EP2015013A2 - Process and device for producing a gaseous pressurised product by cryogenic separation of air - Google Patents

Process and device for producing a gaseous pressurised product by cryogenic separation of air Download PDF

Info

Publication number
EP2015013A2
EP2015013A2 EP08012218A EP08012218A EP2015013A2 EP 2015013 A2 EP2015013 A2 EP 2015013A2 EP 08012218 A EP08012218 A EP 08012218A EP 08012218 A EP08012218 A EP 08012218A EP 2015013 A2 EP2015013 A2 EP 2015013A2
Authority
EP
European Patent Office
Prior art keywords
air stream
stream
air
pressure column
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08012218A
Other languages
German (de)
French (fr)
Inventor
Dietrich Rottmann
Christian Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2015013A2 publication Critical patent/EP2015013A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Definitions

  • the invention relates to a method for producing gaseous pressure oxygen by cryogenic separation of air according to the preamble of patent claim 1.
  • the distillation column system of the invention may be designed as a two-column system (for example as a classical Linde double column system), or as a three-column or multi-column system.
  • other means may be provided for recovering other air components, particularly noble gases, such as argon or krypton-xenon recovery.
  • the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated.
  • Such internal compression methods are known, for example DE 830805 .
  • EP 1139046 A1 EP 1146301 A1 .
  • EP 1150082 A1 EP 1213552 A1 .
  • EP 1357342 A1 or DE 10238282 A1
  • first air stream In heat exchange with the (pseudo) evaporating product stream is usually a part of the feed air (here called "first air stream") condensed or pseudo-condensed and after expansion in a throttle valve or a liquid liquid in the high pressure column and / or the low pressure column of the distillation column Systems fed.
  • This liquid supplied air reduces the amount of vaporous air, which is pre-decomposed in the high-pressure column and thereby weakens the rectification.
  • a smaller amount of liquid nitrogen which is required as the reflux liquid in the high-pressure column and the low-pressure column, is obtained in comparison to processes with gaseous feed of the total air.
  • the invention has for its object to make such a method and a corresponding device economically particularly favorable.
  • the entire condensed in the context of internal compression air is vaporized in the indirect heat exchange with the gaseous stream from the upper portion of the high pressure column.
  • the vaporized air is warmed in particular in the main heat exchanger, in which the feed air is cooled and the product stream (pseudo) is evaporated and warmed. Subsequently, it is separately brought to a suitable pressure in the recompressor to feed it into the air line.
  • the recompressed air quantity now participates in the rectification in the high-pressure column.
  • the gaseous stream is preferably formed by nitrogen from the top of the high pressure column. This is condensed against the evaporating air and can be used in high pressure column and / or low pressure column as reflux. So much reflux remains in the high-pressure column that the additional air quantity can be rectified to a high N 2 purity in the high-pressure column. The remainder serves as an additional reflux in the low-pressure column and thus improves the rectification there.
  • the indirect heat exchange of the first air stream with the gaseous stream from the upper section of the high pressure column is performed in a secondary condenser.
  • a "secondary condenser” is understood here as a condenser-evaporator separate from other heat exchangers, through which no further fluids flow.
  • a second air flow which is formed by a part of the feed air stream, is expanded in a work-performing manner and at least part of the mechanical energy generated is used to drive the recompressor.
  • no energy needs to be imported for the recompression of the first air flow as in a motor drive or in the off EP 752566 B1 known recompression in the main air compressor would be the case.
  • the invention also relates to a device for the production of gaseous pressure product by cryogenic separation of air according to claim 7.
  • the main air compressor is in FIG. 1 not shown, nor the subsequent cleaning device.
  • the compressed in the main air compressor to a second pressure of 5.5 to 15 bar, preferably about 9 bar and then compressed feed air stream 1 is a first part 2 as direct air flow through the lines 3, 5, 6 and the main heat exchanger 4 in the high pressure column 7 a Destarriulen system introduced, which also has a low-pressure column 8 and a main condenser 9.
  • the operating pressures are 5.5 to 15 bar, preferably about 9 bar in the high pressure column and 1.3 to 6 bar, preferably about 3.5 bar in the low pressure column (each at the top).
  • a second part 10 of the feed air stream 1 is recompressed in a first after-compressor 11 with aftercooler 12 to a second pressure of 30 to 50 bar, preferably about 40 bar.
  • Part 14 of the compressed air after the second pressure forms the "first air flow”.
  • This is in a second after-compressor 15 with aftercooler 16th further compressed to a third pressure (the "high pressure") of 40 to 80 bar, preferably about 60 bar.
  • the first air flow to the warm end of the main heat exchanger 4 is conducted there cooled and (pseudo) condensed.
  • the cold high-pressure air 18 is completely vaporized after throttle relaxation to 3.5 to 9.5 bar, preferably about 6 bar in a secondary condenser 20 and returned via line 22 to the cold end of the main heat exchanger 4.
  • the warmed first air stream is recompressed according to the invention in a recompressor 24 with aftercooler 25 to the first pressure and combined with the direct air stream 2.
  • Another part 27 of the air 13 under the second pressure forms the "second airflow".
  • This is cooled in the main heat exchanger 4 only to an intermediate temperature and then flows through line 28 to a relaxation machine 29, which is formed in the embodiment as a turbo-expander. There he is working to be relaxed to about the first pressure.
  • the expanded second air stream 30 flows together with the direct air stream 5 via line 6 to the high pressure column. 7
  • liquid crude oxygen 31 is withdrawn, cooled in a subcooling countercurrent 32 and fed via line 33 and throttle valve 34 of the low pressure column 8 at an intermediate point.
  • Liquid impure nitrogen 35 is taken from the high pressure column 7 at an intermediate point, also cooled in the subcooling countercurrent 32 and fed via line 36 and throttle valve 37 to the top of the low pressure column 7.
  • Gaseous nitrogen head 38 of the low pressure column 8 is substantially completely condensed to a first part 39 in the main condenser.
  • the condensate formed is returned via line 40 to the head of the high pressure column.
  • a second part 41 is substantially completely condensed in the secondary condenser in indirect heat exchange with the first air flow.
  • the condensate formed is returned via line 42 to the head of the high pressure column.
  • a third part 43 of the gaseous top nitrogen 38 of the high-pressure column 7 is warmed in the main heat exchanger 4 to approximately ambient temperature and discharged via line 44 as a gaseous nitrogen product under medium pressure.
  • gaseous impurity nitrogen is withdrawn from the head of the low pressure column 8 and withdrawn after heating in the subcooling countercurrent 32 and in the main heat exchanger 4 via line 46.
  • He can, for example, in one Evaporative cooler or be used in the cleaning device, not shown as a regeneration gas.
  • Liquid oxygen 47 is withdrawn as "liquid product stream" from the bottom of the low pressure column, brought in an oxygen pump 48 to a pressure of 50 to 100 bar, preferably about 30 bar, passed via line 49 to the main heat exchanger 4, there (pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 50 as a gaseous product stream.
  • liquid nitrogen 21 is withdrawn from the top of the high-pressure column 7 (or alternatively from the main condenser 9) as a further "liquid product stream", brought in a nitrogen pump 51 to a pressure of 50 to 30 bar, preferably about 100 bar, via line 52nd led to the main heat exchanger 4, there (Pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 53 as another gaseous product stream.
  • the high-pressure column 7 is removed via line 54 gaseous impurity nitrogen, warmed and withdrawn via line 55.
  • the expansion machine 29 and the recompressor 24 are mechanically coupled via a common well.
  • FIG. 2 also differs by the line 156 with throttle valve 157 of FIG. 1 , As a result, in addition to the first air stream 18, a portion of the raw liquid oxygen from the bottom of the high-pressure column 7 in the evaporation chamber of the Sub-condenser 20 passed. As a result, can be condensed correspondingly more nitrogen 41/42.
  • FIG. 3 based on FIG. 1 and also shows the two-stage recompression 24/124 of FIG. 2 ,
  • the entire air flow 10 is compressed in the secondary compressor 11 to the high pressure.
  • the division of turbine air 128 and first air flow 18 is performed first at the intermediate temperature of the main heat exchanger 4. This results in a correspondingly higher inlet pressure at the expansion machine 29.
  • FIG. 4 based on FIG. 2 and also has a crude argon column 458 as a first stage of argon recovery.
  • liquid oxygen is withdrawn from the bottom of the low-pressure column 8 as a liquid product (LOX).
  • the liquid reflux 435, 436, 437 for the low-pressure column 8 is here deducted from the head of the high-pressure column 7. Accordingly, gaseous impure nitrogen 445/446 is taken from an intermediate point of the low-pressure column 8 here.
  • the pure nitrogen head 461 of the low pressure column 8 is also warmed and withdrawn via line 462 as a product.
  • FIG. 5 deviates from it FIG. 4 from that the recompressor 524 is not coupled to the expansion machine 29, but is driven externally.
  • the recompressor 524 is preferably formed in two stages here.
  • the turbine booster 563 is used here to further increase the pressure in the second air stream 27, the turbine air flow.
  • the relaxation machine 629 of the FIG. 6 relaxed to about the operating pressure of the low pressure column.
  • the working expanded second air stream 630 is introduced into the low pressure column 8. For the rest, the procedure of FIG. 6 with that of the FIG. 4 match.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The method involves condensing and pseudo-condensing an air flow (17) with an indirect main heat exchanger (4). Air flow (18) downstream of the indirect heat exchanger is evaporated in an indirect auxiliary condenser (20) with a gaseous flow from an upper section of a high pressure column (7). Evaporated air flow (22) is returned to an application air flow (1, 2), where evaporated air flow (23) is compressed in a recompressor (24) upstream of the return of the evaporated air to the application air flow. An independent claim is also included for a device for producing a gaseous pressurized product by cryogenic separation of air in a distillation column system.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von gasförmigem Drucksauerstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing gaseous pressure oxygen by cryogenic separation of air according to the preamble of patent claim 1.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung kann als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem ausgebildet sein. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung können weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise eine Argon- oder eine Krypton-Xenon-Gewinnung.The distillation column system of the invention may be designed as a two-column system (for example as a classical Linde double column system), or as a three-column or multi-column system. In addition to the nitrogen-oxygen separation columns, other means may be provided for recovering other air components, particularly noble gases, such as argon or krypton-xenon recovery.

Die Erfindung betrifft insbesondere ein Verfahren, in dem mindestens ein gasförmiges Druckprodukt gewonnen wird, indem ein flüssiger Produktstrom aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und unter diesem erhöhten Druck durch indirektem Wärmeaustausch verdampft oder (bei überkritischem Druck) pseudo-verdampft wird. Derartige Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 2535132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 .More particularly, the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated. Such internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 2535132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 ,

Im Wärmeaustausch mit dem (pseudo-)verdampfenden Produktstrom wird meistens ein Teil der Einsatzluft (hier "erster Luftstrom" genannt) kondensiert beziehungsweise pseudo-kondensiert und nach Entspannung in einem Drosselventil oder einer Flüssigturbine flüssig in die Hochdrucksäule und/oder die Niederdrucksäule des Destilliersäulen-Systems eingespeist. Diese flüssig zugespeiste Luft vermindert die Menge an dampfförmiger Luft, die in der Hochdrucksäule vorzerlegt wird und schwächt dadurch die Rektifikation. Insbesondere fällt bei der Rektifikation eine - im Vergleich zu Verfahren mit gasförmiger Einspeisung der Gesamtluft - geringere Menge flüssigen Stickstoffs an, der als Rücklaufflüssigkeit in Hochdrucksäule und Niederdrucksäule benötigt wird. Dies ist insbesondere bei Verfahren mit erhöhtem Betriebsdruck (5,5 bis 15 bar, vorzugsweise 8 bis 10 bar am Kopf der Hochdrucksäule und 1,3 bis 6 bar, vorzugsweise 3 bis 4 bar am Kopf der Niederdrucksäule) spürbar, die beispielsweise bei integrierten Systemen mit Kohle-, Schweröl- oder Biomassevergasung und Verbrennung des bei der Vergasung erzeugten Brennstoffs in der Brennkammer eines Gasturbinensystems eingesetzt werden. Hier lassen sich die regelmäßig benötigen Produktreinheiten nicht mehr ohne zusätzliche Maßnahmen erreichen. Als derartige zusätzliche Maßnahmen wurde bereits ein Prozess mit Sumpfausheizung der Hochdrucksäule ( EP 1750074 A1 ) vorgeschlagen. EP 752566 B1 schlägt ein Verfahren mit Nebenkondensator zur Verflüssigung von Kopfstickstoff der Hochdrucksäule und Rückführung der dabei verdampften Luft zu einer Zwischenstufe des Hauptluftverdichters vor und wird hier als nächstliegender Stand der Technik betrachtet.In heat exchange with the (pseudo) evaporating product stream is usually a part of the feed air (here called "first air stream") condensed or pseudo-condensed and after expansion in a throttle valve or a liquid liquid in the high pressure column and / or the low pressure column of the distillation column Systems fed. This liquid supplied air reduces the amount of vaporous air, which is pre-decomposed in the high-pressure column and thereby weakens the rectification. In particular, during rectification, a smaller amount of liquid nitrogen, which is required as the reflux liquid in the high-pressure column and the low-pressure column, is obtained in comparison to processes with gaseous feed of the total air. This is particularly noticeable in processes with increased operating pressure (5.5 to 15 bar, preferably 8 to 10 bar at the top of the high pressure column and 1.3 to 6 bar, preferably 3 to 4 bar at the top of the low pressure column), for example, in integrated systems be used with coal, heavy oil or biomass gasification and combustion of the fuel produced in the gasification in the combustion chamber of a gas turbine system. Here, the regularly required product purities can no longer be achieved without additional measures. As such additional measures has already been a process with sump heating of the high pressure column ( EP 1750074 A1 ) proposed. EP 752566 B1 proposes a method with side condenser for liquefying top nitrogen of the high pressure column and recycling the vaporized air to an intermediate stage of the main air compressor and is considered as the closest prior art.

Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung wirtschaftlich besonders günstig zu gestalten.The invention has for its object to make such a method and a corresponding device economically particularly favorable.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorzugsweise wird die gesamte im Rahmen der Innenverdichtung kondensierte Luft bei dem indirekten Wärmeaustausch mit dem gasförmigen Strom aus dem oberen Abschnitt der Hochdrucksäule verdampft. Die verdampfte Luft wird insbesondere in dem Hauptwärmetauscher angewärmt, in dem auch die Einsatzluft abgekühlt und der Produktstrom (pseudo-) verdampft und angewärmt wird. Anschließend wird sie separat in dem Rückverdichter auf einen geeigneten Druck gebracht, um sie in die Luftleitung einzuspeisen. Die rückverdichtete Luftmenge nimmt nun an der Rektifikation in der Hochdrucksäule teil.This object is solved by the features of claim 1. Preferably, the entire condensed in the context of internal compression air is vaporized in the indirect heat exchange with the gaseous stream from the upper portion of the high pressure column. The vaporized air is warmed in particular in the main heat exchanger, in which the feed air is cooled and the product stream (pseudo) is evaporated and warmed. Subsequently, it is separately brought to a suitable pressure in the recompressor to feed it into the air line. The recompressed air quantity now participates in the rectification in the high-pressure column.

Der gasförmige Strom wird vorzugsweise durch Stickstoff vom Kopf der Hochdrucksäule gebildet. Dieser wird gegen die verdampfende Luft kondensiert und kann in Hochdrucksäule und/oder Niederdrucksäule als Rücklauf eingesetzt werden. In der Hochdrucksäule verbleibt damit so viel Rücklauf, dass die Zusatzluftmenge auf eine hohe N2-Reinheit in der Hochdrucksäule rektifiziert werden kann. Der Rest dient als zusätzlicher Rücklauf in der Niederdrucksäule und verbessert so die dortige Rektifikation.The gaseous stream is preferably formed by nitrogen from the top of the high pressure column. This is condensed against the evaporating air and can be used in high pressure column and / or low pressure column as reflux. So much reflux remains in the high-pressure column that the additional air quantity can be rectified to a high N 2 purity in the high-pressure column. The remainder serves as an additional reflux in the low-pressure column and thus improves the rectification there.

Vorzugsweise wird der indirekte Wärmeaustausch des ersten Luftstroms mit dem gasförmigen Strom aus dem oberen Abschnitt der Hochdrucksäule in einem Nebenkondensator durchgeführt. Unter einem "Nebenkondensator" wird hier ein von anderen Wärmetauschern getrennter Kondensator-Verdampfer verstanden, durch den keine weiteren Fluide strömen.Preferably, the indirect heat exchange of the first air stream with the gaseous stream from the upper section of the high pressure column is performed in a secondary condenser. A "secondary condenser" is understood here as a condenser-evaporator separate from other heat exchangers, through which no further fluids flow.

Besonders günstig ist es, wenn bei dem Verfahren der Erfindung ein zweiter Luftstrom, der durch einen Teil des Einsatzluftstroms gebildet wird, arbeitsleistend entspannt wird und mindestens ein Teil der dabei erzeugten mechanischen Energie zum Antrieb des Rückverdichters genutzt wird. Damit braucht für die Rückverdichtung des ersten Luftstroms keine Energie importiert zu werden, wie es bei einem Motorantrieb oder bei der aus EP 752566 B1 bekannten Rückverdichtung im Hauptluftverdichter der Fall wäre.It is particularly favorable if, in the method of the invention, a second air flow, which is formed by a part of the feed air stream, is expanded in a work-performing manner and at least part of the mechanical energy generated is used to drive the recompressor. Thus, no energy needs to be imported for the recompression of the first air flow, as in a motor drive or in the off EP 752566 B1 known recompression in the main air compressor would be the case.

Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 7.The invention also relates to a device for the production of gaseous pressure product by cryogenic separation of air according to claim 7.

Weitere bevorzugte Ausführungsformen des erfndungsgemäßen Verfahrens sind den übrigen abhängigen Ansprüchen zu entnehmen.Further preferred embodiments of the method according to the invention can be found in the remaining dependent claims.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel des erfindurigsgemäßen Verfahrens mit Antrieb des Rückverdichters durch eine Mitteldruckturbine,
Figur 2
ein zweites Ausführungsbeispiel mit zweistufiger Rückverdichtung
Figur 3
ein drittes Ausführungsbeispiel, bei der die Turbine mit dem hohen Druck als Eintrittsdruck betrieben wird,
Figur 4
ein viertes Ausführungsbeispiel mit Argongewinnung,
Figur 5
ein weiteres Ausführungsbeispiel mit extern angetriebenem Rückverdichter und
Figur 6
ein sechstes Ausführungsbeispiel mit Einblaseturbine.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments illustrated in the drawings. Hereby show:
FIG. 1
a first embodiment of the method according to the invention with drive of the recompressor through a medium-pressure turbine,
FIG. 2
a second embodiment with two-stage recompression
FIG. 3
A third embodiment, in which the turbine is operated at the high pressure as the inlet pressure,
FIG. 4
a fourth embodiment with argon recovery,
FIG. 5
Another embodiment with externally driven recompressor and
FIG. 6
a sixth embodiment with injection turbine.

Einander entsprechende Verfahrensschritte sind in den Zeichnungen mit denselben Bezugszeichen versehen.Corresponding method steps are provided in the drawings with the same reference numerals.

Der Hauptluftverdichter ist in Figur 1 nicht dargestellt, ebenso wenig die nachfolgende Reinigungsvorrichtung. Der im Hauptluftverdichter auf einen zweiten Druck von 5,5 bis 15 bar, vorzugsweise etwa 9 bar verdichtete und anschließend verdichtete Einsatzluftstrom 1 wird zu einem ersten Teil 2 als Direktluftstrom über die Leitungen 3, 5, 6 und den Hauptwärmetauscher 4 in die Hochdrucksäule 7 eines Destilliersäulen-Systems eingeleitet, das außerdem eine Niederdrucksäule 8 und einen Hauptkondensator 9 aufweist. Die Betriebsdrücke betragen 5,5 bis 15 bar, vorzugsweise etwa 9 bar in der Hochdrucksäule und 1,3 bis 6 bar, vorzugsweise etwa 3,5 bar in der Niederdrucksäule (jeweils am Kopf).The main air compressor is in FIG. 1 not shown, nor the subsequent cleaning device. The compressed in the main air compressor to a second pressure of 5.5 to 15 bar, preferably about 9 bar and then compressed feed air stream 1 is a first part 2 as direct air flow through the lines 3, 5, 6 and the main heat exchanger 4 in the high pressure column 7 a Destilliersäulen system introduced, which also has a low-pressure column 8 and a main condenser 9. The operating pressures are 5.5 to 15 bar, preferably about 9 bar in the high pressure column and 1.3 to 6 bar, preferably about 3.5 bar in the low pressure column (each at the top).

Ein zweiter Teil 10 des Einsatzluftstroms 1 wird in einem ersten Nachverdichter 11 mit Nachkühler 12 auf einen zweiten Druck von 30 bis 50 bar, vorzugsweise etwa 40 bar nachverdichtet. Ein Teil 14 der auf den zweiten Druck nachverdichteten Luft bildet den "ersten Luftstrom". Dieser wird in einem zweiten Nachverdichter 15 mit Nachkühler 16 weiter auf einen dritten Druck (den "hohen Druck") von 40 bis 80 bar, vorzugsweise etwa 60 bar verdichtet. Über Leitung 17 wird der erste Luftstrom zum warmen Ende des Hauptwärmetauschers 4 geleitet dort abgekühlt und (pseudo-)kondensiert. Die kalte Hochdruckluft 18 wird nach Drosselentspannung auf 3,5 bis 9,5 bar, vorzugsweise etwa 6 bar in einem Nebenkondensator 20 vollständig verdampft und über Leitung 22 zum kalten Ende des Hauptwärmetauschers 4 zurückgeleitet. Der angewärmte erste Luftstrom wird erfindungsgemäß in einem Rückverdichter 24 mit Nachkühler 25 auf den ersten Druck rückverdichtet und mit dem Direktluftstrom 2 vereinigt.A second part 10 of the feed air stream 1 is recompressed in a first after-compressor 11 with aftercooler 12 to a second pressure of 30 to 50 bar, preferably about 40 bar. Part 14 of the compressed air after the second pressure forms the "first air flow". This is in a second after-compressor 15 with aftercooler 16th further compressed to a third pressure (the "high pressure") of 40 to 80 bar, preferably about 60 bar. Via line 17, the first air flow to the warm end of the main heat exchanger 4 is conducted there cooled and (pseudo) condensed. The cold high-pressure air 18 is completely vaporized after throttle relaxation to 3.5 to 9.5 bar, preferably about 6 bar in a secondary condenser 20 and returned via line 22 to the cold end of the main heat exchanger 4. The warmed first air stream is recompressed according to the invention in a recompressor 24 with aftercooler 25 to the first pressure and combined with the direct air stream 2.

Ein anderer Teil 27 der Luft 13 unter dem zweiten Druck bildet den "zweiten Luftstrom". Dieser wird im Hauptwärmetauscher 4 nur auf eine Zwischentemperatur abgekühlt und strömt anschließend über Leitung 28 einer Entspannungsmaschine 29 zu, die in dem Ausführungsbeispiel als Turbo-Expander ausgebildet ist. Dort wird er arbeitsleistend auf etwa den ersten Druck entspannt. Der entspannte zweite Luftstrom 30 strömt gemeinsam mit dem Direktluftstrom 5 über Leitung 6 zur Hochdrucksäule 7.Another part 27 of the air 13 under the second pressure forms the "second airflow". This is cooled in the main heat exchanger 4 only to an intermediate temperature and then flows through line 28 to a relaxation machine 29, which is formed in the embodiment as a turbo-expander. There he is working to be relaxed to about the first pressure. The expanded second air stream 30 flows together with the direct air stream 5 via line 6 to the high pressure column. 7

Vom Sumpf der Hochdrucksäule 7 wird flüssiger Rohsauerstoff 31 abgezogen, in einem Unterkühlungs-Gegenströmer 32 abgekühlt und über Leitung 33 und Drosselventil 34 der Niederdrucksäule 8 an einer Zwischenstelle aufgegeben. Flüssiger Unrein-Stickstoff 35 wird der Hochdrucksäule 7 an einer Zwischenstelle entnommen, ebenfalls im Unterkühlungs-Gegenströmer 32 abgekühlt und über Leitung 36 und Drosselventil 37 auf den Kopf der Niederdrucksäule 7 aufgegeben.From the bottom of the high pressure column 7 liquid crude oxygen 31 is withdrawn, cooled in a subcooling countercurrent 32 and fed via line 33 and throttle valve 34 of the low pressure column 8 at an intermediate point. Liquid impure nitrogen 35 is taken from the high pressure column 7 at an intermediate point, also cooled in the subcooling countercurrent 32 and fed via line 36 and throttle valve 37 to the top of the low pressure column 7.

Gasförmiger Kopfstickstoff 38 der Niederdrucksäule 8 wird zu einem ersten Teil 39 im Hauptkondensator im Wesentlichen vollständig kondensiert. Das dabei gebildete Kondensat wird über Leitung 40 zum Kopf der Hochdrucksäule zurückgeleitet. Ein zweiter Teil 41 wird in dem Nebenkondensator in indirektem Wärmeaustausch mit dem ersten Luftstrom im Wesentlichen vollständig kondensiert. Das dabei gebildete Kondensat wird über Leitung 42 zum Kopf der Hochdrucksäule zurückgeleitet. Ein dritter Teil 43 des gasförmigen Kopfstickstoffs 38 der Hochdrucksäule 7 wird im Hauptwärmetauscher 4 auf etwa Umgebungstemperatur angewärmt und über Leitung 44 als gasförmiges Stickstoffprodukt unter Mitteldruck abgegeben.Gaseous nitrogen head 38 of the low pressure column 8 is substantially completely condensed to a first part 39 in the main condenser. The condensate formed is returned via line 40 to the head of the high pressure column. A second part 41 is substantially completely condensed in the secondary condenser in indirect heat exchange with the first air flow. The condensate formed is returned via line 42 to the head of the high pressure column. A third part 43 of the gaseous top nitrogen 38 of the high-pressure column 7 is warmed in the main heat exchanger 4 to approximately ambient temperature and discharged via line 44 as a gaseous nitrogen product under medium pressure.

Über Leitung 45 wird gasförmiger Unreinstickstoff vom Kopf der Niederdrucksäule 8 abgezogen und nach Anwärmung im Unterkühlungs-Gegenströmer 32 und im Hauptwärmetauscher 4 über Leitung 46 abgezogen. Er kann beispielsweise in einem Verdunstungskühler oder in der nicht dargestellten Reinigungsvorrichtung als Regeneriergas genutzt werden.Via line 45 gaseous impurity nitrogen is withdrawn from the head of the low pressure column 8 and withdrawn after heating in the subcooling countercurrent 32 and in the main heat exchanger 4 via line 46. He can, for example, in one Evaporative cooler or be used in the cleaning device, not shown as a regeneration gas.

Flüssiger Sauerstoff 47 wird als "flüssiger Produktstrom" aus dem Sumpf der Niederdrucksäule abgezogen, in einer Sauerstoff-Pumpe 48 auf einen Druck von 50 bis 100 bar, vorzugsweise etwa 30 bar gebracht, über Leitung 49 zum Hauptwärmetauscher 4 geführt, dort (pseudo-)verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 50 als gasförmiger Produktstrom abgezogen.Liquid oxygen 47 is withdrawn as "liquid product stream" from the bottom of the low pressure column, brought in an oxygen pump 48 to a pressure of 50 to 100 bar, preferably about 30 bar, passed via line 49 to the main heat exchanger 4, there (pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 50 as a gaseous product stream.

Zusätzlich zu dieser Sauerstoff-Innenverdichtung weist das System des Ausführungsbeispiels auch eine Stickstoff-Innenverdichtung auf. Hierbei wird flüssiger Stickstoff 21 vom Kopf der Hochdrucksäule 7 (oder alternativ aus dem Hauptkondensator 9) als weiterer "flüssiger Produktstrom" abgezogen, in einer Stickstoff-Pumpe 51 auf einen Druck von 50 bis 30 bar, vorzugsweise etwa 100 bar gebracht, über Leitung 52 zum Hauptwärmetauscher 4 geführt, dort
(pseudo-)verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 53 als weitere gasförmiger Produktstrom abgezogen.
In addition to this oxygen internal compression, the system of the embodiment also has nitrogen internal compression. Here, liquid nitrogen 21 is withdrawn from the top of the high-pressure column 7 (or alternatively from the main condenser 9) as a further "liquid product stream", brought in a nitrogen pump 51 to a pressure of 50 to 30 bar, preferably about 100 bar, via line 52nd led to the main heat exchanger 4, there
(Pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 53 as another gaseous product stream.

Zusätzlich wird der Hochdrucksäule 7 über Leitung 54 gasförmiger Unreinstickstoff entnommen, angewärmt und über Leitung 55 abgezogen.In addition, the high-pressure column 7 is removed via line 54 gaseous impurity nitrogen, warmed and withdrawn via line 55.

Die Entspannungsmaschine 29 und der Rückverdichter 24 sind mechanisch über eine gemeinsame Well gekoppelt.The expansion machine 29 and the recompressor 24 are mechanically coupled via a common well.

Bei niedrigeren Prozessdrücken, zum Beispiel 5,5 bis 9 bar, vorzugsweise etwa 8 bar in der Hochdrucksäule 7, reicht die Nachverdichtung in dem als Turbinen-Booster ausgebildeten ersten Rückverdichter 24 nicht mehr aus. In diesem Fall wird - wie in Figur 2 dargestellt - ein zweiter Rückverdichter 124 mit Nachkühler 125 nachgeschaltet, um den verdampften ersten Luftstrom 23 auf den ersten Druck zu bringen, der in den Leitungen 1 und 2 herrscht.At lower process pressures, for example 5.5 to 9 bar, preferably about 8 bar in the high-pressure column 7, the recompression in the turbine booster designed as the first recompressor 24 is no longer sufficient. In this case - as in FIG. 2 shown - a second recompressor 124 downstream with aftercooler 125 to bring the vaporized first air flow 23 to the first pressure prevailing in the lines 1 and 2.

Figur 2 unterscheidet sich außerdem durch die Leitung 156 mit Drosselventil 157 von Figur 1. Hierdurch wird zusätzlich zu dem ersten Luftstrom 18 ein Teil des flüssigen Rohsauerstoffs vom Sumpf der Hochdrucksäule 7 in den Verdampfungsraum des Nebenkondensators 20 geleitet. Hierdurch kann entsprechend mehr Stickstoff 41/42 kondensiert werden. FIG. 2 also differs by the line 156 with throttle valve 157 of FIG. 1 , As a result, in addition to the first air stream 18, a portion of the raw liquid oxygen from the bottom of the high-pressure column 7 in the evaporation chamber of the Sub-condenser 20 passed. As a result, can be condensed correspondingly more nitrogen 41/42.

Figur 3 beruht auf Figur 1 und zeigt außerdem die zweistufige Rückverdichtung 24/124 von Figur 2. Außerdem wird hier der gesamte Luftstrom 10 in dem Nachverdichter 11 auf den hohen Druck verdichtet. Die Aufteilung von Turbinenluft 128 und erstem Luftstrom 18 wird erste bei der Zwischentemperatur des Hauptwärmetauschers 4 durchgeführt. Hierdurch ergibt sich ein entsprechend höherer Eintrittsdruck an der Entspannungsmaschine 29. FIG. 3 based on FIG. 1 and also shows the two-stage recompression 24/124 of FIG. 2 , In addition, here the entire air flow 10 is compressed in the secondary compressor 11 to the high pressure. The division of turbine air 128 and first air flow 18 is performed first at the intermediate temperature of the main heat exchanger 4. This results in a correspondingly higher inlet pressure at the expansion machine 29.

Figur 4 beruht auf Figur 2 und weist außerdem eine Rohargonsäule 458 als erste Stufe einer Argongewinnung auf. Außerdem wird über die Leitungen 459 und 460 flüssiger Sauerstoff aus dem Sumpf der Niederdrucksäule 8 als Flüssigprodukt (LOX) abgezogen. Der flüssige Rücklauf 435, 436, 437 für die Niederdrucksäule 8 wird hier vom Kopf der Hochdrucksäule 7 abgezogen. Entsprechend wird gasförmiger Unreinstrickstoff 445/446 hier von einer Zwischenstelle der Niederdrucksäule 8 entnommen. Der reine Kopfstickstoff 461 der Niederdrucksäule 8 wird ebenfalls angewärmt und über Leitung 462 als Produkt abgezogen. FIG. 4 based on FIG. 2 and also has a crude argon column 458 as a first stage of argon recovery. In addition, via the lines 459 and 460, liquid oxygen is withdrawn from the bottom of the low-pressure column 8 as a liquid product (LOX). The liquid reflux 435, 436, 437 for the low-pressure column 8 is here deducted from the head of the high-pressure column 7. Accordingly, gaseous impure nitrogen 445/446 is taken from an intermediate point of the low-pressure column 8 here. The pure nitrogen head 461 of the low pressure column 8 is also warmed and withdrawn via line 462 as a product.

Figur 5 weicht dadurch von Figur 4 ab, dass der Rückverdichter 524 nicht mit der Entspannungsmaschine 29 gekoppelt ist, sondern extern angetrieben wird. Der Rückverdichter 524 ist hier vorzugsweise zweistufig ausgebildet. Der Turbinen-Booster 563 wird hier zur weiteren Erhöhung des Drucks im zweiten Luftstrom 27, dem Turbinenluftstrom, eingesetzt. FIG. 5 deviates from it FIG. 4 from that the recompressor 524 is not coupled to the expansion machine 29, but is driven externally. The recompressor 524 is preferably formed in two stages here. The turbine booster 563 is used here to further increase the pressure in the second air stream 27, the turbine air flow.

Die Entspannungsmaschine 629 der Figur 6 entspannt auf etwa den Betriebsdruck der Niederdrucksäule. Der arbeitsleistend entspannte zweite Luftstrom 630 wird in die Niederdrucksäule 8 eingeleitet. Im Übrigen stimmt das Verfahren der Figur 6 mit demjenigen der Figur 4 überein.The relaxation machine 629 of the FIG. 6 relaxed to about the operating pressure of the low pressure column. The working expanded second air stream 630 is introduced into the low pressure column 8. For the rest, the procedure of FIG. 6 with that of the FIG. 4 match.

Claims (7)

Verfahren zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (7) und eine Niederdrucksäule (8) aufweist, bei dem - ein Einsatzluftstrom in einem Hauptluftverdichter verdichtet wird, - mindestens ein Teil des verdichteten Einsatzluftstroms (1) in die Hochdrucksäule (7) eingeleitet (6) wird, - ein erster Luftstrom (10, 13, 14, 17, 18), der mindestens durch einen Teil des. Einsatzluftstroms (1) gebildet wird, auf einen hohen Luftdruck verdichtet (11, 15, 111) wird, der mindestens 1 bar oberhalb des Betriebsdrucks der Hochdrucksäule (7) liegt, - ein flüssiger Produktstrom (21, 47) aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (48, 51) und unter diesem erhöhten Druck durch indirekten Wärmeaustausch (4) mit dem ersten Luftstrom (17) verdampft oder pseudo-verdampft und schließlich als gasförmiger Produktstrom (50, 53) abgezogen wird, - wobei der erste Luftstrom (17) bei dem indirekten Wärmeaustausch (4) kondensiert oder pseudo-kondensiert wird, - der erste Luftstrom (18) stromabwärts des indirekten Wärmeaustauschs (4) mit dem flüssig auf Druck gebrachten Produktstrom (49, 52) in indirektem Wärmeaustausch (20) mit einem gasförmigen Strom (41) aus dem oberen Abschnitt der Hochdrucksäule (7) verdampft wird, - und der verdampfte erste Luftstrom (22) in den Einsatzluftstrom (1, 2) zurückgeführt (23, 26) wird, dadurch gekennzeichnet, dass der verdampfte erste Luftstrom (23) stromaufwärts seiner Rückführung in den Einsatzluftstrom in einem Rückverdichter (24, 124, 524) verdichtet wird.A process for producing gaseous product by cryogenic separation of air in a distillation column system comprising at least one high pressure column (7) and one low pressure column (8), in which a feed air stream is compressed in a main air compressor, - At least a portion of the compressed feed air stream (1) in the high-pressure column (7) introduced (6), - A first air flow (10, 13, 14, 17, 18), which is at least formed by a part of the feed air stream (1), compressed to a high air pressure (11, 15, 111), the at least 1 bar above the Operating pressure of the high pressure column (7), - A liquid product stream (21, 47) taken from the distillation column system, brought in the liquid state to an elevated pressure (48, 51) and evaporated under this increased pressure by indirect heat exchange (4) with the first air stream (17) or pseudo evaporated and finally withdrawn as a gaseous product stream (50, 53), wherein the first air stream (17) is condensed or pseudo-condensed in the indirect heat exchange (4), - The first air stream (18) downstream of the indirect heat exchange (4) with the liquid pressure product stream (49, 52) in indirect heat exchange (20) with a gaseous stream (41) from the upper portion of the high pressure column (7) is evaporated . - and the vaporized first air stream (22) in the feed air stream (1, 2) is returned (23, 26), characterized in that the vaporized first air stream (23) is compressed upstream of its return into the feed air stream in a recompressor (24, 124, 524). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der verdampfte erste Luftstrom (22, 23) stromaufwärts des Rückverdichters (24) angewärmt (4) wird.A method according to claim 1, characterized in that the vaporized first air stream (22, 23) upstream of the recompressor (24) is heated (4). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der indirekte Wärmeaustausch (20) des ersten Luftstroms (18) mit dem gasförmigen Strom (41) aus dem oberen Abschnitt der Hochdrucksäule (7) in einem Nebenkondensator durchgeführt wird.A method according to claim 1 or 2, characterized in that the indirect heat exchange (20) of the first air flow (18) with the gaseous stream (41) from the upper portion of the high-pressure column (7) is carried out in a secondary condenser. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der gasförmige Strom (41) aus dem oberen Abschnitt der Hochdrucksäule (7) bei dem indirekten Wärmeaustausch (20) mit dem ersten Luftstrom (18) mindestens teilweise kondensiert wird und das dabei erzeugte Kondensat (42) mindestens teilweise als Rücklauf in die Hochdrucksäule (7) und/oder in die Niederdrucksäule (8) eingespeist wird.Method according to one of claims 1 to 3, characterized in that the gaseous stream (41) from the upper portion of the high-pressure column (7) in the indirect heat exchange (20) with the first air stream (18) is at least partially condensed and thereby produced Condensate (42) is at least partially fed as reflux in the high pressure column (7) and / or in the low pressure column (8). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein zweiter Luftstrom (27, 28), der durch einen Teil des Einsatzluftstroms (1) gebildet wird, arbeitsleistend entspannt (29, 629) wird und mindestens ein Teil der dabei erzeugten mechanischen Energie zum Antrieb des Rückverdichters (24) genutzt wird.Method according to one of claims 1 to 4, characterized in that a second air flow (27, 28), which is formed by a part of the feed air stream (1), working expanded (29, 629) and at least a part of the generated mechanical Energy is used to drive the recompressor (24). Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der arbeitsleistend entspannte zweite Luftstrom (30) mindestens teilweise in die Hochdrucksäule (7) eingeleitet (6) wird.A method according to claim 5, characterized in that the work-performing expanded second air stream (30) at least partially introduced into the high-pressure column (7) (6). Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (7) und eine Niederdrucksäule (8) aufweist, - mit einem Hauptluftverdichter zum Verdichten eines Einsatzluftstroms, - mit Mitteln (6) zum Einleiten mindestens ein Teil des verdichteten Einsatzluftstroms (1) in die Hochdrucksäule (7), - mit einem Nachverdichter (11, 15, 111) zum Nachverdichten eines ersten Luftstroms (10,13,14,17,18}, der mindestens durch einen Teil des Einsatzluftstroms (1) gebildet wird, auf einen hohen Luftdruck, der mindestens 1 bar oberhalb des Betriebsdrucks der Hochdrucksäule (7) liegt, - mit Mitteln zum Entnehmen eines flüssigen Produktstroms (21, 47) aus dem Destilliersäulen-System entnommen, zur Druckerhöhung (48, 51) in flüssigem Zustand und zur Verdampfung oder Pseudo-Verdampfung durch indirekten Wärmeaustausch (4) mit dem ersten Luftstrom (17) und mit einer Gasproduktleitung (50, 53) zum Abziehen des verdampften Produktstroms als gasförmiger Produktstrom, - wobei die Mittel zur Verdampfung oder Pseudo-Verdampfung durch indirekten Wärmeaustausch (4) als Mittel zum Kondensieren oder Pseudo-Kondensieren des ersten Luftstroms (17) ausgebildet sind, - mit Mitteln (20) zum Verdampfen des ersten Luftstrom (18) stromabwärts des indirekten Wärmeaustauschs (4) mit dem flüssig auf Druck gebrachten Produktstrom (49, 52) in indirektem Wärmeaustausch (20) mit einem gasförmigen Strom (41) aus dem oberen Abschnitt der Hochdrucksäule (7), - und mit einer Rückfühdeitung (23, 26) zum Rückführen des verdampften ersten Luftstroms (22) in den Einsatzluftstrom (1, 2),
gekennzeichnet durch einem Rückverdichter (24, 124, 524) zum Verdichten des verdampften ersten Luftstroms (23) stromaufwärts seiner Rückführung in den Einsatzluftstrom.
Apparatus for producing gaseous pressure product by cryogenic separation of air in a distillation column system comprising at least one high pressure column (7) and one low pressure column (8), with a main air compressor for compressing a feed air stream, with means (6) for introducing at least part of the compressed feed air stream (1) into the high-pressure column (7), - With a secondary compressor (11, 15, 111) for recompressing a first air flow (10,13,14,17,18}, which is at least formed by a part of the feed air stream (1), to a high air pressure, the at least 1 bar is above the operating pressure of the high-pressure column (7), - Removed with means for removing a liquid product stream (21, 47) from the distillation column system, the pressure increase (48, 51) in the liquid state and for evaporation or pseudo-evaporation by indirect Heat exchange (4) with the first air stream (17) and with a gas product line (50, 53) for withdrawing the vaporized product stream as a gaseous product stream, - wherein the means for evaporation or pseudo-evaporation by indirect heat exchange (4) are designed as means for condensing or pseudo-condensing the first air stream (17), - means (20) for evaporating the first air stream (18) downstream of the indirect heat exchange (4) with the liquid pressure product stream (49, 52) in indirect heat exchange (20) with a gaseous stream (41) from the upper portion the high pressure column (7), - and with a return line (23, 26) for returning the vaporized first air stream (22) in the feed air stream (1, 2),
characterized by a recompressor (24, 124, 524) for compressing the vaporized first air stream (23) upstream of its return to the feed air stream.
EP08012218A 2007-07-07 2008-07-07 Process and device for producing a gaseous pressurised product by cryogenic separation of air Withdrawn EP2015013A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007031759A DE102007031759A1 (en) 2007-07-07 2007-07-07 Method and apparatus for producing gaseous pressure product by cryogenic separation of air

Publications (1)

Publication Number Publication Date
EP2015013A2 true EP2015013A2 (en) 2009-01-14

Family

ID=39828971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08012218A Withdrawn EP2015013A2 (en) 2007-07-07 2008-07-07 Process and device for producing a gaseous pressurised product by cryogenic separation of air

Country Status (3)

Country Link
US (1) US20090013869A1 (en)
EP (1) EP2015013A2 (en)
DE (1) DE102007031759A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
WO2015014485A3 (en) * 2013-08-02 2015-09-24 Linde Aktiengesellschaft Method and device for producing compressed nitrogen
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2541175A3 (en) * 2011-06-30 2018-03-21 General Electric Company Air separation unit and systems incorporating the same
WO2020169257A1 (en) 2019-02-22 2020-08-27 Linde Gmbh Method and system for low-temperature air separation
WO2021242308A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
US11674750B2 (en) 2020-06-04 2023-06-13 Praxair Technology, Inc. Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
JP7282667B2 (en) 2019-01-22 2023-05-29 信越化学工業株式会社 Composition for forming silicon-containing resist underlayer film and pattern forming method

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0505812A1 (en) 1991-03-26 1992-09-30 Linde Aktiengesellschaft Low temperature air separation process
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0752566B1 (en) 1995-07-06 2001-06-13 The BOC Group plc Air separation
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
EP1750074A1 (en) 2005-08-02 2007-02-07 Linde Aktiengesellschaft Process and device for the cryogenic separation of air

Patent Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
EP0505812A1 (en) 1991-03-26 1992-09-30 Linde Aktiengesellschaft Low temperature air separation process
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
EP0752566B1 (en) 1995-07-06 2001-06-13 The BOC Group plc Air separation
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1750074A1 (en) 2005-08-02 2007-02-07 Linde Aktiengesellschaft Process and device for the cryogenic separation of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2466236A1 (en) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2541175A3 (en) * 2011-06-30 2018-03-21 General Electric Company Air separation unit and systems incorporating the same
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
WO2015014485A3 (en) * 2013-08-02 2015-09-24 Linde Aktiengesellschaft Method and device for producing compressed nitrogen
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
WO2016005031A1 (en) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption
WO2020169257A1 (en) 2019-02-22 2020-08-27 Linde Gmbh Method and system for low-temperature air separation
WO2021242308A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit
US11674750B2 (en) 2020-06-04 2023-06-13 Praxair Technology, Inc. Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler
US11933540B2 (en) 2020-06-04 2024-03-19 Praxair Technology, Inc. Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler

Also Published As

Publication number Publication date
US20090013869A1 (en) 2009-01-15
DE102007031759A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP2015013A2 (en) Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2235460B1 (en) Process and device for the cryogenic separation of air
EP1139046B1 (en) Process and device for producing high pressure oxygen product by cryogenic air separation
EP1357342B1 (en) Cryogenic triple column air separation system with argon recovery
EP2015012A2 (en) Process for the cryogenic separation of air
EP2236964B1 (en) Method and device for low-temperature air separation
DE102007014643A1 (en) Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP4133227A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
DE102009048456A1 (en) Method and apparatus for the cryogenic separation of air
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP1031804A1 (en) Air separation process with nitrogen recycling
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
EP3394536A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP1199532B1 (en) Three-column system for the cryogenic separation of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
EP2963371B1 (en) Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP3343159A1 (en) Method and device for creating gaseous oxygen and gaseous pressurised nitrogen
EP1750074A1 (en) Process and device for the cryogenic separation of air
EP1284403B1 (en) Process and apparatus for the production of oxygen by low temperature air separation
DE10045121A1 (en) Method and device for obtaining a gaseous product by low-temperature separation of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090707

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120201