EP0547946A1 - Process and apparatus for the production of impure oxygen - Google Patents

Process and apparatus for the production of impure oxygen Download PDF

Info

Publication number
EP0547946A1
EP0547946A1 EP92403330A EP92403330A EP0547946A1 EP 0547946 A1 EP0547946 A1 EP 0547946A1 EP 92403330 A EP92403330 A EP 92403330A EP 92403330 A EP92403330 A EP 92403330A EP 0547946 A1 EP0547946 A1 EP 0547946A1
Authority
EP
European Patent Office
Prior art keywords
column
pressure column
nitrogen
pressure
medium pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92403330A
Other languages
German (de)
French (fr)
Other versions
EP0547946B2 (en
EP0547946B1 (en
Inventor
Jean-Louis Girault
Philippe Mazieres
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9420168&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0547946(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to EP96200235A priority Critical patent/EP0713069B1/en
Publication of EP0547946A1 publication Critical patent/EP0547946A1/en
Application granted granted Critical
Publication of EP0547946B1 publication Critical patent/EP0547946B1/en
Publication of EP0547946B2 publication Critical patent/EP0547946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to a process for producing impure oxygen by air distillation in a double column air distillation installation, the double column comprising a medium pressure column and a low pressure column.
  • the applications concerned by the invention are those which consume large quantities of impure oxygen. These include the gasification processes for coal or petroleum residues, as well as the direct reduction-smelting processes of iron ore.
  • One known means of developing this pressure consists of combining the air distillation apparatus with a gas turbine: the air to be separated is taken wholly or partially at the discharge from the compressor of this turbine, and the low pressure waste gas from the distillation apparatus is returned after compression to the gas turbine, the impure oxygen and the nitrogen being sent to use under the pressure of the column which product.
  • the invention aims to further reduce the energy expenditure necessary for the production of impure oxygen.
  • the invention also relates to an air distillation installation with double column intended for the implementation of such a process.
  • this installation comprises means for supplying the medium pressure column with air to be distilled at at least about 9 bar absolute, and the low pressure column comprises at least two superposed vaporizers-condensers, including one vaporizer-condenser means, means for supplying this tank evaporator-condenser with a first vaporization gas less volatile than the head nitrogen of the medium pressure column, means for supplying the second evaporator-condenser with nitrogen head the medium pressure column, and means for sending the nitrogen thus condensed under reflux at the head of the medium pressure column.
  • FIGS. 1 to 4 schematically represent four embodiments of the air distillation installation in accordance with the invention.
  • the installation shown in Figure 1 is intended to produce oxygen at a purity of the order of 85% under a pressure of the order of 7.4 bar absolute. It essentially comprises a double column 1 for air distillation, consisting of a medium pressure column (or “MP column”) 2 operating at 15.7 bar absolute and a low pressure column (or “LP column”) 3 operating at 6.3 bar absolute, a main heat exchange line 4, a sub-cooler 5, an auxiliary evaporator-condenser 6 and a turbine 7 for blowing air into the low pressure column.
  • Column 3 is superimposed on column 2 and contains in the tank a vaporizer-condenser and, above this, a second vaporizer-condenser 9.
  • the air to be distilled arrives at medium pressure via a line 10 and enters the exchange line 4. Most of this air is cooled to the vicinity of its dew point and leaves the cold end of the line d 'exchange, the rest having left the exchange line at an intermediate temperature, expanded at low pressure in the turbine 7 to keep the installation cold, and blown at an intermediate level in the LP column 3.
  • a fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a line 12 at an intermediate point in column 2, and the rest is, after sub-cooling in 5 and expansion in an expansion valve 13, introduced at an intermediate point in column BP 3 .
  • the "rich liquid” (air enriched in oxygen) collected in the bottom of the MP column is, after sub-cooling in 5 and expansion in an expansion valve 14, introduced at an intermediate point of the LP column.
  • “lean liquid” (impure nitrogen) drawn off at an intermediate point of the column MP is, after sub-cooling in 5 and expansion in an expansion valve 15, introduced at the top of the column BP.
  • the approximately pure nitrogen produced at the head of the MP column is partly removed from the installation as a product, after heating in the exchange line, via a line 16, and, for the rest, sent in the form gas via a line 17, under medium pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux at the top of the column MP via a line 18.
  • impure nitrogen gas drawn off at an intermediate point in column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, to the evaporator-condenser lower 8.
  • the liquid thus obtained is returned under reflux to the column MP, at approximately the same level, via a pipe 20.
  • the pump 23 could be omitted, the impure oxygen then being vaporized at 6 under the low pressure.
  • the temperature of the bottom liquid of the LP column is determined by that of the gas condensed in this vaporizer-condenser.
  • the temperature of the tank liquid, which is impure oxygen is relatively high. Consequently, for a desired purity of this impure oxygen, the pressure of the BP column, that is to say the low pressure, can be increased.
  • impure oxygen and impure nitrogen are obtained under increased pressure, which makes it possible to make savings on their recovery, for example on the energy required to compress the impure nitrogen to the desired pressure in a gas turbine (not shown) coupled to the installation, for example as described in the aforementioned US-A-4,224,045.
  • the upper vaporizer-condenser 9 serves to provide the necessary reflux at the head of the column MP.
  • the impure oxygen is withdrawn in gaseous form from the LP column 3, and is simply reheated in the exchange line 4 before its evacuation via the pipe 24. This is particularly advantageous when the impure oxygen is desired under the low pressure. Consequently, the vaporizer-condenser 6 is eliminated.
  • a fraction of the medium pressure air cooled near its dew point is sent, via a line 26, to the lower vaporizer-condenser 8 in place of the intermediate gas of Figure 1.
  • This intermediate gas feeds an intermediate vaporizer-condenser 27 located between the lower vaporizers-condensers 8 and upper 9.
  • the liquefied air from the vaporizer-condenser 8 is sent partly, via a line 28, to the column MP and partly, after sub-cooling in 5 and expansion in the expansion valve 13, in the column BP.
  • the impure oxygen is withdrawn in liquid form from the tank of the LP column, then is brought by a pump 23 to the desired production pressure, then vaporized and heated under this pressure in the exchange line 4 before being evacuated from the installation via line 24.
  • a nitrogen cycle is provided, known as the rectification support cycle, which is used at the same time to ensure the vaporization of impure oxygen: part of the nitrogen produced at the head of column 3 (which, in this case, has at the head a "minaret" 30 which is fed at its top by pure liquid nitrogen coming from the upper evaporator-condenser 9 and which, consequently, produces pure nitrogen under the low pressure) is, after heating in the exchange line, compressed by a compressor 31 at medium pressure.
  • This medium pressure nitrogen combined with a medium pressure nitrogen stream taken from the pipe 16, is compressed again by a compressor 33 to a vaporization pressure of the impure oxygen compressed by the pump 23, liquefied in the line of exchange, then, after expansion in an expansion valve 34, introduced under reflux at the head of the column MP.
  • FIG. 4 also includes a BP 3 column with a minaret 30.
  • a BP 3 column with a minaret 30 is high pressure air, boosted to a vaporization pressure of the impure oxygen by a booster 35, which ensures the vaporization of the impure oxygen in the exchange line 4.
  • this air is, after liquefaction and expansion in an expansion valve 36 and in the expansion valve 13, distributed between the two columns 2 and 3. consequently, the compressor 33 and the expansion valve 34 of FIG. 3 are eliminated.
  • the nitrogen coming from the compressor 31, compressed to a pressure higher than the medium pressure feeds in gaseous form, after cooling in the exchange line, the lower evaporator-condenser 8, and the resulting liquid nitrogen is, after expansion in an expansion valve 37, combined with medium pressure liquid nitrogen from the upper evaporator-condenser 9.
  • This nitrogen pressure can be chosen between medium pressure and the pressure for which the nitrogen condenses at the cold end of the exchange line .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

According to this process: - the intermediate pressure column (2) is operated at a pressure higher than 6 bars and preferably of at least approximately 9 bars absolute; - a first vaporization gas which is less volatile than nitrogen from the top of the intermediate pressure column (2) is condensed in the vessel condenser (8) of the low pressure column (3); and - nitrogen from the top of the intermediate pressure column is condensed and is then conveyed as reflux to the top of the intermediate pressure column, at a level of the low pressure column (3) which is situated above the said vessel condenser (8). Application to twin-column air distillation plants coupled to a gas turbine. <IMAGE>

Description

La présente invention est relative à un procédé de production d'oxygène impur par distillation d'air dans une installation de distillation d'air à double colonne, la double colonne comprenant une colonne moyenne pression et une colonne basse pression.The present invention relates to a process for producing impure oxygen by air distillation in a double column air distillation installation, the double column comprising a medium pressure column and a low pressure column.

Les applications concernées par l'invention sont celles qui consomment de grandes quantités d'oxygène impur. On citera les procédés de gazéification de charbon ou de résidus pétroliers, ainsi que les procédés de réduction-fusion directe du minerai de fer.The applications concerned by the invention are those which consume large quantities of impure oxygen. These include the gasification processes for coal or petroleum residues, as well as the direct reduction-smelting processes of iron ore.

Il est connu que pour produire par distillation d'air de l'oxygène impur, c'est-à-dire ayant une pureté inférieure à 99,5% et généralement inférieure à 98%, il est possible de diminuer la dépense d'énergie en augmentant la pression de marche de la double colonne, à condition que l'on puisse valoriser l'énergie disponible dans la colonne basse pression sous forme de pression.It is known that to produce by distillation of air impure oxygen, that is to say having a purity of less than 99.5% and generally less than 98%, it is possible to reduce the energy expenditure by increasing the operating pressure of the double column, provided that the energy available in the low pressure column can be used in the form of pressure.

Un moyen connu de valoriser cette pression, décrit par exemple dans le US-A-4 224 045, consiste à combiner l'appareil de distillation d'air à une turbine à gaz : l'air à séparer est prélevé totalement ou partiellement au refoulement du compresseur de cette turbine, et le gaz résiduaire basse pression de l'appareil de distillation est renvoyé après compression à la turbine à gaz, l'oxygène impur et l'azote étant envoyés vers l'utilisation sous la pression de la colonne qui les produit.One known means of developing this pressure, described for example in US-A-4 224 045, consists of combining the air distillation apparatus with a gas turbine: the air to be separated is taken wholly or partially at the discharge from the compressor of this turbine, and the low pressure waste gas from the distillation apparatus is returned after compression to the gas turbine, the impure oxygen and the nitrogen being sent to use under the pressure of the column which product.

De cette manière, la basse pression est entièrement valorisée, et l'on obtient une énergie de séparation réduite.In this way, the low pressure is fully exploited, and a reduced separation energy is obtained.

L'invention a pour but de réduire encore la dépense d'énergie nécessaire à la production de l'oxygène impur.The invention aims to further reduce the energy expenditure necessary for the production of impure oxygen.

A cet effet, l'invention a pour objet un procédé caractérisé en ce que :

  • - on fait fonctionner la colonne moyenne pression sous une pression supérieure à 6 bars et de préférence au moins égale à 9 bars absolus environ;
  • - on condense dans le condenseur de cuve de la colonne basse pression un premier gaz de vaporisation moins volatil que l'azote de tête de la colonne moyenne pression; et
  • - on condense de l'azote de tête de la colonne moyenne pression, que l'on envoie ensuite en reflux en tête de la colonne moyenne pression, à un niveau de la colonne basse pression situé au-dessus dudit condenseur de cuve.
To this end, the subject of the invention is a method characterized in that:
  • - The medium pressure column is operated at a pressure greater than 6 bars and preferably at least equal to approximately 9 bars absolute;
  • - Condensing in the tank condenser of the low pressure column a first vaporization gas less volatile than the top nitrogen of the medium pressure column; and
  • - Condensing nitrogen from the top of the medium pressure column, which is then sent to reflux at the top of the medium pressure column, at a level of the low pressure column located above said tank condenser.

Suivant d'autres caractéristiques :

  • - ledit premier gaz de vaporisation est un gaz soutiré à un niveau intermédiaire de la colonne moyenne pression;
  • - ledit premier gaz de vaporisation est de l'air moyenne pression;
  • - ledit premier gaz de vaporisation est de l'azote à peu près pur ou impur comprimé à une pression supérieure à celle de la colonne moyenne pression;
  • - on condense un deuxième gaz de vaporisation, plus volatil que ledit premier gaz de vaporisation mais moins volatil que l'azote de tête de la colonne moyenne pression, à un niveau intermédiaire entre ceux desdites condensations;
  • - on soutire l'oxygène impur sous forme liquide de la cuve de la colonne basse pression, on l'amène sous forme liquide à la pression de production désirée, et on le vaporise sous cette pression par condensation d'un troisième gaz de vaporisation;
  • - le troisième gaz de vaporisation est de l'azote à peu près pur ou impur produit par la double colonne et comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production;
  • - le troisième gaz de vaporisation est de l'air ali- i-mentant la double colonne, comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production.
According to other characteristics:
  • - Said first vaporization gas is a gas withdrawn from an intermediate level of the medium pressure column;
  • - Said first vaporization gas is medium pressure air;
  • - Said first vaporization gas is about pure or impure nitrogen compressed to a pressure higher than that of the medium pressure column;
  • - Condensing a second vaporization gas, more volatile than said first vaporization gas but less volatile than the top nitrogen of the medium pressure column, at an intermediate level between those of said condensations;
  • - the impure oxygen is drawn off in liquid form from the tank of the low pressure column, it is brought in liquid form to the desired production pressure, and it is vaporized under this pressure by condensation of a third vaporization gas;
  • - The third vaporization gas is almost pure or impure nitrogen produced by the double column and compressed to a vaporization pressure of the impure oxygen under the production pressure;
  • - The third vaporization gas is air supplying the double column, compressed to a vaporization pressure of the impure oxygen under the production pressure.

L'invention a également pour objet une installation de distillation d'air à double colonne destinée à la mise en oeuvre d'un tel procédé. Suivant l'invention, cette installation comprend des moyens pour fournir à la colonne moyenne pression de l'air à distiller sous au moins 9 bars absolus environ, et la colonne basse pression comprend au moins deux vaporiseurs-condenseurs superposés, dont un vaporiseur-condenseur de cuve, des moyens pour alimenter ce vaporiseur-condenseur de cuve avec un premier gaz de vaporisation moins volatil que l'azote de tête de la colonne moyenne pression, des moyens pour alimenter le deuxième vaporiseur-condenseur avec de l'azote de tête de la colonne moyenne pression, et des moyens pour envoyer l'azote ainsi condensé en reflux en tête de la colonne moyenne pression.The invention also relates to an air distillation installation with double column intended for the implementation of such a process. According to the invention, this installation comprises means for supplying the medium pressure column with air to be distilled at at least about 9 bar absolute, and the low pressure column comprises at least two superposed vaporizers-condensers, including one vaporizer-condenser means, means for supplying this tank evaporator-condenser with a first vaporization gas less volatile than the head nitrogen of the medium pressure column, means for supplying the second evaporator-condenser with nitrogen head the medium pressure column, and means for sending the nitrogen thus condensed under reflux at the head of the medium pressure column.

Suivant d'autres caractéristiques :

  • - au moins deux vaporiseurs-condenseurs de la colonne basse pression sont immédiatement superposés l'un à l'autre, sans moyens de distillation intermédiaires;
  • - l'installation comprend des moyens de soutirage d'oxygène impur sous forme liquide de la cuve de la colonne basse pression, des moyens de compression de cet oxygène impur liquide à une pression de production, ainsi qu'un cycle à azote de soutien de rectification comprenant des moyens pour comprimer, liquéfier, détendre et introduire dans la colonne moyenne pression une fraction de l'azote à peu près pur ou impur produit par la double colonne;
  • - lesdits moyens de compression sont adaptés pour comprimer ladite fraction d'azote à une pression de vaporisation de l'oxygène impur sous ladite pression de production.
According to other characteristics:
  • - At least two vaporizers-condensers of the low pressure column are immediately superimposed on each other, without intermediate distillation means;
  • the installation comprises means for withdrawing impure oxygen in liquid form from the tank of the low pressure column, means for compressing this impure oxygen liquid at a production pressure, as well as a nitrogen support cycle for rectification comprising means for compressing, liquefying, expanding and introducing into the medium pressure column a fraction of the approximately pure or impure nitrogen produced by the double column;
  • - Said compression means are suitable for compressing said nitrogen fraction to a vaporization pressure of the impure oxygen under said production pressure.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les Figures 1 à 4 représentent schématiquement quatre modes de réalisation de l'installation de distillation d'airconforme à l'invention.Examples of implementation of the invention will now be described with reference to the accompanying drawings, in which FIGS. 1 to 4 schematically represent four embodiments of the air distillation installation in accordance with the invention.

L'installation représentée à la Figure 1 est destinée à produire de l'oxygène à une pureté de l'ordre de 85% sous une pression de l'ordre de 7,4 bars absolus. Elle comprend essentiellement une double colonne 1 de distillation d'air, constituée d'une colonne moyenne pression (ou "colonne MP") 2 fonctionnant sous 15,7 bars absolus et d'une colonne basse pression (ou "colonne BP") 3 fonctionnant sous 6,3 bars absolus, une ligne d'échange thermique principale 4, un sous-refroidisseur 5, un vaporiseur-condenseur auxiliaire 6 et une turbine 7 d'insufflation d'air dans la colonne basse pression. La colonne 3 est superposée à la colonne 2 et contient en cuve un vaporiseur-condenseur et, au-dessus de celui-ci, un second vaporiseur-condenseur 9.The installation shown in Figure 1 is intended to produce oxygen at a purity of the order of 85% under a pressure of the order of 7.4 bar absolute. It essentially comprises a double column 1 for air distillation, consisting of a medium pressure column (or "MP column") 2 operating at 15.7 bar absolute and a low pressure column (or "LP column") 3 operating at 6.3 bar absolute, a main heat exchange line 4, a sub-cooler 5, an auxiliary evaporator-condenser 6 and a turbine 7 for blowing air into the low pressure column. Column 3 is superimposed on column 2 and contains in the tank a vaporizer-condenser and, above this, a second vaporizer-condenser 9.

L'air à distiller arrive sous la moyenne pression via une conduite 10 et pénètre dans la ligne d'échange 4. La majeure partie de cet air est refroidie jusqu'au voisinage de son point de rosée et sort au bout froid de la ligne d'échange, le reste étant sorti de la ligne d'échange à une température intermédiaire, détendu à la basse pression dans la turbine 7 pour assurer le maintien en froid de l'installation, et insufflé à un niveau intermédiaire dans la colonne BP 3.The air to be distilled arrives at medium pressure via a line 10 and enters the exchange line 4. Most of this air is cooled to the vicinity of its dew point and leaves the cold end of the line d 'exchange, the rest having left the exchange line at an intermediate temperature, expanded at low pressure in the turbine 7 to keep the installation cold, and blown at an intermediate level in the LP column 3.

Une fraction de l'air entièrement refroidi est introduit, via une conduite 11, à la base de la colonne MP 2, et le reste est condensé dans le vaporiseur-condenseur 6; une partie du liquide obtenu est introduit via une conduite 12 en un point intermédiaire de la colonne 2, et le reste est, après sous-refroidissement en 5 et détente dans une vanne de détente 13, introduit en un point intermédiaire de la colonne BP 3.A fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a line 12 at an intermediate point in column 2, and the rest is, after sub-cooling in 5 and expansion in an expansion valve 13, introduced at an intermediate point in column BP 3 .

Le "liquide riche" (airenrichi en oxygène) recueilli en cuve de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 14, introduit en un point intermédiaire de la colonne BP. De même, du "liquide pauvre" (azote impur) soutiré en un point intermédiaire de la colonne MP est, après sous-refroidissement en 5 et détente dans une vanne de détente 15, introduit au sommet de la colonne BP.The "rich liquid" (air enriched in oxygen) collected in the bottom of the MP column is, after sub-cooling in 5 and expansion in an expansion valve 14, introduced at an intermediate point of the LP column. Likewise, "lean liquid" (impure nitrogen) drawn off at an intermediate point of the column MP is, after sub-cooling in 5 and expansion in an expansion valve 15, introduced at the top of the column BP.

L'azote à peu près pur produit en tête de la colonne MP est pour partie évacué de l'installation en tant que produit, après réchauffement dans la ligne d'échange, via une conduite 16, et, pour le reste, envoyé sous forme gazeuse via une conduite 17, sous la moyenne pression, dans le vaporiseur-condenseur supérieur 9. Après condensation, cet azote est renvoyé en reflux en tête de la colonne MP via une conduite 18.The approximately pure nitrogen produced at the head of the MP column is partly removed from the installation as a product, after heating in the exchange line, via a line 16, and, for the rest, sent in the form gas via a line 17, under medium pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux at the top of the column MP via a line 18.

De plus, de l'azote impur gazeux, soutiré en un point intermédiaire de la colonne 2 et, dans cet exemple, au même niveau que le liquide pauvre, est envoyé via une conduite 19, sous la moyenne pression, dans le vaporiseur-condenseur inférieur 8. Le liquide ainsi obtenu est renvoyé en reflux dans la colonne MP, à peu près au même niveau, via une conduite 20.In addition, impure nitrogen gas, drawn off at an intermediate point in column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, to the evaporator-condenser lower 8. The liquid thus obtained is returned under reflux to the column MP, at approximately the same level, via a pipe 20.

Les courants de fluides sortant de la double colonne sont :

  • - au sommet de la colonne MP, de l'azote moyenne pression, dont il a été question plus haut;
  • - au sommet de la colonne BP, de l'azote impur, constituant le gaz résiduaire de l'installation. Cet azote impur, après réchauffement dans le sous-refroidisseur 5 et dans la ligne d'échange 4, est évacué via une conduite 21; et
  • - en cuve de la colonne BP, de l'oxygène impur liquide. Ce liquide est soutiré via une conduite 22, comprimé par une pompe 23 à la pression de production (7,4 bars absolus dans cetexem- ple), puis vaporisé dans le vaporiseur-condenseur 6 en condensant la fraction d'air moyenne pression qui traverse ce dernier, puis réchauffé sous forme gazeuse dans la ligne d'échange et évacué de l'installation via une conduite de production 24.
The streams of fluids leaving the double column are:
  • - At the top of the MP column, medium pressure nitrogen, which was mentioned above;
  • - at the top of the LP column, impure nitrogen, constituting the waste gas from the installation. This impure nitrogen, after heating in the sub-cooler 5 and in the exchange line 4, is discharged via a line 21; and
  • - in the BP column tank, impure liquid oxygen. This liquid is drawn off via a line 22, compressed by a pump 23 at production pressure (7.4 bar absolute in this example), then vaporized in the evaporator-condenser 6 by condensing the fraction of medium pressure air which passes through the latter, then heated in gaseous form in the exchange line and evacuated from the installation via a production line 24.

En variante, la pompe 23 pourrait être supprimée, l'oxygène impur étant alors vaporisé en 6 sous la basse pression.As a variant, the pump 23 could be omitted, the impure oxygen then being vaporized at 6 under the low pressure.

La description ci-dessus montre que, pour un écart de température donné dans le vaporiseur-condenseur 8, la température du liquide de cuve de la colonne BP est déterminée par celle du gaz condensé dans ce vaporiseur-condenseur. Comme il s'agit d'un gaz intermédiaire de la colonne MP, plus chaud que l'azote de tête de cette colonne, la température du liquide de cuve, qui est l'oxygène impur, est relativement élevée. Par suite, pour une pureté désirée de cet oxygène impur, la pression de la colonne BP, c'est-à-dire la basse pression, peut être augmentée. Finalement, on obtient de l'oxygène impur et de l'azote impur sous une pression accrue, ce qui permet de réaliser des économies sur leur valorisation, par exemple sur l'énergie nécessaire pour comprimer l'azote impur à la pression voulue dans une turbine à gaz (non représentée) couplée à l'installation, par exemple de la manière décrite dans le US-A-4 224 045 précité.The above description shows that, for a given temperature difference in the vaporizer-condenser 8, the temperature of the bottom liquid of the LP column is determined by that of the gas condensed in this vaporizer-condenser. As it is an intermediate gas in the MP column, hotter than the nitrogen at the top of this column, the temperature of the tank liquid, which is impure oxygen, is relatively high. Consequently, for a desired purity of this impure oxygen, the pressure of the BP column, that is to say the low pressure, can be increased. Finally, impure oxygen and impure nitrogen are obtained under increased pressure, which makes it possible to make savings on their recovery, for example on the energy required to compress the impure nitrogen to the desired pressure in a gas turbine (not shown) coupled to the installation, for example as described in the aforementioned US-A-4,224,045.

Dans ce contexte, le vaporiseur-condenseur supérieur 9 sert à fournir le reflux nécessaire en tête de la colonne MP.In this context, the upper vaporizer-condenser 9 serves to provide the necessary reflux at the head of the column MP.

Si les températures des deux gaz alimentant les deux vaporiseurs-condenseurs sont nettement différentes l'une de l'autre, il est nécessaire de prévoir un certain nombre de plateaux de distillation 25 entre ces vaporiseurs-condenseurs. Dans le cas contraire, ces plateaux peuvent être supprimés, ce qui simplifie la constructions de la colonne BP, les deux vaporiseurs-condenseurs pouvant même être intégrés en un seul échangeur de chaleur. C'est pourquoi les plateaux 25 ont été représentés en trait interrompu.If the temperatures of the two gases supplying the two vaporizer-condensers are clearly different from each other, it is necessary to provide a number of distillation plates 25 between these vaporizer-condensers. Otherwise, these plates can be removed, which simplifies the construction of the LP column, the two vaporizers-condensers can even be integrated into a single heat exchanger. This is why the pla 25 are shown in broken lines.

L'installation représentée à la Figure 2 ne diffère de la Figure 1 que par les points suivants.The installation shown in Figure 2 differs from Figure 1 only in the following points.

L'oxygène impur est soutiré sous forme gazeuse de la colonne BP 3, et est simplement réchauffé dans la ligne d'échange 4 avant son évacuation via la conduite 24. Ceci est particulièrement intéressant lorsque l'oxygène impur est désiré sous la basse pression. En conséquence, le vaporiseur-condenseur 6 est supprimé.The impure oxygen is withdrawn in gaseous form from the LP column 3, and is simply reheated in the exchange line 4 before its evacuation via the pipe 24. This is particularly advantageous when the impure oxygen is desired under the low pressure. Consequently, the vaporizer-condenser 6 is eliminated.

De plus, une fraction de l'air moyenne pression refroidi au voisinage de son point de rosée est envoyée, via une conduite 26, dans le vaporiseur-condenseur inférieur 8 à la place du gaz intermédiaire de la Figure 1. Ce gaz intermédiaire, quant à lui, alimente un vaporiseur-condenseur intermédiaire 27 situé entre les vaporiseurs-condenseurs inférieur 8 et supérieur 9. Comme précédemment, il peut y avoir ou non des plateaux entre les paires de vaporiseurs-condenseurs. L'air liquéfié issu du vaporiseur-condenseur 8 est envoyé pour partie, via une conduite 28, dans la colonne MP et pour partie, après sous-refroidissement en 5 et détente dans la vanne de détente 13, dans la colonne BP.In addition, a fraction of the medium pressure air cooled near its dew point is sent, via a line 26, to the lower vaporizer-condenser 8 in place of the intermediate gas of Figure 1. This intermediate gas, as to him, feeds an intermediate vaporizer-condenser 27 located between the lower vaporizers-condensers 8 and upper 9. As before, there may or may not be plates between the pairs of vaporizers-condensers. The liquefied air from the vaporizer-condenser 8 is sent partly, via a line 28, to the column MP and partly, after sub-cooling in 5 and expansion in the expansion valve 13, in the column BP.

Par rapport à la solution de la Figure 1, on obtient une température plus élevée en cuve de la colonne BP, ce qui est favorable à l'augmentation de la basse pression. En revanche, on doit vaporiser un liquide plus riche en oxygène que l'oxygène impur produire, ce qui tend à réduire la basse pression.Compared to the solution of Figure 1, a higher temperature is obtained in the bottom of the LP column, which is favorable to the increase in the low pressure. On the other hand, a liquid richer in oxygen than the impure oxygen produced must be vaporized, which tends to reduce the low pressure.

Ce dernier inconvénient est supprimé dans l'installation de la Figure 3, qui permet de produire l'oxygène impur sous une pression élevée, et qui diffère de la précédente par les points suivants.This last drawback is eliminated in the installation of FIG. 3, which makes it possible to produce the impure oxygen under a high pressure, and which differs from the previous one by the following points.

D'une part, l'oxygène impur est soutiré sous forme liquide de la cuve de la colonne BP, puis est amené par une pompe 23 à la pression de production désirée, puis vaporisé et réchauffé sous cette pression dans la ligne d'échange 4 avant d'être évacué de l'installation via la conduite 24.On the one hand, the impure oxygen is withdrawn in liquid form from the tank of the LP column, then is brought by a pump 23 to the desired production pressure, then vaporized and heated under this pressure in the exchange line 4 before being evacuated from the installation via line 24.

D'autre part, pour compenser la perte de reflux dans la colonne MP résultant du soutirage d'oxygène liquide en cuve de la colonne BP, il est prévu un cycle azote, dit cycle de soutien de rectification, qui est utilisé en même temps pour assurer la vaporisation de l'oxygène impur : une partie de l'azote produit en tête de la colonne 3 (laquelle, dans ce cas, possède en tête un "minaret" 30 qui est alimenté à son sommet par de l'azote liquide pur provenant du vaporiseur-condenseur supérieur 9 et qui, par suite, produit de l'azote pur sous la basse pression) est, après réchauffement dans la ligne d'échange, comprimée par un compresseur 31 à la moyenne pression. Cet azote moyenne pression, réuni à un courant d'azote moyenne pression prélevé sur la conduite 16, est comprimé de nouveau par un compresseur 33 à une pression de vaporisation de l'oxygène impur comprimé par la pompe 23, liquéfié dans la ligne d'échange, puis, après détente dans une vanne de détente 34, introduit en reflux en tête de la colonne MP.On the other hand, to compensate for the loss of reflux in the MP column resulting from the withdrawal of liquid oxygen from the bottom of the LP column, a nitrogen cycle is provided, known as the rectification support cycle, which is used at the same time to ensure the vaporization of impure oxygen: part of the nitrogen produced at the head of column 3 (which, in this case, has at the head a "minaret" 30 which is fed at its top by pure liquid nitrogen coming from the upper evaporator-condenser 9 and which, consequently, produces pure nitrogen under the low pressure) is, after heating in the exchange line, compressed by a compressor 31 at medium pressure. This medium pressure nitrogen, combined with a medium pressure nitrogen stream taken from the pipe 16, is compressed again by a compressor 33 to a vaporization pressure of the impure oxygen compressed by the pump 23, liquefied in the line of exchange, then, after expansion in an expansion valve 34, introduced under reflux at the head of the column MP.

L'installation de la Figure 4 comporte également une colonne BP 3 à minaret 30. Toutefois, contrairement au cas précédent, c'est de l'air haute pression, surpressé à une pression de vaporisation de l'oxygène impur par un surpresseur 35, qui assure la vaporisation de l'oxygène impur dans la ligne d'échange 4. Dans cet exemple, cet air est, après liquéfaction et détente dans une vanne de détente 36 et dans la vanne de détente 13, réparti entre les deux colonnes 2 et 3. par conséquent, le compresseur 33 et la vanne de détente 34 de la Figure 3 sont supprimés.The installation of FIG. 4 also includes a BP 3 column with a minaret 30. However, unlike the previous case, it is high pressure air, boosted to a vaporization pressure of the impure oxygen by a booster 35, which ensures the vaporization of the impure oxygen in the exchange line 4. In this example, this air is, after liquefaction and expansion in an expansion valve 36 and in the expansion valve 13, distributed between the two columns 2 and 3. consequently, the compressor 33 and the expansion valve 34 of FIG. 3 are eliminated.

De plus, l'azote issu du compresseur 31, comprimé à une pression supérieure à la moyenne pression, alimente sous forme gazeuse, après refroidissement dans la ligne d'échange, le vaporiseur-condenseur inférieur 8, et l'azote liquide résultant est, après détente dans une vanne de détente 37, réuni à l'azote liquide moyenne pression issu du vaporiseur-condenseur supérieur 9. Ceci présente l'avantage de permettre un réglage de la température de cuve de la colonne BP, et donc de la pression de cette colonne, par réglage de la pression de l'azote alimentant le vaporiseur-condenseur 8. Cette pression d'azote peut être choisie entre la moyenne pression et la pression pour laquelle l'azote se condense au bout froid de la ligne d'échange.In addition, the nitrogen coming from the compressor 31, compressed to a pressure higher than the medium pressure, feeds in gaseous form, after cooling in the exchange line, the lower evaporator-condenser 8, and the resulting liquid nitrogen is, after expansion in an expansion valve 37, combined with medium pressure liquid nitrogen from the upper evaporator-condenser 9. This has the advantage of allowing adjustment of the tank temperature of the LP column, and therefore of the pressure of this column, by adjusting the pressure of the nitrogen supplying the vaporizer-condenser 8. This nitrogen pressure can be chosen between medium pressure and the pressure for which the nitrogen condenses at the cold end of the exchange line .

Claims (14)

1 - Procédé de production d'oxygène impur par distillation d'air dans une installation de distillation d'air à double colonne (1), la double colonne comprenant une colonne moyenne pression (2) et une colonne basse pression (3), caractérisé en ce que: - on fait fonctionner la colonne moyenne pression (2) sous une pression supérieure à 6 bars et de préférence au moins égale à 9 bars absolus environ; - on condense dans le condenseur de cuve (8) de la colonne basse pression (3) un premier gaz de vaporisation moins volatil que l'azote de tête de la colonne moyenne pression (2); et - on condense de l'azote de tête de la colonne moyenne pression, que l'on envoie ensuite en reflux en tête de la colonne moyenne pression, à un niveau de la colonne basse pression (3) situé au-dessus dudit condenseur de cuve (8). 1 - Method for producing impure oxygen by air distillation in a double column air distillation installation (1), the double column comprising a medium pressure column (2) and a low pressure column (3), characterized in that: - The medium pressure column (2) is operated under a pressure greater than 6 bars and preferably at least equal to approximately 9 bars absolute; - Condensing in the tank condenser (8) of the low pressure column (3) a first vaporization gas less volatile than the top nitrogen of the medium pressure column (2); and - Condensing nitrogen from the top of the medium pressure column, which is then sent under reflux at the top of the medium pressure column, to a level of the low pressure column (3) located above said tank condenser (8). 2 - Procédé suivant la revendication 1, caractérisé en ce que ledit premier gaz de vaporisation est un gaz soutiré à un niveau intermédiaire de la colonne moyenne pression (2).2 - Method according to claim 1, characterized in that said first vaporization gas is a gas withdrawn from an intermediate level of the medium pressure column (2). 3 - Procédé suivant la revendication 1, caractérisé en ce que ledit premier gaz de vaporisation est de l'air moyenne pression.3 - Method according to claim 1, characterized in that said first vaporization gas is medium pressure air. 4 - Procédé suivant la revendication 1, caractérisé en ce que ledit premier gaz de vaporisation est de l'azote à peu près pur ou impur comprimé à une pression supérieure à celle de la colonne moyenne pression (2).4 - Process according to claim 1, character se in that said first vaporizing gas is about pure or impure nitrogen compressed to a pressure higher than that of the medium pressure column (2). 5 - Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on condense un deuxième gaz de vaporisation, plus volatil que ledit premier gaz de vaporisation mais moins volatil que l'azote de tête de la colonne moyenne pression (2), à un niveau intermédiaire entre ceux desdites condensations.5 - Process according to any one of claims 1 to 4, characterized in that a second vaporization gas is condensed, more volatile than said first vaporization gas but less volatile than the top nitrogen of the medium pressure column ( 2), at an intermediate level between those of said condensations. 6 - Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on soutire l'oxygène impur sous forme liquide de la cuve de la colonne basse pression (3), on l'amène sous forme liquide à la pression de production désirée, et on le vaporise sous cette pression par condensation d'un troisième gaz de vaporisation.6 - Process according to any one of claims 1 to 5, characterized in that the impure oxygen is withdrawn in liquid form from the tank of the low pressure column (3), it is brought in liquid form to the pressure desired production, and it is vaporized under this pressure by condensation of a third vaporizing gas. 7 - Procédé suivant la revendication 6, caractérisé en ce que le troisième gaz de vaporisation est de l'azote à peu près pur ou impur produit par la double colonne et comprimé (en 33) à une pression de vaporisation de l'oxygène impur sous la pression de production.7 - Process according to claim 6, characterized in that the third vaporization gas is approximately pure or impure nitrogen produced by the double column and compressed (at 33) at a vaporization pressure of impure oxygen under production pressure. 8 - Procédé suivant la revendication 6, caractérisé en ce que le troisième gaz de vaporisation est de l'air alimentant la double colonne (1), comprimé (en 35) à une pression de vaporisation de l'oxygène impur sous la pression de production.8 - Method according to claim 6, characterized in that the third vaporization gas is air supplying the double column (1), compressed (at 35) at a vaporization pressure of the impure oxygen under the production pressure . 9 - Installation de distillation d'air à double colonne (1), la double colonne comprenant une colonne moyenne pression (2) et une colonne basse pression (3), caractérisée en ce qu'elle comprend des moyens (10) pour fournir à la colonne moyenne pression (2) de l'air à distiller sous au moins 9 bars absolus environ, et en ce que la colonne basse pression (3) comprend au moins deux vaporiseurs-condenseurs superposés (8, 9; 8, 9, 27), dont un vaporiseur-condenseur (2) de cuve (8), des moyens pour alimenter ce vaporiseur-condenseur de cuve (8) avec un premier gaz de vaporisation moins volatil que l'azote de tête de la colonne moyenne pression (2), des moyens pour alimenter le deuxième vaporiseur-condenseur (9) avec de l'azote de tête de la colonne moyenne pression, et des moyens (18) pour envoyer l'azote ainsi condensé en reflux en tête de la colonne moyenne pression.9 - Double column air distillation installation (1), the double column comprising a medium pressure column (2) and a low pressure column (3), characterized in that it comprises means (10) for supplying the medium pressure column (2) of the air to be distilled at at least about 9 bar absolute, and in that the low pressure column (3) comprises at least two superposed vaporizers-condensers (8, 9; 8, 9, 27 ), including a tank vaporizer-condenser (2) (8), means for supplying this tank vaporizer-condenser (8) with a first vaporization gas less volatile than the nitrogen at the head of the medium pressure column (2 ), means for supplying the second evaporator-condenser (9) with nitrogen at the head of the medium pressure column, and means (18) for sending the nitrogen thus condensed under reflux at the head of the medium pressure column. 10 - Installation suivant la revendication 9, caractérisée en ce que la colonne basse pression (3) comprend deux vaporiseurs-condenseurs (9, 27) au-dessus du vaporiseur-condenseur de cuve (8), dont un vaporiseur-condenseur (9) alimenté avec ledit azote de tête et un vaporiseur-condenseur intermédiaire (27) alimenté avec un gaz moins volatil que cet azote de tête et plus volatil que ledit premier gaz de vaporisation.10 - Installation according to claim 9, characterized in that the low pressure column (3) comprises two vaporizers-condensers (9, 27) above the tank vaporizer-condenser (8), including a vaporizer-condenser (9) supplied with said top nitrogen and an intermediate vaporizer-condenser (27) supplied with a gas less volatile than this top nitrogen and more volatile than said first vaporization gas. 11 - Installation suivant la revendication 9 ou 10, caractérisée en ce qu'au moins deux vaporiseurs-condenseurs (8, 9; 9, 27) de la colonne basse pression (3) sont immédiatement superposés l'un à l'autre, sans moyens de distillation intermédiaires (25).11 - Installation according to claim 9 or 10, characterized in that at least two vaporizers-condensers (8, 9; 9, 27) of the low pressure column (3) are immediately superimposed on each other, without intermediate distillation means (25). 12 - Installation suivant l'une quelconque des revendications 9 à 11, caractérisée en ce qu'elle comprend des moyens (22) de soutirage d'oxygène impur sous forme liquide de la cuve de la colonne basse pression (3), des moyens (23) de compression de cet oxygène impur liquide à une pression de production, ainsi qu'un cycle à azote de soutien de rectification comprenant des moyens (33, 34) pour comprimer, liquéfier, détendre et introduire dans la colonne moyenne pression (2) une fraction de l'azote à peu près pur ou impur produit par la double colonne (1).12 - Installation according to any one of claims 9 to 11, characterized in that it comprises means (22) for drawing off impure oxygen in liquid form from the tank of the low pressure column (3), means ( 23) of compression of this liquid impure oxygen to a production pressure, as well as a nitrogen cycle of rectification support comprising means (33, 34) for compressing, liquefying, expanding and introducing into the medium pressure column (2) a fraction of the almost pure or impure nitrogen produced by the double column (1). 13 - Installation suivant la revendication 12, caractérisée en ce que lesdits moyens de compression (33) sont adaptés pour comprimer ladite fraction d'azote à une pression de vaporisation de l'oxygène impur sous ladite pression de production.13 - Installation according to claim 12, characterized in that said compression means (33) are adapted to compress said nitrogen fraction to a vaporization pressure of the impure oxygen under said production pressure. 14 - Installation suivant l'une quelconque des revendications 9 à 13, caractérisée en ce qu'elle comprend un surpresseur d'air (35) adapté pour amener une fraction de l'air à distiller à une pression de vaporisation de l'oxygène impur sous ladite pression de production.14 - Installation according to any one of claims 9 to 13, characterized in that it comprises an air booster (35) adapted to bring a fraction of the air to be distilled to a vaporization pressure of the impure oxygen under said production pressure.
EP92403330A 1991-12-18 1992-12-09 Process for the production of impure oxygen Expired - Lifetime EP0547946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96200235A EP0713069B1 (en) 1991-12-18 1992-12-09 Process and plant for air separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9115705A FR2685459B1 (en) 1991-12-18 1991-12-18 PROCESS AND PLANT FOR PRODUCING IMPURATED OXYGEN.
FR9115705 1991-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP96200235A Division EP0713069B1 (en) 1991-12-18 1992-12-09 Process and plant for air separation
EP96200235.8 Division-Into 1992-12-09

Publications (3)

Publication Number Publication Date
EP0547946A1 true EP0547946A1 (en) 1993-06-23
EP0547946B1 EP0547946B1 (en) 1996-10-09
EP0547946B2 EP0547946B2 (en) 2000-03-22

Family

ID=9420168

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92403330A Expired - Lifetime EP0547946B2 (en) 1991-12-18 1992-12-09 Process for the production of impure oxygen
EP96200235A Expired - Lifetime EP0713069B1 (en) 1991-12-18 1992-12-09 Process and plant for air separation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP96200235A Expired - Lifetime EP0713069B1 (en) 1991-12-18 1992-12-09 Process and plant for air separation

Country Status (9)

Country Link
US (1) US5392609A (en)
EP (2) EP0547946B2 (en)
CN (1) CN1068428C (en)
AU (1) AU654601B2 (en)
BR (1) BR9205050A (en)
CA (1) CA2085561A1 (en)
DE (2) DE69214409T3 (en)
ES (2) ES2145967T3 (en)
FR (1) FR2685459B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584419A1 (en) * 1992-08-28 1994-03-02 Air Products And Chemicals, Inc. Process and apparatus for the cryogenic distillation of air
EP0646755A1 (en) * 1993-09-15 1995-04-05 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
EP0766053A2 (en) * 1995-09-29 1997-04-02 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
EP1284404A1 (en) * 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
WO2012136939A2 (en) 2011-04-08 2012-10-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454227A (en) * 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
DE19609490A1 (en) * 1995-03-10 1996-09-12 Linde Ag Oxygen-production process with reduced energy requirement
US5600970A (en) * 1995-12-19 1997-02-11 Praxair Technology, Inc. Cryogenic rectification system with nitrogen turboexpander heat pump
US5666824A (en) * 1996-03-19 1997-09-16 Praxair Technology, Inc. Cryogenic rectification system with staged feed air condensation
US5611219A (en) * 1996-03-19 1997-03-18 Praxair Technology, Inc. Air boiling cryogenic rectification system with staged feed air condensation
US5678427A (en) * 1996-06-27 1997-10-21 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity nitrogen
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5664438A (en) * 1996-08-13 1997-09-09 Praxair Technology, Inc. Cryogenic side column rectification system for producing low purity oxygen and high purity nitrogen
US5682762A (en) * 1996-10-01 1997-11-04 Air Products And Chemicals, Inc. Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
US5675977A (en) * 1996-11-07 1997-10-14 Praxair Technology, Inc. Cryogenic rectification system with kettle liquid column
US5761927A (en) * 1997-04-29 1998-06-09 Air Products And Chemicals, Inc. Process to produce nitrogen using a double column and three reboiler/condensers
US5836175A (en) * 1997-08-29 1998-11-17 Praxair Technology, Inc. Dual column cryogenic rectification system for producing nitrogen
US5839296A (en) * 1997-09-09 1998-11-24 Praxair Technology, Inc. High pressure, improved efficiency cryogenic rectification system for low purity oxygen production
EP1002184B1 (en) 1997-09-26 2002-11-20 Siemens Aktiengesellschaft Housing for a fan, pump or compressor
US5806342A (en) * 1997-10-15 1998-09-15 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5956972A (en) * 1997-12-23 1999-09-28 The Boc Group, Inc. Method of operating a lower pressure column of a double column distillation unit
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
DE10205878A1 (en) * 2002-02-13 2003-08-21 Linde Ag Cryogenic air separation process
FR2930330B1 (en) * 2008-04-22 2013-09-13 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US9453674B2 (en) * 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
CN106989567A (en) * 2017-04-25 2017-07-28 河南开元空分集团有限公司 A kind of apparatus and method that oxygen rich gas and high pure nitrogen are produced while low energy consumption
US10852061B2 (en) 2017-05-16 2020-12-01 Terrence J. Ebert Apparatus and process for liquefying gases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448595A (en) * 1982-12-02 1984-05-15 Union Carbide Corporation Split column multiple condenser-reboiler air separation process
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210951A (en) * 1960-08-25 1965-10-12 Air Prod & Chem Method for low temperature separation of gaseous mixtures
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
JPS56124879A (en) * 1980-02-26 1981-09-30 Kobe Steel Ltd Air liquefying and separating method and apparatus
GB2079428A (en) * 1980-06-17 1982-01-20 Air Prod & Chem A method for producing gaseous oxygen
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
JPS61190277A (en) * 1985-02-16 1986-08-23 大同酸素株式会社 High-purity nitrogen and oxygen gas production unit
EP0383994A3 (en) * 1989-02-23 1990-11-07 Linde Aktiengesellschaft Air rectification process and apparatus
US4936099A (en) * 1989-05-19 1990-06-26 Air Products And Chemicals, Inc. Air separation process for the production of oxygen-rich and nitrogen-rich products
US5006137A (en) * 1990-03-09 1991-04-09 Air Products And Chemicals, Inc. Nitrogen generator with dual reboiler/condensers in the low pressure distillation column

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448595A (en) * 1982-12-02 1984-05-15 Union Carbide Corporation Split column multiple condenser-reboiler air separation process
US4704147A (en) * 1986-08-20 1987-11-03 Air Products And Chemicals, Inc. Dual air pressure cycle to produce low purity oxygen
US5069699A (en) * 1990-09-20 1991-12-03 Air Products And Chemicals, Inc. Triple distillation column nitrogen generator with plural reboiler/condensers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584419A1 (en) * 1992-08-28 1994-03-02 Air Products And Chemicals, Inc. Process and apparatus for the cryogenic distillation of air
EP0646755A1 (en) * 1993-09-15 1995-04-05 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
EP0766053A2 (en) * 1995-09-29 1997-04-02 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
EP0766053A3 (en) * 1995-09-29 1998-01-14 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
EP1284404A1 (en) * 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
US6662595B2 (en) 2001-08-13 2003-12-16 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
WO2012136939A2 (en) 2011-04-08 2012-10-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
US9696087B2 (en) 2011-04-08 2017-07-04 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method and apparatus for separating air by cryogenic distillation

Also Published As

Publication number Publication date
EP0713069A1 (en) 1996-05-22
ES2092661T3 (en) 1996-12-01
DE69214409T3 (en) 2000-07-13
EP0713069B1 (en) 2000-04-26
FR2685459B1 (en) 1994-02-11
DE69214409D1 (en) 1996-11-14
CN1068428C (en) 2001-07-11
CA2085561A1 (en) 1993-06-19
DE69230975T2 (en) 2000-10-05
ES2145967T3 (en) 2000-07-16
AU3022192A (en) 1993-06-24
FR2685459A1 (en) 1993-06-25
DE69230975D1 (en) 2000-05-31
AU654601B2 (en) 1994-11-10
BR9205050A (en) 1993-08-10
US5392609A (en) 1995-02-28
DE69214409T2 (en) 1997-05-22
EP0547946B2 (en) 2000-03-22
CN1088301A (en) 1994-06-22
EP0547946B1 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
EP0547946B1 (en) Process and apparatus for the production of impure oxygen
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0628778B2 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0610972B1 (en) Process for preparing nitrogen
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP2122282A2 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen, and optionally nitrogen by cryogenic distillation
EP0968959B1 (en) Process for the production of carbon monoxide
EP0611936B1 (en) Process and installation for producing ultrapure nitrogen by air distillation
EP2504646B1 (en) Method and apparatus for cryogenically separating a mixture of nitrogen and carbon monoxide
EP0732556B1 (en) Method and apparatus for vaporizing a liquid stream
EP1446620A1 (en) Method and installation for helium production
EP0677713A1 (en) Process and installation for the production of oxygen by distillation of air
EP0595673B1 (en) Process and installation for the production of nitrogen and oxygen
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP0612967B1 (en) Process for the production of oxygen and/or nitrogen under pressure
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0641982A1 (en) Process and installation for the production of at least a gas from air under pressure
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
JP2656403B2 (en) Cryogenic separation of air
WO2009136077A2 (en) Method and apparatus for separating air by cryogenic distillation
FR2795496A1 (en) APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
WO2024105022A1 (en) Method and apparatus for separating air by means of cryogenic distillation
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
FR2764681A1 (en) METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3141995A3 (en) Process and apparatus for air separation by cryogenic distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19940509

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961009

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 96200235.8 EINGEREICHT AM 02/02/96.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960925

DX Miscellaneous (deleted)
ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69214409

Country of ref document: DE

Date of ref document: 19961114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2092661

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970707

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RTI2 Title (correction)

Free format text: PROCESS FOR THE PRODUCTION OF IMPURE OXYGEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991209

Year of fee payment: 8

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000322

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE ES FR GB IT NL SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000703

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

BERE Be: lapsed

Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20001231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011112

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011126

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051209