EP0547946B2 - Process for the production of impure oxygen - Google Patents
Process for the production of impure oxygen Download PDFInfo
- Publication number
- EP0547946B2 EP0547946B2 EP92403330A EP92403330A EP0547946B2 EP 0547946 B2 EP0547946 B2 EP 0547946B2 EP 92403330 A EP92403330 A EP 92403330A EP 92403330 A EP92403330 A EP 92403330A EP 0547946 B2 EP0547946 B2 EP 0547946B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- pressure
- nitrogen
- impure
- vaporization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 29
- 239000001301 oxygen Substances 0.000 title claims description 28
- 229910052760 oxygen Inorganic materials 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 59
- 229910052757 nitrogen Inorganic materials 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 21
- 238000009834 vaporization Methods 0.000 claims description 21
- 230000008016 vaporization Effects 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 15
- 238000004821 distillation Methods 0.000 claims description 10
- 238000010992 reflux Methods 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002829 nitrogen Chemical class 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004172 nitrogen cycle Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04418—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/52—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/10—Boiler-condenser with superposed stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
Definitions
- the present invention relates to a production process of impure oxygen by air distillation in an air distillation installation double column, in accordance with preamble to claim 1.
- Such a process is known, for example, from document US-A-5,069,699.
- the applications concerned by the invention are those which consume large amounts of impure oxygen.
- a known means of exploiting this pressure consists in combining the air distillation apparatus with a gas turbine: the air to be separated is taken wholly or partially at discharge of the compressor from this turbine, and the low waste gas pressure from the distillation apparatus is returned after compression to the gas turbine, impure oxygen and nitrogen being sent for use under the pressure of the column that produces them.
- US-A-5,069,699 describes an air distillation process in an installation comprising a double column and a column operating at very high pressure.
- One of the two condensers in the column low pressure is supplied by an air flow or a nitrogen flow from of the column operating at very high pressure.
- the invention aims to further reduce energy expenditure necessary for the production of impure oxygen and to overcome the defects of previous systems.
- the subject of the invention is a method according to claim 1.
- a second, more volatile vaporizing gas can be condensed as said first vaporizing gas but less volatile than top nitrogen of the medium pressure column, at an intermediate level between those of said condensations.
- FIG 1 represent schematically an embodiment of the method air distillation according to the invention.
- the modes of shown in Figures 2 to 4 are not covered by the revendications.
- the installation shown in Figure 1 is intended to produce oxygen at a purity of the order 85% under a pressure of the order of 7.4 bar absolute. It essentially comprises a double column 1 of air distillation, consisting of a medium column pressure (or “MP column”) 2 operating at 15.7 bars absolute and a low pressure column (or “BP column”) 3 operating at 6.3 bar absolute, an exchange line main thermal 4, a sub-cooler 5, a auxiliary vaporizer-condenser 6 and a turbine 7 blowing air into the low pressure column.
- the column 3 is superimposed on column 2 and contains in tank a vaporizer-condenser 8 and, above it, a second vaporizer-condenser 9.
- the air to be distilled arrives below average pressure via line 10 and enters the line 4. Most of this air is cooled to the vicinity of its dew point and exit at the end cold of the exchange line, the rest having left the exchange line at an intermediate temperature, relaxed at low pressure in turbine 7 to ensure the keeping the installation cold, and blown to a intermediate level in column BP 3.
- a fraction of the fully cooled air is introduced, via a pipe 11, at the base of the column MP 2, and the rest is condensed in the vaporizer-condenser 6; part of the liquid obtained is introduced via a pipe 12 at an intermediate point from column 2, and the rest is, after sub-cooling at 5 and expansion in an expansion valve 13, introduced at an intermediate point in column BP 3.
- the approximately pure nitrogen produced at the head of the MP column is partly evacuated from the installation in as a product, after reheating in the line exchange, via line 16, and, for the rest, sent in gaseous form via line 17, below average pressure, in the upper evaporator-condenser 9. After condensation, this nitrogen is returned to reflux in head of the MP column via a pipe 18.
- impure nitrogen gas withdrawn in an intermediate point in column 2 and, in this example, at the same level as the lean liquid, is sent via a line 19, at medium pressure, in the lower vaporizer-condenser 8.
- the liquid thus obtained is returned to reflux in the MP column, about close to the same level, via line 20.
- the temperature of the liquid in the bottom of the LP column is determined by that of the gas condensed in this vaporizer-condenser.
- the temperature of the tank liquid, which is impure oxygen is relatively high. Therefore, for a desired purity of this impure oxygen, the pressure of the BP column, i.e. the low pressure, can be increased.
- the vaporizer-condenser upper 9 is used to provide the necessary reflux at the top in the MP column.
- the impure oxygen is withdrawn in the form gas from column BP 3, and is simply reheated in exchange line 4 before being evacuated via the driving 24. This is particularly interesting when impure oxygen is desired under low pressure. Consequently, the vaporizer-condenser 6 is deleted.
- a fraction of the average air pressure cooled near its dew point is sent, via a line 26, into the vaporizer-condenser lower 8 instead of the intermediate gas of the Figure 1.
- This intermediate gas feeds a intermediate vaporizer-condenser 27 located between the vaporizers-condensers lower 8 and higher 9.
- Liquefied air from vaporizer-condenser 8 is sent in part, via line 28, in the MP column and in part, after sub-cooling in 5 and expansion in the valve trigger 13, in the LP column.
- the impure oxygen is withdrawn under liquid form of the BP column tank and then it is brought by a pump 23 at the desired production pressure, then vaporized and heated under this pressure in the exchange line 4 before being evacuated from the installation via line 24.
- This average nitrogen pressure combined with a medium pressure nitrogen stream taken from line 16, is compressed again by a compressor 33 at a vaporization pressure of impure oxygen compressed by pump 23, liquefied in the exchange line, then, after expansion in a valve trigger 34, introduced at reflux at the top of the column MP.
- the installation in Figure 4 includes also a BP 3 column with minaret 30. However, unlike the previous case, it's high air pressure, boosted to a vaporization pressure of impure oxygen by a booster 35, which ensures the vaporization of impure oxygen in the exchange line 4. In this example, this air is, after liquefaction and expansion valve in expansion valve 36 and in the trigger 13, distributed between the two columns 2 and 3. by therefore, the compressor 33 and the expansion valve 34 from Figure 3 are deleted.
- This nitrogen pressure can be chosen between average pressure and the pressure at which nitrogen condenses at the cold end of the exchange line.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention est relative à un procédé de production d'oxygène impur par distillation d'air dans une installation de distillation d'air à double colonne, conformément au préambule de la revendication 1. Un tel procédé est connu, par exemple, du document US-A-5 069 699.The present invention relates to a production process of impure oxygen by air distillation in an air distillation installation double column, in accordance with preamble to claim 1. Such a process is known, for example, from document US-A-5,069,699.
Les applications concernées par l'invention sont celles qui consomment de grandes quantités d'oxygène impur. On citera les procédés de gazéification de charbon ou de résidus pétroliers, ainsi que les procédés de réduction-fusion directe du minerai de fer.The applications concerned by the invention are those which consume large amounts of impure oxygen. We will cite the processes gasification of coal or petroleum residues, as well as the processes direct reduction-smelting of iron ore.
Il est connu que pour produire par distillation d'air de l'oxygène impur, c'est-à-dire ayant une pureté inférieure à 99,5 % et généralement inférieure à 98 %, il est possible de diminuer la dépense d'énergie en augmentant la pression de marche de la double colonne, à condition que l'on puisse valoriser l'énergie disponible dans la colonne basse pression sous forme de pression.It is known that to produce oxygen by air distillation impure, i.e. having a purity of less than 99.5% and generally less than 98%, it is possible to reduce the energy expenditure by increasing the working pressure of the double column, provided that we can use the energy available in the low pressure column in the form of pressure.
Un moyen connu de valoriser cette pression, décrit par exemple dans US-A-4.224.045, consiste à combiner l'appareil de distillation d'air à une turbine à gaz : l'air à séparer est prélevé totalement ou partiellement au refoulement du compresseur de cette turbine, et le gaz résiduaire basse pression de l'appareil de distillation est renvoyé après compression à la turbine à gaz, l'oxygène impur et l'azote étant envoyés vers l'utilisation sous la pression de la colonne qui les produit.A known means of exploiting this pressure, described for example in US-A-4,224,045, consists in combining the air distillation apparatus with a gas turbine: the air to be separated is taken wholly or partially at discharge of the compressor from this turbine, and the low waste gas pressure from the distillation apparatus is returned after compression to the gas turbine, impure oxygen and nitrogen being sent for use under the pressure of the column that produces them.
De cette manière, la basse pression est entièrement valorisée et l'on obtient une énergie de séparation réduite.In this way, the low pressure is fully valued and a reduced separation energy is obtained.
Dans US-A-5.069.699, on décrit un procédé de distillation d'air dans une installation comprenant une double colonne et une colonne opérant à pression très élevée. Un des deux condenseurs de la colonne basse pression est alimenté par un débit d'air ou un débit d'azote provenant de la colonne opérant à pression très élevée.US-A-5,069,699 describes an air distillation process in an installation comprising a double column and a column operating at very high pressure. One of the two condensers in the column low pressure is supplied by an air flow or a nitrogen flow from of the column operating at very high pressure.
L'invention a pour but de réduire encore la dépense d'énergie nécessaire à la production de l'oxygène impur et de pallier les défauts des systèmes antérieurs.The invention aims to further reduce energy expenditure necessary for the production of impure oxygen and to overcome the defects of previous systems.
A cet effet, l'invention a pour objet un procédé selon la revendication 1. To this end, the subject of the invention is a method according to claim 1.
On peut condenser un deuxième gaz de vaporisation, plus volatil que ledit premier gaz de vaporisation mais moins volatil que l'azote de tête de la colonne moyenne pression, à un niveau intermédiaire entre ceux desdites condensations. A second, more volatile vaporizing gas can be condensed as said first vaporizing gas but less volatile than top nitrogen of the medium pressure column, at an intermediate level between those of said condensations.
Suivant des modes de réalisation préférés de l'invention :
- le troisième gaz de vaporisation est de l'azote à peu près pur ou impur produit par la double colonne et comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production ;
- le troisième gaz de vaporisation est de l'air alimentant la double colonne, comprimé à une pression de vaporisation de l'oxygène impur sous la pression de production.
- the third vaporization gas is almost pure or impure nitrogen produced by the double column and compressed to a vaporization pressure of the impure oxygen under the production pressure;
- the third vaporization gas is air supplying the double column, compressed to a vaporization pressure of the impure oxygen under the production pressure.
Un exemple de mise en oeuvre de l'invention va maintenant être décrit en regard de la figure 1 qui représentent schématiquement un mode de réalisation du procédé de distillation d'air conforme à l'invention. Les modes de réalisation montrés aux figures 2 à 4 ne sont pas couverts par les revendications.An example of implementation of the invention will now be described with reference to figure 1 which represent schematically an embodiment of the method air distillation according to the invention. The modes of shown in Figures 2 to 4 are not covered by the revendications.
L'installation représentée à la Figure 1 est
destinée à produire de l'oxygène à une pureté de l'ordre
de 85% sous une pression de l'ordre de 7,4 bars absolus.
Elle comprend essentiellement une double colonne 1 de
distillation d'air, constituée d'une colonne moyenne
pression (ou "colonne MP") 2 fonctionnant sous 15,7 bars
absolus et d'une colonne basse pression (ou "colonne BP")
3 fonctionnant sous 6,3 bars absolus, une ligne d'échange
thermique principale 4, un sous-refroidisseur 5, un
vaporiseur-condenseur auxiliaire 6 et une turbine 7
d'insufflation d'air dans la colonne basse pression. La
colonne 3 est superposée à la colonne 2 et contient en
cuve un vaporiseur-condenseur 8 et, au-dessus de celui-ci,
un second vaporiseur-condenseur 9.The installation shown in Figure 1 is
intended to produce oxygen at a purity of the order
85% under a pressure of the order of 7.4 bar absolute.
It essentially comprises a double column 1 of
air distillation, consisting of a medium column
pressure (or "MP column") 2 operating at 15.7 bars
absolute and a low pressure column (or "BP column")
3 operating at 6.3 bar absolute, an exchange line
main thermal 4, a
L'air à distiller arrive sous la moyenne
pression via une conduite 10 et pénètre dans la ligne
d'échange 4. La majeure partie de cet air est refroidie
jusqu'au voisinage de son point de rosée et sort au bout
froid de la ligne d'échange, le reste étant sorti de la
ligne d'échange à une température intermédiaire, détendu
à la basse pression dans la turbine 7 pour assurer le
maintien en froid de l'installation, et insufflé à un
niveau intermédiaire dans la colonne BP 3.The air to be distilled arrives below average
pressure via
Une fraction de l'air entièrement refroidi
est introduit, via une conduite 11, à la base de la
colonne MP 2, et le reste est condensé dans le vaporiseur-condenseur
6; une partie du liquide obtenu est
introduit via une conduite 12 en un point intermédiaire
de la colonne 2, et le reste est, après sous-refroidissement
en 5 et détente dans une vanne de détente 13,
introduit en un point intermédiaire de la colonne BP 3.A fraction of the fully cooled air
is introduced, via a
Le "liquide riche" (air enrichi en oxygène)
recueilli en cuve de la colonne MP est, après sous-refroidissement
en 5 et détente dans une vanne de détente
14, introduit en un point intermédiaire de la colonne BP.
De même, du "liquide pauvre" (azote impur) soutiré en un
point intermédiaire de la colonne MP est, après sous-refroidissement
en 5 et détente dans une vanne de détente
15, introduit au sommet de la colonne BP.The "rich liquid" (oxygen enriched air)
collected in the bottom of the MP column, after sub-cooling
in 5 and expansion in an
L'azote à peu près pur produit en tête de la
colonne MP est pour partie évacué de l'installation en
tant que produit, après réchauffement dans la ligne
d'échange, via une conduite 16, et, pour le reste, envoyé
sous forme gazeuse via une conduite 17, sous la moyenne
pression, dans le vaporiseur-condenseur supérieur 9.
Après condensation, cet azote est renvoyé en reflux en
tête de la colonne MP via une conduite 18.The approximately pure nitrogen produced at the head of the
MP column is partly evacuated from the installation in
as a product, after reheating in the line
exchange, via
De plus, de l'azote impur gazeux, soutiré en
un point intermédiaire de la colonne 2 et, dans cet
exemple, au même niveau que le liquide pauvre, est envoyé
via une conduite 19, sous la moyenne pression, dans le
vaporiseur-condenseur inférieur 8. Le liquide ainsi
obtenu est renvoyé en reflux dans la colonne MP, à peu
près au même niveau, via une conduite 20.In addition, impure nitrogen gas, withdrawn in
an intermediate point in
Les courants de fluides sortant de la double colonne sont :
- au sommet de la colonne MP, de l'azote moyenne pression, dont il a été question plus haut;
- au sommet de la colonne BP, de l'azote
impur, constituant le gaz résiduaire de l'installation.
Cet azote impur, après réchauffement dans le sous-
refroidisseur 5 et dans la ligne d'échange 4, est évacué via uneconduite 21; et - en cuve de la colonne BP, de l'oxygène
impur liquide. Ce liquide est soutiré via une
conduite 22, comprimé par unepompe 23 à la pression de production (7,4 bars absolus dans cet exemple), puis vaporisé dans le vaporiseur-condenseur 6 en condensant la fraction d'air moyenne pression qui traverse ce dernier, puis réchauffé sous forme gazeuse dans la ligne d'échange et évacué de l'installation via une conduite deproduction 24.
- at the top of the MP column, medium pressure nitrogen, which was discussed above;
- at the top of the LP column, impure nitrogen, constituting the waste gas from the installation. This impure nitrogen, after heating in the
sub-cooler 5 and in the exchange line 4, is discharged via aline 21; and - in the bottom of the BP column, liquid impure oxygen. This liquid is drawn off via a
line 22, compressed by apump 23 to the production pressure (7.4 bar absolute in this example), then vaporized in the evaporator-condenser 6 by condensing the fraction of medium pressure air which passes through this last, then heated in gaseous form in the exchange line and discharged from the installation via aproduction line 24.
La description ci-dessus montre que, pour un
écart de température donné dans le vaporiseur-condenseur
8, la température du liquide de cuve de la colonne BP est
déterminée par celle du gaz condensé dans ce vaporiseur-condenseur.
Comme il s'agit d'un gaz intermédiaire de la
colonne MP, plus chaud que l'azote de tête de cette
colonne, la température du liquide de cuve, qui est
l'oxygène impur, est relativement élevée. Par suite, pour
une pureté désirée de cet oxygène impur, la pression de
la colonne BP, c'est-à-dire la basse pression, peut être
augmentée. Finalement, on obtient de l'oxygène impur et
de l'azote impur sous une pression accrue, ce qui permet
de réaliser des économies sur leur valorisation, par
exemple sur l'énergie nécessaire pour comprimer l'azote
impur à la pression voulue dans une turbine à gaz
(non représentée) couplée à l'installation, par exemple
de la manière décrite dans le US-A-4 224 045 précité.The above description shows that for a
temperature difference given in the vaporizer-
Dans ce contexte, le vaporiseur-condenseur supérieur 9 sert à fournir le reflux nécessaire en tête de la colonne MP.In this context, the vaporizer-condenser upper 9 is used to provide the necessary reflux at the top in the MP column.
Si les températures des deux gaz alimentant
les deux vaporiseurs-condenseurs sont nettement différentes
l'une de l'autre, il est nécessaire de prévoir un
certain nombre de plateaux de distillation 25 entre ces
vaporiseurs-condenseurs. Dans le cas contraire, ces
plateaux peuvent être supprimés, ce qui simplifie la
constructions de la colonne BP, les deux vaporiseurs-condenseurs
pouvant même être intégrés en un seul
échangeur de chaleur. C'est pourquoi les plateaux 25 ont
été représentés en trait interrompu.If the temperatures of the two gases supplying
the two vaporizers-condensers are clearly different
one from the other, it is necessary to provide a
number of
L'installation représentée à la Figure 2 ne diffère de la Figure 1 que par les points suivants.The installation shown in Figure 2 does not differs from Figure 1 only in the following points.
L'oxygène impur est soutiré sous forme
gazeuse de la colonne BP 3, et est simplement réchauffé
dans la ligne d'échange 4 avant son évacuation via la
conduite 24. Ceci est particulièrement intéressant
lorsque l'oxygène impur est désiré sous la basse pression.
En conséquence, le vaporiseur-condenseur 6 est
supprimé.The impure oxygen is withdrawn in the form
gas from
De plus, une fraction de l'air moyenne
pression refroidi au voisinage de son point de rosée est
envoyée, via une conduite 26, dans le vaporiseur-condenseur
inférieur 8 à la place du gaz intermédiaire de la
Figure 1. Ce gaz intermédiaire, quant à lui, alimente un
vaporiseur-condenseur intermédiaire 27 situé entre les
vaporiseurs-condenseurs inférieur 8 et supérieur 9. Comme
précédemment, il peut y avoir ou non des plateaux entre
les paires de vaporiseurs-condenseurs. L'air liquéfié
issu du vaporiseur-condenseur 8 est envoyé pour partie,
via une conduite 28, dans la colonne MP et pour partie,
après sous-refroidissement en 5 et détente dans la vanne
de détente 13, dans la colonne BP.In addition, a fraction of the average air
pressure cooled near its dew point is
sent, via a
Par rapport à la solution de la Figure 1, on obtient une température plus élevée en cuve de la colonne BP, ce qui est favorable à l'augmentation de la basse pression. En revanche, on doit vaporiser un liquide plus riche en oxygène que l'oxygène impur à produire, ce qui tend à réduire la basse pression.Compared to the solution of Figure 1, we obtains a higher temperature in the column tank BP, which is favorable for increasing the bass pressure. On the other hand, one must vaporize a liquid more rich in oxygen than impure oxygen to produce, which tends to reduce low pressure.
Ce dernier inconvénient est supprimé dans l'installation de la Figure 3, qui permet de produire l'oxygène impur sous une pression élevée, et qui diffère de la précédente par les points suivants.This last drawback is removed in the installation of Figure 3, which produces impure oxygen under high pressure, which differs of the previous by the following points.
D'une part, l'oxygène impur est soutiré sous
forme liquide de la cuve de la colonne BP, puis est amené
par une pompe 23 à la pression de production désirée,
puis vaporisé et réchauffé sous cette pression dans la
ligne d'échange 4 avant d'être évacué de l'installation
via la conduite 24.On the one hand, the impure oxygen is withdrawn under
liquid form of the BP column tank and then it is brought
by a
D'autre part, pour compenser la perte de
reflux dans la colonne MP résultant du soutirage
d'oxygène liquide en cuve de la colonne BP, il est prévu
un cycle azote, dit cycle de soutien de rectification,
qui est utilisé en même temps pour assurer la vaporisation
de l'oxygène impur : une partie de l'azote
produit en tête de la colonne 3 (laquelle, dans ce cas,
possède en tête un "minaret" 30 qui est alimenté à son
sommet par de l'azote liquide pur provenant du vaporiseur-condenseur
supérieur 9 et qui, par suite, produit
de l'azote pur sous la basse pression) est, après réchauffement
dans la ligne d'échange, comprimée par un
compresseur 31 à la moyenne pression. Cet azote moyenne
pression, réuni à un courant d'azote moyenne pression
prélevé sur la conduite 16, est comprimé de nouveau par
un compresseur 33 à une pression de vaporisation de
l'oxygène impur comprimé par la pompe 23, liquéfié dans
la ligne d'échange, puis, après détente dans une vanne
de détente 34, introduit en reflux en tête de la colonne
MP.On the other hand, to compensate for the loss of
reflux in the MP column resulting from withdrawal
liquid oxygen in the bottom of the BP column, it is planned
a nitrogen cycle, called the rectification support cycle,
which is used at the same time to ensure vaporization
impure oxygen: part of the nitrogen
product at the top of column 3 (which, in this case,
has in mind a "minaret" 30 which is powered at its
top with pure liquid nitrogen from the vaporizer-condenser
higher 9 and which, consequently, produces
pure nitrogen under low pressure) is, after heating
in the exchange line, compressed by a
L'installation de la Figure 4 comporte
également une colonne BP 3 à minaret 30. Toutefois,
contrairement au cas précédent, c'est de l'air haute
pression, surpressé à une pression de vaporisation de
l'oxygène impur par un surpresseur 35, qui assure la
vaporisation de l'oxygène impur dans la ligne d'échange
4. Dans cet exemple, cet air est, après liquéfaction et
détente dans une vanne de détente 36 et dans la vanne de
détente 13, réparti entre les deux colonnes 2 et 3. par
conséquent, le compresseur 33 et la vanne de détente 34
de la Figure 3 sont supprimés.The installation in Figure 4 includes
also a
De plus, l'azote issu du compresseur 31,
comprimé à une pression supérieure à la moyenne pression,
alimente sous forme gazeuse, après refroidissement dans
la ligne d'échange, le vaporiseur-condenseur inférieur
8, et l'azote liquide résultant est, après détente dans
une vanne de détente 37, réuni à l'azote liquide moyenne
pression issu du vaporiseur-condenseur supérieur 9. Ceci
présente l'avantage de permettre un réglage de la
température de cuve de la colonne BP, et donc de la
pression de cette colonne, par réglage de la pression de
l'azote alimentant le vaporiseur-condenseur 8. Cette
pression d'azote peut être choisie entre la moyenne
pression et la pression pour laquelle l'azote se condense
au bout froid de la ligne d'échange.In addition, the nitrogen from the
Claims (4)
- Process for producing impure oxygen by distilling air in an air distillation installation with a double column (1), the double column comprising a medium pressure column (2) and a low pressure column (3) comprising the stages of:operating the medium pressure column (2) at a pressure greater than 6 bar and preferably at least equal to about 9 bar absolute;condensing in a vessel condenser (8) of the low pressure column (3) a first vaporization gas less volatile than nitrogen from the head of the medium pressure column (2);condensing nitrogen from the head of the medium pressure column which is then conveyed in reflux into the head of the medium pressure column in a second condenser (9) at a level of the low pressure column (3) situated above the said vessel condenser (8), the first vaporization gas being a gas withdrawn at an intermediate level of the medium pressure column (2) andwithdrawing impure oxygen in liquid form from the bottom of the low pressure column, characterized in that it comprises the stages of bringing the impure oxygen withdrawn in liquid form to the desired production pressure and vaporizing it at this pressure by condensing a third vaporization gas.
- Process according to claim 1, characterized in that a second vaporization gas, more volatile than the said first vaporization gas but less volatile than nitrogen from the head of the medium pressure column (2), is condensed at a level intermediate between those of the said condensations.
- Process according to claim 1 or 2, characterized in that the third vaporization gas is almost pure or impure nitrogen produced by the double column and compressed (in 33) to a vaporization pressure of impure oxygen at the production pressure.
- Process according to claim 1 or 2, characterized in that the third vaporization gas is air feeding the double column (1), compressed (in 35) to a vaporization pressure of impure oxygen at the production pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96200235A EP0713069B1 (en) | 1991-12-18 | 1992-12-09 | Process and plant for air separation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9115705A FR2685459B1 (en) | 1991-12-18 | 1991-12-18 | PROCESS AND PLANT FOR PRODUCING IMPURATED OXYGEN. |
FR9115705 | 1991-12-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96200235.8 Division-Into | 1992-12-09 | ||
EP96200235A Division EP0713069B1 (en) | 1991-12-18 | 1992-12-09 | Process and plant for air separation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0547946A1 EP0547946A1 (en) | 1993-06-23 |
EP0547946B1 EP0547946B1 (en) | 1996-10-09 |
EP0547946B2 true EP0547946B2 (en) | 2000-03-22 |
Family
ID=9420168
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92403330A Expired - Lifetime EP0547946B2 (en) | 1991-12-18 | 1992-12-09 | Process for the production of impure oxygen |
EP96200235A Expired - Lifetime EP0713069B1 (en) | 1991-12-18 | 1992-12-09 | Process and plant for air separation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96200235A Expired - Lifetime EP0713069B1 (en) | 1991-12-18 | 1992-12-09 | Process and plant for air separation |
Country Status (9)
Country | Link |
---|---|
US (1) | US5392609A (en) |
EP (2) | EP0547946B2 (en) |
CN (1) | CN1068428C (en) |
AU (1) | AU654601B2 (en) |
BR (1) | BR9205050A (en) |
CA (1) | CA2085561A1 (en) |
DE (2) | DE69230975T2 (en) |
ES (2) | ES2092661T3 (en) |
FR (1) | FR2685459B1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5251451A (en) * | 1992-08-28 | 1993-10-12 | Air Products And Chemicals, Inc. | Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines |
US5355682A (en) * | 1993-09-15 | 1994-10-18 | Air Products And Chemicals, Inc. | Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen |
US5454227A (en) * | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
US5463871A (en) * | 1994-10-04 | 1995-11-07 | Praxair Technology, Inc. | Side column cryogenic rectification system for producing lower purity oxygen |
US5669237A (en) * | 1995-03-10 | 1997-09-23 | Linde Aktiengesellschaft | Method and apparatus for the low-temperature fractionation of air |
US5546767A (en) * | 1995-09-29 | 1996-08-20 | Praxair Technology, Inc. | Cryogenic rectification system for producing dual purity oxygen |
US5600970A (en) * | 1995-12-19 | 1997-02-11 | Praxair Technology, Inc. | Cryogenic rectification system with nitrogen turboexpander heat pump |
US5611219A (en) * | 1996-03-19 | 1997-03-18 | Praxair Technology, Inc. | Air boiling cryogenic rectification system with staged feed air condensation |
US5666824A (en) * | 1996-03-19 | 1997-09-16 | Praxair Technology, Inc. | Cryogenic rectification system with staged feed air condensation |
US5678427A (en) * | 1996-06-27 | 1997-10-21 | Praxair Technology, Inc. | Cryogenic rectification system for producing low purity oxygen and high purity nitrogen |
US5669236A (en) * | 1996-08-05 | 1997-09-23 | Praxair Technology, Inc. | Cryogenic rectification system for producing low purity oxygen and high purity oxygen |
US5664438A (en) * | 1996-08-13 | 1997-09-09 | Praxair Technology, Inc. | Cryogenic side column rectification system for producing low purity oxygen and high purity nitrogen |
US5682762A (en) * | 1996-10-01 | 1997-11-04 | Air Products And Chemicals, Inc. | Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns |
US5675977A (en) * | 1996-11-07 | 1997-10-14 | Praxair Technology, Inc. | Cryogenic rectification system with kettle liquid column |
US5761927A (en) * | 1997-04-29 | 1998-06-09 | Air Products And Chemicals, Inc. | Process to produce nitrogen using a double column and three reboiler/condensers |
US5836175A (en) * | 1997-08-29 | 1998-11-17 | Praxair Technology, Inc. | Dual column cryogenic rectification system for producing nitrogen |
US5839296A (en) * | 1997-09-09 | 1998-11-24 | Praxair Technology, Inc. | High pressure, improved efficiency cryogenic rectification system for low purity oxygen production |
JP4217001B2 (en) | 1997-09-26 | 2009-01-28 | シーメンス アクチエンゲゼルシヤフト | Fluid machine housing |
US5806342A (en) * | 1997-10-15 | 1998-09-15 | Praxair Technology, Inc. | Cryogenic rectification system for producing low purity oxygen and high purity oxygen |
US5956972A (en) * | 1997-12-23 | 1999-09-28 | The Boc Group, Inc. | Method of operating a lower pressure column of a double column distillation unit |
US6253576B1 (en) * | 1999-11-09 | 2001-07-03 | Air Products And Chemicals, Inc. | Process for the production of intermediate pressure oxygen |
DE10139727A1 (en) | 2001-08-13 | 2003-02-27 | Linde Ag | Method and device for obtaining a printed product by low-temperature separation of air |
DE10205878A1 (en) * | 2002-02-13 | 2003-08-21 | Linde Ag | Cryogenic air separation process |
FR2930330B1 (en) * | 2008-04-22 | 2013-09-13 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2973865B1 (en) | 2011-04-08 | 2015-11-06 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
US9453674B2 (en) | 2013-12-16 | 2016-09-27 | Praxair Technology, Inc. | Main heat exchange system and method for reboiling |
CN106989567A (en) * | 2017-04-25 | 2017-07-28 | 河南开元空分集团有限公司 | A kind of apparatus and method that oxygen rich gas and high pure nitrogen are produced while low energy consumption |
JP2020521098A (en) | 2017-05-16 | 2020-07-16 | イーバート,テレンス,ジェイ. | Apparatus and process for liquefying gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3210951A (en) * | 1960-08-25 | 1965-10-12 | Air Prod & Chem | Method for low temperature separation of gaseous mixtures |
FR2461906A1 (en) * | 1979-07-20 | 1981-02-06 | Air Liquide | CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE |
JPS56124879A (en) * | 1980-02-26 | 1981-09-30 | Kobe Steel Ltd | Air liquefying and separating method and apparatus |
GB2079428A (en) * | 1980-06-17 | 1982-01-20 | Air Prod & Chem | A method for producing gaseous oxygen |
US4448595A (en) * | 1982-12-02 | 1984-05-15 | Union Carbide Corporation | Split column multiple condenser-reboiler air separation process |
US4453957A (en) * | 1982-12-02 | 1984-06-12 | Union Carbide Corporation | Double column multiple condenser-reboiler high pressure nitrogen process |
JPS61190277A (en) * | 1985-02-16 | 1986-08-23 | 大同酸素株式会社 | High-purity nitrogen and oxygen gas production unit |
US4704147A (en) * | 1986-08-20 | 1987-11-03 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
EP0383994A3 (en) * | 1989-02-23 | 1990-11-07 | Linde Aktiengesellschaft | Air rectification process and apparatus |
US4936099A (en) * | 1989-05-19 | 1990-06-26 | Air Products And Chemicals, Inc. | Air separation process for the production of oxygen-rich and nitrogen-rich products |
US5006137A (en) * | 1990-03-09 | 1991-04-09 | Air Products And Chemicals, Inc. | Nitrogen generator with dual reboiler/condensers in the low pressure distillation column |
US5069699A (en) * | 1990-09-20 | 1991-12-03 | Air Products And Chemicals, Inc. | Triple distillation column nitrogen generator with plural reboiler/condensers |
-
1991
- 1991-12-18 FR FR9115705A patent/FR2685459B1/en not_active Expired - Fee Related
-
1992
- 1992-12-09 ES ES92403330T patent/ES2092661T3/en not_active Expired - Lifetime
- 1992-12-09 DE DE69230975T patent/DE69230975T2/en not_active Expired - Fee Related
- 1992-12-09 EP EP92403330A patent/EP0547946B2/en not_active Expired - Lifetime
- 1992-12-09 EP EP96200235A patent/EP0713069B1/en not_active Expired - Lifetime
- 1992-12-09 DE DE69214409T patent/DE69214409T3/en not_active Expired - Fee Related
- 1992-12-09 ES ES96200235T patent/ES2145967T3/en not_active Expired - Lifetime
- 1992-12-14 US US07/990,100 patent/US5392609A/en not_active Expired - Fee Related
- 1992-12-16 CA CA002085561A patent/CA2085561A1/en not_active Abandoned
- 1992-12-17 CN CN92114490.3A patent/CN1068428C/en not_active Expired - Fee Related
- 1992-12-17 BR BR9205050A patent/BR9205050A/en not_active IP Right Cessation
- 1992-12-17 AU AU30221/92A patent/AU654601B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
DE69230975D1 (en) | 2000-05-31 |
ES2092661T3 (en) | 1996-12-01 |
US5392609A (en) | 1995-02-28 |
EP0547946B1 (en) | 1996-10-09 |
ES2145967T3 (en) | 2000-07-16 |
CN1088301A (en) | 1994-06-22 |
FR2685459B1 (en) | 1994-02-11 |
EP0713069A1 (en) | 1996-05-22 |
DE69214409D1 (en) | 1996-11-14 |
BR9205050A (en) | 1993-08-10 |
AU3022192A (en) | 1993-06-24 |
CN1068428C (en) | 2001-07-11 |
DE69230975T2 (en) | 2000-10-05 |
DE69214409T3 (en) | 2000-07-13 |
EP0713069B1 (en) | 2000-04-26 |
EP0547946A1 (en) | 1993-06-23 |
FR2685459A1 (en) | 1993-06-25 |
CA2085561A1 (en) | 1993-06-19 |
DE69214409T2 (en) | 1997-05-22 |
AU654601B2 (en) | 1994-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0547946B2 (en) | Process for the production of impure oxygen | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP2122282B1 (en) | Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation | |
EP0937679B1 (en) | Process and apparatus for the production of carbon monoxide and hydrogen | |
EP0610972B1 (en) | Process for preparing nitrogen | |
WO2007068858A2 (en) | Process for separating air by cryogenic distillation | |
EP0968959B1 (en) | Process for the production of carbon monoxide | |
EP0694746A1 (en) | Process for the production of a gas under pressure in variable quantities | |
EP2504646B1 (en) | Method and apparatus for cryogenically separating a mixture of nitrogen and carbon monoxide | |
EP0677713B1 (en) | Process and installation for the production of oxygen by distillation of air | |
EP1189003B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
EP0732556B1 (en) | Method and apparatus for vaporizing a liquid stream | |
EP0595673B1 (en) | Process and installation for the production of nitrogen and oxygen | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0611218B1 (en) | Process and installation for producing oxygen under pressure | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR2787561A1 (en) | Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns | |
WO2024105022A1 (en) | Method and apparatus for separating air by means of cryogenic distillation | |
WO2009136077A2 (en) | Method and apparatus for separating air by cryogenic distillation | |
EP3913310A1 (en) | Method and device for air separation by cryogenic distilling | |
FR2795496A1 (en) | APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION | |
FR3141995A3 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR3141996A1 (en) | Carbon dioxide distillation process and apparatus | |
FR3118144A3 (en) | METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN, METHANE, NITROGEN AND CARBON MONOXIDE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19921215 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19940509 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19961009 |
|
XX | Miscellaneous (additional remarks) |
Free format text: TEILANMELDUNG 96200235.8 EINGEREICHT AM 02/02/96. |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960925 |
|
DX | Miscellaneous (deleted) | ||
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69214409 Country of ref document: DE Date of ref document: 19961114 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2092661 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19970707 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
RTI2 | Title (correction) |
Free format text: PROCESS FOR THE PRODUCTION OF IMPURE OXYGEN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19991118 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19991122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19991208 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19991209 Year of fee payment: 8 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000322 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE ES FR GB IT NL SE |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
NLR2 | Nl: decision of opposition | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000703 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20001230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001231 |
|
BERE | Be: lapsed |
Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20001231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011112 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011119 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011126 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051209 |