EP1284404A1 - Process and device for recovering a product under pressure by cryogenic air separation - Google Patents
Process and device for recovering a product under pressure by cryogenic air separation Download PDFInfo
- Publication number
- EP1284404A1 EP1284404A1 EP01128631A EP01128631A EP1284404A1 EP 1284404 A1 EP1284404 A1 EP 1284404A1 EP 01128631 A EP01128631 A EP 01128631A EP 01128631 A EP01128631 A EP 01128631A EP 1284404 A1 EP1284404 A1 EP 1284404A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- pressure
- product
- fraction
- pressure column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
Definitions
- the invention relates to a method for obtaining a printed product by Cryogenic air separation in a rectification system that includes a pressure column and has a low pressure column, this method having the in claim 1 steps a to f listed.
- the rectification system of the invention can be used as a classic double column system be designed, but also as a three or multi-column system. It can be in addition to the columns for nitrogen-oxygen separation further devices for Obtaining other air components, especially noble gases.
- a mixing column is used in the process, in which an oxygen-rich fraction from the rectification in direct heat exchange is evaporated with a heat transfer medium.
- the top gas of the mixing column is used for indirect evaporation of a liquid product pressurized liquid (see above) called internal compression).
- the oxygen-rich fraction used as the insert for the mixing column points an oxygen concentration higher than that of air and for example 70 to 99.5 mol%, preferably 90 to 98 mol%.
- Under Mixing column is understood to be a countercurrent contact column in which one is lighter volatile gaseous fraction sent to a less volatile liquid becomes.
- the method according to the invention is suitable for the extraction of gaseous Pressurized oxygen and / or gaseous pressurized nitrogen, in particular for generation of gaseous impure oxygen under pressure.
- An impure oxygen is used here Mixture with an oxygen content of 99.5 mol% or less, in particular of 70 to 99.5 mol% understood.
- the product pressures are, for example, 3 to 25 bar, preferably at 4 to 16 bar.
- the printed product can be used for Compressed further in gaseous state.
- the invention has for its object the method mentioned in the introduction to make it economically more economical, in particular by simplifying equipment and / or energy saving.
- This task is solved in that the indirect heat exchange for Evaporation of the liquid product pressurized liquid no longer in one separate condenser-evaporator is carried out, but in the Main heat exchanger system in which the pressure from the column air is also cooled.
- the product fraction is preferably immediately after the pressure increase (for Example in a pump) in the cold end of the main heat exchanger system introduced, there first warmed to boiling point temperature and then evaporates, both against the condensing or condensed Top fraction of the mixing column.
- the main heat exchanger system in the sense of the present invention can, must but not be realized by a single heat exchanger block. It can also come from several blocks connected in parallel or in series. With parallel When interconnected, the blocks have the same inlet and outlet temperatures. In the Usually the evaporation and at least part of the warming up of the liquid takes place on Pressurized product flow takes place in the same heat exchanger block.
- the mixing column is operated under a pressure sufficient to achieve the Product fraction under the desired pressure against the condensing head gas To evaporate the mixing column, for example below 5 to 17 bar, preferably below 5 to 13 bar.
- the pressure of the pressure column in the invention is in the range of, for example 5 to 15 bar, preferably 5 to 12 bar, that of the low pressure column for example 1.3 to 6 bar, preferably 1.3 to 4 bar.
- the overhead product of the mixing column is preferably downstream of the condensation, which takes place in the condenser-evaporator, relaxed and into the low pressure column returned.
- a second stream of purified feed air is preferably compressed to a pressure, which is significantly higher than the operating pressure of the pressure column in the main heat exchanger system cooled and then introduced as a heat transfer medium in the mixing column.
- This second air flow simultaneously supplies at least part of the heat Warming up of the liquid product pressurized downstream of it Evaporation.
- "significantly higher” is understood to mean a pressure difference that is higher than the line losses, in particular higher than 1 bar.
- This pressure difference can be achieved, for example, that the total air on essentially Pressure column pressure is compressed and then branched into two air streams, the second stream being further compressed, for example by a motor driven compressor.
- the two air streams can be separated from Atmospheric pressure can be compressed to the required pressures.
- the pressure on the second airflow is compressed is generally 1.1 to 2.0 times the pressure of the liquid product fraction as it evaporates.
- the second current at a first intermediate point under a first Intermediate temperature is taken from the main heat exchanger system, where the first intermediate temperature is significantly higher than its dew point.
- the gaseous The top product of the mixing column is at the first intermediate point in the Main heat exchanger system introduced, on which the second stream from the Main heat exchanger system is removed. This allows the same passage in the Main heat exchanger system for both cooling the second air flow and can also be used for the condensation of the top product of the mixing column.
- the product fraction is made from the Low pressure column removed.
- the product fraction and the oxygen-rich fraction for the mixing column can then be withdrawn from the low pressure column together and / or be brought together under pressure in liquid form, which is particularly apparatus-wise is simple.
- the product fraction and the oxygen-rich Fraction can be removed from the low pressure column at various points. there the oxygen-rich fraction is preferably at least one theoretical or practical floor above the point of withdrawal of the product fraction from the Low pressure column deducted.
- nitrogen can be used as a printed product be won.
- the (additional) product fraction is then from the pressure column removed, if necessary, for example in the top condenser of the pressure column liquefied, separated from the oxygen-rich fraction and brought under pressure evaporated and warmed in the main heat exchanger system.
- the mixing column becomes a liquid fraction, for example Bottom liquid, removed, relaxed and in the pressure column or in the Low pressure column initiated.
- the Feed point preferably above the removal of the oxygen-rich fraction and the recovery of the top fraction from the mixing column, preferably one to twenty theoretical plates above the introduction of the top fraction of the mixing column.
- the liquid fraction from the mixing column is removed if necessary cooled, for example by indirect heat exchange with the product fraction and / or the oxygen-rich fraction.
- the invention also relates to a device for obtaining a printed product by low-temperature separation of air according to claim 10.
- compressed and cleaned air 1 is branched upstream of a main heat exchanger 2 into three partial flows 50, 60, 70.
- the air pressure at this point corresponds to the operating pressure of the pressure column 4 plus line losses.
- a first air flow 50 is approximately in the main heat exchanger 2 against reverse flows Cooled dew point temperature and via line 51 without pressure changing Measures fed into the lower area of a pressure column 3.
- Crude oxygen 5 from the bottom of the pressure column 3 is - optionally after Subcooling in the subcooling counterflow 6 - in a low pressure column 4 throttled (7).
- Top nitrogen 8 of the pressure column 3 is via line 9 in a Main condenser 10 out there and against evaporating bottom liquid Low pressure column 4 liquefied.
- the condensate 11 is at least partially over Line 12 abandoned as a return to the pressure column 3.
- Another part can be as liquid nitrogen product 13 can be obtained.
- a part 35 of the top nitrogen 8 of the pressure column 3 is directly to Main heat exchanger 2 guided and as a gaseous pressure nitrogen product 36th won.
- Nitrogen-rich liquid 14 becomes from an intermediate point of pressure column 3 removed, subcooled in the supercooling counterflow 6 and via throttle valve 15 the low pressure column 4 at the head as a return.
- a nitrogen-rich residual gas 16 is drawn off and warmed to about ambient temperature in the heat exchangers 6 and 2.
- the warm residual gas 17 can be used, for example, as a regeneration gas in a not shown Cleaning device for the feed air 1 can be used.
- the bottom of the low pressure column 4 there is impure oxygen with an oxygen content produced by 95 mol%.
- At least a portion 19 of the bottom liquid 18 of the Low pressure column 4 forms the product fraction in the sense of the invention. It is by means of a pump 20 brought to about the product pressure of, for example, 7.4 bar and via line 21 to the cold end of the main heat exchanger 2. There she will successively warmed to boiling temperature, evaporated and to about Ambient temperature warmed up.
- the product fraction at 22 as deducted gaseous pressure product under the product pressure of 7.4 bar.
- On other part 23 of the bottom liquid 18 of the low pressure column 4 can be a liquid Oxygen product can be obtained.
- Some (e.g. three theoretical) trays will be above the bottom of the low pressure column an oxygen-rich fraction 24 with an oxygen content of oxygen for example, 88 mol% removed in liquid form, brought to pressure in a pump 25 and after heating in 65 via line 26 to the top of a mixing column 27.
- the operating pressure of the mixing column is, for example, 9.6 bar at the bottom.
- the gaseous top product 28 of the mixing column 27 has an oxygen content of 83 mol% and is introduced into the cold part of the main heat exchanger 2. There it supplies the heat for the evaporation of the product stream 21 and for the latter Warming up to boiling temperature. With indirect heat exchange in Main heat exchanger 2, the top product of the mixing column is condensed and supercooled. The liquid flows back via line 29 and throttle valve 30 into the Low pressure column 4.
- the feed point is about three theoretical floors above the point at which the oxygen-rich fraction 24 is removed.
- the heat transfer medium for the mixing column 27 is the second partial flow 60 Feed air formed. This is in one (in the example by means of external energy driven) post-compressor 61 with subsequent post-cooling 62 to a little over Mixing column pressure brought and via line 63 to the warm end of Main heat exchanger 2 out.
- the second partial flow of air is at one Intermediate temperature above the cold end again from the main heat exchanger 2 taken. After further cooling in 65, it is used as heat transfer medium 66 in the Swamp area of the mixing column introduced.
- Both the swamp fraction 31/32 and an intermediate fraction 33/34 of the mixing column 27 are subcooled in 65 and then at the points corresponding to their respective composition in the Low pressure column 4 throttled.
- FIG. 1 uses a third part 70/73 for this purpose Feed air at an intermediate temperature from the main heat exchanger 2 led out (74) and relaxed in a turbine 75 to 1.4 bar. to Increasing the cooling capacity or reducing the amount of turbine air
- the air 70 can be depressurized to a pressure of for example, 8 bar (71).
- the post-compressor 71 is in the Example driven by the mechanical energy generated in turbine 75, preferably by direct mechanical coupling of turbine 75 and Post-compressor 71.
- the heat of compression is generated by indirect heat exchange with removed a coolant in an after cooler 72.
- the work-relaxing air 76, 77 is fed directly into the low pressure column 4.
- the main heat exchanger system in the sense of the invention is formed by a single block 2, which was referred to above as the main heat exchanger.
- the main heat exchanger system is formed by two separate blocks 102a, 102b.
- 102a the main heat exchanger in the narrower sense, the gaseous product streams 35, 16 are heated against the first and third air streams 50, 73.
- the oxygen heat exchanger 102b only the liquid product stream is heated and evaporated, specifically in countercurrent to the top fraction 28 of the mixing column 27 and to the second air stream 63.
- FIG. 1A The procedure of FIG. 1A is cheaper in terms of apparatus because only the exchanger Oxygen heat exchanger 102b to the high pressure of the second partial flow 63 Air must be designed. This solution is suitable for smaller plants. The complete one is more economical in terms of energy and therefore more advantageous for large systems Integration of the two heat exchange processes according to FIG. 1.
- the method of FIG. 2 differs from the process of FIG. 1 in that it saves one pump (25 in FIG. 1). This is achieved by withdrawing the product fraction 21 and the oxygen-rich fraction 224/226 from the bottom of the low-pressure column 4 (218, 218a) and pressurizing them in a pump 220. The high-pressure liquid 218b is then divided into product stream 21 and feed liquid 224 for the mixing column 27. (The apparatus shown in the drawings as individual pumps are regularly designed as a pair of pumps for reasons of redundancy.)
- Figure 3 also largely corresponds to Figure 1.
- the gaseous pressurized nitrogen product 336 at a higher pressure won, which is significantly above the operating pressure of the pressure column 3.
- Line 335 is with the outlet and not the inlet (see 35 in FIG. 1) of the main capacitor 10 connected.
- the liquid nitrogen 335 is in a further pump 337 on the required product pressure (for example 6 to 25 bar) brought and in Main heat exchanger 2 evaporates and warms up.
- the other flows are adjusted accordingly, especially the amount of High pressure air 63 can be increased compared to Figure 1.
- Nitrogen can be produced under high pressure.
- the pressure nitrogen production 335, 337 according to FIG. 3 is shown in FIG common compression 218a, 220 of oxygenated fraction and Combined product fraction.
- the Internal nitrogen compression 335/337 carried out without internal oxygen compression, that is, the pump 220 is only used to apply liquid to the head of the Mixing column and not to produce a gaseous oxygen product.
- the method of the invention is not only suitable for the extraction of impure Oxygen, but also leaves product purities of 98 mol% or more (for example 98 to 99.9%, preferably 98 to 99.5%) in the oxygen product 22 to.
- argon production can be connected, as in FIG. 5 shows.
- a common crude argon column 538 with an intermediate point in the Low pressure column connected (539, 540).
- the argon transition 539/540 lies between the feed points of the two liquids 30, 34 from the mixing column 27.
- Der Top condenser 541 of the crude argon column can, as usual, with crude oxygen 5 are operated downstream of the subcooling 6 (not shown).
- the Raw argon product 542 is preferably further cleaned, for example in one also not shown pure argon column.
- direct blowing of air into the low-pressure column 4 (77 in FIG. 5) can be dispensed with, in that the third partial stream 73 of the feed air in the turbine 75 is expanded to approximately the operating pressure of the pressure column 3, as shown in FIG. 6 .
- the turbine exhaust gas 676 is then introduced into the pressure column 3 (677), in the example together with the direct air (first partial flow 51 of the air).
- pure nitrogen 843-844-845 is also obtained in the low-pressure column 4.
- a portion 814 of the liquid nitrogen 11 from the main condenser 10 in FIG. 6 is subcooled and fed via a throttle valve 815 as a return to the low-pressure column 4.
- Impure nitrogen (nitrogen-rich residual gas) 816 is taken from an intermediate point of the low pressure column below a pure nitrogen section 846.
- the liquid nitrogen product 813 is obtained from the low pressure column 4 in FIG. 8 deducted.
- the methods for obtaining pressurized nitrogen from FIG. 1 are also shown (35 - 36) and Figure 3 (335 - 337 - 338 - 336) realized simultaneously. So that can gaseous nitrogen (845, 36, 336) under a total of three different pressures for Be made available without using an additional gas compressor should be.
- FIGS. 6 to 8 can in principle also be used without argon extraction (crude argon column 538).
- Tables 1 and 2 relate to the exemplary embodiment in FIG. 2. They relate to two design cases with different purity of the oxygen product. TABLE 1 No. Quantity in Nm 3 / h Pressure in bar Temperature in K O 2 content in mol% total air 1 183117 5.40 290.0 20.95% 1. Partial flow before introduction into the pressure column 51 113445 5.32 101.9 20.95% 2. Partial flow in front of the main heat exchanger system 63 53540 9.60 290.0 20.95% 2.
- Figure 9 shows the heat exchange diagram (Q-T diagram) for the Main heat exchanger system 2 of the method according to Figure 2 (Table 1).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Gewinnung eines Druckprodukts durch
Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule und
eine Niederdrucksäule aufweist, wobei dieses Verfahren die im Patentanspruch 1
aufgeführten Schritte a bis f umfasst.The invention relates to a method for obtaining a printed product by
Cryogenic air separation in a rectification system that includes a pressure column and
has a low pressure column, this method having the in
Das Rektifiziersystem der Erfindung kann als klassisches Doppelsäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen. Zusätzlich zu dem Rektifiziersystem wird in dem Verfahren eine Mischsäule eingesetzt, in der eine sauerstoffreiche Fraktion aus der Rektifikation in direktem Wärmeaustausch mit einem Wärmeträger verdampft wird. Das Kopfgas der Mischsäule dient zur indirekten Verdampfung einer flüssig auf Druck gebrachten Produktfraktion (so genannte Innenverdichtung).The rectification system of the invention can be used as a classic double column system be designed, but also as a three or multi-column system. It can be in addition to the columns for nitrogen-oxygen separation further devices for Obtaining other air components, especially noble gases. In addition to the rectification system, a mixing column is used in the process, in which an oxygen-rich fraction from the rectification in direct heat exchange is evaporated with a heat transfer medium. The top gas of the mixing column is used for indirect evaporation of a liquid product pressurized liquid (see above) called internal compression).
Die sauerstoffreiche Fraktion, die als Einsatz für die Mischsäule verwendet wird, weist eine Sauerstoffkonzentration auf, die höher als diejenige von Luft ist und beispielsweise bei 70 bis 99,5 mol%, vorzugsweise bei 90 bis 98 mol% liegt. Unter Mischsäule wird eine Gegenstromkontaktkolonne verstanden, in der eine leichter flüchtige gasförmige Fraktion einer schwerer flüchtigen Flüssigkeit entgegengeschickt wird.The oxygen-rich fraction used as the insert for the mixing column points an oxygen concentration higher than that of air and for example 70 to 99.5 mol%, preferably 90 to 98 mol%. Under Mixing column is understood to be a countercurrent contact column in which one is lighter volatile gaseous fraction sent to a less volatile liquid becomes.
Das erfindungsgemäße Verfahren eignet sich zur Gewinnung von gasförmigem Drucksauerstoff und/oder gasförmigem Druckstickstoff, insbesondere zur Erzeugung von gasförmigem unreinen Sauerstoff unter Druck. Als unreiner Sauerstoff wird hier ein Gemisch mit einem Sauerstoffgehalt von 99,5 mol% oder weniger, insbesondere von 70 bis 99,5 mol% verstanden. Die Produktdrücke liegen beispielsweise bei 3 bis 25 bar, vorzugsweise bei 4 bis 16 bar. Selbstverständlich kann das Druckprodukt bei Bedarf in gasförmigem Zustand weiter verdichtet werden. The method according to the invention is suitable for the extraction of gaseous Pressurized oxygen and / or gaseous pressurized nitrogen, in particular for generation of gaseous impure oxygen under pressure. An impure oxygen is used here Mixture with an oxygen content of 99.5 mol% or less, in particular of 70 to 99.5 mol% understood. The product pressures are, for example, 3 to 25 bar, preferably at 4 to 16 bar. Of course, the printed product can be used for Compressed further in gaseous state.
Ein Verfahren der eingangs genannten Art ist aus DE 19803437 A1 bekannt. Hier wird flüssiger Sauerstoff gepumpt und im Kopfkondensator der Mischsäule verdampft.A method of the type mentioned is known from DE 19803437 A1. Here will pumped liquid oxygen and evaporated in the top condenser of the mixing column.
Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren wirtschaftlich günstiger zu gestalten, insbesondere durch apparative Vereinfachung und/oder Energieeinsparung.The invention has for its object the method mentioned in the introduction to make it economically more economical, in particular by simplifying equipment and / or energy saving.
Diese Aufgabe wird dadurch gelöst, dass der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion nicht mehr in einem separaten Kondensator-Verdampfer durchgeführt wird, sondern in dem Hauptwärmetauscher-System, in dem auch die Drucksäulenluft abgekühlt wird. Vorzugsweise wird die Produktfraktion unmittelbar nach der Druckerhöhung (zum Beispiel in einer Pumpe) in das kalte Ende des Hauptwärmetauscher-Systems eingeführt, dort zunächst auf Siedepunktstemperatur angewärmt und anschließend verdampft, beides gegen die kondensierende beziehungsweise kondensierte Kopffraktion der Mischsäule.This task is solved in that the indirect heat exchange for Evaporation of the liquid product pressurized liquid no longer in one separate condenser-evaporator is carried out, but in the Main heat exchanger system in which the pressure from the column air is also cooled. The product fraction is preferably immediately after the pressure increase (for Example in a pump) in the cold end of the main heat exchanger system introduced, there first warmed to boiling point temperature and then evaporates, both against the condensing or condensed Top fraction of the mixing column.
Hierdurch kann auf den separaten Kondensator-Verdampfer, der bei dem Verfahren von DE 19803437 A1 notwendig ist, verzichtet werden, ebenso auf einen separaten Wärmetauscher für die Entfernung der Unterkühlung aus der flüssig auf Druck gebrachten Produktfraktion. Durch die Integration der Verdampfung der flüssigen Produktfraktion und die Abkühlung von Luft kann außerdem der Wärmeaustauschvorgang (Q-T-Diagramm) verbessert werden, sodass besonders geringe Austauschverluste erreicht und damit ein relativ geringer Energieverbrauch erzielt wird.This allows access to the separate condenser-evaporator used in the process of DE 19803437 A1 is necessary to be dispensed with, as well as a separate one Heat exchanger for the removal of hypothermia from the liquid to pressure brought product fraction. By integrating the evaporation of the liquid Product fraction and the cooling of air can also Heat exchange process (Q-T diagram) can be improved, so special low exchange losses achieved and thus a relatively low energy consumption is achieved.
Das Hauptwärmetauscher-System im Sinne der vorliegenden Erfindung kann, muss aber nicht durch einen einzigen Wärmetauscherblock realisiert sein. Es kann auch aus mehreren parallel oder seriell verbundenen Blöcken bestehen. Bei paralleler Verschaltung weisen die Blöcke die gleichen Ein- und Austrittstemperaturen auf. In der Regel findet die Verdampfung und mindestens ein Teil der Anwärmung des flüssig auf Druck gebrachten Produktstroms in demselben Wärmetauscherblock statt.The main heat exchanger system in the sense of the present invention can, must but not be realized by a single heat exchanger block. It can also come from several blocks connected in parallel or in series. With parallel When interconnected, the blocks have the same inlet and outlet temperatures. In the Usually the evaporation and at least part of the warming up of the liquid takes place on Pressurized product flow takes place in the same heat exchanger block.
Die Mischsäule wird unter einem Druck betrieben, der ausreicht, um die Produktfraktion unter dem gewünschten Druck gegen das kondensierende Kopfgas der Mischsäule zu verdampfen, beispielsweise unter 5 bis 17 bar, vorzugsweise unter 5 bis 13 bar. Der Druck der Drucksäule liegt bei der Erfindung im Bereich von beispielsweise 5 bis 15 bar, vorzugsweise 5 bis 12 bar, derjenige der Niederdrucksäule bei beispielsweise 1,3 bis 6 bar, vorzugsweise 1,3 bis 4 bar.The mixing column is operated under a pressure sufficient to achieve the Product fraction under the desired pressure against the condensing head gas To evaporate the mixing column, for example below 5 to 17 bar, preferably below 5 to 13 bar. The pressure of the pressure column in the invention is in the range of, for example 5 to 15 bar, preferably 5 to 12 bar, that of the low pressure column for example 1.3 to 6 bar, preferably 1.3 to 4 bar.
Vorzugsweise wird das Kopfprodukt der Mischsäule stromabwärts der Kondensation, die im Kondensator-Verdampfer stattfindet, entspannt und in die Niederdrucksäule zurückgeleitet. Es wird dort insbesondere einige theoretische Böden (zum Beispiel ein bis zehn theoretische Böden) oberhalb der Entnahme der sauerstoffreichen Fraktion eingespeist. Zwischen Kondensator-Verdampfer und Entspannung wird sie gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion.The overhead product of the mixing column is preferably downstream of the condensation, which takes place in the condenser-evaporator, relaxed and into the low pressure column returned. In particular, there will be some theoretical floors (for example, a up to ten theoretical plates) above the removal of the oxygen-rich fraction fed. It becomes between condenser-evaporator and relaxation optionally cooled, for example by indirect heat exchange with the Product fraction and / or the oxygen-rich fraction.
Vorzugsweise wird ein zweiter Strom gereinigter Einsatzluft auf einen Druck verdichtet, der deutlich höher als der Betriebsdruck der Drucksäule ist, im Hauptwärmetauscher-System abgekühlt und anschließend als Wärmeträger in die Mischsäule eingeleitet. Dieser zweite Luftstrom liefert gleichzeitig mindestens einen Teil der Wärme zur Anwärmung der flüssig auf Druck gebrachten Produktfraktion stromabwärts ihrer Verdampfung. Unter "deutlich höher" wird hier eine Druckdifferenz verstanden, die höher als die Leitungsverluste ist, insbesondere höher als 1 bar. Diese Druckdifferenz kann beispielsweise dadurch erreicht werden, dass die Gesamtluft auf im wesentlichen Drucksäulendruck verdichtet und anschließend in zwei Luftströme verzweigt wird, wobei der zweite Strom weiter verdichtet wird, beispielsweise durch einen motorisch getriebenen Kompressor. Alternativ können die beiden Luftströme getrennt von Atmosphärendruck auf die jeweils benötigten Drücke verdichtet werden. Der Druck, auf den der zweite Luftstrom verdichtet wird, beträgt im Allgemeinen das 1,1- bis 2,0-Fache des Drucks der flüssigen Produktfraktion bei deren Verdampfung.A second stream of purified feed air is preferably compressed to a pressure, which is significantly higher than the operating pressure of the pressure column in the main heat exchanger system cooled and then introduced as a heat transfer medium in the mixing column. This second air flow simultaneously supplies at least part of the heat Warming up of the liquid product pressurized downstream of it Evaporation. Here, "significantly higher" is understood to mean a pressure difference that is higher than the line losses, in particular higher than 1 bar. This pressure difference can be achieved, for example, that the total air on essentially Pressure column pressure is compressed and then branched into two air streams, the second stream being further compressed, for example by a motor driven compressor. Alternatively, the two air streams can be separated from Atmospheric pressure can be compressed to the required pressures. The pressure on the second airflow is compressed is generally 1.1 to 2.0 times the pressure of the liquid product fraction as it evaporates.
Es ist ferner günstig, wenn der zweite Strom nach seiner Abkühlung im Hauptwärmetauscher-System und vor seiner Einleitung in die Mischsäule in indirektem Wärmeaustausch mit der flüssig auf Druck gebrachten sauerstoffreichen Fraktion weiter abgekühlt wird. Damit werden die beiden Einsatzfraktionen der Mischsäule auf die für ihre Einspeisung optimale Temperatur gebracht. It is also advantageous if the second stream after it has cooled in the Main heat exchanger system and before its introduction into the mixing column in indirect Heat exchange with the liquid-pressurized oxygen-rich fraction is further cooled. This will open up the two usage fractions of the mixing column brought the optimal temperature for their feed.
Für die Optimierung des Q-T-Diagramms des Hauptwärmetauscher-Systems ist es von Vorteil, wenn der zweite Strom bei einer ersten Zwischenstelle unter einer ersten Zwischentemperatur aus dem Hauptwärmetauscher-System entnommen wird, wobei die erste Zwischentemperatur deutlich höher als sein Taupunkt liegt. Das gasförmige Kopfprodukt der Mischsäule wird bei der ersten Zwischenstelle in das Hauptwärmetauscher-System eingeführt, an der der zweite Strom aus dem Hauptwärmetauscher-System entnommen wird. Dadurch kann dieselbe Passage im Hauptwärmetauscher-System sowohl für die Abkühlung des zweiten Luftstroms als auch für die Kondensation des Kopfprodukts der Mischsäule verwendet werden.It is from for the optimization of the Q-T diagram of the main heat exchanger system Advantage if the second current at a first intermediate point under a first Intermediate temperature is taken from the main heat exchanger system, where the first intermediate temperature is significantly higher than its dew point. The gaseous The top product of the mixing column is at the first intermediate point in the Main heat exchanger system introduced, on which the second stream from the Main heat exchanger system is removed. This allows the same passage in the Main heat exchanger system for both cooling the second air flow and can also be used for the condensation of the top product of the mixing column.
Falls das Druckprodukt Sauerstoff ist, wird die Produktfraktion aus der Niederdrucksäule entnommen. Die Produktfraktion und die sauerstoffreiche Fraktion für die Mischsäule können dann gemeinsam aus der Niederdrucksäule abgezogen und/oder gemeinsam flüssig auf Druck gebracht werden, was apparativ besonders einfach ist. Alternativ dazu können die Produktfraktion und die sauerstoffreiche Fraktion an verschiedenen Stellen der Niederdrucksäule entnommen werden. Dabei wird die sauerstoffreiche Fraktion vorzugsweise mindestens einen theoretischen oder praktischen Boden oberhalb der Entnahmestelle der Produktfraktion aus der Niederdrucksäule abgezogen.If the printed product is oxygen, the product fraction is made from the Low pressure column removed. The product fraction and the oxygen-rich fraction for the mixing column can then be withdrawn from the low pressure column together and / or be brought together under pressure in liquid form, which is particularly apparatus-wise is simple. Alternatively, the product fraction and the oxygen-rich Fraction can be removed from the low pressure column at various points. there the oxygen-rich fraction is preferably at least one theoretical or practical floor above the point of withdrawal of the product fraction from the Low pressure column deducted.
Alternativ oder zusätzlich zum Drucksauerstoff kann Stickstoff als Druckprodukt gewonnen werden. Die (zusätzliche) Produktfraktion wird dann aus der Drucksäule entnommen, falls notwendig beispielsweise im Kopfkondensator der Drucksäule verflüssigt, getrennt von der sauerstoffreichen Fraktion flüssig auf Druck gebracht und im Hauptwärmetauscher-System verdampft und angewärmt.As an alternative or in addition to pressurized oxygen, nitrogen can be used as a printed product be won. The (additional) product fraction is then from the pressure column removed, if necessary, for example in the top condenser of the pressure column liquefied, separated from the oxygen-rich fraction and brought under pressure evaporated and warmed in the main heat exchanger system.
Im unteren Bereich wird der Mischsäule eine flüssige Fraktion, beispielsweise Sumpfflüssigkeit, entnommen, entspannt und in die Drucksäule oder in die Niederdrucksäule eingeleitet. Im Falle der Einleitung in die Niederdrucksäule liegt die Einspeisestelle vorzugsweise oberhalb der Entnahme der sauerstoffreichen Fraktion und der Rückspeisung der Kopffraktion aus der Mischsäule, vorzugsweise ein bis zwanzig theoretische Böden oberhalb der Einführung der Kopffraktion der Mischsäule. Vor der Entspannung wird die flüssige Fraktion aus der Mischsäule gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion. In the lower area, the mixing column becomes a liquid fraction, for example Bottom liquid, removed, relaxed and in the pressure column or in the Low pressure column initiated. In the case of introduction into the low pressure column, the Feed point preferably above the removal of the oxygen-rich fraction and the recovery of the top fraction from the mixing column, preferably one to twenty theoretical plates above the introduction of the top fraction of the mixing column. Before the expansion, the liquid fraction from the mixing column is removed if necessary cooled, for example by indirect heat exchange with the product fraction and / or the oxygen-rich fraction.
Die Erfindung betrifft außerdem eine Vorrichtung zur Gewinnung eines Druckprodukts
durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 10.The invention also relates to a device for obtaining a printed product
by low-temperature separation of air according to
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1- eine erste Ausführungsform der Erfindung mit einem Hauptwärmetauscher-System in Form eines einzigen Blocks,
- Figur 1A
- eine Variante von
Figur 1, bei der das Hauptwärmetauscher-System durch zwei parallele Blöcke gebildet wird, Figur 2- eine weitere Variante von
Figur 1, bei der nur eine Pumpe benötigt wird, Figur 3- eine vierte Ausführungsform, bei der neben Sauerstoff auch Stickstoff innenverdichtet wird,
Figur 4- ein Verfahren, das Aspekte der
Figuren 2 und 3 kombiniert, Figuren 5 bis 8- weitere Ausführungsbeispiele, die insbesondere zur Argongewinnung geeignet sind, und
Figur 9- das Q-T-Diagramm zum Ausführungsbeispiel der
Figur 2.
- Figure 1
- a first embodiment of the invention with a main heat exchanger system in the form of a single block,
- Figure 1A
- 1 shows a variant of FIG. 1, in which the main heat exchanger system is formed by two parallel blocks,
- Figure 2
- another variant of Figure 1, in which only one pump is required,
- Figure 3
- a fourth embodiment, in which nitrogen is compressed internally in addition to oxygen,
- Figure 4
- a method that combines aspects of Figures 2 and 3,
- Figures 5 to 8
- further exemplary embodiments which are particularly suitable for argon production, and
- Figure 9
- the QT diagram for the embodiment of Figure 2.
Für übereinstimmende oder einander entsprechende Verfahrensschritte beziehungsweise Apparate werden in allen Zeichnungen dieselben Bezugszeichen oder in den letzten beiden Stellen übereinstimmende Zahlen verwendet.For matching or corresponding procedural steps or apparatus become the same reference numerals in all drawings or matched numbers in the last two digits.
Verdichtete und gereinigte Luft 1 wird bei dem in Figur 1 skizzierten Prozess
stromaufwärts eines Hauptwärmetauschers 2 in drei Teilströme 50, 60, 70 verzweigt.
Der Luftdruck an dieser Stelle entspricht dem Betriebsdruck der Drucksäule 4 plus
Leitungsverlusten.In the process outlined in FIG. 1 , compressed and cleaned
Ein erster Luftstrom 50 wird im Hauptwärmetauscher 2 gegen Rückströme auf etwa
Taupunktstemperatur abgekühlt und über Leitung 51 ohne druckverändemde
Maßnahmen in den unteren Bereich einer Drucksäule 3 eingespeist. A
Rohsauerstoff 5 aus dem Sumpf der Drucksäule 3 wird - gegebenenfalls nach
Unterkühlung im Unterkühlungs-Gegenströmer 6 - in eine Niederdrucksäule 4
eingedrosselt (7). Kopfstickstoff 8 der Drucksäule 3 wird über Leitung 9 in einen
Hauptkondensator 10 geführt und dort gegen verdampfende Sumpfflüssigkeit der
Niederdrucksäule 4 verflüssigt. Das Kondensat 11 wird mindestens zum Teil über
Leitung 12 als Rücklauf auf die Drucksäule 3 aufgegeben. Ein anderer Teil kann als
flüssiges Stickstoffprodukt 13 gewonnen werden.
Ein Teil 35 des Kopfstickstoffs 8 der Drucksäule 3 wird direkt zum
Hauptwärmetauscher 2 geführt und als gasförmiges Druckstickstoffprodukt 36
gewonnen.A
Von einer Zwischenstelle der Drucksäule 3 wird stickstoffreiche Flüssigkeit 14
abgenommen, im Unterkühlungs-Gegenströmer 6 unterkühlt und über Drosselventil 15
der Niederdrucksäule 4 am Kopf als Rücklauf aufgegeben.Nitrogen-
Am Kopf der Niederdrucksäule 4 wird ein stickstoffreiches Restgas 16 abgezogen und
in den Wärmetauschern 6 und 2 auf etwa Umgebungstemperatur angewärmt. Das
warme Restgas 17 kann beispielsweise als Regeneriergas in einer nicht dargestellten
Reinigungsvorrichtung für die Einsatzluft 1 genutzt werden.At the top of the
Im Sumpf der Niederdrucksäule 4 wird unreiner Sauerstoff mit einem Sauerstoffgehalt
von 95 mol% erzeugt. Mindestens ein Teil 19 der Sumpfflüssigkeit 18 der
Niederdrucksäule 4 bildet die Produktfraktion im Sinne der Erfindung. Sie wird mittels
einer Pumpe 20 auf etwa den Produktdruck von beispielsweise 7,4 bar gebracht und
über Leitung 21 zum kalten Ende des Hauptwärmetauschers 2 geleitet. Dort wird sie
nacheinander auf Siedetemperatur angewärmt, verdampft und auf etwa
Umgebungstemperatur angewärmt. Schließlich wird die Produktfraktion bei 22 als
gasförmiges Druckprodukt unter dem Produktdruck von 7,4 bar abgezogen. Ein
anderer Teil 23 der Sumpfflüssigkeit 18 der Niederdrucksäule 4 kann als flüssiges
Sauerstoffprodukt gewonnen werden.In the bottom of the
Einige (z. B. drei theoretische) Böden oberhalb des Sumpfs der Niederdrucksäule wird
eine sauerstoffreiche Fraktion 24 mit einem Sauerstoffgehalt von Sauerstoff
beispielsweise 88 mol% flüssig entnommen, in einer Pumpe 25 auf Druck gebracht und
nach Anwärmung in 65 über Leitung 26 auf den Kopf einer Mischsäule 27 aufgegeben.
Der Betriebsdruck der Mischsäule beträgt beispielsweise 9,6 bar am Sumpf. Das
gasförmige Kopfprodukt 28 der Mischsäule 27 weist einen Sauerstoffgehalt von
83 mol% auf und wird in den kalten Teil des Hauptwärmetauschers 2 eingeleitet. Dort
liefert es die Wärme zur Verdampfung des Produktstroms 21 und zu dessen
Anwärmung auf Siedetemperatur. Bei dem indirektem Wärmeaustausch im
Hauptwärmetauscher 2 wird das Kopfprodukt der Mischsäule kondensiert und
unterkühlt. Die Flüssigkeit strömt über Leitung 29 und Drosselventil 30 zurück in die
Niederdrucksäule 4. Die Einspeisestelle liegt etwa drei theoretische Böden oberhalb
der Stelle, an der die sauerstoffreiche Fraktion 24 entnommen wird.Some (e.g. three theoretical) trays will be above the bottom of the low pressure column
an oxygen-
Der Wärmeträger für die Mischsäule 27 wird durch den zweiten Teilstrom 60 der
Einsatzluft gebildet. Dieser wird in einem (in dem Beispiel mittels externer Energie
angetriebenen) Nachverdichter 61 mit anschließender Nachkühlung 62 auf etwas über
Mischsäulendruck gebracht und über Leitung 63 zum warmen Ende des
Hauptwärmetauschers 2 geführt. Der zweite Teilstrom der Luft wird bei einer
Zwischentemperatur oberhalb des kalten Endes wieder aus dem Hauptwärmetauscher
2 entnommen. Nach weiterer Abkühlung in 65 wird er als Wärmeträger 66 in den
Sumpfbereich der Mischsäule eingeführt. Sowohl die Sumpffraktion 31/32 als auch
eine Zwischenfraktion 33/34 der Mischsäule 27 werden in 65 unterkühlt und
anschließend an den ihrer jeweiligen Zusammensetzung entsprechenden Stellen in die
Niederdrucksäule 4 eingedrosselt.The heat transfer medium for the mixing
Zur Abkühlung des zweiten Luftteilstroms 63 und zur Kondensation und Abkühlung der
Kopffraktion 28 im Hauptwärmetauscher werden dieselben Passagen verwendet. Die
kalten und die warmen Abschnitte dieser Passagen sind durch undurchlässige
horizontale Wände voneinander getrennt (in der Zeichnung durch eine einzige
horizontale Linie 67 symbolisiert). Diese Wände (so genannte Sidebars), sind an der
Stelle der Zwischentemperatur angeordnet, an der die Kopffraktion 28 und der zweite
Luftteil 64 dem Hauptwärmetauscher zugeführt beziehungsweise entnommen werden.For cooling the second
Zum Ausgleich der Isolations- und Austauschverluste und gegebenenfalls zur
Erzeugung flüssiger Produkte (z. B. über Leitung 13 und/oder Leitung 23) wird Kälte
durch arbeitsleistende Entspannung eines oder mehrerer Prozess-Ströme erzeugt. Bei
dem Ausführungsbeispiel der Figur 1 wird zu diesem Zweck ein dritter Teil 70/73 der
Einsatzluft bei einer Zwischentemperatur aus dem Hauptwärmetauscher 2
herausgeführt (74) und in einer Turbine 75 arbeitsleistend auf 1,4 bar entspannt. Zur
Erhöhung der Kälteleistung beziehungsweise zur Verringerung der Turbinenluftmenge
kann die Luft 70 vor der arbeitsleistenden Entspannung auf einen Druck von
beispielsweise 8 bar nachverdichtet (71) werden. Der Nachverdichter 71 wird in dem
Beispiel durch die in der Turbine 75 erzeugte mechanische Energie angetrieben,
vorzugsweise durch direkte mechanische Kopplung von Turbine 75 und
Nachverdichter 71. Die Verdichtungswärme wird durch indirekten Wärmeaustausch mit
einem Kühlmittel in einem Nachkühler 72 entfernt. Die arbeitsleistend entspannte Luft
76, 77 wird direkt in die Niederdrucksäule 4 eingespeist.To compensate for the insulation and exchange losses and, if necessary, for
Generation of liquid products (e.g. via
In Figur 1 wird das Hauptwärmetauscher-System im Sinne der Erfindung durch einen
einzigen Block 2 gebildet, der oben als Hauptwärmetauscher bezeichnet wurde. Im
Unterschied dazu wird bei dem Prozess, der in Figur 1A dargestellt ist, das
Hauptwärmetauscher-System durch zwei separate Blöcke 102a, 102b gebildet. In
102a, dem Hauptwärmetauscher im engeren Sinne, werden die gasförmigen
Produktströme 35, 16 gegen den ersten und den dritten Luftstrom 50, 73 angewärmt.
In dem Sauerstoffwärmetauscher 102b wird ausschließlich der flüssige Produktstrom
angewärmt und verdampft, und zwar in Gegenstrom zur Kopffraktion 28 der
Mischsäule 27 und zum zweiten Luftstrom 63.In Figure 1, the main heat exchanger system in the sense of the invention is formed by a
Die Verfahrensweise von Figur 1A ist apparativ günstiger, weil lediglich der Tauscher
Sauerstoffwärmetauscher 102b auf den hohen Druck des zweiten Teilstroms 63 der
Luft ausgelegt werden muss. Diese Lösung bietet sich für kleinere Anlagen an.
Energetisch günstiger und damit bei großen Anlagen vorteilhafter ist die vollständige
Integration der beiden Wärmeaustauschvorgänge gemäß Figur 1.The procedure of FIG. 1A is cheaper in terms of apparatus because only the exchanger
Das Verfahren von Figur 2 unterscheidet sich von dem Prozess gemäß Figur 1 durch
die Einsparung einer Pumpe (25 in Figur 1). Erreicht wird dies, indem die
Produktfraktion 21 und die sauerstoffreiche Fraktion 224/226 gemeinsam vom Sumpf
der Niederdrucksäule 4 abgezogen (218, 218a) und in einer Pumpe 220 auf Druck
gebracht werden. Die Hochdruck-Flüssigkeit 218b wird anschließend auf Produktstrom
21 und Einsatzflüssigkeit 224 für die Mischsäule 27 aufgeteilt. (Die in den Zeichnungen
als Einzelpumpen dargestellten Apparate werden aus Redundanzgründen regelmäßig
als jeweils ein Pumpenpaar ausgeführt.) The method of FIG. 2 differs from the process of FIG. 1 in that it saves one pump (25 in FIG. 1). This is achieved by withdrawing the
Figur 3 stimmt ebenfalls in weiten Teilen mit Figur 1 überein. Bei diesem Prozess wird
allerdings das gasförmige Druckstickstoffprodukt 336 auf einem höherem Druck
gewonnen, der deutlich über dem Betriebsdruck der Drucksäule 3 liegt. Leitung 335 ist
mit dem Austritt und nicht dem Eintritt (siehe 35 in Figur 1) des Hauptkondensators 10
verbunden. Der flüssige Stickstoff 335 wird in einer weiteren Pumpe 337 auf den
benötigten Produktdruck (beispielweise 6 bis 25 bar) gebracht und im
Hauptwärmetauscher 2 verdampft und angewärmt. Hierzu müssen selbstverständlich
die anderen Ströme entsprechend angepasst werden, insbesondere Menge an
Hochdruckluft 63 gegenüber Figur 1 erhöht werden. Somit kann mit dem
erfindungsgemäßen Verfahren ohne zusätzlichen Gasverdichter kostengünstig
Stickstoff unter hohem Druck produziert werden.Figure 3 also largely corresponds to Figure 1. In this process
however, the gaseous
Die Druckstickstofferzeugung 335, 337 gemäß Figur 3 ist in Figur 4 mit der
gemeinsamen Verdichtung 218a, 220 von sauerstoffreicher Fraktion und
Produktfraktion kombiniert. In einer Variante des Verfahrens von Figur 4 wird die
Stickstoff-Innenverdichtung 335/337 ohne Sauerstoff-Innenverdichtung durchgeführt,
das heißt die Pumpe 220 dient nur zur Aufgabe von Flüssigkeit auf den Kopf der
Mischsäule und nicht zur Erzeugung eines gasförmigen Sauerstoff-Produkts.The
Das Verfahren der Erfindung eignet sich nicht nur für die Gewinnung von unreinem
Sauerstoff, sondern lässt auch Produktreinheiten von 98 mol% oder mehr
(beispielsweise 98 bis 99,9 %, vorzugsweise 98 bis 99,5 %) im Sauerstoffprodukt 22
zu. In diesem Fall kann eine Argonproduktion angeschlossen werden, wie Figur 5
zeigt. Hier ist eine übliche Rohargonsäule 538 mit einer Zwischenstelle der
Niederdrucksäule verbunden (539, 540). Der Argon-Übergang 539/540 liegt zwischen
den Zuspeisestellen der beiden Flüssigkeiten 30, 34 aus der Mischsäule 27. Der
Kopfkondensator 541 der Rohargonsäule kann wie üblich mit Rohsauerstoff 5
stromabwärts der Unterkühlung 6 betrieben werden (nicht dargestellt). Das
Rohargonprodukt 542 wird vorzugsweise weiter gereinigt, zum Beispiel in einer
ebenfalls nicht dargestellten Reinargonsäule.The method of the invention is not only suitable for the extraction of impure
Oxygen, but also leaves product purities of 98 mol% or more
(for example 98 to 99.9%, preferably 98 to 99.5%) in the
Zur Erhöhung der Argonausbeute kann auf die Direkteinblasung von Luft in die
Niederdrucksäule 4 (77 in Figur 5) verzichtet werden, indem der dritte Teilstrom 73 der
Einsatzluft in der Turbine 75 auf etwa den Betriebsdruck der Drucksäule 3 entspannt
wird, wie es Figur 6 zeigt. Das Turbinenabgas 676 wird dann in die Drucksäule 3
eingeleitet (677), in dem Beispiel gemeinsam mit der Direktluft (erster Teilstrom 51 der
Luft).To increase the argon yield, direct blowing of air into the low-pressure column 4 (77 in FIG. 5) can be dispensed with, in that the third
Wenn die in Figur 6 erzielte Kälteleistung nicht ausreicht, muss das Druckverhältnis an
der Turbine 75 erhöht werden. Dies kann - wie in Figur 7 dargestellt - ohne Einsatz
einer zusätzlichen Maschine erreicht werden, indem der extern angetriebene
Nachverdichter für die Mischsäulenluft 763 zusätzlich für die Druckerhöhung in der
Turbinenluft 770 genutzt wird. Die Turbine 75 entspannt in dem Beispiel auf
Niederdrucksäulendruck; damit ist eine besonders hohe Flüssigproduktion möglich.If the cooling capacity achieved in FIG. 6 is not sufficient, the pressure ratio on the
In Figur 8 wird auch in der Niederdrucksäule 4 reiner Stickstoff 843 - 844 - 845
gewonnen. Dazu wird ein Teil 814 des flüssigen Stickstoffs 11 aus dem
Hauptkondensator 10 in 6 unterkühlt und über Drosselventil 815 als Rücklauf auf die
Niederdrucksäule 4 aufgegeben. (Der in den anderen Ausführungsbeispielen
dargestellte Zwischenabzug 14 an der Drucksäule kann hier entfallen.) Unreiner
Stickstoff (stickstoffreiches Restgas) 816 wird von einer Zwischenstelle der
Niederdrucksäule unterhalb eines Reinstickstoff-Abschnitts 846 abgenommen.In FIG. 8 , pure nitrogen 843-844-845 is also obtained in the low-
Das flüssige Stickstoffprodukt 813 wird in Figur 8 aus der Niederdrucksäule 4
abgezogen. Außerdem werden die Methoden zur Druckstickstoffgewinnung der Figur 1
(35 - 36) und der Figur 3 (335 - 337 - 338 - 336) gleichzeitig verwirklicht. Damit kann
gasförmiger Stickstoff (845, 36, 336) unter insgesamt drei verschiedenen Drücken zur
Verfügung gestellt werden, ohne dass dazu ein zusätzlicher Gasverdichter eingesetzt
werden müsste.The
Die speziellen Maßnahmen der Figuren 6 bis 8 können grundsätzlich auch ohne Argongewinnung (Rohargonsäule 538) eingesetzt werden.The special measures of FIGS. 6 to 8 can in principle also be used without argon extraction (crude argon column 538).
Die folgenden Zahlenbeispiele in den Tabelle 1 und 2 beziehen sich auf das
Ausführungsbeispiel von Figur 2. Sie betreffen zwei Auslegungsfälle mit
unterschiedlicher Reinheit des Sauerstoffprodukts.
Figur 9 zeigt das Wärmeaustauschdiagramm (Q-T-Diagramm) für das
Hauptwärmetauscher-System 2 des Verfahrens gemäß Figur 2 (Tabelle 1).Figure 9 shows the heat exchange diagram (Q-T diagram) for the
Main
Claims (10)
dadurch gekennzeichnet, dass
characterized in that
dadurch gekennzeichnet, dass
characterized in that
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10139727A DE10139727A1 (en) | 2001-08-13 | 2001-08-13 | Method and device for obtaining a printed product by low-temperature separation of air |
DE10139727 | 2001-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1284404A1 true EP1284404A1 (en) | 2003-02-19 |
Family
ID=7695306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01128631A Withdrawn EP1284404A1 (en) | 2001-08-13 | 2001-11-30 | Process and device for recovering a product under pressure by cryogenic air separation |
Country Status (3)
Country | Link |
---|---|
US (1) | US6662595B2 (en) |
EP (1) | EP1284404A1 (en) |
DE (1) | DE10139727A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007031759A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Method and apparatus for producing gaseous pressure product by cryogenic separation of air |
DE102007031765A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Process for the cryogenic separation of air |
DE102009034979A1 (en) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block |
EP2312248A1 (en) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Method and device for obtaining pressurised oxygen and krypton/xenon |
WO2011116981A2 (en) | 2010-03-26 | 2011-09-29 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
DE102010012920A1 (en) | 2010-03-26 | 2011-09-29 | Linde Aktiengesellschaft | Apparatus for the cryogenic separation of air |
EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
EP2503269A1 (en) | 2011-03-25 | 2012-09-26 | Linde Aktiengesellschaft | Device for cryogenic decomposition of air |
EP2505947A1 (en) | 2011-03-29 | 2012-10-03 | Linde Aktiengesellschaft | Method and device for producing float gas |
DE102011015429A1 (en) | 2011-03-29 | 2012-10-04 | Linde Ag | Method involves for operating rebox burner, involves removing gaseous oxygen stream from upper region of mixing column and leading out oxygen product used for production of gas mixture |
EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
DE102013017590A1 (en) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
WO2014067662A2 (en) | 2012-11-02 | 2014-05-08 | Linde Aktiengesellschaft | Process for the low-temperature separation of air in an air separation plant and air separation plant |
DE102013002094A1 (en) | 2013-02-05 | 2014-08-07 | Linde Aktiengesellschaft | Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column |
EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
DE102015015684A1 (en) | 2015-12-03 | 2016-07-21 | Linde Aktiengesellschaft | Process for the cryogenic separation of air and air separation plant |
EP3179187A1 (en) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2861841B1 (en) * | 2003-11-04 | 2006-06-30 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
GB0422635D0 (en) * | 2004-10-12 | 2004-11-10 | Air Prod & Chem | Process for the cryogenic distillation of air |
US8806218B2 (en) * | 2005-03-18 | 2014-08-12 | Microsoft Corporation | Management and security of personal information |
US8640496B2 (en) * | 2008-08-21 | 2014-02-04 | Praxair Technology, Inc. | Method and apparatus for separating air |
DE102012017484A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Process and plant for the production of liquid and gaseous oxygen products by cryogenic separation of air |
US20150168056A1 (en) * | 2013-12-17 | 2015-06-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air |
US9964354B2 (en) | 2016-01-19 | 2018-05-08 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for producing pressurized gaseous oxygen through the cryogenic separation of air |
CN116817541B (en) * | 2023-08-31 | 2023-11-10 | 齐齐哈尔黎明气体有限公司 | Medical oxygen filling process blowdown gas recovery device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2680114A1 (en) | 1991-08-07 | 1993-02-12 | Air Liquide | Air distillation process and plant and application to the supply of gas to a steelworks |
EP0547946A1 (en) * | 1991-12-18 | 1993-06-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the production of impure oxygen |
EP0660058A2 (en) * | 1993-12-22 | 1995-06-28 | The BOC Group plc | Air separation |
EP0698772A1 (en) * | 1994-08-25 | 1996-02-28 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
US5655388A (en) * | 1995-07-27 | 1997-08-12 | Praxair Technology, Inc. | Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product |
DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
FR2778971A1 (en) * | 1998-05-20 | 1999-11-26 | Air Liquide | Installation for supplying at least one gas which is a component of air under a high pressure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5341646A (en) * | 1993-07-15 | 1994-08-30 | Air Products And Chemicals, Inc. | Triple column distillation system for oxygen and pressurized nitrogen production |
US5456083A (en) * | 1994-05-26 | 1995-10-10 | The Boc Group, Inc. | Air separation apparatus and method |
US5628207A (en) * | 1996-04-05 | 1997-05-13 | Praxair Technology, Inc. | Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen |
-
2001
- 2001-08-13 DE DE10139727A patent/DE10139727A1/en not_active Withdrawn
- 2001-11-30 EP EP01128631A patent/EP1284404A1/en not_active Withdrawn
-
2002
- 2002-08-13 US US10/217,329 patent/US6662595B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2680114A1 (en) | 1991-08-07 | 1993-02-12 | Air Liquide | Air distillation process and plant and application to the supply of gas to a steelworks |
EP0547946A1 (en) * | 1991-12-18 | 1993-06-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the production of impure oxygen |
EP0660058A2 (en) * | 1993-12-22 | 1995-06-28 | The BOC Group plc | Air separation |
EP0698772A1 (en) * | 1994-08-25 | 1996-02-28 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
US5655388A (en) * | 1995-07-27 | 1997-08-12 | Praxair Technology, Inc. | Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product |
DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
FR2778971A1 (en) * | 1998-05-20 | 1999-11-26 | Air Liquide | Installation for supplying at least one gas which is a component of air under a high pressure |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007031759A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Method and apparatus for producing gaseous pressure product by cryogenic separation of air |
DE102007031765A1 (en) | 2007-07-07 | 2009-01-08 | Linde Ag | Process for the cryogenic separation of air |
EP2015012A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process for the cryogenic separation of air |
EP2015013A2 (en) | 2007-07-07 | 2009-01-14 | Linde Aktiengesellschaft | Process and device for producing a gaseous pressurised product by cryogenic separation of air |
DE102009034979A1 (en) | 2009-04-28 | 2010-11-04 | Linde Aktiengesellschaft | Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block |
EP2312248A1 (en) | 2009-10-07 | 2011-04-20 | Linde Aktiengesellschaft | Method and device for obtaining pressurised oxygen and krypton/xenon |
WO2011116981A2 (en) | 2010-03-26 | 2011-09-29 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
DE102010012920A1 (en) | 2010-03-26 | 2011-09-29 | Linde Aktiengesellschaft | Apparatus for the cryogenic separation of air |
WO2011116871A2 (en) | 2010-03-26 | 2011-09-29 | Linde Aktiengesellschaft | Device for the cryogenic separation of air |
DE102010052545A1 (en) | 2010-11-25 | 2012-05-31 | Linde Aktiengesellschaft | Method and apparatus for recovering a gaseous product by cryogenic separation of air |
EP2458311A1 (en) | 2010-11-25 | 2012-05-30 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
DE102010052544A1 (en) | 2010-11-25 | 2012-05-31 | Linde Ag | Process for obtaining a gaseous product by cryogenic separation of air |
EP2466236A1 (en) | 2010-11-25 | 2012-06-20 | Linde Aktiengesellschaft | Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air |
EP2503269A1 (en) | 2011-03-25 | 2012-09-26 | Linde Aktiengesellschaft | Device for cryogenic decomposition of air |
DE102011015233A1 (en) | 2011-03-25 | 2012-09-27 | Linde Ag | Apparatus for the cryogenic separation of air |
US9228778B2 (en) | 2011-03-25 | 2016-01-05 | Linde Aktiengesellschaft | Device for the low-temperature separation of air |
EP2505947A1 (en) | 2011-03-29 | 2012-10-03 | Linde Aktiengesellschaft | Method and device for producing float gas |
DE102011015429A1 (en) | 2011-03-29 | 2012-10-04 | Linde Ag | Method involves for operating rebox burner, involves removing gaseous oxygen stream from upper region of mixing column and leading out oxygen product used for production of gas mixture |
DE102011015430A1 (en) | 2011-03-29 | 2012-10-04 | Linde Aktiengesellschaft | Method and apparatus for producing flat gas |
EP2520886A1 (en) | 2011-05-05 | 2012-11-07 | Linde AG | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air |
DE102011112909A1 (en) | 2011-09-08 | 2013-03-14 | Linde Aktiengesellschaft | Process and apparatus for recovering steel |
EP2568242A1 (en) | 2011-09-08 | 2013-03-13 | Linde Aktiengesellschaft | Method and device for generating of steel |
EP2600090A1 (en) | 2011-12-01 | 2013-06-05 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
DE102011121314A1 (en) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
WO2014067662A2 (en) | 2012-11-02 | 2014-05-08 | Linde Aktiengesellschaft | Process for the low-temperature separation of air in an air separation plant and air separation plant |
DE102012021694A1 (en) | 2012-11-02 | 2014-05-08 | Linde Aktiengesellschaft | Process for the cryogenic separation of air in an air separation plant and air separation plant |
DE102013002094A1 (en) | 2013-02-05 | 2014-08-07 | Linde Aktiengesellschaft | Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column |
WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
EP2784420A1 (en) | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
EP2801777A1 (en) | 2013-05-08 | 2014-11-12 | Linde Aktiengesellschaft | Air separation plant with main compressor drive |
DE102013017590A1 (en) | 2013-10-22 | 2014-01-02 | Linde Aktiengesellschaft | Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer |
EP2963371A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
EP2963369A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
EP2963370A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
WO2016005031A1 (en) | 2014-07-05 | 2016-01-14 | Linde Aktiengesellschaft | Method and device for the low-temperature separation of air at variable energy consumption |
DE102015015684A1 (en) | 2015-12-03 | 2016-07-21 | Linde Aktiengesellschaft | Process for the cryogenic separation of air and air separation plant |
EP3179187A1 (en) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
EP3179186A1 (en) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Also Published As
Publication number | Publication date |
---|---|
US6662595B2 (en) | 2003-12-16 |
US20030051504A1 (en) | 2003-03-20 |
DE10139727A1 (en) | 2003-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1284404A1 (en) | Process and device for recovering a product under pressure by cryogenic air separation | |
EP1067345B1 (en) | Process and device for cryogenic air separation | |
EP1308680B1 (en) | Process and system for production of krypton and/or xenon by cryogenic air separation | |
DE69214409T3 (en) | Process for the production of impure oxygen | |
EP1243882B1 (en) | Production of argon using a triple pressure air separation system with an argon column | |
DE19803437A1 (en) | Oxygen and nitrogen extracted by low-temperature fractional distillation | |
DE10013073A1 (en) | Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction | |
EP0948730B1 (en) | Method and device for producing compressed nitrogen | |
EP0716280A2 (en) | Methods and apparatus for the low temperature air separation | |
EP1357342A1 (en) | Cryogenic triple column air separation system with argon recovery | |
EP2026024A1 (en) | Process and device for producing argon by cryogenic separation of air | |
DE69209835T2 (en) | Single column air separation cycle and its integration into gas turbines | |
DE10018200A1 (en) | Method and device for obtaining pressurized nitrogen by low-temperature separation of air | |
DE10332863A1 (en) | Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream | |
EP0768503B1 (en) | Triple column air separation process | |
DE60007686T2 (en) | Low temperature rectification system for air separation | |
EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
DE10153919A1 (en) | Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device | |
WO2014067662A2 (en) | Process for the low-temperature separation of air in an air separation plant and air separation plant | |
DE19933558A1 (en) | Process to extract nitrogen and oxygen from air by fractionated cryogenic distillation enhances the overall operating efficiency of the process | |
EP1189001B1 (en) | Process and apparatus for the production of high purity nitrogen through cryogenic air separation | |
DE19819263C2 (en) | Process and device for the production of pressurized nitrogen | |
EP1284403B1 (en) | Process and apparatus for the production of oxygen by low temperature air separation | |
EP1209431B1 (en) | Process and apparatus for the production of nitrogen and oxygen | |
DE19819338A1 (en) | Air rectification process for production of compressed nitrogen@ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20030718 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 20090407 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110601 |