EP0689019B1 - Process and apparatus for producing gaseous oxygen under pressure - Google Patents

Process and apparatus for producing gaseous oxygen under pressure Download PDF

Info

Publication number
EP0689019B1
EP0689019B1 EP95401443A EP95401443A EP0689019B1 EP 0689019 B1 EP0689019 B1 EP 0689019B1 EP 95401443 A EP95401443 A EP 95401443A EP 95401443 A EP95401443 A EP 95401443A EP 0689019 B1 EP0689019 B1 EP 0689019B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
column
heat exchange
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95401443A
Other languages
German (de)
French (fr)
Other versions
EP0689019A1 (en
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9464405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0689019(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0689019A1 publication Critical patent/EP0689019A1/en
Application granted granted Critical
Publication of EP0689019B1 publication Critical patent/EP0689019B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the present invention relates to a process for producing gaseous oxygen under pressure as defined in the preamble of claim 1. Such a process is known from document FR-A-2 688 052.
  • the pressures shown are absolute pressures.
  • condensation and vaporization is a condensation or an actual spray, either pseudo-condensation or pseudo-vaporization, depending on whether the pressures are subcritical or supercritical.
  • the object of the invention is to provide a method "pump" offering great freedom of regulation of operating parameters and particularly well adapted, from the point of view of energy consumption specific as well as liquid production, large installations, i.e. producing at least 700 tonnes of oxygen per day.
  • the subject of the invention is a process for the production of gaseous oxygen gas of the aforementioned type, in which the first press is the average pressure and part of the air at the first press is sent to the medium pressure column without being relaxed.
  • the subject of the invention is also a installation for the production of gaseous oxygen intended for the implementation of the process defined above and comprising the features of claim 7.
  • the installation may in particular comprise a single air compressor with n stages, said first compression means being constituted by a certain number p of stages, with p ⁇ n , and said second compression means being constituted by the whole of the compressor.
  • the air distillation system shown in Figure 1 essentially comprises: a air compressor 1; an air cleaning device 2 compressed into water and CO2 by adsorption, this device comprising two adsorption bottles 2A, 2B, one of which works in adsorption while the other is in progress regeneration; a fan-blower assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower possibly being equipped with a refrigerant (not represented); a heat exchanger 6 constituting the installation heat exchange line; a double distillation column 7 comprising a medium column pressure 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relationship with the tank liquid (oxygen) of column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a nitrogen tank liquid 13, the bottom of which is connected to a nitrogen pump liquid 14.
  • This installation is mainly intended to supply, via a line 15, oxygen gaseous under a predetermined high pressure, which can be between approximately 13 bars and a few tens bars. These are significant amounts of oxygen gaseous, at least equal to around 700 t / day and capable of reach several thousand tonnes per day.
  • liquid oxygen drawn from the column 9 tank via line 16 is stored in the reservoir 11.
  • a flow of oxygen, withdrawn from this tank, is brought to high pressure by pump 12 in the liquid state, then vaporized and reheated under this high pressure in passages 17 of exchanger 6.
  • the heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
  • Compressor 1 is a multi-stage compressor, with n stages. All of the incoming atmospheric air is compressed by the first p stages at medium pressure, which is the operating pressure of column 8, then is precooled in 18 and cooled to around ambient temperature in 19, is purified in one, 2A for example, adsorption bottles, and divided into two fractions.
  • the first fraction at medium pressure, representing for example approximately 40% of the flow of treated air, is cooled from the hot end to the cold end of the heat exchange line 6, in passages 20 thereof, up to '' in the vicinity of its dew point, then is directly introduced into the tank of column 8.
  • the rest of the purified air in 2A is returned to the inlet of the ( p + 1) th stage of compressor 1 and is compressed by the following stages up to a first high air pressure, significantly higher than the average pressure of column 8, in practice greater than 9 bars.
  • the compressed air, precooled in 19A, is again divided into two streams.
  • the first flow representing at least 45% of the treated air flow, is boosted to a second high pressure by the booster 5, which is driven by the turbine 4.
  • This second high air pressure is between approximately 25 bars and the condensing pressure air by vaporizing oxygen under the high oxygen pressure.
  • the first air flow is then introduced to the hot end of exchanger 6 and completely cooled up to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20A of the exchanger, then is partially relaxed at low pressure in a relief valve 21 and partly to the average pressure in an expansion valve 21A and introduced respectively at an intermediate level in the column 9 and at the bottom of column 8. The rest air is relaxed at medium pressure in the turbine 4 then sent directly, via a line 22, at the bottom of column 8.
  • the second stream is introduced under the first high pressure in exchange line 6, cooled and liquefied until the cold end of it in passages 20B, expanded in an expansion valve 21B and connected to the current from the expansion valve 21A.
  • Low pressure nitrogen is heated in passages 28 of exchanger 6 then recovered via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, bottle 2B in the example considered, before to be evacuated via a pipe 31.
  • part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen).
  • the installation product in addition to low pressure nitrogen gas from directly from the head of column 9 and oxygen high pressure gas, pressurized nitrogen gas, obtained by vaporization in the heat exchange line a flow of liquid nitrogen taken from line 33 via a pipe 35. This nitrogen vaporization can especially by condensation of the air contained in passages 20A or 20B.
  • FIG. 2 The installation shown in Figure 2 is intended to produce gaseous oxygen under pressure high, for example of the order of 40 bars. She understands essentially two air compressors 41 and 42, one apparatus 43 for adsorption purification, a double distillation column 44 consisting of a column medium pressure 45, operating at around 6 bars, surmounted by a low pressure column 46, operating at a pressure slightly higher than 1 bar, a heat exchange line 47, a sub-cooler 48, a liquid oxygen pump 49, a cold blower 50, a first turbine 51 whose wheel is mounted on the same tree as that of the cold blower, and a second turbine 52 braked by an appropriate brake 53 such than an alternator.
  • a double distillation column 44 consisting of a column medium pressure 45, operating at around 6 bars, surmounted by a low pressure column 46, operating at a pressure slightly higher than 1 bar
  • a heat exchange line 47 a sub-cooler 48
  • a liquid oxygen pump 49 a cold blower 50
  • a first turbine 51 whose wheel is mounted
  • the first stream is directly cooled in passages 62 of the exchange line 47.
  • a fraction of this air came out of the exchange line, relaxed at the low pressure in turbine 52, and blown into a intermediate point of the column 46 via a pipe 63.
  • the rest of the medium pressure air continues to cool to the cold end of the exchange line, where it is near its dew point and then is sent to the bottom of column 45.
  • the rest of the air from the device 43 is compressed at a first high pressure, for example from 16.5 bars, by compressor 42, then enters air cooling passages 64 of the exchange line.
  • the blower 50 which provides this compression is driven by the turbine 51, so that none external energy is required. Take in account the mechanical losses, the amount of cold produced by this turbine is slightly higher than the heat of compression, and the excess contributes to keeping cold of the installation. The balance of the necessary frigories for this keeping cold is provided by the turbine 52, or, alternatively, if the oxygen to be produced must have a high purity, by air or nitrogen expansion to medium pressure in a turbine, in a conventional manner.
  • the installation can also generate oxygen at a pressure low enough to allow vaporization of oxygen by condensation at the highest process air pressure.
  • This oxygen pressure would be less than 8 for example bars.
  • a second pump 70 compressing liquid oxygen reduced purity at lower intermediate pressure at 8 bars. This oxygen is vaporized by condensation of a corresponding part of the air supercharged by the blower 50, which only has to supply the heat of compensation for excess cold due to vaporization high pressure oxygen.
  • mixed lines have been indicated on the Figure 2 a medium pressure liquid nitrogen pump 71 bringing this nitrogen, withdrawn from column 45, to a intermediate pressure low enough to allow its vaporization by air condensation at the highest process pressure, i.e. 23 bars.
  • FIG. 2 Also shown in Figure 2 is a line 72 for the production of liquid oxygen withdrawn from the tank of the column 46, as well as a pipe 72A of production of liquid nitrogen from the head of the column 45.
  • FIG. 3 The installation in Figure 3 is a variant of that of Figure 2.
  • a fraction of the air coming from the compressor 42 is overpressed by a hot blower 73, cooled in 47 to temperature T2, again boosted by the blower cold 50, reintroduced into the exchange line at a temperature T3 higher than T2, then treated in two different flows from temperature T4, like previously.
  • the rest of the air from compressor 42 is cooled in additional passages 74 of the exchange line 47 up to a temperature T5 included between temperatures T4 and T1, and, at this temperature, some of this air has come out of the exchange line, expanded at medium pressure in an additional turbine 75 coupled to the blower 73, then sent to the tank from column 45.
  • the rest of the air carried by the passages 74 continues to cool down to the end cold of the exchange line, where it is liquefied and sub-cooled, then is relaxed at medium pressure in a expansion valve 76 and sent in the lower part from column 45.
  • the invention is particularly advantageous, from an energy point of view, when the pressure of oxygen vaporization is greater than approximately 20 bars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

La présente invention est relative à un procédé de production d'oxygène gazeux sous pression tel que défini dans le préambule de la revendication 1. Un tel procédé est connu du document FR-A-2 688 052.The present invention relates to a process for producing gaseous oxygen under pressure as defined in the preamble of claim 1. Such a process is known from document FR-A-2 688 052.

Dans le présent mémoire, les pressions indiquées sont des pressions absolues. De plus, on entend par "condensation" et "vaporisation" soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions sont subcritiques ou supercritiques.In this brief, the pressures shown are absolute pressures. In addition, we hear by "condensation" and "vaporization" is a condensation or an actual spray, either pseudo-condensation or pseudo-vaporization, depending on whether the pressures are subcritical or supercritical.

Les procédés du type ci-dessus, dits procédés "à pompe", présentent l'avantage de supprimer ou de réduire la nécessité de compresseurs d'oxygène gazeux, qui sont des machines coûteuses, posant de sérieux problèmes de fiabilité et dont le rendement est généralement médiocre.The processes of the above type, called processes "pump" have the advantage of eliminating or reduce the need for gaseous oxygen compressors, which are expensive machines, posing serious reliability issues and whose performance is generally poor.

L'invention a pour but de fournir un procédé "à pompe" offrant une grande liberté de régulation des paramètres de fonctionnement et particulièrement bien adapté, du point de vue de la consommation énergétique spécifique ainsi que de la production de liquide, aux installations de grande taille, c'est-à-dire produisant au moins 700 tonnes d'oxygène par jour.The object of the invention is to provide a method "pump" offering great freedom of regulation of operating parameters and particularly well adapted, from the point of view of energy consumption specific as well as liquid production, large installations, i.e. producing at least 700 tonnes of oxygen per day.

A cet effet, l'invention a pour objet un procédé de production d'oxyqène gazeux du type précité, dans lequel la première pression est la moyenne pression et une partie de l'air à la première pression est envoyée à la colonne moyenne pression sans être détendue.To this end, the subject of the invention is a process for the production of gaseous oxygen gas of the aforementioned type, in which the first press is the average pressure and part of the air at the first press is sent to the medium pressure column without being relaxed.

Le procédé suivant l'invention peut comporter une ou plusieurs des caractéristiques suivantes :

  • on comprime une troisième fraction de l'air à distiller à une pression intermédiaire entre lesdites première et haute pressions d'air, on la refroidit, on la liquéfie, on la détend et on l'introduit dans la double colonne:
  • ladite deuxième fraction d'air est portée à une pression d'air intermédiaire, n'est refroidie que partiellement, puis est surpressée par une soufflante froide, réintroduite dans la ligne d'échange thermique, et refroidie jusqu'à ladite température intermédiaire, à laquelle cet air est de nouveau sorti de la ligne d'échange thermique, détendu à la moyenne pression dans ladite turbine de détente, laquelle est couplée à la soufflante froide, et envoyé dans la double colonne;
  • une partie de la troisième fraction d'air est détendue à la moyenne pression, après refroidissement partiel, dans une seconde turbine couplée à une soufflante de surpression de ladite deuxième fraction d'air, puis est envoyée à la colonne moyenne pression;
  • une partie de l'air à la première pression est sorti de la ligne d'échange thermique à une troisième température intermédiaire de refroidissement, et détendu à la basse pression dans une turbine d'insufflation avant d'être introduit en un point intermédiaire de la colonne basse pression;
  • ladite pression de vaporisation d'oxygène est sensiblement la pression de production.
The process according to the invention may include one or more of the following characteristics:
  • a third fraction of the air to be distilled is compressed to an intermediate pressure between said first and high air pressures, it is cooled, it is liquefied, it is expanded and it is introduced into the double column:
  • said second fraction of air is brought to an intermediate air pressure, is only partially cooled, then is pressurized by a cold blower, reintroduced into the heat exchange line, and cooled to said intermediate temperature, at which this air is again out of the heat exchange line, expanded at medium pressure in said expansion turbine, which is coupled to the cold blower, and sent to the double column;
  • part of the third fraction of air is expanded to medium pressure, after partial cooling, in a second turbine coupled to a blower for boosting said second fraction of air, then is sent to the medium pressure column;
  • a part of the air at the first pressure is taken out of the heat exchange line at a third intermediate cooling temperature, and expanded at low pressure in a blowing turbine before being introduced at an intermediate point of the low pressure column;
  • said oxygen vaporization pressure is substantially the production pressure.

L'invention a également pour objet une installation de production d'oxygène gazeux destinée à la mise en oeuvre du procédé défini ci-dessus et comprenant les caractéristiques de la revendication 7. The subject of the invention is also a installation for the production of gaseous oxygen intended for the implementation of the process defined above and comprising the features of claim 7.

L'installation peut notamment comprendre un compresseur d'air unique à n étages, lesdits premiers moyens de compression étant constitués par un certain nombre p d'étages, avec p < n, et lesdits deuxièmes moyens de compression étant constitués par l'ensemble du compresseur.The installation may in particular comprise a single air compressor with n stages, said first compression means being constituted by a certain number p of stages, with p < n , and said second compression means being constituted by the whole of the compressor.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les Figures 1 à 3 représentent respectivement trois installations de production d'oxygène conformes à l'invention.Examples of implementation of the invention will now be described with reference to the drawings attached, in which Figures 1 to 3 show respectively three oxygen production plants according to the invention.

L'installation de distillation d'air représentée à la Figure 1 comprend essentiellement : un compresseur d'air 1; un appareil 2 d'épuration de l'air comprimé en eau et en CO2 par adsorption, cet appareil comprenant deux bouteilles d'adsorption 2A, 2B dont l'une fonctionne en adsorption pendant que l'autre est en cours de régénération; un ensemble turbine-soufflante 3 comprenant une turbine de détente 4 et une soufflante ou surpresseur 5 dont les arbres sont couplés, la soufflante étant éventuellement équipée d'un réfrigérant (non représenté); un échangeur de chaleur 6 constituant la ligne d'échange thermique de l'installation; une double colonne de distillation 7 comprenant une colonne moyenne pression 8 surmontée d'une colonne basse pression 9, avec un vaporiseur-condenseur 10 mettant la vapeur de tête (azote) de la colonne 8 en relation d'échange thermique avec le liquide de cuve (oxygène) de la colonne 9; un réservoir d'oxygène liquide 11 dont le fond est relié à une pompe d'oxygène liquide 12; et un réservoir d'azote liquide 13 dont le fond est relié à une pompe d'azote liquide 14.The air distillation system shown in Figure 1 essentially comprises: a air compressor 1; an air cleaning device 2 compressed into water and CO2 by adsorption, this device comprising two adsorption bottles 2A, 2B, one of which works in adsorption while the other is in progress regeneration; a fan-blower assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower possibly being equipped with a refrigerant (not represented); a heat exchanger 6 constituting the installation heat exchange line; a double distillation column 7 comprising a medium column pressure 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relationship with the tank liquid (oxygen) of column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a nitrogen tank liquid 13, the bottom of which is connected to a nitrogen pump liquid 14.

Cette installation est principalement destinée à fournir, via une conduite 15, de l'oxygène gazeux sous une haute pression prédéterminée, qui peut être comprise entre environ 13 bars et quelques dizaines de bars. Il s'agit de quantités importantes d'oxygène gazeux, au moins égales à 700 t/jour environ et pouvant atteindre plusieurs milliers de tonnes par jour.This installation is mainly intended to supply, via a line 15, oxygen gaseous under a predetermined high pressure, which can be between approximately 13 bars and a few tens bars. These are significant amounts of oxygen gaseous, at least equal to around 700 t / day and capable of reach several thousand tonnes per day.

Pour cela, de l'oxygène liquide soutiré de la cuve de la colonne 9 via une conduite 16 est stocké dans le réservoir 11. Un débit d'oxygène, soutiré de ce réservoir, est amené à la haute pression par la pompe 12 à l'état liquide, puis vaporisé et réchauffé sous cette haute pression dans des passages 17 de l'échangeur 6.For this, liquid oxygen drawn from the column 9 tank via line 16 is stored in the reservoir 11. A flow of oxygen, withdrawn from this tank, is brought to high pressure by pump 12 in the liquid state, then vaporized and reheated under this high pressure in passages 17 of exchanger 6.

La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes.The heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.

Le compresseur 1 est un compresseur multi-étages, à n étages. La totalité de l'air atmosphérique entrant est comprimé par les p premiers étages à la moyenne pression, qui est la pression de fonctionnement de la colonne 8, puis est prérefroidi en 18 et refroidi au voisinage de la température ambiante en 19, est épuré dans l'une, 2A par exemple, des bouteilles d'adsorption, et divisé en deux fractions.Compressor 1 is a multi-stage compressor, with n stages. All of the incoming atmospheric air is compressed by the first p stages at medium pressure, which is the operating pressure of column 8, then is precooled in 18 and cooled to around ambient temperature in 19, is purified in one, 2A for example, adsorption bottles, and divided into two fractions.

La première fraction, sous la moyenne pression, représentant par exemple 40% environ du débit d'air traité, est refroidie, du bout chaud au bout froid de la ligne d'échange thermique 6, dans des passages 20 de celle-ci, jusqu'au voisinage de son point de rosée, puis est directement introduite en cuve de la colonne 8. Le reste de l'air épuré en 2A est renvoyé à l'entrée du (p + 1) ème étage du compresseur 1 et est comprimé par les étages suivants jusqu'à une première haute pression d'air, nettement supérieure à la moyenne pression de la colonne 8, en pratique supérieure à 9 bars.The first fraction, at medium pressure, representing for example approximately 40% of the flow of treated air, is cooled from the hot end to the cold end of the heat exchange line 6, in passages 20 thereof, up to '' in the vicinity of its dew point, then is directly introduced into the tank of column 8. The rest of the purified air in 2A is returned to the inlet of the ( p + 1) th stage of compressor 1 and is compressed by the following stages up to a first high air pressure, significantly higher than the average pressure of column 8, in practice greater than 9 bars.

L'air ainsi comprimé, prérefroidi en 19A, est de nouveau divisé en deux flux.The compressed air, precooled in 19A, is again divided into two streams.

Le premier flux, représentant au moins 45% du débit d'air traité, est surpressé à une deuxième haute pression par le surpresseur 5, lequel est entraíné par la turbine 4. Cette deuxième haute pression d'air est comprise entre 25 bars environ et la pression de condensation de l'air par vaporisation de l'oxygène sous la haute pression d'oxygène. The first flow, representing at least 45% of the treated air flow, is boosted to a second high pressure by the booster 5, which is driven by the turbine 4. This second high air pressure is between approximately 25 bars and the condensing pressure air by vaporizing oxygen under the high oxygen pressure.

Le premier flux d'air est alors introduit au bout chaud de l'échangeur 6 et refroidi en totalité jusqu'à une température intermédiaire. A cette température, une fraction de l'air poursuit son refroidissement et est liquéfiée dans des passages 20A de l'échangeur, puis est détendue pour partie à la basse pression dans une vanne de détente 21 et pour partie à la moyenne pression dans une vanne de détente 21A et introduite respectivement à un niveau intermédiaire dans la colonne 9 et dans la partie inférieure de la colonne 8. Le reste de l'air est détendu à la moyenne pression dans la turbine 4 puis envoyé directement, via une conduite 22, à la base de la colonne 8.The first air flow is then introduced to the hot end of exchanger 6 and completely cooled up to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20A of the exchanger, then is partially relaxed at low pressure in a relief valve 21 and partly to the average pressure in an expansion valve 21A and introduced respectively at an intermediate level in the column 9 and at the bottom of column 8. The rest air is relaxed at medium pressure in the turbine 4 then sent directly, via a line 22, at the bottom of column 8.

Le deuxième flux est introduit sous la première haute pression dans la ligne d'échange 6, refroidi et liquéfié jusqu'au bout froid de celle-ci dans des passages 20B, détendu dans une vanne de détente 21B et réuni au courant issu de la vanne de détente 21A.The second stream is introduced under the first high pressure in exchange line 6, cooled and liquefied until the cold end of it in passages 20B, expanded in an expansion valve 21B and connected to the current from the expansion valve 21A.

On reconnait par ailleurs sur la Figure 1 les conduites habituelles des installations à double colonne, celle représentée étant du type dit "à minaret", c' est-à-dire avec production d'azote sous la basse pression : les conduites 23 à 25 d'injection dans la colonne 9, à des niveaux croissants, de "liquide riche" (air enrichi en oxygène) détendu de "liquide pauvre inférieur" (azote impur) détendu et de "liquide pauvre supérieur" (azote pratiquement pur) détendu, respectivement, ces trois fluides étant respectivement soutirés à la base, en un point intermédiaire et au sommet de la colonne 8; et les conduites 26 de soutirage d'azote gazeux partant du sommet de la colonne 9 et 27 d'évacuation du gaz résiduaire (azote impur) partant du niveau d'injection du liquide pauvre inférieur. L'azote basse pression est réchauffé dans des passages 28 de l'échangeur 6 puis récupéré via une conduite 29, tandis que le gaz résiduaire, après réchauffement dans des passages 30 de l'échangeur, est utilisé pour régénérer une bouteille d'adsorption, la bouteille 2B dans l'exemple considéré, avant d'être évacué via une conduite 31.We also recognize in Figure 1 the normal pipes in double column installations, that represented being of the type known as "minaret", that is to say with nitrogen production under low pressure: the injection lines 23 to 25 in column 9, to increasing levels of "rich liquid" (enriched air oxygen) relaxed from "lower lean liquid" (nitrogen impure) relaxed and "superior poor liquid" (nitrogen practically pure) relaxed, respectively, these three fluids being respectively drawn off at the base, in a intermediate point and at the top of column 8; and the pipes 26 for withdrawing nitrogen gas leaving from top of column 9 and 27 for discharging the residual gas (impure nitrogen) from the injection level of the lower poor liquid. Low pressure nitrogen is heated in passages 28 of exchanger 6 then recovered via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, bottle 2B in the example considered, before to be evacuated via a pipe 31.

On voit encore sur la Figure 1 qu'une partie de l'azote liquide moyenne pression est, après détente dans une vanne de détente 32, stockée dans le réservoir 13, et qu'une production d'azote liquide et/ou d'oxygène liquide est fournie via une conduite 33 (pour l'azote) et/ou 34 (pour l'oxygène). De plus, l'installation produit, outre l'azote gazeux basse pression provenant directement de la tête de la colonne 9 et l'oxygène gazeux haute pression, de l'azote gazeux sous pression, obtenu par vaporisation dans la ligne d'échange thermique d'un débit d'azote liquide prélevé dans la conduite 33 via une conduite 35. Cette vaporisation d'azote peut notamment s'effectuer par condensation de l'air contenu dans les passages 20A ou 20B.We can still see in Figure 1 that part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen). In addition, the installation product, in addition to low pressure nitrogen gas from directly from the head of column 9 and oxygen high pressure gas, pressurized nitrogen gas, obtained by vaporization in the heat exchange line a flow of liquid nitrogen taken from line 33 via a pipe 35. This nitrogen vaporization can especially by condensation of the air contained in passages 20A or 20B.

Comme expliqué dans d'autres demandes de brevet qui décrivent des procédés "à pompe" et "à paliers décalés", c'est-à-dire dans lesquels comme dans la présente invention, l'air qui apporte l'essentiel de la chaleur de vaporisation de l'oxygène se condense au-dessous de la température de vaporisation de cet oxygène (voir par exemple les demandes de brevet français n° 91-02 917, 91-15 935, 92-02 462, 92-07 662 et 93-04 274), le bilan frigorifique de l'installation est équilibré, avec un écart de température au bout chaud de la ligne d'échange thermique de l'ordre de 3°C, en soutirant de l'installation au moins un produit (oxygène et/ou azote) sous forme liquide, via les conduites 33 et/ou 34.As explained in other requests for patent describing "pump" and "step" processes offset ", that is to say in which as in the present invention, the air which provides most of the heat of vaporization of oxygen condenses below of the vaporization temperature of this oxygen (see for example French patent applications n ° 91-02 917, 91-15 935, 92-02 462, 92-07 662 and 93-04 274), the refrigeration balance of the installation is balanced, with a temperature difference at the hot end of the line heat exchange of the order of 3 ° C, drawing from installation of at least one product (oxygen and / or nitrogen) in liquid form, via lines 33 and / or 34.

Dans le procédé ci-dessus, le fait de ne comprimer une partie de l'air entrant qu'à la moyenne pression réduit la quantité de liquide qu'il est nécessaire de soutirer de l'installation. Ceci est très avantageux dans le cas des grosses installations, où les quantités de liquide soutirées avec les procédés de l'art antérieur sont importantes. De plus, le fait de devoir soutirer une quantité réduite de liquide est parfaitement compatible avec les conditions d'exploitation de ces grosses installations, qui doivent généralement produire également une certaine quantité de liquide.In the above process, the fact of not compress some of the incoming air than average pressure reduces the amount of liquid it needs to extract from the installation. This is very advantageous in the case of large installations, where the quantities of liquid withdrawn with the processes of the art anterior are important. In addition, the fact of having to withdrawing a reduced amount of liquid is perfectly compatible with the operating conditions of these large installations, which usually have to produce also a certain amount of liquid.

Par ailleurs, les calculs montrent que le procédé décrit ci-dessus conduit à une énergie spécifique de production d'oxygène très avantageuse.Furthermore, calculations show that the process described above leads to a specific energy very advantageous oxygen production.

L'installation représentée à la Figure 2 est destinée à produire de l'oxygène gazeux sous une pression élevée, par exemple de l'ordre de 40 bars. Elle comprend essentiellement deux compresseurs d'air 41 et 42, un appareil 43 d'épuration par adsorption, une double colonne de distillation 44 constituée d'une colonne moyenne pression 45, fonctionnant sous environ 6 bars, surmontée d'une colonne basse pression 46, fonctionnant sous une pression légèrement supérieure à 1 bar, une ligne d'échange thermique 47, un sous-refroidisseur 48, une pompe à oxygène liquide 49, une soufflante froide 50, une première turbine 51 dont la roue est montée sur le même arbre que celle de la soufflante froide, et une deuxième turbine 52 freinée par un frein approprié 53 tel qu'un alternateur.The installation shown in Figure 2 is intended to produce gaseous oxygen under pressure high, for example of the order of 40 bars. She understands essentially two air compressors 41 and 42, one apparatus 43 for adsorption purification, a double distillation column 44 consisting of a column medium pressure 45, operating at around 6 bars, surmounted by a low pressure column 46, operating at a pressure slightly higher than 1 bar, a heat exchange line 47, a sub-cooler 48, a liquid oxygen pump 49, a cold blower 50, a first turbine 51 whose wheel is mounted on the same tree as that of the cold blower, and a second turbine 52 braked by an appropriate brake 53 such than an alternator.

On reconnait sur le dessin les conduites classiques de la double colonne, à savoir : une conduite 54 de remontée en un point intermédiaire de la colonne 46, après sous-refroidissement en 48 et détente à la basse pression dans une vanne de détente 55, du "liquide riche" (air enrichi en oxygène) recueilli en cuve de la colonne 45; une conduite 56 de remontée en tête de la colonne 46, après sous-refroidissement en 48 et détente à la basse pression dans une vanne de détente 57, de "liquide pauvre" (azote à peu près pur) soutiré en tête de la colonne 45; et une conduite 58 de soutirage d'azote impur, constituant le gaz résiduaire W de l'installation, cette conduite partant de la tête de la colonne 46, traversant le sous-refroidisseur 48 puis se raccordant à des passages 59 de réchauffement d'azote de la ligne d'échange 47. L'azote impur ainsi réchauffé jusqu'à la température ambiante est évacué de l'installation via une conduite 60.We recognize on the drawing the pipes double column classics, namely: a pipe 54 ascent at an intermediate point in the column 46, after sub-cooling in 48 and expansion at low pressure in an expansion valve 55, "liquid rich "(oxygen-enriched air) collected in the tank of the column 45; a riser pipe 56 at the head of the column 46, after sub-cooling in 48 and expansion at low pressure in an expansion valve 57, "poor liquid" (almost pure nitrogen) withdrawn at the head from column 45; and a line 58 for withdrawing nitrogen impure, constituting the waste gas W of the installation, this pipe leaving from the head of column 46, passing through the sub-cooler 48 then connecting to passages 59 for heating the line with nitrogen exchange 47. The impure nitrogen thus heated up to the room temperature is removed from the installation via a driving 60.

La pompe 49 aspire l'oxygène liquide sous environ 1 bar en cuve de la colonne 46, le porte à la pression de production désirée et l'introduit dans des passages 61 de vaporisation-réchauffement d'oxygène de la ligne d'échange.Pump 49 sucks liquid oxygen under about 1 bar in the tank of column 46, brings it to the desired production pressure and introduces it into oxygen spray-warming passages 61 the exchange line.

L'air à distiller, comprimé à la moyenne pression par le compresseur 41 et épuré en eau et en CO2 en 43, est divisé en deux flux.Air to be distilled, compressed to average pressure by compressor 41 and purified of water and CO2 in 43, is divided into two streams.

Le premier flux est directement refroidi dans des passages 62 de la ligne d'échange 47. A une température T1 relativement froide mais supérieure à la température du bout froid de cette ligne d'échange, une fraction de cet air est sorti de la ligne d'échange, détendu à la basse pression dans la turbine 52, et insufflé en un point intermédiaire de la colonne 46 via une conduite 63. Le reste de l'air moyenne pression poursuit son refroidissement jusqu'au bout froid de la ligne d'échange, où il se trouve au voisinage de son point de rosée, puis est envoyé en cuve de la colonne 45.The first stream is directly cooled in passages 62 of the exchange line 47. At a temperature T1 relatively cold but above temperature from the cold end of this exchange line, a fraction of this air came out of the exchange line, relaxed at the low pressure in turbine 52, and blown into a intermediate point of the column 46 via a pipe 63. The rest of the medium pressure air continues to cool to the cold end of the exchange line, where it is near its dew point and then is sent to the bottom of column 45.

Le reste de l'air issu de l'appareil 43 est comprimé à une première haute pression, par exemple de 16,5 bars, par le compresseur 42, puis pénètre dans des passages 64 de refroidissement d'air de la ligne d'échange.The rest of the air from the device 43 is compressed at a first high pressure, for example from 16.5 bars, by compressor 42, then enters air cooling passages 64 of the exchange line.

A une température intermédiaire T2 inférieure à la température ambiante, nettement supérieure à T1 et voisine de la température de vaporisation de l'oxygène, une partie de cet air est sortie de la ligne d'échange via une conduite 65 et amenée à l'aspiration de la soufflante froide 50. Celle-ci porte cet air à la haute pression de 23 bars et, via une conduite 66, l'air ainsi surpressé est renvoyé dans la ligne d'échange, à une température T3 supérieure à T2, et poursuit son refroidissement dans des passages d'air surpressé 67 de cette dernière. Une partie de l'air véhiculé par les passages 67 est de nouveau sorti de la ligne d'échange à une deuxième température intermédiaire T4 inférieure à T2 et supérieure à T1 et détendu à la moyenne pression (6 bars) dans la turbine 51. L'air qui s'échappe de cette turbine est envoyé en cuve de la colonne 45. Le reste de l'air véhiculé par les passages 67 poursuit son refroidissement jusqu'au bout froid de la ligne d'échange, en étant liquéfié puis sous-refroidi. Il est ensuite détendu à la moyenne pression dans une vanne de détente 68 et envoyé quelques plateaux au-dessus de la cuve de la colonne 45. De même, l'air véhiculé par les passages 64 et non sortie via la conduite 65 est refroidi jusqu'au bout froid de la ligne d'échange, puis détendu à la moyenne pression dans une vanne de détente 69 et envoyé quelques plateaux au-dessus de la cuve de la colonne 45.At a lower intermediate temperature T2 at room temperature, significantly higher than T1 and close to the oxygen vaporization temperature, some of this air has left the exchange line via a pipe 65 and brought to the suction of the blower cold 50. This brings this air to the high pressure of 23 bar and, via line 66, the air thus overpressed is returned to the exchange line to a temperature T3 higher than T2, and continues to cool in compressed air passages 67 of this last. Part of the air carried by the passages 67 again came off the exchange line at a second intermediate temperature T4 lower than T2 and greater than T1 and relaxed at medium pressure (6 bars) in the turbine 51. The air which escapes from this turbine is sent to the bottom of column 45. The rest of the air conveyed by the passages 67 continues to cool to the cold end of the exchange line, in being liquefied and then sub-cooled. He is then relaxed at medium pressure in an expansion valve 68 and sent some trays above the tank of the column 45. Likewise, the air carried by the passages 64 and not exited via line 65 is cooled to cold end of the exchange line and then relaxed to the medium pressure in an expansion valve 69 and sent some trays above the column tank 45.

Comme expliqué dans la demande FR 92 02 462 précitée, la compression d'une partie au moins de l'air sous la première haute pression de la température intermédiaire T2, qui est voisine du palier de vaporisation de l'oxygène, à la température T3 introduit dans la ligne d'échange, entre ces deux températures, une quantité de chaleur qui compense sensiblement l'excédent de froid produit par cette vaporisation. On remarque qu'entre T3 et T2, l'oxygène échange de la chaleur avec la totalité de l'air à 16,5 bars et avec l'air surpressé à 23 bars. On peut ainsi obtenir un diagramme d'échange thermique (enthalpie en ordonnées, température en abscisses) très favorable, avec un faible écart de température, de l'ordre de 2 à 3°C, au bout chaud de la ligne d'échange.As explained in application FR 92 02 462 above, the compression of at least part of the air under the first high temperature pressure intermediate T2, which is close to the vaporization level oxygen, at the temperature T3 introduced into the exchange line, between these two temperatures, a amount of heat which substantially compensates for the excess of cold produced by this vaporization. We notice that between T3 and T2, the oxygen exchanges heat with all the air at 16.5 bars and with the compressed air at 23 bars. We can thus obtain an exchange diagram thermal (enthalpy on the ordinate, temperature in very favorable, with a small difference of temperature, of the order of 2 to 3 ° C, at the hot end of the exchange line.

La soufflante 50 qui assure cette compression est entraínée par la turbine 51, de sorte qu'aucune énergie extérieure n'est nécessaire. Compte-tenu des pertes mécaniques, la quantité de froid produite par cette turbine est légèrement supérieure à la chaleur de compression, et l'excédent contribue au maintien en froid de l'installation. Le solde des frigories nécessaires pour ce maintien en froid est fourni par la turbine 52, ou, en variante, si l'oxygène à produire doit avoir une pureté élevée, par détente d'air ou d'azote à la moyenne pression dans une turbine, de façon classique.The blower 50 which provides this compression is driven by the turbine 51, so that none external energy is required. Take in account the mechanical losses, the amount of cold produced by this turbine is slightly higher than the heat of compression, and the excess contributes to keeping cold of the installation. The balance of the necessary frigories for this keeping cold is provided by the turbine 52, or, alternatively, if the oxygen to be produced must have a high purity, by air or nitrogen expansion to medium pressure in a turbine, in a conventional manner.

Le très bon rendement énergétique assuré par l'utilisation de la soufflante froide 50 est conservé ici, avec en outre l'avantage, comme précédemment, d'une production de liquide moindre, voire nulle dans ce cas, et également avec l'avantage d'une alimentation simplifiée de la turbine d'insufflation 52.The very good energy efficiency ensured by the use of the cold blower 50 is retained here, with the added benefit, as before, of less or no liquid production in this case, and also with the advantage of a simplified diet of the insufflation turbine 52.

L'installation peut également produire de l'oxygène sous une pression suffisamment basse pour permettre la vaporisation d'oxygène par condensation d'air à la plus haute pression d'air du procédé. Cette pression d'oxygène serait par exemple inférieure à 8 bars. Ainsi, on a indiqué en traits mixtes à la Figure 2 une seconde pompe 70 comprimant de l'oxygène liquide à pureté réduite à une pression intermédiaire inférieure à 8 bars. Cet oxygène est vaporisé par condensation d'une partie correspondante de l'air surpressé par la soufflante 50, laquelle n'a à fournir que la chaleur de compensation de l'excédent de froid dû à la vaporisation de l'oxygène haute pression.The installation can also generate oxygen at a pressure low enough to allow vaporization of oxygen by condensation at the highest process air pressure. This oxygen pressure would be less than 8 for example bars. Thus, we have indicated in phantom in Figure 2 a second pump 70 compressing liquid oxygen reduced purity at lower intermediate pressure at 8 bars. This oxygen is vaporized by condensation of a corresponding part of the air supercharged by the blower 50, which only has to supply the heat of compensation for excess cold due to vaporization high pressure oxygen.

De même, on a indiqué en traits mixtes à la Figure 2 une pompe 71 d'azote liquide moyenne pression amenant cet azote, soutiré de la colonne 45, à une pression intermédiaire suffisamment basse pour permettre sa vaporisation par condensation d'air à la plus haute pression du procédé, soit 23 bars.Likewise, mixed lines have been indicated on the Figure 2 a medium pressure liquid nitrogen pump 71 bringing this nitrogen, withdrawn from column 45, to a intermediate pressure low enough to allow its vaporization by air condensation at the highest process pressure, i.e. 23 bars.

On a également représenté sur la Figure 2 une conduite 72 de production d'oxygène liquide soutiré de la cuve de la colonne 46, ainsi qu'une conduite 72A de production d'azote liquide provenant de la tête de la colonne 45.Also shown in Figure 2 is a line 72 for the production of liquid oxygen withdrawn from the tank of the column 46, as well as a pipe 72A of production of liquid nitrogen from the head of the column 45.

L'installation de la Figure 3 est une variante de celle de la Figure 2. Dans cette variante, une fraction de l'air issu du compresseur 42 est surpressée par une soufflante chaude 73, refroidie en 47 jusqu'à la température T2, surpressée de nouveau par la soufflante froide 50, réintroduite dans la ligne d'échange à une température T3 supérieure à T2, puis traitée en deux flux différents à partir de la température T4, comme précédemment. Le reste de l'air issu du compresseur 42 est refroidi dans des passages additionnels 74 de la ligne d'échange 47 jusqu'à une température T5 comprise entre les températures T4 et T1, et, à cette température, une partie de cet air est sorti de la ligne d'échange, détendu à la moyenne pression dans une turbine additionnelle 75 couplée à la soufflante 73, puis envoyée en cuve de la colonne 45. Le reste de l'air véhiculé par les passages 74 poursuit son refroidissement jusqu'au bout froid de la ligne d'échange, où il est liquéfié et sous-refroidi, puis est détendu à la moyenne pression dans une vanne de détente 76 et envoyé dans la partie inférieure de la colonne 45.The installation in Figure 3 is a variant of that of Figure 2. In this variant, a fraction of the air coming from the compressor 42 is overpressed by a hot blower 73, cooled in 47 to temperature T2, again boosted by the blower cold 50, reintroduced into the exchange line at a temperature T3 higher than T2, then treated in two different flows from temperature T4, like previously. The rest of the air from compressor 42 is cooled in additional passages 74 of the exchange line 47 up to a temperature T5 included between temperatures T4 and T1, and, at this temperature, some of this air has come out of the exchange line, expanded at medium pressure in an additional turbine 75 coupled to the blower 73, then sent to the tank from column 45. The rest of the air carried by the passages 74 continues to cool down to the end cold of the exchange line, where it is liquefied and sub-cooled, then is relaxed at medium pressure in a expansion valve 76 and sent in the lower part from column 45.

On comprend que l'invention est compatible avec de nombreuses variantes d'installation de production d'oxygène gazeux sous pression du type "à pompe" et "à paliers décalés", notamment telles que décrites dans les demandes de brevet précitées. We understand that the invention is compatible with many variants of production facilities of pressurized gaseous oxygen of the "pump" and " staggered bearings ", in particular as described in the aforementioned patent applications.

L'invention est particulièrement avantageuse, du point de vue énergétique, lorsque la pression de vaporisation d'oxygène est supérieure à 20 bars environ.The invention is particularly advantageous, from an energy point of view, when the pressure of oxygen vaporization is greater than approximately 20 bars.

Claims (12)

  1. Process for the production of gaseous oxygen under pressure, of the type in which: air is distilled in a plant with a double distillation column (7; 44) which includes a medium pressure column (8; 45) operating at a pressure called medium pressure, a low-pressure column (9; 46) operating at a pressure called low pressure, and a heat exchange line (6; 47) for placing the air to be distilled in heat exchange relationship with products drawn from the double column; liquid oxygen is drawn from the low-pressure column; this liquid oxygen is brought to an oxygen vaporization pressure of at least approximately 13 bars and is vaporized and is heated at this vaporization pressure by heat exchange with air to be distilled in the course of cooling,
    a first fraction of the air to be distilled is compressed (in 1; 41) to a first pressure, this air is cooled until it is near its dew point in the heat exchange line (6; 47) and is sent into the double column (7; 44);
    a second fraction of the air to be distilled is compressed (in 1, 5; 41, 42, 50; 41, 42, 73, 50) to a high air pressure, especially of at least approximately 25 bars, which is lower than the condensation pressure of the air by heat exchange with the oxygen in the course of vaporization at the said oxygen vaporization pressure, this air is cooled and a proportion of it is liquefied, which is next expanded (in 21, 21A; 68) before being introduced into the double column, whereas another proportion of the air at the high air pressure is taken out of the heat exchange line (6; 47) at an intermediate cooling temperature and is expanded to the medium pressure in a first expansion turbine (4; 51) and is then sent into the double column (7; 44); and
    at least one liquid product is drawn (in 33, 34; 72, 72A) from the plant, characterized in that the first pressure is the medium pressure, and a proportion of the air at the first pressure is sent to the medium-pressure column without being expanded.
  2. Process according to Claim 1, characterized in that a third fraction of the air to be distilled is compressed (in 1; 1, 42) to an intermediate pressure between the said first and high air pressures, is cooled, is liquefied (in 20B; 64; 74), is expanded (in 21B; 69; 76) and is introduced into the double column (7; 44).
  3. Process according to Claim 1 or 2, characterized in that the said second fraction of air is taken to an intermediate air pressure (in 42; 42, 73), is only partially cooled and is then boosted by a cold blower (in 50), reintroduced into the heat exchange line (47) and cooled to the said intermediate temperature, at which this air is again taken out of the heat exchange line, expanded to the medium pressure in the said expansion turbine (51), which is coupled to the cold blower, and sent into the double column (44).
  4. Process according to Claims 2 and 3 taken together, characterized in that a proportion of the third fraction of air is expanded to the medium pressure, after partial cooling, in a second turbine (75) coupled to a blower (73) for boosting the said second fraction of air, and is then sent to the medium pressure column (45).
  5. Process according to Claim 3 or 4, characterized in that a proportion of the air at the first pressure is taken out of the heat exchange line (47) at a third intermediate cooling temperature and is expanded to the low pressure in a blowing turbine (52) before being introduced at an intermediate point of the low-pressure column (46).
  6. Process according to any one of Claims 1 to 5, characterized in that the said oxygen vaporization pressure is substantially the output pressure.
  7. Plant for the production of gaseous oxygen under pressure, of the type including: a double air distillation column (7; 44) which includes a medium pressure column (8; 45) operating at a pressure called medium pressure, and a low-pressure column (9; 46) operating at a pressure called low pressure; a heat exchange line (6; 47) for placing the air to be distilled in heat exchange relationship with products originating from the double column; means for drawing liquid oxygen from the low-pressure column; and means (12; 49) for taking this liquid oxygen to an oxygen vaporization pressure of at least approximately 13 bars, the heat exchange line including means for placing the liquid oxygen at the said vaporization pressure in heat exchange relationship with air to be distilled in the course of cooling,
    first means of compression (1; 41) for compressing a first fraction of the air to be distilled to a first pressure close to the medium pressure, and passages (20; 62) of the heat exchange line which are connected, on the one hand, to these first means of compression and, on the other hand, to the double column (7; 44);
    second means of compression (1, 5; 41, 42, 50; 41, 42, 73, 50) for compressing a second fraction of the air to be distilled to a high air pressure, especially of at least approximately 25 bars, which is lower than the pressure of condensation of the air by heat exchange with the oxygen in the course of vaporization at the said vaporization pressure;
    the heat exchange line including high-pressure air passages (20A; 64) for cooling the said second fraction of air to an intermediate temperature and for cooling further and liquefying a proportion of this second fraction, and the plant including means (21A; 68, 69) for expansion of this liquefied proportion, which are connected to the double column;
    a first expansion turbine (4; 75) the suction of which is connected to the high-pressure air passages (74) and the exhaust of which is connected to the double column (7; 44); and
    means (72, 72A) for drawing at least one liquid product from the plant, characterized in that the first means of compression are connected to the medium-pressure column by means other than expansion means.
  8. Plant according to Claim 7, characterized in that it includes means (1; 1, 42) for compressing a third fraction of the air to be distilled to an intermediate pressure between the said first and high air pressures, the heat exchange line (6; 47) comprising passages (20B; 64; 74) for cooling and liquefying this third fraction, and a conduit connecting the cold end of these passages to the double column (7; 44) and equipped with an expansion valve (21B; 69; 76).
  9. Plant according to Claim 7 or 8, characterized in that it includes a single air compressor (1) with n stages, the said first means of compression consisting of a certain number p of stages, with p < n, and the said second means of compression consisting of the whole compressor.
  10. Plant according to Claim 7 or 8, characterized in that the second means of compression (42, 50) include a compressor the delivery of which is connected to the hot end of the heat exchange line (47), and a blower (50) the suction and the delivery of which are connected to intermediate points of the latter.
  11. Plant according to Claims 8 and 10 taken together, characterized in that the second means of compression include a blower (73) for boosting the said second fraction of air, coupled to a second turbine (75) for expanding a proportion of the said third fraction of air.
  12. Plant according to Claim 10 or 11, characterized in that the cold blower (50) is coupled to the said first turbine (51) and in that the plant includes a blowing turbine (52) fed by a proportion of the air at the first pressure and the exhaust which is connected to the low-pressure column (46).
EP95401443A 1994-06-20 1995-06-19 Process and apparatus for producing gaseous oxygen under pressure Revoked EP0689019B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407531 1994-06-20
FR9407531A FR2721383B1 (en) 1994-06-20 1994-06-20 Process and installation for producing gaseous oxygen under pressure.

Publications (2)

Publication Number Publication Date
EP0689019A1 EP0689019A1 (en) 1995-12-27
EP0689019B1 true EP0689019B1 (en) 1999-07-28

Family

ID=9464405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401443A Revoked EP0689019B1 (en) 1994-06-20 1995-06-19 Process and apparatus for producing gaseous oxygen under pressure

Country Status (10)

Country Link
US (1) US5596885A (en)
EP (1) EP0689019B1 (en)
JP (1) JPH08175806A (en)
KR (1) KR960001706A (en)
CN (1) CN1081782C (en)
CA (1) CA2152010A1 (en)
DE (1) DE69511013T2 (en)
ES (1) ES2136259T3 (en)
FR (1) FR2721383B1 (en)
ZA (1) ZA955051B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909189A (en) * 2022-05-11 2022-08-16 重庆大学 Novel adsorption type compression energy storage system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744795B1 (en) * 1996-02-12 1998-06-05 Grenier Maurice PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN
FR2776760B1 (en) * 1998-03-31 2000-05-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product
US6202442B1 (en) * 1999-04-05 2001-03-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof
EP1067345B1 (en) * 1999-07-05 2004-06-16 Linde Aktiengesellschaft Process and device for cryogenic air separation
FR2806152B1 (en) * 2000-03-07 2002-08-30 Air Liquide PROCESS AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP1207362A1 (en) * 2000-10-23 2002-05-22 Air Products And Chemicals, Inc. Process and apparatus for the production of low pressure gaseous oxygen
DE10111428A1 (en) * 2001-03-09 2002-09-12 Linde Ag Method and device for separating a gas mixture with emergency operation
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
FR2863348B1 (en) * 2003-12-05 2006-12-22 Air Liquide GAS COMPRESSOR, APPARATUS FOR SEPARATING A GAS MIXTURE INCORPORATING SUCH A COMPRESSOR, AND METHOD FOR SEPARATING A GAS MIXTURE INCORPORATING SUCH A COMPRESSOR
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (en) * 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
AU2005225027A1 (en) * 2005-07-21 2007-02-08 L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1767884A1 (en) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20070095100A1 (en) * 2005-11-03 2007-05-03 Rankin Peter J Cryogenic air separation process with excess turbine refrigeration
FR2895068B1 (en) 2005-12-15 2014-01-31 Air Liquide AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
FR2913760B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION
EP1972875A1 (en) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20090100864A1 (en) * 2007-07-06 2009-04-23 Den Held Paul Anton Process to compress air and its use in an air separation process and systems using said processes
US20110197630A1 (en) * 2007-08-10 2011-08-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude Process and Apparatus for the Separation of Air by Cryogenic Distillation
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
FR2943772A1 (en) * 2009-03-27 2010-10-01 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US20130086941A1 (en) * 2011-10-07 2013-04-11 Henry Edward Howard Air separation method and apparatus
US20150114037A1 (en) * 2013-10-25 2015-04-30 Neil M. Prosser Air separation method and apparatus
FR3014545B1 (en) * 2013-12-05 2018-12-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3066809B1 (en) 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
JP6900241B2 (en) 2017-05-31 2021-07-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas production system
EP3438585A3 (en) 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method
FR3072451B1 (en) * 2017-10-13 2022-01-21 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
FR2652409A1 (en) * 1989-09-25 1991-03-29 Air Liquide REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION.
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
FR2688052B1 (en) * 1992-03-02 1994-05-20 Maurice Grenier PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION.
FR2706595B1 (en) * 1993-06-18 1995-08-18 Air Liquide Process and installation for producing oxygen and / or nitrogen under pressure with variable flow rate.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909189A (en) * 2022-05-11 2022-08-16 重庆大学 Novel adsorption type compression energy storage system

Also Published As

Publication number Publication date
ZA955051B (en) 1996-02-15
ES2136259T3 (en) 1999-11-16
JPH08175806A (en) 1996-07-09
DE69511013D1 (en) 1999-09-02
CN1081782C (en) 2002-03-27
CA2152010A1 (en) 1995-12-21
KR960001706A (en) 1996-01-25
CN1120652A (en) 1996-04-17
FR2721383A1 (en) 1995-12-22
US5596885A (en) 1997-01-28
EP0689019A1 (en) 1995-12-27
FR2721383B1 (en) 1996-07-19
DE69511013T2 (en) 2000-01-20

Similar Documents

Publication Publication Date Title
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0576314B2 (en) Process and installation for the production of gaseous oxygen under pressure
EP0628778B2 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
EP0547946B1 (en) Process and apparatus for the production of impure oxygen
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP1711765B1 (en) Cryogenic distillation method and installation for air separation
EP0606027B1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
EP0789208A1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
WO2004099691A1 (en) Method and system for the production of pressurized air gas by cryogenic distillation of air
EP1014020B1 (en) Cryogenic process for separating air gases
FR2690982A1 (en) Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine
FR2711778A1 (en) Method and installation for producing oxygen and/or nitrogen under pressure
EP0677713B1 (en) Process and installation for the production of oxygen by distillation of air
EP0641983B1 (en) Process and installation for the production of gaseous oxygen and/or nitrogen under pressure
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
EP0612967B1 (en) Process for the production of oxygen and/or nitrogen under pressure
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0641982A1 (en) Process and installation for the production of at least a gas from air under pressure
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
EP3913310A1 (en) Method and device for air separation by cryogenic distilling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19960627

17Q First examination report despatched

Effective date: 19980203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 69511013

Country of ref document: DE

Date of ref document: 19990902

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136259

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20000428

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010511

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010518

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010522

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010607

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010608

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010621

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020619

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020619

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20030207