EP2015013A2 - Process and device for producing a gaseous pressurised product by cryogenic separation of air - Google Patents
Process and device for producing a gaseous pressurised product by cryogenic separation of air Download PDFInfo
- Publication number
- EP2015013A2 EP2015013A2 EP08012218A EP08012218A EP2015013A2 EP 2015013 A2 EP2015013 A2 EP 2015013A2 EP 08012218 A EP08012218 A EP 08012218A EP 08012218 A EP08012218 A EP 08012218A EP 2015013 A2 EP2015013 A2 EP 2015013A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- air stream
- stream
- air
- pressure column
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000000926 separation method Methods 0.000 title claims abstract description 8
- 238000004821 distillation Methods 0.000 claims abstract description 8
- 238000011144 upstream manufacturing Methods 0.000 claims abstract 4
- 239000000047 product Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 14
- 238000001704 evaporation Methods 0.000 claims description 9
- 239000012263 liquid product Substances 0.000 claims description 6
- 238000010992 reflux Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 241000883306 Huso huso Species 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PDEXVOWZLSWEJB-UHFFFAOYSA-N krypton xenon Chemical compound [Kr].[Xe] PDEXVOWZLSWEJB-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/40—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/52—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/52—One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
Definitions
- the invention relates to a method for producing gaseous pressure oxygen by cryogenic separation of air according to the preamble of patent claim 1.
- the distillation column system of the invention may be designed as a two-column system (for example as a classical Linde double column system), or as a three-column or multi-column system.
- other means may be provided for recovering other air components, particularly noble gases, such as argon or krypton-xenon recovery.
- the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated.
- Such internal compression methods are known, for example DE 830805 .
- EP 1139046 A1 EP 1146301 A1 .
- EP 1150082 A1 EP 1213552 A1 .
- EP 1357342 A1 or DE 10238282 A1
- first air stream In heat exchange with the (pseudo) evaporating product stream is usually a part of the feed air (here called "first air stream") condensed or pseudo-condensed and after expansion in a throttle valve or a liquid liquid in the high pressure column and / or the low pressure column of the distillation column Systems fed.
- This liquid supplied air reduces the amount of vaporous air, which is pre-decomposed in the high-pressure column and thereby weakens the rectification.
- a smaller amount of liquid nitrogen which is required as the reflux liquid in the high-pressure column and the low-pressure column, is obtained in comparison to processes with gaseous feed of the total air.
- the invention has for its object to make such a method and a corresponding device economically particularly favorable.
- the entire condensed in the context of internal compression air is vaporized in the indirect heat exchange with the gaseous stream from the upper portion of the high pressure column.
- the vaporized air is warmed in particular in the main heat exchanger, in which the feed air is cooled and the product stream (pseudo) is evaporated and warmed. Subsequently, it is separately brought to a suitable pressure in the recompressor to feed it into the air line.
- the recompressed air quantity now participates in the rectification in the high-pressure column.
- the gaseous stream is preferably formed by nitrogen from the top of the high pressure column. This is condensed against the evaporating air and can be used in high pressure column and / or low pressure column as reflux. So much reflux remains in the high-pressure column that the additional air quantity can be rectified to a high N 2 purity in the high-pressure column. The remainder serves as an additional reflux in the low-pressure column and thus improves the rectification there.
- the indirect heat exchange of the first air stream with the gaseous stream from the upper section of the high pressure column is performed in a secondary condenser.
- a "secondary condenser” is understood here as a condenser-evaporator separate from other heat exchangers, through which no further fluids flow.
- a second air flow which is formed by a part of the feed air stream, is expanded in a work-performing manner and at least part of the mechanical energy generated is used to drive the recompressor.
- no energy needs to be imported for the recompression of the first air flow as in a motor drive or in the off EP 752566 B1 known recompression in the main air compressor would be the case.
- the invention also relates to a device for the production of gaseous pressure product by cryogenic separation of air according to claim 7.
- the main air compressor is in FIG. 1 not shown, nor the subsequent cleaning device.
- the compressed in the main air compressor to a second pressure of 5.5 to 15 bar, preferably about 9 bar and then compressed feed air stream 1 is a first part 2 as direct air flow through the lines 3, 5, 6 and the main heat exchanger 4 in the high pressure column 7 a Destarriulen system introduced, which also has a low-pressure column 8 and a main condenser 9.
- the operating pressures are 5.5 to 15 bar, preferably about 9 bar in the high pressure column and 1.3 to 6 bar, preferably about 3.5 bar in the low pressure column (each at the top).
- a second part 10 of the feed air stream 1 is recompressed in a first after-compressor 11 with aftercooler 12 to a second pressure of 30 to 50 bar, preferably about 40 bar.
- Part 14 of the compressed air after the second pressure forms the "first air flow”.
- This is in a second after-compressor 15 with aftercooler 16th further compressed to a third pressure (the "high pressure") of 40 to 80 bar, preferably about 60 bar.
- the first air flow to the warm end of the main heat exchanger 4 is conducted there cooled and (pseudo) condensed.
- the cold high-pressure air 18 is completely vaporized after throttle relaxation to 3.5 to 9.5 bar, preferably about 6 bar in a secondary condenser 20 and returned via line 22 to the cold end of the main heat exchanger 4.
- the warmed first air stream is recompressed according to the invention in a recompressor 24 with aftercooler 25 to the first pressure and combined with the direct air stream 2.
- Another part 27 of the air 13 under the second pressure forms the "second airflow".
- This is cooled in the main heat exchanger 4 only to an intermediate temperature and then flows through line 28 to a relaxation machine 29, which is formed in the embodiment as a turbo-expander. There he is working to be relaxed to about the first pressure.
- the expanded second air stream 30 flows together with the direct air stream 5 via line 6 to the high pressure column. 7
- liquid crude oxygen 31 is withdrawn, cooled in a subcooling countercurrent 32 and fed via line 33 and throttle valve 34 of the low pressure column 8 at an intermediate point.
- Liquid impure nitrogen 35 is taken from the high pressure column 7 at an intermediate point, also cooled in the subcooling countercurrent 32 and fed via line 36 and throttle valve 37 to the top of the low pressure column 7.
- Gaseous nitrogen head 38 of the low pressure column 8 is substantially completely condensed to a first part 39 in the main condenser.
- the condensate formed is returned via line 40 to the head of the high pressure column.
- a second part 41 is substantially completely condensed in the secondary condenser in indirect heat exchange with the first air flow.
- the condensate formed is returned via line 42 to the head of the high pressure column.
- a third part 43 of the gaseous top nitrogen 38 of the high-pressure column 7 is warmed in the main heat exchanger 4 to approximately ambient temperature and discharged via line 44 as a gaseous nitrogen product under medium pressure.
- gaseous impurity nitrogen is withdrawn from the head of the low pressure column 8 and withdrawn after heating in the subcooling countercurrent 32 and in the main heat exchanger 4 via line 46.
- He can, for example, in one Evaporative cooler or be used in the cleaning device, not shown as a regeneration gas.
- Liquid oxygen 47 is withdrawn as "liquid product stream" from the bottom of the low pressure column, brought in an oxygen pump 48 to a pressure of 50 to 100 bar, preferably about 30 bar, passed via line 49 to the main heat exchanger 4, there (pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 50 as a gaseous product stream.
- liquid nitrogen 21 is withdrawn from the top of the high-pressure column 7 (or alternatively from the main condenser 9) as a further "liquid product stream", brought in a nitrogen pump 51 to a pressure of 50 to 30 bar, preferably about 100 bar, via line 52nd led to the main heat exchanger 4, there (Pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via line 53 as another gaseous product stream.
- the high-pressure column 7 is removed via line 54 gaseous impurity nitrogen, warmed and withdrawn via line 55.
- the expansion machine 29 and the recompressor 24 are mechanically coupled via a common well.
- FIG. 2 also differs by the line 156 with throttle valve 157 of FIG. 1 , As a result, in addition to the first air stream 18, a portion of the raw liquid oxygen from the bottom of the high-pressure column 7 in the evaporation chamber of the Sub-condenser 20 passed. As a result, can be condensed correspondingly more nitrogen 41/42.
- FIG. 3 based on FIG. 1 and also shows the two-stage recompression 24/124 of FIG. 2 ,
- the entire air flow 10 is compressed in the secondary compressor 11 to the high pressure.
- the division of turbine air 128 and first air flow 18 is performed first at the intermediate temperature of the main heat exchanger 4. This results in a correspondingly higher inlet pressure at the expansion machine 29.
- FIG. 4 based on FIG. 2 and also has a crude argon column 458 as a first stage of argon recovery.
- liquid oxygen is withdrawn from the bottom of the low-pressure column 8 as a liquid product (LOX).
- the liquid reflux 435, 436, 437 for the low-pressure column 8 is here deducted from the head of the high-pressure column 7. Accordingly, gaseous impure nitrogen 445/446 is taken from an intermediate point of the low-pressure column 8 here.
- the pure nitrogen head 461 of the low pressure column 8 is also warmed and withdrawn via line 462 as a product.
- FIG. 5 deviates from it FIG. 4 from that the recompressor 524 is not coupled to the expansion machine 29, but is driven externally.
- the recompressor 524 is preferably formed in two stages here.
- the turbine booster 563 is used here to further increase the pressure in the second air stream 27, the turbine air flow.
- the relaxation machine 629 of the FIG. 6 relaxed to about the operating pressure of the low pressure column.
- the working expanded second air stream 630 is introduced into the low pressure column 8. For the rest, the procedure of FIG. 6 with that of the FIG. 4 match.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung von gasförmigem Drucksauerstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing gaseous pressure oxygen by cryogenic separation of air according to the preamble of patent claim 1.
Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus
Das Destilliersäulen-System der Erfindung kann als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem ausgebildet sein. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung können weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise eine Argon- oder eine Krypton-Xenon-Gewinnung.The distillation column system of the invention may be designed as a two-column system (for example as a classical Linde double column system), or as a three-column or multi-column system. In addition to the nitrogen-oxygen separation columns, other means may be provided for recovering other air components, particularly noble gases, such as argon or krypton-xenon recovery.
Die Erfindung betrifft insbesondere ein Verfahren, in dem mindestens ein gasförmiges Druckprodukt gewonnen wird, indem ein flüssiger Produktstrom aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und unter diesem erhöhten Druck durch indirektem Wärmeaustausch verdampft oder (bei überkritischem Druck) pseudo-verdampft wird. Derartige Innenverdichtungsverfahren sind zum Beispiel bekannt aus
Im Wärmeaustausch mit dem (pseudo-)verdampfenden Produktstrom wird meistens ein Teil der Einsatzluft (hier "erster Luftstrom" genannt) kondensiert beziehungsweise pseudo-kondensiert und nach Entspannung in einem Drosselventil oder einer Flüssigturbine flüssig in die Hochdrucksäule und/oder die Niederdrucksäule des Destilliersäulen-Systems eingespeist. Diese flüssig zugespeiste Luft vermindert die Menge an dampfförmiger Luft, die in der Hochdrucksäule vorzerlegt wird und schwächt dadurch die Rektifikation. Insbesondere fällt bei der Rektifikation eine - im Vergleich zu Verfahren mit gasförmiger Einspeisung der Gesamtluft - geringere Menge flüssigen Stickstoffs an, der als Rücklaufflüssigkeit in Hochdrucksäule und Niederdrucksäule benötigt wird. Dies ist insbesondere bei Verfahren mit erhöhtem Betriebsdruck (5,5 bis 15 bar, vorzugsweise 8 bis 10 bar am Kopf der Hochdrucksäule und 1,3 bis 6 bar, vorzugsweise 3 bis 4 bar am Kopf der Niederdrucksäule) spürbar, die beispielsweise bei integrierten Systemen mit Kohle-, Schweröl- oder Biomassevergasung und Verbrennung des bei der Vergasung erzeugten Brennstoffs in der Brennkammer eines Gasturbinensystems eingesetzt werden. Hier lassen sich die regelmäßig benötigen Produktreinheiten nicht mehr ohne zusätzliche Maßnahmen erreichen. Als derartige zusätzliche Maßnahmen wurde bereits ein Prozess mit Sumpfausheizung der Hochdrucksäule (
Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung wirtschaftlich besonders günstig zu gestalten.The invention has for its object to make such a method and a corresponding device economically particularly favorable.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorzugsweise wird die gesamte im Rahmen der Innenverdichtung kondensierte Luft bei dem indirekten Wärmeaustausch mit dem gasförmigen Strom aus dem oberen Abschnitt der Hochdrucksäule verdampft. Die verdampfte Luft wird insbesondere in dem Hauptwärmetauscher angewärmt, in dem auch die Einsatzluft abgekühlt und der Produktstrom (pseudo-) verdampft und angewärmt wird. Anschließend wird sie separat in dem Rückverdichter auf einen geeigneten Druck gebracht, um sie in die Luftleitung einzuspeisen. Die rückverdichtete Luftmenge nimmt nun an der Rektifikation in der Hochdrucksäule teil.This object is solved by the features of claim 1. Preferably, the entire condensed in the context of internal compression air is vaporized in the indirect heat exchange with the gaseous stream from the upper portion of the high pressure column. The vaporized air is warmed in particular in the main heat exchanger, in which the feed air is cooled and the product stream (pseudo) is evaporated and warmed. Subsequently, it is separately brought to a suitable pressure in the recompressor to feed it into the air line. The recompressed air quantity now participates in the rectification in the high-pressure column.
Der gasförmige Strom wird vorzugsweise durch Stickstoff vom Kopf der Hochdrucksäule gebildet. Dieser wird gegen die verdampfende Luft kondensiert und kann in Hochdrucksäule und/oder Niederdrucksäule als Rücklauf eingesetzt werden. In der Hochdrucksäule verbleibt damit so viel Rücklauf, dass die Zusatzluftmenge auf eine hohe N2-Reinheit in der Hochdrucksäule rektifiziert werden kann. Der Rest dient als zusätzlicher Rücklauf in der Niederdrucksäule und verbessert so die dortige Rektifikation.The gaseous stream is preferably formed by nitrogen from the top of the high pressure column. This is condensed against the evaporating air and can be used in high pressure column and / or low pressure column as reflux. So much reflux remains in the high-pressure column that the additional air quantity can be rectified to a high N 2 purity in the high-pressure column. The remainder serves as an additional reflux in the low-pressure column and thus improves the rectification there.
Vorzugsweise wird der indirekte Wärmeaustausch des ersten Luftstroms mit dem gasförmigen Strom aus dem oberen Abschnitt der Hochdrucksäule in einem Nebenkondensator durchgeführt. Unter einem "Nebenkondensator" wird hier ein von anderen Wärmetauschern getrennter Kondensator-Verdampfer verstanden, durch den keine weiteren Fluide strömen.Preferably, the indirect heat exchange of the first air stream with the gaseous stream from the upper section of the high pressure column is performed in a secondary condenser. A "secondary condenser" is understood here as a condenser-evaporator separate from other heat exchangers, through which no further fluids flow.
Besonders günstig ist es, wenn bei dem Verfahren der Erfindung ein zweiter Luftstrom, der durch einen Teil des Einsatzluftstroms gebildet wird, arbeitsleistend entspannt wird und mindestens ein Teil der dabei erzeugten mechanischen Energie zum Antrieb des Rückverdichters genutzt wird. Damit braucht für die Rückverdichtung des ersten Luftstroms keine Energie importiert zu werden, wie es bei einem Motorantrieb oder bei der aus
Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 7.The invention also relates to a device for the production of gaseous pressure product by cryogenic separation of air according to
Weitere bevorzugte Ausführungsformen des erfndungsgemäßen Verfahrens sind den übrigen abhängigen Ansprüchen zu entnehmen.Further preferred embodiments of the method according to the invention can be found in the remaining dependent claims.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
- Figur 1
- ein erstes Ausführungsbeispiel des erfindurigsgemäßen Verfahrens mit Antrieb des Rückverdichters durch eine Mitteldruckturbine,
- Figur 2
- ein zweites Ausführungsbeispiel mit zweistufiger Rückverdichtung
Figur 3- ein drittes Ausführungsbeispiel, bei der die Turbine mit dem hohen Druck als Eintrittsdruck betrieben wird,
Figur 4- ein viertes Ausführungsbeispiel mit Argongewinnung,
Figur 5- ein weiteres Ausführungsbeispiel mit extern angetriebenem Rückverdichter und
Figur 6- ein sechstes Ausführungsbeispiel mit Einblaseturbine.
- FIG. 1
- a first embodiment of the method according to the invention with drive of the recompressor through a medium-pressure turbine,
- FIG. 2
- a second embodiment with two-stage recompression
- FIG. 3
- A third embodiment, in which the turbine is operated at the high pressure as the inlet pressure,
- FIG. 4
- a fourth embodiment with argon recovery,
- FIG. 5
- Another embodiment with externally driven recompressor and
- FIG. 6
- a sixth embodiment with injection turbine.
Einander entsprechende Verfahrensschritte sind in den Zeichnungen mit denselben Bezugszeichen versehen.Corresponding method steps are provided in the drawings with the same reference numerals.
Der Hauptluftverdichter ist in
Ein zweiter Teil 10 des Einsatzluftstroms 1 wird in einem ersten Nachverdichter 11 mit Nachkühler 12 auf einen zweiten Druck von 30 bis 50 bar, vorzugsweise etwa 40 bar nachverdichtet. Ein Teil 14 der auf den zweiten Druck nachverdichteten Luft bildet den "ersten Luftstrom". Dieser wird in einem zweiten Nachverdichter 15 mit Nachkühler 16 weiter auf einen dritten Druck (den "hohen Druck") von 40 bis 80 bar, vorzugsweise etwa 60 bar verdichtet. Über Leitung 17 wird der erste Luftstrom zum warmen Ende des Hauptwärmetauschers 4 geleitet dort abgekühlt und (pseudo-)kondensiert. Die kalte Hochdruckluft 18 wird nach Drosselentspannung auf 3,5 bis 9,5 bar, vorzugsweise etwa 6 bar in einem Nebenkondensator 20 vollständig verdampft und über Leitung 22 zum kalten Ende des Hauptwärmetauschers 4 zurückgeleitet. Der angewärmte erste Luftstrom wird erfindungsgemäß in einem Rückverdichter 24 mit Nachkühler 25 auf den ersten Druck rückverdichtet und mit dem Direktluftstrom 2 vereinigt.A
Ein anderer Teil 27 der Luft 13 unter dem zweiten Druck bildet den "zweiten Luftstrom". Dieser wird im Hauptwärmetauscher 4 nur auf eine Zwischentemperatur abgekühlt und strömt anschließend über Leitung 28 einer Entspannungsmaschine 29 zu, die in dem Ausführungsbeispiel als Turbo-Expander ausgebildet ist. Dort wird er arbeitsleistend auf etwa den ersten Druck entspannt. Der entspannte zweite Luftstrom 30 strömt gemeinsam mit dem Direktluftstrom 5 über Leitung 6 zur Hochdrucksäule 7.Another
Vom Sumpf der Hochdrucksäule 7 wird flüssiger Rohsauerstoff 31 abgezogen, in einem Unterkühlungs-Gegenströmer 32 abgekühlt und über Leitung 33 und Drosselventil 34 der Niederdrucksäule 8 an einer Zwischenstelle aufgegeben. Flüssiger Unrein-Stickstoff 35 wird der Hochdrucksäule 7 an einer Zwischenstelle entnommen, ebenfalls im Unterkühlungs-Gegenströmer 32 abgekühlt und über Leitung 36 und Drosselventil 37 auf den Kopf der Niederdrucksäule 7 aufgegeben.From the bottom of the
Gasförmiger Kopfstickstoff 38 der Niederdrucksäule 8 wird zu einem ersten Teil 39 im Hauptkondensator im Wesentlichen vollständig kondensiert. Das dabei gebildete Kondensat wird über Leitung 40 zum Kopf der Hochdrucksäule zurückgeleitet. Ein zweiter Teil 41 wird in dem Nebenkondensator in indirektem Wärmeaustausch mit dem ersten Luftstrom im Wesentlichen vollständig kondensiert. Das dabei gebildete Kondensat wird über Leitung 42 zum Kopf der Hochdrucksäule zurückgeleitet. Ein dritter Teil 43 des gasförmigen Kopfstickstoffs 38 der Hochdrucksäule 7 wird im Hauptwärmetauscher 4 auf etwa Umgebungstemperatur angewärmt und über Leitung 44 als gasförmiges Stickstoffprodukt unter Mitteldruck abgegeben.
Über Leitung 45 wird gasförmiger Unreinstickstoff vom Kopf der Niederdrucksäule 8 abgezogen und nach Anwärmung im Unterkühlungs-Gegenströmer 32 und im Hauptwärmetauscher 4 über Leitung 46 abgezogen. Er kann beispielsweise in einem Verdunstungskühler oder in der nicht dargestellten Reinigungsvorrichtung als Regeneriergas genutzt werden.Via
Flüssiger Sauerstoff 47 wird als "flüssiger Produktstrom" aus dem Sumpf der Niederdrucksäule abgezogen, in einer Sauerstoff-Pumpe 48 auf einen Druck von 50 bis 100 bar, vorzugsweise etwa 30 bar gebracht, über Leitung 49 zum Hauptwärmetauscher 4 geführt, dort (pseudo-)verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 50 als gasförmiger Produktstrom abgezogen.
Zusätzlich zu dieser Sauerstoff-Innenverdichtung weist das System des Ausführungsbeispiels auch eine Stickstoff-Innenverdichtung auf. Hierbei wird flüssiger Stickstoff 21 vom Kopf der Hochdrucksäule 7 (oder alternativ aus dem Hauptkondensator 9) als weiterer "flüssiger Produktstrom" abgezogen, in einer Stickstoff-Pumpe 51 auf einen Druck von 50 bis 30 bar, vorzugsweise etwa 100 bar gebracht, über Leitung 52 zum Hauptwärmetauscher 4 geführt, dort
(pseudo-)verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 53 als weitere gasförmiger Produktstrom abgezogen.In addition to this oxygen internal compression, the system of the embodiment also has nitrogen internal compression. Here,
(Pseudo-) evaporated and warmed to about ambient temperature and finally withdrawn via
Zusätzlich wird der Hochdrucksäule 7 über Leitung 54 gasförmiger Unreinstickstoff entnommen, angewärmt und über Leitung 55 abgezogen.In addition, the high-
Die Entspannungsmaschine 29 und der Rückverdichter 24 sind mechanisch über eine gemeinsame Well gekoppelt.The
Bei niedrigeren Prozessdrücken, zum Beispiel 5,5 bis 9 bar, vorzugsweise etwa 8 bar in der Hochdrucksäule 7, reicht die Nachverdichtung in dem als Turbinen-Booster ausgebildeten ersten Rückverdichter 24 nicht mehr aus. In diesem Fall wird - wie in
Die Entspannungsmaschine 629 der
Claims (7)
gekennzeichnet durch einem Rückverdichter (24, 124, 524) zum Verdichten des verdampften ersten Luftstroms (23) stromaufwärts seiner Rückführung in den Einsatzluftstrom.
characterized by a recompressor (24, 124, 524) for compressing the vaporized first air stream (23) upstream of its return to the feed air stream.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102007031759A DE102007031759A1 (en) | 2007-07-07 | 2007-07-07 | Method and apparatus for producing gaseous pressure product by cryogenic separation of air |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2015013A2 true EP2015013A2 (en) | 2009-01-14 |
Family
ID=39828971
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08012218A Withdrawn EP2015013A2 (en) | 2007-07-07 | 2008-07-07 | Process and device for producing a gaseous pressurised product by cryogenic separation of air |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20090013869A1 (en) |
| EP (1) | EP2015013A2 (en) |
| DE (1) | DE102007031759A1 (en) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
| DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
| EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
| EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
| EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
| DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
| EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
| WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
| EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
| WO2015014485A3 (en) * | 2013-08-02 | 2015-09-24 | Linde Aktiengesellschaft | Method and device for producing compressed nitrogen |
| EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
| EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
| EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
| EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
| EP2541175A3 (en) * | 2011-06-30 | 2018-03-21 | General Electric Company | Air separation unit and systems incorporating the same |
| WO2020169257A1 (en) | 2019-02-22 | 2020-08-27 | Linde Gmbh | Method and system for low-temperature air separation |
| WO2021242308A1 (en) * | 2020-05-26 | 2021-12-02 | Praxair Technology, Inc. | Enhancements to a dual column nitrogen producing cryogenic air separation unit |
| US11674750B2 (en) | 2020-06-04 | 2023-06-13 | Praxair Technology, Inc. | Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2980514A1 (en) * | 2014-07-31 | 2016-02-03 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
| JP7282667B2 (en) | 2019-01-22 | 2023-05-29 | 信越化学工業株式会社 | Composition for forming silicon-containing resist underlayer film and pattern forming method |
Citations (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE830805C (en) | 1944-11-19 | 1952-02-07 | Linde Eismasch Ag | Process for gas, especially air, separation |
| DE901542C (en) | 1952-01-10 | 1954-01-11 | Linde Eismasch Ag | Process for the separation of air by liquefaction and rectification |
| US2712738A (en) | 1952-01-10 | 1955-07-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
| DE952908C (en) | 1953-10-11 | 1956-11-22 | Linde Eismasch Ag | Process for the separation of air |
| US2784572A (en) | 1953-01-02 | 1957-03-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
| DE1103363B (en) | 1958-09-24 | 1961-03-30 | Linde Eismasch Ag | Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification |
| DE1112997B (en) | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
| DE1117616B (en) | 1960-10-14 | 1961-11-23 | Linde Eismasch Ag | Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants |
| DE1124529B (en) | 1957-07-04 | 1962-03-01 | Linde Eismasch Ag | Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators |
| DE1187248B (en) | 1963-03-29 | 1965-02-18 | Linde Eismasch Ag | Process and device for the production of oxygen gas with 70 to 98% O-content |
| DE1199293B (en) | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
| US3216206A (en) | 1961-11-29 | 1965-11-09 | Linde Eismasch Ag | Low temperature distillation of normally gaseous substances |
| US3222878A (en) | 1962-12-21 | 1965-12-14 | Linde Eismasch Ag | Method and apparatus for fractionation of air |
| DE1235347B (en) | 1964-05-13 | 1967-03-02 | Linde Ag | Method and device for the operation of switchable heat exchangers in low-temperature gas separation |
| DE1258882B (en) | 1963-06-19 | 1968-01-18 | Linde Ag | Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen |
| DE1263037B (en) | 1965-05-19 | 1968-03-14 | Linde Ag | Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen |
| US3416323A (en) | 1966-01-13 | 1968-12-17 | Linde Ag | Low temperature production of highly compressed gaseous and/or liquid oxygen |
| DE1501723A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air |
| DE2535132A1 (en) | 1975-08-06 | 1977-02-10 | Linde Ag | PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR |
| DE2646690A1 (en) | 1976-10-15 | 1978-04-20 | Linde Ag | Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle |
| US4555256A (en) | 1982-05-03 | 1985-11-26 | Linde Aktiengesellschaft | Process and device for the production of gaseous oxygen at elevated pressure |
| US5036672A (en) | 1989-02-23 | 1991-08-06 | Linde Aktiengesellschaft | Process and apparatus for air fractionation by rectification |
| EP0505812A1 (en) | 1991-03-26 | 1992-09-30 | Linde Aktiengesellschaft | Low temperature air separation process |
| US5644934A (en) | 1994-12-05 | 1997-07-08 | Linde Aktiengesellchaft | Process and device for low-temperature separation of air |
| US5845517A (en) | 1995-08-11 | 1998-12-08 | Linde Aktiengesellschaft | Process and device for air separation by low-temperature rectification |
| DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
| US5953937A (en) | 1995-07-21 | 1999-09-21 | Linde Aktiengesellschaft | Process and apparatus for the variable production of a gaseous pressurized product |
| EP0955509A1 (en) | 1998-04-30 | 1999-11-10 | Linde Aktiengesellschaft | Process and apparatus to produce high purity nitrogen |
| US6038885A (en) | 1997-07-30 | 2000-03-21 | Linde Aktiengesellschaft | Air separation process |
| DE19909744A1 (en) | 1999-03-05 | 2000-05-04 | Linde Ag | Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating. |
| EP1031804A1 (en) | 1999-02-26 | 2000-08-30 | Linde Technische Gase GmbH | Air separation process with nitrogen recycling |
| DE19954593A1 (en) | 1999-11-12 | 2000-09-28 | Linde Ag | Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level |
| DE10013073A1 (en) | 2000-03-17 | 2000-10-19 | Linde Ag | Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction |
| EP1067345A1 (en) | 1999-07-05 | 2001-01-10 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
| EP1074805A1 (en) | 1999-08-05 | 2001-02-07 | Linde Aktiengesellschaft | Process for producing oxygen under pressure and device therefor |
| US6185960B1 (en) | 1998-04-08 | 2001-02-13 | Linde Aktiengesellschaft | Process and device for the production of a pressurized gaseous product by low-temperature separation of air |
| EP0752566B1 (en) | 1995-07-06 | 2001-06-13 | The BOC Group plc | Air separation |
| EP1134525A1 (en) | 2000-03-17 | 2001-09-19 | Linde Aktiengesellschaft | Process for producing gaseous and liquid nitrogen with a variable quantity of liquid |
| EP1139046A1 (en) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
| EP1146301A1 (en) | 2000-04-12 | 2001-10-17 | Linde Gas Aktiengesellschaft | Process and apparatus for the production of high pressure nitrogen from air separation |
| EP1150082A1 (en) | 2000-04-28 | 2001-10-31 | Linde Aktiengesellschaft | Method and apparatus for heat exchange |
| US6314755B1 (en) | 1999-02-26 | 2001-11-13 | Linde Aktiengesellschaft | Double column system for the low-temperature fractionation of air |
| EP1213552A1 (en) | 2000-12-06 | 2002-06-12 | Linde Aktiengesellschaft | Engine system for the work expansion of two process streams |
| DE10115258A1 (en) | 2001-03-28 | 2002-07-18 | Linde Ag | Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form |
| DE10213211A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid |
| DE10213212A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump |
| EP1284404A1 (en) | 2001-08-13 | 2003-02-19 | Linde Aktiengesellschaft | Process and device for recovering a product under pressure by cryogenic air separation |
| EP1308680A1 (en) | 2001-10-31 | 2003-05-07 | Linde AG | Process and system for production of krypton and/or xenon by cryogenic air separation |
| DE10238282A1 (en) | 2002-08-21 | 2003-05-28 | Linde Ag | Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing |
| EP1357342A1 (en) | 2002-04-17 | 2003-10-29 | Linde Aktiengesellschaft | Cryogenic triple column air separation system with argon recovery |
| EP1750074A1 (en) | 2005-08-02 | 2007-02-07 | Linde Aktiengesellschaft | Process and device for the cryogenic separation of air |
-
2007
- 2007-07-07 DE DE102007031759A patent/DE102007031759A1/en not_active Withdrawn
-
2008
- 2008-07-07 EP EP08012218A patent/EP2015013A2/en not_active Withdrawn
- 2008-07-07 US US12/168,511 patent/US20090013869A1/en not_active Abandoned
Patent Citations (76)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE830805C (en) | 1944-11-19 | 1952-02-07 | Linde Eismasch Ag | Process for gas, especially air, separation |
| DE901542C (en) | 1952-01-10 | 1954-01-11 | Linde Eismasch Ag | Process for the separation of air by liquefaction and rectification |
| US2712738A (en) | 1952-01-10 | 1955-07-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
| US2784572A (en) | 1953-01-02 | 1957-03-12 | Linde S Eismaschinen Ag | Method for fractionating air by liquefaction and rectification |
| DE952908C (en) | 1953-10-11 | 1956-11-22 | Linde Eismasch Ag | Process for the separation of air |
| DE1124529B (en) | 1957-07-04 | 1962-03-01 | Linde Eismasch Ag | Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators |
| US3083544A (en) | 1958-09-24 | 1963-04-02 | Linde S Eismaschinen Ag Hollri | Rectification of gases |
| DE1103363B (en) | 1958-09-24 | 1961-03-30 | Linde Eismasch Ag | Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification |
| DE1112997B (en) | 1960-08-13 | 1961-08-24 | Linde Eismasch Ag | Process and device for gas separation by rectification at low temperature |
| US3214925A (en) | 1960-08-13 | 1965-11-02 | Linde Eismasch Ag | System for gas separation by rectification at low temperatures |
| DE1117616B (en) | 1960-10-14 | 1961-11-23 | Linde Eismasch Ag | Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants |
| US3280574A (en) | 1960-10-14 | 1966-10-25 | Linde Ag | High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators |
| US3216206A (en) | 1961-11-29 | 1965-11-09 | Linde Eismasch Ag | Low temperature distillation of normally gaseous substances |
| DE1226616B (en) | 1961-11-29 | 1966-10-13 | Linde Ag | Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation |
| DE1229561B (en) | 1962-12-21 | 1966-12-01 | Linde Ag | Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle |
| US3222878A (en) | 1962-12-21 | 1965-12-14 | Linde Eismasch Ag | Method and apparatus for fractionation of air |
| US3371496A (en) | 1963-03-29 | 1968-03-05 | Linde Ag | Wash liquid production by heat exchange with low pressure liquid oxygen |
| DE1187248B (en) | 1963-03-29 | 1965-02-18 | Linde Eismasch Ag | Process and device for the production of oxygen gas with 70 to 98% O-content |
| DE1199293B (en) | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
| US3426543A (en) | 1963-06-19 | 1969-02-11 | Linde Ag | Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing |
| DE1258882B (en) | 1963-06-19 | 1968-01-18 | Linde Ag | Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen |
| DE1235347B (en) | 1964-05-13 | 1967-03-02 | Linde Ag | Method and device for the operation of switchable heat exchangers in low-temperature gas separation |
| DE1263037B (en) | 1965-05-19 | 1968-03-14 | Linde Ag | Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen |
| US3401531A (en) | 1965-05-19 | 1968-09-17 | Linde Ag | Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production |
| US3416323A (en) | 1966-01-13 | 1968-12-17 | Linde Ag | Low temperature production of highly compressed gaseous and/or liquid oxygen |
| DE1501723A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air |
| DE1501722A1 (en) | 1966-01-13 | 1969-06-26 | Linde Ag | Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen |
| US3500651A (en) | 1966-01-13 | 1970-03-17 | Linde Ag | Production of high pressure gaseous oxygen by low temperature rectification of air |
| DE2535132A1 (en) | 1975-08-06 | 1977-02-10 | Linde Ag | PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR |
| US4279631A (en) | 1975-08-06 | 1981-07-21 | Linde Aktiengesellschaft | Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air |
| DE2646690A1 (en) | 1976-10-15 | 1978-04-20 | Linde Ag | Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle |
| US4555256A (en) | 1982-05-03 | 1985-11-26 | Linde Aktiengesellschaft | Process and device for the production of gaseous oxygen at elevated pressure |
| EP0093448B1 (en) | 1982-05-03 | 1986-10-15 | Linde Aktiengesellschaft | Process and apparatus for obtaining gaseous oxygen at elevated pressure |
| US5036672A (en) | 1989-02-23 | 1991-08-06 | Linde Aktiengesellschaft | Process and apparatus for air fractionation by rectification |
| EP0384483B1 (en) | 1989-02-23 | 1992-07-22 | Linde Aktiengesellschaft | Air rectification process and apparatus |
| EP0505812A1 (en) | 1991-03-26 | 1992-09-30 | Linde Aktiengesellschaft | Low temperature air separation process |
| US5263328A (en) | 1991-03-26 | 1993-11-23 | Linde Aktiengesellschaft | Process for low-temperature air fractionation |
| US5644934A (en) | 1994-12-05 | 1997-07-08 | Linde Aktiengesellchaft | Process and device for low-temperature separation of air |
| EP0716280B1 (en) | 1994-12-05 | 2001-05-16 | Linde Aktiengesellschaft | Method and apparatus for the low temperature air separation |
| EP0752566B1 (en) | 1995-07-06 | 2001-06-13 | The BOC Group plc | Air separation |
| EP0842385B1 (en) | 1995-07-21 | 2001-04-18 | Linde Aktiengesellschaft | Method and device for the production of variable amounts of a pressurized gaseous product |
| US5953937A (en) | 1995-07-21 | 1999-09-21 | Linde Aktiengesellschaft | Process and apparatus for the variable production of a gaseous pressurized product |
| US5845517A (en) | 1995-08-11 | 1998-12-08 | Linde Aktiengesellschaft | Process and device for air separation by low-temperature rectification |
| EP0758733B1 (en) | 1995-08-11 | 2000-11-02 | Linde Aktiengesellschaft | Air separation process and apparatus by low temperature rectification |
| EP0895045B1 (en) | 1997-07-30 | 2002-11-27 | Linde Aktiengesellschaft | Air separation process |
| US6038885A (en) | 1997-07-30 | 2000-03-21 | Linde Aktiengesellschaft | Air separation process |
| DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
| US6185960B1 (en) | 1998-04-08 | 2001-02-13 | Linde Aktiengesellschaft | Process and device for the production of a pressurized gaseous product by low-temperature separation of air |
| EP0949471B1 (en) | 1998-04-08 | 2002-12-18 | Linde AG | Cryogenic air separation plant with two different operation modes |
| US6196022B1 (en) | 1998-04-30 | 2001-03-06 | Linde Aktiengesellschaft | Process and device for recovering high-purity oxygen |
| EP0955509A1 (en) | 1998-04-30 | 1999-11-10 | Linde Aktiengesellschaft | Process and apparatus to produce high purity nitrogen |
| EP1031804A1 (en) | 1999-02-26 | 2000-08-30 | Linde Technische Gase GmbH | Air separation process with nitrogen recycling |
| US6314755B1 (en) | 1999-02-26 | 2001-11-13 | Linde Aktiengesellschaft | Double column system for the low-temperature fractionation of air |
| DE19909744A1 (en) | 1999-03-05 | 2000-05-04 | Linde Ag | Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating. |
| EP1067345A1 (en) | 1999-07-05 | 2001-01-10 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
| US6336345B1 (en) | 1999-07-05 | 2002-01-08 | Linde Aktiengesellschaft | Process and apparatus for low temperature fractionation of air |
| EP1074805A1 (en) | 1999-08-05 | 2001-02-07 | Linde Aktiengesellschaft | Process for producing oxygen under pressure and device therefor |
| US6332337B1 (en) | 1999-08-05 | 2001-12-25 | Linde Aktiengesellschaft | Method and apparatus for recovering oxygen at hyperbaric pressure |
| DE19954593A1 (en) | 1999-11-12 | 2000-09-28 | Linde Ag | Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level |
| US6477860B2 (en) | 2000-03-17 | 2002-11-12 | Linde Aktiengesellschaft | Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product |
| DE10013073A1 (en) | 2000-03-17 | 2000-10-19 | Linde Ag | Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction |
| EP1134525A1 (en) | 2000-03-17 | 2001-09-19 | Linde Aktiengesellschaft | Process for producing gaseous and liquid nitrogen with a variable quantity of liquid |
| EP1139046A1 (en) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Process and device for producing a high pressure product by cryogenic air separation |
| EP1146301A1 (en) | 2000-04-12 | 2001-10-17 | Linde Gas Aktiengesellschaft | Process and apparatus for the production of high pressure nitrogen from air separation |
| EP1150082A1 (en) | 2000-04-28 | 2001-10-31 | Linde Aktiengesellschaft | Method and apparatus for heat exchange |
| EP1213552A1 (en) | 2000-12-06 | 2002-06-12 | Linde Aktiengesellschaft | Engine system for the work expansion of two process streams |
| DE10115258A1 (en) | 2001-03-28 | 2002-07-18 | Linde Ag | Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form |
| EP1284404A1 (en) | 2001-08-13 | 2003-02-19 | Linde Aktiengesellschaft | Process and device for recovering a product under pressure by cryogenic air separation |
| US20030051504A1 (en) | 2001-08-13 | 2003-03-20 | Linde Aktiengesellschaft | Process and device for obtaining a compressed product by low temperature separation of air |
| EP1308680A1 (en) | 2001-10-31 | 2003-05-07 | Linde AG | Process and system for production of krypton and/or xenon by cryogenic air separation |
| US6612129B2 (en) | 2001-10-31 | 2003-09-02 | Linde Aktiengesellschaft | Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air |
| DE10213212A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump |
| DE10213211A1 (en) | 2002-03-25 | 2002-10-17 | Linde Ag | Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid |
| EP1357342A1 (en) | 2002-04-17 | 2003-10-29 | Linde Aktiengesellschaft | Cryogenic triple column air separation system with argon recovery |
| DE10238282A1 (en) | 2002-08-21 | 2003-05-28 | Linde Ag | Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing |
| EP1750074A1 (en) | 2005-08-02 | 2007-02-07 | Linde Aktiengesellschaft | Process and device for the cryogenic separation of air |
Non-Patent Citations (1)
| Title |
|---|
| HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
| DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
| DE102010052545A1 (en) | 2010-11-25 | 2012-05-31 | Linde Aktiengesellschaft | Method and apparatus for recovering a gaseous product by cryogenic separation of air |
| EP2466236A1 (en) | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
| EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
| EP2541175A3 (en) * | 2011-06-30 | 2018-03-21 | General Electric Company | Air separation unit and systems incorporating the same |
| EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
| DE102011112909A1 (en) | 2011-09-08 | 2013-03-14 | Linde Aktiengesellschaft | Process and apparatus for recovering steel |
| EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
| DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
| WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
| EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
| EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
| WO2015014485A3 (en) * | 2013-08-02 | 2015-09-24 | Linde Aktiengesellschaft | Method and device for producing compressed nitrogen |
| EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
| EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
| EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
| EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
| WO2016005031A1 (en) | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
| WO2020169257A1 (en) | 2019-02-22 | 2020-08-27 | Linde Gmbh | Method and system for low-temperature air separation |
| WO2021242308A1 (en) * | 2020-05-26 | 2021-12-02 | Praxair Technology, Inc. | Enhancements to a dual column nitrogen producing cryogenic air separation unit |
| US11674750B2 (en) | 2020-06-04 | 2023-06-13 | Praxair Technology, Inc. | Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler |
| US11933540B2 (en) | 2020-06-04 | 2024-03-19 | Praxair Technology, Inc. | Dual column nitrogen producing air separation unit with split kettle reboil and integrated condenser-reboiler |
Also Published As
| Publication number | Publication date |
|---|---|
| US20090013869A1 (en) | 2009-01-15 |
| DE102007031759A1 (en) | 2009-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2015013A2 (en) | Process and device for producing a gaseous pressurised product by cryogenic separation of air | |
| EP2235460B1 (en) | Process and device for the cryogenic separation of air | |
| EP1139046B1 (en) | Process and device for producing high pressure oxygen product by cryogenic air separation | |
| EP1357342B1 (en) | Cryogenic triple column air separation system with argon recovery | |
| EP2015012A2 (en) | Process for the cryogenic separation of air | |
| EP2236964B1 (en) | Method and device for low-temperature air separation | |
| DE102007014643A1 (en) | Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors | |
| EP4133227A2 (en) | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants | |
| DE102009048456A1 (en) | Method and apparatus for the cryogenic separation of air | |
| EP3290843A2 (en) | Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air | |
| EP1031804A1 (en) | Air separation process with nitrogen recycling | |
| EP2520886A1 (en) | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air | |
| EP2053331A1 (en) | Method and device for low-temperature air separation | |
| EP2600090B1 (en) | Method and device for generating pressurised oxygen by cryogenic decomposition of air | |
| EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
| DE19933558C5 (en) | Three-column process and apparatus for the cryogenic separation of air | |
| EP3394536A1 (en) | Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air | |
| DE102007042462A1 (en) | Method and apparatus for the cryogenic separation of air | |
| EP1199532B1 (en) | Three-column system for the cryogenic separation of air | |
| WO2011110301A2 (en) | Method and device for cryogenic separation of air | |
| EP2963371B1 (en) | Method and device for creating a pressurised gas product by the cryogenic decomposition of air | |
| EP3343159A1 (en) | Method and device for creating gaseous oxygen and gaseous pressurised nitrogen | |
| EP1750074A1 (en) | Process and device for the cryogenic separation of air | |
| EP1284403B1 (en) | Process and apparatus for the production of oxygen by low temperature air separation | |
| DE10045121A1 (en) | Method and device for obtaining a gaseous product by low-temperature separation of air |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
| 17P | Request for examination filed |
Effective date: 20090707 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AG |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20120201 |