Unterkühlungs-Gegenströmer 47 unterkühlt. Ein zweiter Teil 48 des Kopfstickstoffs 41 der Hochdrucksäule wird in einem Nebenkondensator 49 mindestens teilweise kondensiert und strömt über Leitung 50 wieder zur Hochdrucksäule 1 zurück. Ein dritter Teil 51 der Hochdrucksäulen-Stickstoffs 41 wird im Hauptwärmetauscher 40 angewärmt und über Leitung 52 als Druckstickstoff-Produkt GAN gewonnen.Gaseous nitrogen 41 is generated at the top of the high-pressure column 1. He becomes too a first part 42 in the first main capacitor 4 liquefied. The won Liquid nitrogen 43 is as reflux to the high-pressure column 1 (line 44) or on the medium-pressure column 2 (line 45) abandoned. Of the Liquid nitrogen 45 is in front of the feed 46 in the medium-pressure column in a Subcooling countercurrent 47 undercooled. A second part 48 of the top nitrogen 41 the high-pressure column is at least partially in a secondary condenser 49 condenses and flows via line 50 back to the high-pressure column 1 back. A third Part 51 of the high-pressure column nitrogen 41 is in the main heat exchanger 40th warmed up and recovered via line 52 as pressure nitrogen product GAN.

Im Sumpf der Hochdrucksäule 1 fällt flüssiger Rohsauerstoff an. Dieser wird als sauerstoffangereicherte Fraktion 53 abgezogen und - nach Unterkühlung 47 - zu einem ersten Teil 54 als erste sauerstoffangereicherte Fraktion in die Mitteldrucksäule 2 eingeleitet. Ein zweiter Teil 56, 57 wird nach weiterer Unterkühlung 55 in die Niederdrucksäule eingedrosselt.In the bottom of the high-pressure column 1 falls to liquid crude oxygen. This one is called removed oxygen-enriched fraction 53 and - after supercooling 47 - to a first part 54 as the first oxygen-enriched fraction in the medium-pressure column. 2 initiated. A second part 56, 57 is 55 after further supercooling in the Throttled low pressure column.

Der gasförmige Stickstoff 58, der am Kopf der Mitteldrucksäule 2 erzeugt wird, kondensiert zu einem ersten Teil 59 im zweiten Hauptkondensator 5. Der dabei gewonnene Flüssigstickstoff 60 wird als Rücklauf auf die Mitteldrucksäule 2 aufgegeben. Ein zweiter Teil 61 des Kopfstickstoffs 58 der Mitteldrucksäule wird im Hauptwärmetauscher 40 angewärmt und über Leitung 62 - gegebenenfalls nach Weiterverdichtung 63 mit Nachkühlung 64 - als weiteres Druckstickstoff-Produkt PGAN gewonnen.The gaseous nitrogen 58, which is generated at the top of the medium-pressure column 2, condenses to a first part 59 in the second main capacitor 5. The case recovered liquid nitrogen 60 is as reflux to the medium-pressure column. 2 given up. A second part 61 of the head nitrogen 58 of the medium-pressure column is in Main heat exchanger 40 warmed up and via line 62 - possibly after Further compression 63 with aftercooling 64 - as another pressurized nitrogen product PGAN won.

Elf praktische Böden unterhalb des Mitteldrucksäulen-Kopfs wird ein Flüssigstickstoff-Strom 65 abgenommen und nach Unterkühlung 55 auf den Kopf der Niederdrucksäule 3 aufgegeben (66). Eleven convenient trays below the mid-pressure column head become a liquid nitrogen stream 65 and after hypothermia 55 on the head of the low pressure column 3 abandoned (66).

Im Sumpf der Niederdrucksäule wird flüssiger Sauerstoff 95 %-iger Reinheit erzeugt. Derjenige Teil der Sumpfflüssigkeit, der nicht im zweiten Hauptkondensator 5 verdampft wird, fließt als Sauerstoff-Fraktion 67 zu einer Pumpe 68 und wird dort in flüssigem Zustand auf etwa Mitteldrucksäulen-Druck gebracht. Die Sauerstoff-Fraktion 69 wird unter diesem erhöhtem Druck im Unterkühlungs-Gegenströmer 47 angewärmt und über Leitung 70 in die Mitteldrucksäule 2 eingeleitet. Die Einspeisung wird hier unmittelbar oberhalb des Mitteldrucksäulen-Sumpfs vorgenommen. Im Sumpf, der gleichzeitig den Verdampfungsraum des ersten Hauptkondensators 4 darstellt, wird die Sauerstoff-Fraktion 70 aus der Niederdrucksäule mit der innerhalb der Mitteldrucksäule herabfließenden Flüssigkeit vermischt. Das Gemisch wird über Leitung 71 flüssig als Sauerstoff-Produkt entnommen, geringfügig gedrosselt (72), in den Verdampfungsraum des Nebenkondensators 49 eingeleitet und dort teilweise verdampft.In the bottom of the low-pressure column, liquid oxygen of 95% purity is produced. That part of the bottoms liquid that is not in the second main capacitor 5 is evaporated, flows as an oxygen fraction 67 to a pump 68 and is there in liquid state brought to about medium pressure column pressure. The oxygen fraction 69 is heated under this increased pressure in the subcooling countercurrent 47 and introduced via line 70 into the medium-pressure column 2. The feed is here made just above the medium pressure column bottom. In the swamp, the at the same time represents the evaporation space of the first main capacitor 4, the Oxygen fraction 70 from the low pressure column with the within the medium pressure column mixed down liquid. The mixture is liquid via line 71 as Taken oxygen product, slightly throttled (72), in the Evaporating space of the secondary condenser 49 introduced and there partially evaporated.

Ein erster Teil 73 des Sauerstoff-Produkts 71 wird gasförmig aus dem Nebenkondensator abgezogen, im Hauptwärmetauscher angewärmt und schließlich über Leitung 74 als Produkt (GOX) abgegeben. Falls ein Produktdruck gewünscht ist, der höher als der Mitteldrucksäulen-Druck ist, kann das angewärmte Sauerstoff-Produkt in einem Produktverdichter 75 (mit Nachkühler 78) weiterverdichtet werden (Außenverdichtung).A first portion 73 of the oxygen product 71 is gaseous from the Sub-condenser withdrawn, warmed in the main heat exchanger and finally delivered via line 74 as a product (GOX). If product printing is desired, higher than the medium pressure column pressure can be the warmed oxygen product be further compressed in a product compressor 75 (with aftercooler 78) (Outer compression).

Der flüssig verbliebene Anteil des Sauerstoff-Produkts 71 wird über Leitung 79 aus dem Verdampfungsraum des Nebenkondensators 49 abgezogen und einer Innenverdichtung unterzogen. Dazu wird er in einer Pumpe 80 auf einen Produktdruck gebracht, der etwa gleich dem Produktdruck der Außenverdichtung oder verschieden von diesem ist. Das Hochdruck-Sauerstoff-Produkt 81 wird im Hauptwärmetauscher verdampft (oder pseudo-verdampft, falls der Produktdruck über dem kritischen Druck liegt) und auf Umgebungstemperatur angewärmt. Über Leitung 76 verlässt das innenverdichtete Sauerstoff-Produkt (GOX-IC) die Anlage. Falls gewünscht, kann er mit dem in 75 außenverdichteten Sauerstoff-Produkt 74 vereinigt werden.The remaining liquid portion of the oxygen product 71 is discharged via line 79 withdrawn from the evaporation space of the secondary condenser 49 and a Subjected to internal compression. For this he is in a pump 80 to a product pressure brought about equal to the product pressure of external compression or different from this one is. The high-pressure oxygen product 81 is in the main heat exchanger Evaporates (or pseudo-vaporizes if the product pressure is above the critical pressure is warmed) and warmed to ambient temperature. Over line 76 leaves the internally compressed oxygen product (GOX-IC) the plant. If desired, he can are combined with the 75 externally compressed oxygen product 74.

Als weiteres Produkt der Niederdrucksäule 3 wird Unrein-Stickstoff 82 vom Kopf abgezogen, in den Unterkühlungs-Gegenströmem 55 und 47 sowie im Hauptwärmetauscher 40 angewärmt. Der warme Unrein-Stickstoff 83 (UN2) kann als druckloses Nebenprodukt genutzt, als Regeneriergas für die Reinigungsvorrichtungen 13 und/oder 23 verwendet und/oder in die Atmosphäre abgelassen werden.As another product of the low pressure column 3 is impure nitrogen 82 from the head deducted, in the subcooling countercurrents 55 and 47 and in Main heat exchanger 40 warmed up. The warm impure nitrogen 83 (UN2) can be used as used as a regeneration gas for the cleaning devices 13 and / or 23 used and / or discharged into the atmosphere.

Figur 2 ist weitgehend identisch mit Figur 1. Allerdings wird hier der dritte Einsatzluftstrom 230, 233 in der Entspannungsmaschine 234 nur auf etwa Mitteldrucksäulen-Druck entspannt. Der entspannte dritte Einsatzluftstrom 235 wird über Leitung 236 gemeinsam mit dem zweiten Einsatzluftstrom 225 stromabwärts des Hauptwärmetauschers 40 in die Mitteldrucksäule 2 eingespeist. Eine Direktluft-Einleitung in die Niederdrucksäule 3 gibt es bei dieser Verfahrensvariante nicht.Figure 2 is largely identical to Figure 1. However, here is the third Use air flow 230, 233 in the expansion machine 234 only to about Medium pressure column pressure relaxed. The relaxed third feed air stream 235 is via line 236 together with the second feed air stream 225 downstream of the Main heat exchanger 40 fed into the medium-pressure column 2. A direct air initiation in the low-pressure column 3, there are not in this process variant.

Der einzige Unterschied zwischen Figur 3 und Figur 2 besteht in der Stelle der Einleitung der Sauerstoff-Fraktion 370 aus der Niederdrucksäule 3 in die Mitteldrucksäule 2. Während diese Einspeisung in den Figuren 1 und 2 unmittelbar über dem Sumpf der Mitteldrucksäule stattfindet, liegen bei Figur 3 drei praktische Böden zwischen Einspeisung der Sauerstoff-Fraktion 370 und Mitteldrucksäulen-Sumpf. Selbstverständlich kann dieses Detail auch mit der in Figur 1 gezeigten Einblasung der Turbinenluft in die Niederdrucksäule kombiniert werden.The only difference between Figure 3 and Figure 2 is in the place of Introduction of the oxygen fraction 370 from the low pressure column 3 in the Medium-pressure column 2. While this feed in Figures 1 and 2 directly takes place above the bottom of the medium-pressure column, are three practical in Figure 3 Trays between feed of oxygen fraction 370 and medium pressure column bottoms. Of course, this detail can also be shown with the one shown in FIG Injection of the turbine air into the low pressure column are combined.

Die Reinigung der beiden Luftströme 10, 20 kann grundsätzlich auch in einer gemeinsamen Vorrichtung durchgeführt werden. Zum Beispiel ist es möglich, die Gesamtluft zunächst nur auf etwa Mitteldrucksäulen-Druck zu verdichten, unter diesem mittleren Druck zu reinigen, und anschließend den ersten (und gegebenenfalls den dritten) Einsatzluftstrom von dem mittleren Druck aus weiterzuverdichten.The cleaning of the two air streams 10, 20 can basically in one common device are performed. For example, it is possible the Total air initially only to compress about medium-pressure column pressure, below this medium pressure, and then the first (and possibly the third) continue to compress the feed air flow from the mean pressure.

Alternativ zu den in den Zeichnungen dargestellten Luftturbinen kann die für das Verfahren benötigte Kälte auch durch arbeitsleistende Entspannung von Stickstoff aus der Mitteldrucksäule 2 gewonnen werden. Der entspannte Mitteldrucksäulen-Stickstoff kann dann mit dem Unrein-Stickstoff aus der Niederdrucksäule 3 vermischt und gemeinsam mit diesem im Hauptwärmetauscher 40 angewärmt werden.Alternatively to the air turbines shown in the drawings, the for the Method required cold also by work-performing relaxation of nitrogen the medium-pressure column 2 are obtained. The relaxed medium pressure column nitrogen can then be mixed with the impure nitrogen from the low pressure column 3 and be warmed up with this in the main heat exchanger 40.

Claims (14)

  1. Process for the cryogenic separation of air in a three-column system, which includes a high-pressure column (1), a medium-pressure column (2) and a low-pressure column (3), and for the generation of energy in a gas turbine system, which includes a gas turbine, a gas turbine compressor (11) driven by the gas turbine and a combustion chamber, in which process
    (a) a first feed air stream (10, 14, 15, 16) is compressed in the gas turbine compressor (11), purified (13), cooled (40) and introduced into the high-pressure column (1),
    (b) a second feed air stream (20, 24, 25, 225) is compressed in an air compressor (21) that is not driven by the gas turbine, purified (23), cooled (40) and introduced into the medium-pressure column (2),
    (c) a first oxygen-enriched fraction (53, 54) is produced in the high-pressure column (1),
    (d) the first oxygen-enriched fraction (53, 54) is introduced into the medium-pressure column (2), and in which process
    (e) a second oxygen-enriched fraction (53, 57) is introduced into the low-pressure column (3).
  2. Process according to Claim 1, characterized in that gaseous nitrogen (41, 42) from the high-pressure column (1) is condensed in a first main condenser (4) by indirect heat exchange with an oxygen-rich fraction from the low-pressure column (3).
  3. Process according to Claim 1 or 2, characterized in that gaseous nitrogen (58, 59) from the medium-pressure column (2) is condensed in a second main condenser (5) by indirect heat exchange with an oxygen-rich fraction from the low-pressure column (3).
  4. Process according to Claim 2 or 3, characterized in that condensate (43; 60) which is formed in the first main condenser (4) and/or in the second main condenser (5) and/or one or more liquid nitrogen streams (65) from an intermediate point in the high-pressure column or the medium-pressure column are fed (66) to the low-pressure column (3).
  5. Process according to Claim 4, characterized in that a liquid nitrogen stream (65) is removed at least one theoretical plate below the top of the medium-pressure column (2) and is fed (66) to the low-pressure column (3).
  6. Process according to any of Claims 1 to 5, characterized in that the second oxygen-enriched fraction (53, 57) which is introduced into the low-pressure column (3) is extracted from the high-pressure column (1).
  7. Process according to any of Claims 1 to 6, characterized in that an oxygen fraction (67) is produced in the low-pressure column (3), at least part of the oxygen fraction (67) is removed from the low-pressure column (3) in liquid form, is pressurized (68) in the liquid state and introduced (69, 70, 370) into the medium-pressure column (2), and in that an oxygen product (71) is removed from the medium-pressure column (2).
  8. Process according to Claim 7, characterized in that the oxygen fraction (370) from the low-pressure column which has been pressurized in liquid form is introduced into the medium-pressure column (2) at least one theoretical plate above the bottom.
  9. Process according to any of Claims 1 to 8, characterized in that an oxygen product (71) is extracted from the medium-pressure column (2) in liquid form, introduced into an auxiliary condenser (49) and there is at least partially evaporated by indirect heat exchange with a heating medium, in particular with nitrogen (48) from the high-pressure column (1).
  10. Process according to any of Claims 1 to 9, characterized in that at least a part (79) of the oxygen product (71) is extracted from the medium-pressure column (2) or from the auxiliary condenser (49) in liquid form, is pressurized (80) in the liquid state to a pressure that is higher than the operating pressure of the medium-pressure column (2), and is evaporated under this pressure by indirect heat exchange (40).
  11. Process according to any of Claims 1 to 10, characterized in that a nitrogen fraction (51) from the high-pressure column (1) and/or a nitrogen fraction (61) from the medium-pressure column (2) is warmed (40) and obtained as pressurized nitrogen product (52, 62).
  12. Process according to Claim 11, characterized in that the nitrogen fraction is removed from the high-pressure column (1) in liquid form, pressurized in the liquid state to a pressure that is higher than the operating pressure of the high-pressure column (1), and is evaporated under this pressure by indirect heat exchange.
  13. Process according to any of Claims 1 to 12, characterized in that the second feed air stream (20) is compressed in the air compressor (21) to approximately the operating pressure of the medium-pressure column (2) and is introduced (24, 25, 225, 236) into the medium-pressure column (2) without further measures which alter the pressure.
  14. Combined apparatus for the cryogenic separation of air and for the generation of energy, having a three-column system, which includes a high-pressure column (1), a medium-pressure column (2) and a low-pressure column (3), and having a gas turbine system, which includes a gas turbine, a gas turbine compressor (11) that is driven by the gas turbine and a combustion chamber, and having
    (a) a first feed air line (10, 14, 15, 16) which runs from the outlet of the gas turbine compressor (11) through a first purification apparatus (13) into the high-pressure column (1), having
    (b) an air compressor (21), which is not coupled to the gas turbine, and a second feed air line (25, 225, 236), which runs from the outlet of the air compressor (21) through a second purification apparatus (23) into the medium-pressure column (2), having
    (c) a first crude oxygen line (53, 54) for introducing a first oxygen-enriched fraction from the high-pressure column (1) into the medium-pressure column (2), and having
    (d) a second crude oxygen line (53, 57) for introducing a second oxygen-enriched fraction into the low-pressure column (3).
EP01103828A 2000-10-20 2001-02-15 Three-column system for the cryogenic separation of air Expired - Lifetime EP1199532B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10052180 2000-10-20
DE10052180A DE10052180A1 (en) 2000-10-20 2000-10-20 Three-column system for the low-temperature separation of air

Publications (2)

Publication Number Publication Date
EP1199532A1 EP1199532A1 (en) 2002-04-24
EP1199532B1 true EP1199532B1 (en) 2005-08-03

Family

ID=7660531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01103828A Expired - Lifetime EP1199532B1 (en) 2000-10-20 2001-02-15 Three-column system for the cryogenic separation of air

Country Status (4)

Country Link
EP (1) EP1199532B1 (en)
AT (1) ATE301271T1 (en)
DE (2) DE10052180A1 (en)
ES (1) ES2246945T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (en) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Method for cryogenic separation of air with distillation column system for nitrogen-oxygen separation, involves producing oxygen-enriched fraction and nitrogen fraction in high pressure column, and supplying nitrogen to low pressure column

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0002086D0 (en) * 2000-01-28 2000-03-22 Boc Group Plc Air separation
GB0002084D0 (en) * 2000-01-28 2000-03-22 Boc Group Plc Air separation method
FR2972794B1 (en) * 2011-03-18 2015-11-06 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2634517B1 (en) * 2012-02-29 2018-04-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP3438584B1 (en) * 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for air separation by cryogenic distilling
CN112066644A (en) * 2020-09-18 2020-12-11 乔治洛德方法研究和开发液化空气有限公司 Method and device for producing high-purity nitrogen and low-purity oxygen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers
GB9414939D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
GB9425484D0 (en) * 1994-12-16 1995-02-15 Boc Group Plc Air separation
JPH11132652A (en) * 1997-10-27 1999-05-21 Nippon Sanso Kk Method and device for manufacturing low-purity oxygen
DE19936962A1 (en) * 1999-08-05 2000-09-28 Linde Tech Gase Gmbh Process to extract nitrogen and oxygen from ambient air by fractionated cryogenic distillation reduces complexity and expense of apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (en) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Method for cryogenic separation of air with distillation column system for nitrogen-oxygen separation, involves producing oxygen-enriched fraction and nitrogen fraction in high pressure column, and supplying nitrogen to low pressure column

Also Published As

Publication number Publication date
ATE301271T1 (en) 2005-08-15
EP1199532A1 (en) 2002-04-24
ES2246945T3 (en) 2006-03-01
DE10052180A1 (en) 2002-05-02
DE50106958D1 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
EP1243882B1 (en) Production of argon using a triple pressure air separation system with an argon column
EP1134525B1 (en) Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP2015012A2 (en) Process for the cryogenic separation of air
DE10139727A1 (en) Method and device for obtaining a printed product by low-temperature separation of air
EP2015013A2 (en) Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP1067345A1 (en) Process and device for cryogenic air separation
EP2603754B1 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
EP1357342A1 (en) Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
DE19609490A1 (en) Oxygen-production process with reduced energy requirement
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP0768503B1 (en) Triple column air separation process
DE10103968A1 (en) Three-pillar system for the low-temperature separation of air
EP1199532B1 (en) Three-column system for the cryogenic separation of air
EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
WO2020244801A1 (en) Method and system for low-temperature air separation
EP3394536A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP3696486A1 (en) Method and apparatus for providing one or more gaseous oxygen rich air products
DE102017010001A1 (en) Process and installation for the cryogenic separation of air
EP1189001B1 (en) Process and apparatus for the production of high purity nitrogen through cryogenic air separation
EP1134524B1 (en) Process for producing gaseous nitrogen
EP3343159A1 (en) Method and device for creating gaseous oxygen and gaseous pressurised nitrogen
WO2020187449A1 (en) Method and system for low-temperature air separation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020926

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106958

Country of ref document: DE

Date of ref document: 20050908

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060103

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2246945

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BECA Be: change of holder's address

Owner name: *LINDE A.G.LEOPOLDSTRASSE 252, D-80807 MUENCHEN

Effective date: 20050803

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100312

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100215

Year of fee payment: 10

Ref country code: GB

Payment date: 20100202

Year of fee payment: 10

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20110228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120208

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106958

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228