EP1132700B1 - Process and apparatus for air separation by cryogenic distillation - Google Patents
Process and apparatus for air separation by cryogenic distillation Download PDFInfo
- Publication number
- EP1132700B1 EP1132700B1 EP01400413A EP01400413A EP1132700B1 EP 1132700 B1 EP1132700 B1 EP 1132700B1 EP 01400413 A EP01400413 A EP 01400413A EP 01400413 A EP01400413 A EP 01400413A EP 1132700 B1 EP1132700 B1 EP 1132700B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- air
- oxygen
- process according
- fraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04103—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04381—Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04424—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/0466—Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/52—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/76—Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/02—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/58—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
Definitions
- the present invention relates to a method and an installation of air separation by cryogenic distillation according to the preamble of claim 1 and claim 15, respectively.
- Such a process and a such an installation are known from DE-A-1 199 293.
- US-A-4947649 discloses a solution where air is compressed for introduce it at least partially in a single column. Such a solution is not applicable only if it is desired to produce nitrogen at a significantly higher pressure atmospheric pressure, particularly in the case of integration with a gas turbine. Conversely, if the air pressure supplied by the turbine compressor gas is very high, it is not advisable to use this process because the distillation under high pressure (pressure greater than 15 bar) is very difficult and poses significant technological problems when we get closer to the pressure supercritical nitrogen (33 bar).
- the other disadvantage of the cycle described in this patent is that gaseous oxygen is produced at the same pressure as the air sent to the simple column.
- EP-A-0584420 relates to a simple column which produces oxygen and nitrogen with head condenser and two reboilers operating at between 5 and 20 bar. A reboilers is heated with compressed nitrogen at room temperature and then cooled.
- EP-B-0606 027 also describes a single column process for produce oxygen and / or nitrogen under pressure and at least one product liquid. Such a process is not interesting if one does not wish to produce products liquid. Indeed, the air pressure is eminently dependent on the amount of liquid produced. At zero or low liquid production, the air pressure is less than 3 bar abs, which poses problems in the design of the treatment in the head, which requires a huge amount of absorbent, making this process uneconomical.
- the US-A-5794458 also discloses a single-column air distillation process. The main complaint that can be made about such a scheme is that it includes a compressor cold compressing a fluid very rich in oxygen. Moreover, in a classical way, the air compression is performed in one or more compressors operating at the ambient temperature.
- DE-A-1199293 discloses a method of air distillation according to the preamble of the claim 1 wherein an air flow is separated in a single column and a flow of liquid oxygen is withdrawn in the vat from the column and vaporized by exchange of heat with a compressed cycle nitrogen flow rate in a cold compressor.
- a part compressed nitrogen in the cold compressor at between 30 and 40 atma serves to reboil the simple column. In this case it is necessary to warm the nitrogen to compress it before cooling it and liquefying it against the oxygen that vaporizes. This is expensive in energy and complicates the construction of the exchangers.
- US-A-5475980 discloses a double-column process for distillation of air which in an original way proposes to compress some of the air necessary for the distillation in a cold compressor.
- the disadvantage of such a solution is the complexity of the exchange line from which the cold fluid is extracted to compress before reintroduce.
- a cold compressor compresses a fluid whose oxygen content does not not exceed 30 mol%.
- Another advantage of such a scheme is that it is better in energy than the scheme described in US Patent 5794458 because the turbine of the invention being on a fluid entering the cold box and not a fluid coming out of the cold box, the amount of heat exchanged in the main heat exchanger is significantly lower from where less irreversibilities.
- Another aspect of the invention is to produce oxygen at a pressure greater than the pressure of the single column by compressing a liquid rich in oxygen (either by pump or by hydrostatic head) at a pressure greater than that of the single column and vaporizing it either by heat exchange indirect in a main heat exchanger or an external vaporizer, either by direct contact in a mixing column.
- the ambient temperature is defined by the temperature at the suction of the Main air compressor supplying the separation unit.
- FIGS. are schematic representations of facilities according to the invention.
- the air 1 is compressed in the compressor 3, cleaned in 5 and divided in two.
- Fraction 7 is partially cooled in exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17.
- the rest of the air 9 (about 35%) is overpressed in the booster 11 and then crosses the exchanger 13 where it condenses before being sent to the column after a subcooling step in the exchanger 35, a few trays above the injection point of the air of the turbine 15.
- the column operates at a pressure of between 1.2 and 1.3 bar abs, process which can be used up to pressures of 20 bar abs, preferably less than 10 bar abs.
- Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
- Nitrogen 25 from the top of the column warms up in the subcooler 35 before being divided in two. Part 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to the compressor 21 with an inlet temperature of - 182 ° C where it is compressed to 4.9 bar before to be sent to the reboiler of tank 19 of the first column 17. There it is condense and is returned to the top of the column to act as reflux. turbine 15 is coupled to the cold compressor 21.
- Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
- a cold booster 21 with several stages in series, each feeding an intermediate vaporizer or tank.
- the cold booster 21 may have several stages in series driven each by a turbine or combined for example via a single-turbine multiplier.
- Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before to be sent to the reboiler of tank 19 of the first column 17. There it is condense and is returned to the top of the column to serve as reflux.
- the turbine 15 is coupled to the cold compressor 21.
- Figure 3 shows the case where the pressurized tank oxygen of the colone vaporizes by direct heat exchange in a mixing column.
- the air 1 is compressed in the compressor 3, purified at 5 and divided into two. Fraction 7 is partially cooled in exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17. The rest of the air 9 (about 25%) is overpressed in the booster 11 and then passes through the exchanger 13.
- the first column 17 operates at a pressure of between 3 and 20 bar.
- the air flow 9 does not liquefy in the exchanger but is sent in form gas in the vat of the mixing column. So the mixing column operates at a higher pressure than the first column 17. It is possible to envisage both columns at the same pressure or to operate the mixing column at the lowest pressure.
- the mixing column is fed at the top with oxygen pumped from the tank of the first column 17 but can be fed at the top by another flow less rich in oxygen than the flow pumped or in tank by air from a source other than the compressor 1.
- Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the interchange 13 where it is warms. The remainder 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of column 17. There it condenses and is returned to the top of the column to serve as the reflux.
- the turbine 15 is coupled to the cold compressor 21.
- an exchanger 49 warms the pumped oxygen sent to the top of the column 47.
- the intermediate liquid flow of the mixing column is sent to the column 17 and the impure oxygen 48 withdrawn at the top of this one is sent to the exchanger 13.
- FIG. 4 illustrates the case where a flow enriched with argon from the column 17 feeds a mixture column 57 having a cooled head condenser 51 by an intermediate liquid of the first column 17. A fluid enriched in argon is withdrawn at the top of the 57 mixture column.
- Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the interchange 13 where it is warms. The remainder 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There he condenses and is sent back to the top of the column to serve of reflux.
- the turbine 15 is coupled to the cold compressor 21.
- Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
- FIG. 5 shows a Etienne column 67 fed in the tank with a flow rate liquid drawn off some trays below the air injection point 9 and at the same level that the air blown 7. This liquid is pressurized by the pump 63 before being sent to the Etienne column. The liquid formed at the top of the column Etienne 67 is sent in head of the first column 17.
- the Etienne column operating at 2.5 bar has a condenser head 61 cooled by part of the tank liquid 65 of the same column, the remainder of the liquid being sent to the column 17 below the injection point of the blown air 7.
- the relaxed liquid vaporizes in the condenser 61 before being sent some trays above condenser 19 of column 17.
- the turbine 15 is coupled to the compressor cold 21.
- Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention est relative à un procédé et une installation de
séparation d'air par distillation cryogénique
selon le préambule de la revendication 1 et de
la revendication 15, respectivement. Un tel procédé et une
telle installation sont connus du DE-A-1 199 293.The present invention relates to a method and an installation of
air separation by cryogenic distillation
according to the preamble of
Depuis le début du siècle, la distillation de l'air est pratiquée dans une double colonne comportant une colonne moyenne pression et une colonne basse pression reliées par un échangeur de chaleur.Since the beginning of the century, the distillation of air is practiced in a double column comprising a medium pressure column and a low pressure column connected by a heat exchanger.
Des solutions ont été proposées dans différents brevets pour réduire le nombre de colonnes de deux à une.Solutions have been proposed in different patents to reduce the number of columns from two to one.
Le brevet US-A- 4947649 décrit une solution où l'on comprime de l'air pour l'introduire au moins partiellement dans une simple colonne. Une telle solution n'est applicable que si l'on veut produire de l'azote à une pression sensiblement plus haute que la pression atmosphérique, notamment dans le cas d'une intégration avec une turbine à gaz. A l'inverse si la pression de l'air fourni par le compresseur de la turbine à gaz est très élevée, il est peu recommandable d'utiliser ce procédé car la distillation sous haute pression (pression supérieure à 15 bars) est très difficile et pose des problèmes technologiques non négligeables lorsque l'on se rapproche de la pression supercritique de l'azote (33 bar). L'autre inconvénient du cycle décrit dans ce brevet est que l'on produit l'oxygène gazeux à la même pression que l'air envoyé à la simple colonne.US-A-4947649 discloses a solution where air is compressed for introduce it at least partially in a single column. Such a solution is not applicable only if it is desired to produce nitrogen at a significantly higher pressure atmospheric pressure, particularly in the case of integration with a gas turbine. Conversely, if the air pressure supplied by the turbine compressor gas is very high, it is not advisable to use this process because the distillation under high pressure (pressure greater than 15 bar) is very difficult and poses significant technological problems when we get closer to the pressure supercritical nitrogen (33 bar). The other disadvantage of the cycle described in this patent is that gaseous oxygen is produced at the same pressure as the air sent to the simple column.
EP-A-0584420 concerne une simple colonne qui produit de l'oxygène et de l'azote avec condenseur de tête et deux rebouilleurs opérant à entre 5 et 20 bars. Un des rebouilleurs est chauffé avec de l'azote comprimé à température ambiante et ensuite refroidi.EP-A-0584420 relates to a simple column which produces oxygen and nitrogen with head condenser and two reboilers operating at between 5 and 20 bar. A reboilers is heated with compressed nitrogen at room temperature and then cooled.
Le brevet EP-B-0 606 027 décrit aussi un procédé à simple colonne pour produire de l'oxygène et/ou de l'azote sous pression ainsi qu'au moins un produit liquide. Un tel procédé n'est pas intéressant si l'on ne désire pas produire des produits liquide. En effet, la pression d'air est éminemment fonction de la quantité de liquide produite. A production de liquide nulle ou faible, la pression d'air est inférieure à 3 bar abs, ce qui pose des problèmes au niveau de la conception de l'épuration en tête, qui nécessite une quantité énorme d'absorbant, rendant ce procédé non économique. Le brevet US-A-5794458 décrit aussi un procédé de distillation d'air à simple colonne. Le principal reproche que l'on peut faire à un tel schéma est qu'il comporte un compresseur froid comprimant un fluide très riche en oxygène. Par ailleurs, de manière classique, la compression de l'air est réalisée dans un ou plusieurs compresseurs fonctionnant à la température ambiante.EP-B-0606 027 also describes a single column process for produce oxygen and / or nitrogen under pressure and at least one product liquid. Such a process is not interesting if one does not wish to produce products liquid. Indeed, the air pressure is eminently dependent on the amount of liquid produced. At zero or low liquid production, the air pressure is less than 3 bar abs, which poses problems in the design of the treatment in the head, which requires a huge amount of absorbent, making this process uneconomical. The US-A-5794458 also discloses a single-column air distillation process. The The main complaint that can be made about such a scheme is that it includes a compressor cold compressing a fluid very rich in oxygen. Moreover, in a classical way, the air compression is performed in one or more compressors operating at the ambient temperature.
DE-A-1199293 décrit un procédé de distillation d'air selon le préambule de la
revendication 1 dans lequel un débit d'air est séparé dans une simple colonne et un
débit d'oxygène liquide est soutiré en cuve de la colonne et vaporisé par échange de
chaleur avec un débit d'azote de cycle comprimé dans un compresseur froid. Une partie
de l'azote comprimé dans le compresseur froid à entre 30 et 40 atma sert à rebouillir la
simple colonne. Dans ce cas il est nécessaire de réchauffer l'azote pour le comprimer
avant de le refroidir et le liquéfier contre l'oxygène qui se vaporise. Ceci est coûteux en
énergie et complique la construction des échangeurs.DE-A-1199293 discloses a method of air distillation according to the preamble of the
Le brevet US-A- 5475980 décrit un procédé à double colonne pour la distillation d'air qui de manière originale propose de comprimer une partie de l'air nécessaire à la distillation dans un compresseur froid. L'inconvénient d'une telle solution est la complexité de la ligne d'échange d'où l'on extrait le fluide froid à comprimer avant de l'y réintroduire.US-A-5475980 discloses a double-column process for distillation of air which in an original way proposes to compress some of the air necessary for the distillation in a cold compressor. The disadvantage of such a solution is the complexity of the exchange line from which the cold fluid is extracted to compress before reintroduce.
Dans les procédés de distillation d'air selon l'invention utilisant une simple colonne, un compresseur froid comprime un fluide dont la teneur en oxygène ne dépasse pas 30 % molaires. Un autre avantage d'un tel schéma est qu'il est meilleur en énergie que le schéma décrit dans le brevet US 5794458 car la turbine de l'invention étant sur un fluide entrant dans la boíte froide et non un fluide sortant de la boíte froide, la quantité de chaleur échangée dans l'échangeur principal est nettement inférieure d'où des irréversibilités moindres. Un autre aspect de l'invention est de produire de l'oxygène à une pression supérieure à la pression de la simple colonne en comprimant un liquide riche en oxygène (soit par pompe, soit par hauteur hydrostatique) à une pression supérieure à celle de la simple colonne et en le vaporisant soit par échange de chaleur indirect dans un échangeur principal ou un vaporiseur extérieur, soit par contact direct dans une colonne de mélange. Enfin, la coproduction de produits liquides en plus des produits gazeux n'est pas nécessaire pour rendre ce procédé attractif même si elle est possible.In the air distillation processes according to the invention using a simple column, a cold compressor compresses a fluid whose oxygen content does not not exceed 30 mol%. Another advantage of such a scheme is that it is better in energy than the scheme described in US Patent 5794458 because the turbine of the invention being on a fluid entering the cold box and not a fluid coming out of the cold box, the amount of heat exchanged in the main heat exchanger is significantly lower from where less irreversibilities. Another aspect of the invention is to produce oxygen at a pressure greater than the pressure of the single column by compressing a liquid rich in oxygen (either by pump or by hydrostatic head) at a pressure greater than that of the single column and vaporizing it either by heat exchange indirect in a main heat exchanger or an external vaporizer, either by direct contact in a mixing column. Finally, the co-production of liquid products in addition to gaseous products is not necessary to make this process attractive even if it is possible.
La température ambiante est définie par la température à l'aspiration du compresseur d'air principal d'alimentation de l'unité de séparation. The ambient temperature is defined by the temperature at the suction of the Main air compressor supplying the separation unit.
Selon l'invention, il est prévu un procédé de séparation de l'air selon la
revendication 1.According to the invention, there is provided a method of separating the air according to the
Selon d'autres aspects de l'invention :
- on soutire un produit gazeux riche en azote en tête de la première (la) colonne ;
- on comprime une fraction contenant au plus 30 % molaires d'oxygène extraite de la colonne dans un compresseur dont la température d'aspiration est inférieure à la température ambiante à une pression inférieure à 30 bar ab ;
- la pression de la première (la) colonne est entre 1,3 et 20 bar abs, de préférence entre 3 et 10 bar abs;
- la fraction comprimée contient au plus 19% molaires d'oxygène et au moins 81 % molaires d'azote, de préférence au moins 90% molaires d'azote ;
- au moins une partie de l'air est détendue dans une turbine avant de l'envoyer à la première (la) colonne ;
- la production de travail par la détente d'au moins une partie de l'air sert au moins partiellement à comprimer la fraction contenant au plus 30% d'oxygène en un ou plusieurs étage(s) de compression ;
- au moins une partie de l'air est comprimée à une haute pression, condensée et envoyée à la première (la) colonne ;
- une partie non-détendue de l'air est condensée en vaporisant un fluide interne ou extrait de la première colonne (Fig. 2) ;
- la vaporisation de la fraction liquide riche en oxygène s'effectue par contact direct dans une colonne auxiliaire dite de mélange (Fig. 3);
- une colonne auxiliaire destinée à la production d'argon est alimentée à partir de la première colonne (Fig. 4) ;
- on distille dans une colonne auxiliaire un liquide enrichi en oxygène extrait de la simple colonne pour produire une fraction plus riche en oxygène et une fraction appauvrie en oxygène réintroduites dans la première colonne (Fig. 5) ;
- au moins une partie de l'air destiné à une colonne de l'appareil vient du compresseur d'une turbine à gaz et/ou un gaz enrichi en azote provenant de la première (la) colonne est renvoyé au système de la turbine à gaz ;
- la pression d'entrée de la turbine à gaz est supérieure à 15 bar abs ;
- la pureté de l'oxygène gazeux produit est au moins 80% molaires, de préférence au moins 90% molaires ;
- la température d'aspiration du compresseur froid est inférieure à
- 100 °C ou de préférence inférieure à -150 °C ;
- on produit ou on ne produit pas de liquide comme produit final ;
- le débit d'air qui sert à vaporiser le liquide riche en oxygène se condense au moins partiellement et est envoyé à la première colonne ;
- a gaseous product rich in nitrogen is withdrawn at the top of the first column;
- a fraction containing at most 30 mol% of oxygen extracted from the column is compressed in a compressor whose suction temperature is lower than the ambient temperature at a pressure of less than 30 bar ab;
- the pressure of the first (the) column is between 1.3 and 20 bar abs, preferably between 3 and 10 bar abs;
- the compressed fraction contains at most 19 mol% of oxygen and at least 81 mol% of nitrogen, preferably at least 90 mol% of nitrogen;
- at least a portion of the air is expanded in a turbine before sending it to the first column;
- the production of work by the expansion of at least a portion of the air serves at least partially to compress the fraction containing at most 30% oxygen in one or more stage (s) of compression;
- at least a portion of the air is compressed at a high pressure, condensed and sent to the first column;
- an unpressurized portion of the air is condensed by vaporizing an internal fluid or extracted from the first column (Fig. 2);
- the vaporisation of the oxygen-rich liquid fraction is carried out by direct contact in a so-called mixing auxiliary column (FIG.
- an auxiliary column for the production of argon is fed from the first column (Fig. 4);
- an oxygen enriched liquid extracted from the single column is distilled in an auxiliary column to produce a richer oxygen fraction and a depleted oxygen fraction reintroduced into the first column (Fig. 5);
- at least a portion of the air for a column of the apparatus is from the compressor of a gas turbine and / or a nitrogen-enriched gas from the first column is returned to the gas turbine system ;
- the inlet pressure of the gas turbine is greater than 15 bar abs;
- the purity of the oxygen gas produced is at least 80 mol%, preferably at least 90 mol%;
- the suction temperature of the cold compressor is less than
- 100 ° C or preferably below -150 ° C;
- liquid is produced or not produced as final product;
- the airflow which is used to vaporize the oxygen-rich liquid condenses at least partially and is sent to the first column;
Selon un autre aspect de l'invention, il est prévu une installation de
séparation selon la revendication 15.According to another aspect of the invention, an installation of
separation according to
Selon d'autres aspects inventifs :
- l'appareil comprend une turbine alimentée par de l'air et la sortie de la turbine est reliée à la première colonne;
- le liquide pressurisé se vaporise dans une colonne de mélange ;
- l'appareil comprend une colonne de production d'argon alimentée à partir de la première colonne ayant un rebouilleur de cuve ;
- la colonne ayant un rebouilleur de cuve a au moins un condenseur intermédiaire ;
- la colonne ayant un rebouilleur de cuve n'a pas de condenseur de tête.
- the apparatus comprises a turbine powered by air and the outlet of the turbine is connected to the first column;
- the pressurized liquid vaporizes in a mixing column;
- the apparatus comprises an argon producing column fed from the first column having a bottom reboiler;
- the column having a bottom reboiler has at least one intermediate condenser;
- the column having a bottom reboiler does not have a top condenser.
L'invention sera maintenant décrite en se référant aux figures 1 à 5 qui sont des représentations schématiques d'installations selon l'invention.The invention will now be described with reference to FIGS. are schematic representations of facilities according to the invention.
Dans la figure 1, l'air 1 est comprimé dans le compresseur 3, épuré en 5
et divisé en deux. La fraction 7 est partiellement refroidie dans l'échangeur 13 et
envoyée à une turbine 15 dans laquelle elle se détend avant d'être envoyée à
la première colonne 17. Le reste de l'air 9 (environ 35%) est surpressé dans le
surpresseur 11 et traverse ensuite l'échangeur 13 où il se condense avant d'être
envoyé à la colonne, après une étape de sous-refroidissement dans
l'échangeur 35, quelques plateaux au-dessus du point d'injection de l'air de la
turbine 15. La colonne opère à une pression d'entre 1.2 et 1.3 bar abs, ce
procédé pouvant être utilisé jusqu'à des pressions de 20 bar abs, de préférence
inférieures à 10 bar abs.In FIG. 1, the
De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la
pompe 23 et envoyé à l'échangeur 13 où il se vaporise.
De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur
35 avant d'être divisé en deux. Une partie 31 est envoyé à
l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21
avec une température d'entrée de - 182°C où il est comprimé à 4.9 bar avant
d'être envoyé au rebouilleur de cuve 19 de la première colonne 17. Là il se
condense et est renvoyé en tête de la colonne pour servir de reflux 33. La
turbine 15 est couplée au compresseur froid 21.
Dans la figure 2 on retrouve les mêmes débits 7,25, 27, 31 mais seule
une partie du débit 7 est envoyée à la turbine 15. Une partie 12 du débit 7 non
surpressé traverse entièrement l'échangeur et est envoyé à un rebouilleur
intermédiaire 39 de la colonne 17. L'air ainsi condensé est envoyé à la colonne
avec l'air 9.In figure 2 we find the same flows 7.25, 27, 31 but only
part of the flow 7 is sent to the
De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la
pompe 23 et envoyé à l'échangeur 13 où il se vaporise.
On pourrait imaginer avoir un booster froid 21 avec plusieurs étages en série,
chacun alimentant un vaporiseur intermédiaire ou de cuve. D'une manière
générale, le booster froid 21 peut avoir plusieurs étages en série entraíné
chacun par une turbine ou combinés par exemple par l'intermédiaire d'un
multiplicateur à une seule turbine.
De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur
21 avant d'être divisé en deux. Une partie 31 est envoyé à
l'échangeur 13 où il se réchauffe. Le reste 29 est envoyé au compresseur 21
avec une température d'entrée de -182°C où il est comprimé à 4.9 bar avant
d'être envoyé au rebouilleur de cuve 19 de la première colonne 17. Là il se
condense et est renvoyé en tête de la colonne pour servir de reflux. La turbine
15 est couplé au compresseur froid 21.
La figure 3 montre le cas où l'oxygène de cuve pressurisé de la colone se vaporise par échange de chaleur direct dans une colonne de mélange.Figure 3 shows the case where the pressurized tank oxygen of the colone vaporizes by direct heat exchange in a mixing column.
L'air 1 est comprimé dans le compresseur 3, épuré en 5 et divisé en
deux. La fraction 7 est partiellement refroidie dans l'échangeur 13 et envoyée à
une turbine 15 dans laquelle elle se détend avant d'être envoyée à la première
colonne 17. Le reste de
l'air 9 (environ 25%) est surpressé dans le surpresseur 11 et traverse ensuite
l'échangeur 13. La première colonne 17 opère à une pression d'entre 3 et 20 bar.The
Le débit d'air 9 ne se liquéfie pas dans l'échangeur mais est envoyé sous forme
gazeuse en cuve de la colonne de mélange. Ainsi la colonne de mélange opère à une
pression plus élevée que la première colonne 17. On peut envisager de faire fonctionner
les deux colonnes à la même pression ou de faire fonctionner la colonne de mélange à
la pression la plus basse. La colonne de mélange est alimentée en tête par de l'oxygène
pompé provenant de la cuve de la première colonne 17 mais peut être alimentée en tête
par un autre débit moins riche en oxygène que le débit pompé ou en cuve par de l'air
provenant d'une source autre que le compresseur 1.The
De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21
avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se
réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de
-182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de
la colonne 17. Là il se condense et est renvoyé en tête de la colonne pour servir de
reflux. La turbine 15 est couplé au compresseur froid 21.
Ici un échangeur 49 réchauffe l'oxygène pompé envoyé en tête de la colonne
de mélange 47. Le débit liquide intermédiaire de la colonne de mélange est envoyé à la
colonne 17 et l'oxygène impur 48 soutiré en tête de celle-là est envoyé à l'échangeur 13.Here an
La version de la figure 4 illustre le cas où un débit enrichi en argon de la
colonne 17 alimente une colonne de mixture 57 ayant un condenseur de tète 51 refroidi
par un liquide intermédiaire de la première colonne 17. Un fluide enrichi en argon est
soutiré en tête de la colonne de mixture 57.The version of Figure 4 illustrates the case where a flow enriched with argon from the
De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21
avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se
réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de
-182 °C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleur de cuve 19 de la
première colonne 17. Là il se condense et est renvoyé en tête de la colonne pour servir
de reflux. La turbine 15 est couplé au compresseur froid 21.
De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23
et envoyé à l'échangeur 13 où il se vaporise.
La figure 5 montre une colonne Etienne 67 alimentée en cuve par un débit
liquide soutiré quelques plateaux en dessous du point d'injection de l'air 9 et au même
niveau que l'air insufflé 7. Ce liquide est pressurisé par la pompe 63 avant d'être envoyé
à la colonne Etienne. Le liquide formé en tête de la colonne Etienne 67 est envoyé en
tête de la première colonne 17.FIG. 5 shows a
La colonne Etienne opérant à 2.5 bar a un condenseur de tête 61 refroidi par
une partie du liquide de cuve 65 de la même colonne, le reste du liquide étant envoyé à
la colonne 17en dessous du point d'injection de l'air insufflé 7.The Etienne column operating at 2.5 bar has a
Le liquide détendu se vaporise dans le condenseur 61 avant d'être envoyé
quelques plateaux au-dessus du condenseur 19 de la colonne 17.The relaxed liquid vaporizes in the
De l'azote 25 de la tête de la colonne se réchauffe dans le sous-refroidisseur 21
avant d'être divisé en deux. Une partie 31 est envoyé à l'échangeur 13 où il se
réchauffe. Le reste 29 est envoyé au compresseur 21 avec une température d'entrée de
-182°C où il est comprimé à 4.9 bar avant d'être envoyé au rebouilleurs 19,69 des
colonnes 17,67 respectivement. Dans chaque rebouilleur il se condense et est renvoyé
en tête de la colonne 17 pour servir de reflux. La turbine 15 est couplé au compresseur
froid 21.
De l'oxygène 27 est soutiré en cuve de la colonne, pressurisé par la pompe 23
et envoyé à l'échangeur 13 où il se vaporise.
Claims (20)
- Process for separating air by cryogenic distillation in an apparatus comprising at least one column (17, 47, 57), comprising the steps of:compressing the air, purifying it and sending at least one portion (7, 9) thereof to a first (or the) column (17);separating air in the column at cryogenic temperature;compressing at least one portion of a fraction (25) containing at most 30 mol% of oxygen extracted from the top of the column in a compressor (21);at least partially cooling the said compressed fraction, condensing it in a bottom reboiler (19) of the first column and sending the condensed fraction back to the top of the column; andextracting an oxygen-rich liquid fraction (33) from the first column, pressurizing it to a pressure above that of the column (17) and vaporizing it in order to form an oxygen-rich pressurized gas product,
- Process according to Claim 1, in which the compressed fraction (25) contains at most 19 mol% of oxygen and at least 81 mol% of nitrogen.
- Process according to either of Claims 1 and 2, in which at least one portion (7) of the air is expanded in a turbine (15) before being sent to the first (or the) column.
- Process according to Claim 3, in which the production of work by the expansion of at least one portion of the air is at least partially used to compress the fraction containing at most 30% oxygen in one or more compression stages.
- Process according to Claim 1, 2, 3 or 4, in which at least one portion (9) of the air is compressed to a high pressure, condensed and sent to the first (or the) column.
- Process according to Claim 5, in which an unexpanded portion of the air is condensed by vaporizing an internal fluid of the first column or a fluid withdrawn therefrom (Fig. 1, 2).
- Process according to one of Claims 1 to 6, in which the oxygen-rich liquid fraction is vaporized by direct contact in an auxiliary column called a mixing column (47) (Fig. 3).
- Process according to one of Claims 1 to 7, in which an auxiliary column (57) intended for argon production is fed from the first column (Fig. 4).
- Process according to one of Claims 1 to 8, in which an oxygen-enriched liquid withdrawn from the single column is distilled in an auxiliary column in order to produce a fraction richer in oxygen and a fraction depleted in oxygen, both fractions being reintroduced into the first column (Fig. 5).
- Process according to one of Claims 1 to 9, in which at least one portion of the air intended for a column of the apparatus comes from the compressor of a gas turbine and/or a nitrogen-enriched gas coming from the first (or the) column is sent back to the gas turbine system.
- Process according to Claim 10, in which the inlet pressure of the gas turbine is greater than 15 bar abs.
- Process according to one of Claims 1 to 11, in which the intake temperature of the cold compressor (21) is below -100°C.
- Process according to Claim 12, in which the intake temperature of the cold compressor (21) is below -150°C.
- Process according to one of Claims 1 to 13, which produces or does not produce liquid (78) as final product.
- Plant for separating air by distillation in at least a first column (17) having a bottom reboiler (19), comprising means (7) for sending compressed and purified air to the first (or the) column, a compressor (21) for compressing a gas (25) containing at most 30 mol% of oxygen coming from the top of the column, means for sending the compressed gas to the bottom reboiler, means (33) for sending the at least partially compressed gas condensed in the bottom reboiler (19) back to the top of the column, optionally means for enriching the compressed gas with nitrogen upstream of the reboiler, means (27) for withdrawing an oxygen-enriched liquid from the bottom of the column, means (23) for pressurizing it and means (19, 47) for vaporizing the pressurized liquid by direct or indirect heat exchange, characterized in that it includes means for vaporizing the pressurized liquid by direct or indirect heat exchange with air (9) intended for the first column, and in that the compressor has an inlet temperature of at most 5°C warmer than a temperature of the first (or the) column and in that the compressor has an inlet temperature below room temperature.
- Plant according to Claim 15, comprising an air expansion turbine (15), in which the outlet of the turbine is connected to the first (or the) column.
- Plant according to either of Claims 15 and 16, in which the pressurized liquid vaporizes in a mixing column (47).
- Plant according to one of Claims 15 to 17, comprising an argon production column (57) fed from the column (17) having a bottom reboiler (19).
- Plant according to one of Claims 15 to 18, in which the column (17) having a bottom reboiler (19) has at least one intermediate condenser (39).
- Plant according to one of Claims 15 to 19, in which the column (17) having a bottom reboiler (19) does not have a top condenser.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0002924A FR2806152B1 (en) | 2000-03-07 | 2000-03-07 | PROCESS AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR0002924 | 2000-03-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1132700A1 EP1132700A1 (en) | 2001-09-12 |
EP1132700B1 true EP1132700B1 (en) | 2005-10-26 |
Family
ID=8847820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01400413A Expired - Lifetime EP1132700B1 (en) | 2000-03-07 | 2001-02-16 | Process and apparatus for air separation by cryogenic distillation |
Country Status (8)
Country | Link |
---|---|
US (1) | US6484534B2 (en) |
EP (1) | EP1132700B1 (en) |
AR (1) | AR027970A1 (en) |
BR (1) | BR0102482A (en) |
CA (1) | CA2339392A1 (en) |
DE (1) | DE60114269T2 (en) |
ES (1) | ES2252164T3 (en) |
FR (1) | FR2806152B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2830928B1 (en) * | 2001-10-17 | 2004-03-05 | Air Liquide | PROCESS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION AND AN INSTALLATION FOR CARRYING OUT SAID METHOD |
US7296437B2 (en) * | 2002-10-08 | 2007-11-20 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for separating air by cryogenic distillation and installation for implementing this process |
EP1697741A4 (en) * | 2003-12-04 | 2008-02-13 | Xencor Inc | Methods of generating variant proteins with increased host string content and compositions thereof |
EP1767884A1 (en) * | 2005-09-23 | 2007-03-28 | L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US8397535B2 (en) * | 2009-06-16 | 2013-03-19 | Praxair Technology, Inc. | Method and apparatus for pressurized product production |
WO2012155318A1 (en) * | 2011-05-13 | 2012-11-22 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the production of oxygen at high pressure by cryogenic distillation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1199293B (en) * | 1963-03-29 | 1965-08-26 | Linde Eismasch Ag | Method and device for air separation in a single column rectifier |
US3392536A (en) * | 1966-09-06 | 1968-07-16 | Air Reduction | Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams |
US5351492A (en) * | 1992-09-23 | 1994-10-04 | Air Products And Chemicals, Inc. | Distillation strategies for the production of carbon monoxide-free nitrogen |
US5379599A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Pumped liquid oxygen method and apparatus |
FR2721383B1 (en) * | 1994-06-20 | 1996-07-19 | Maurice Grenier | Process and installation for producing gaseous oxygen under pressure. |
US5832748A (en) * | 1996-03-19 | 1998-11-10 | Praxair Technology, Inc. | Single column cryogenic rectification system for lower purity oxygen production |
JP2875206B2 (en) * | 1996-05-29 | 1999-03-31 | 日本エア・リキード株式会社 | High purity nitrogen production apparatus and method |
US6082135A (en) * | 1999-01-29 | 2000-07-04 | The Boc Group, Inc. | Air separation method and apparatus to produce an oxygen product |
-
2000
- 2000-03-07 FR FR0002924A patent/FR2806152B1/en not_active Expired - Fee Related
-
2001
- 2001-02-16 DE DE60114269T patent/DE60114269T2/en not_active Expired - Lifetime
- 2001-02-16 ES ES01400413T patent/ES2252164T3/en not_active Expired - Lifetime
- 2001-02-16 EP EP01400413A patent/EP1132700B1/en not_active Expired - Lifetime
- 2001-03-05 CA CA002339392A patent/CA2339392A1/en not_active Abandoned
- 2001-03-06 AR ARP010101047A patent/AR027970A1/en unknown
- 2001-03-07 US US09/799,735 patent/US6484534B2/en not_active Expired - Lifetime
- 2001-03-07 BR BR0102482-5A patent/BR0102482A/en active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
US6484534B2 (en) | 2002-11-26 |
AR027970A1 (en) | 2003-04-16 |
EP1132700A1 (en) | 2001-09-12 |
FR2806152A1 (en) | 2001-09-14 |
DE60114269D1 (en) | 2005-12-01 |
FR2806152B1 (en) | 2002-08-30 |
CA2339392A1 (en) | 2001-09-07 |
US20020134105A1 (en) | 2002-09-26 |
DE60114269T2 (en) | 2006-07-20 |
BR0102482A (en) | 2001-10-16 |
ES2252164T3 (en) | 2006-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0713069B1 (en) | Process and plant for air separation | |
JP4728219B2 (en) | Method and system for producing pressurized air gas by cryogenic distillation of air | |
JP2836781B2 (en) | Air separation method | |
WO2007068858A2 (en) | Process for separating air by cryogenic distillation | |
EP1014020B1 (en) | Cryogenic process for separating air gases | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
FR2990500A1 (en) | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION | |
FR3062197A3 (en) | METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION | |
KR101947112B1 (en) | Method and device for generating two purified partial air streams | |
EP1189003B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
JP2000310481A (en) | Method and device for separating cryogenic air | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
US6305191B1 (en) | Separation of air | |
JP2000346547A (en) | Cryogenic distillation for separating air | |
JP2011519010A (en) | Apparatus and method for separating air by cryogenic distillation | |
JP2000356465A (en) | Low-temperature distillating system for separating air | |
FR2831249A1 (en) | Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column | |
JPH08170876A (en) | Method and equipment for manufacturing oxygen by cooling distribution | |
EP0612967A1 (en) | Process and installation for the production of oxygen and/or nitrogen under pressure | |
FR3011916A1 (en) | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION | |
FR2837564A1 (en) | Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation | |
FR2787559A1 (en) | Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions | |
EP1063485B1 (en) | Device and process for air separation by cryogenic distillation | |
JPH11325716A (en) | Separation of air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FI FR GB SE Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
17P | Request for examination filed |
Effective date: 20020312 |
|
AKX | Designation fees paid |
Free format text: DE ES FI FR GB SE |
|
17Q | First examination report despatched |
Effective date: 20030718 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FI FR GB SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051026 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60114269 Country of ref document: DE Date of ref document: 20051201 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060126 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060116 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2252164 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110302 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110228 Year of fee payment: 11 Ref country code: GB Payment date: 20110217 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120216 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120229 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120216 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140219 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60114269 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |