EP0689019B1 - Process and apparatus for producing gaseous oxygen under pressure - Google Patents
Process and apparatus for producing gaseous oxygen under pressure Download PDFInfo
- Publication number
- EP0689019B1 EP0689019B1 EP95401443A EP95401443A EP0689019B1 EP 0689019 B1 EP0689019 B1 EP 0689019B1 EP 95401443 A EP95401443 A EP 95401443A EP 95401443 A EP95401443 A EP 95401443A EP 0689019 B1 EP0689019 B1 EP 0689019B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- air
- column
- heat exchange
- fraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000001301 oxygen Substances 0.000 title claims description 43
- 229910052760 oxygen Inorganic materials 0.000 title claims description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 40
- 238000000034 method Methods 0.000 title claims description 21
- 238000009834 vaporization Methods 0.000 claims description 26
- 230000008016 vaporization Effects 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 16
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 13
- 230000006835 compression Effects 0.000 claims description 13
- 238000007906 compression Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 13
- 238000009833 condensation Methods 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 8
- 238000004821 distillation Methods 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims description 3
- 239000012263 liquid product Substances 0.000 claims 2
- 239000000047 product Substances 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 44
- 239000007788 liquid Substances 0.000 description 23
- 229910052757 nitrogen Inorganic materials 0.000 description 22
- 238000009434 installation Methods 0.000 description 18
- 238000001179 sorption measurement Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 150000002926 oxygen Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002829 nitrogen Chemical class 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04145—Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/54—Oxygen production with multiple pressure O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
Definitions
- the present invention relates to a process for producing gaseous oxygen under pressure as defined in the preamble of claim 1. Such a process is known from document FR-A-2 688 052.
- the pressures shown are absolute pressures.
- condensation and vaporization is a condensation or an actual spray, either pseudo-condensation or pseudo-vaporization, depending on whether the pressures are subcritical or supercritical.
- the object of the invention is to provide a method "pump" offering great freedom of regulation of operating parameters and particularly well adapted, from the point of view of energy consumption specific as well as liquid production, large installations, i.e. producing at least 700 tonnes of oxygen per day.
- the subject of the invention is a process for the production of gaseous oxygen gas of the aforementioned type, in which the first press is the average pressure and part of the air at the first press is sent to the medium pressure column without being relaxed.
- the subject of the invention is also a installation for the production of gaseous oxygen intended for the implementation of the process defined above and comprising the features of claim 7.
- the installation may in particular comprise a single air compressor with n stages, said first compression means being constituted by a certain number p of stages, with p ⁇ n , and said second compression means being constituted by the whole of the compressor.
- the air distillation system shown in Figure 1 essentially comprises: a air compressor 1; an air cleaning device 2 compressed into water and CO2 by adsorption, this device comprising two adsorption bottles 2A, 2B, one of which works in adsorption while the other is in progress regeneration; a fan-blower assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower possibly being equipped with a refrigerant (not represented); a heat exchanger 6 constituting the installation heat exchange line; a double distillation column 7 comprising a medium column pressure 8 surmounted by a low pressure column 9, with a vaporizer-condenser 10 putting the overhead vapor (nitrogen) from column 8 in heat exchange relationship with the tank liquid (oxygen) of column 9; a liquid oxygen tank 11, the bottom of which is connected to a liquid oxygen pump 12; and a nitrogen tank liquid 13, the bottom of which is connected to a nitrogen pump liquid 14.
- This installation is mainly intended to supply, via a line 15, oxygen gaseous under a predetermined high pressure, which can be between approximately 13 bars and a few tens bars. These are significant amounts of oxygen gaseous, at least equal to around 700 t / day and capable of reach several thousand tonnes per day.
- liquid oxygen drawn from the column 9 tank via line 16 is stored in the reservoir 11.
- a flow of oxygen, withdrawn from this tank, is brought to high pressure by pump 12 in the liquid state, then vaporized and reheated under this high pressure in passages 17 of exchanger 6.
- the heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
- Compressor 1 is a multi-stage compressor, with n stages. All of the incoming atmospheric air is compressed by the first p stages at medium pressure, which is the operating pressure of column 8, then is precooled in 18 and cooled to around ambient temperature in 19, is purified in one, 2A for example, adsorption bottles, and divided into two fractions.
- the first fraction at medium pressure, representing for example approximately 40% of the flow of treated air, is cooled from the hot end to the cold end of the heat exchange line 6, in passages 20 thereof, up to '' in the vicinity of its dew point, then is directly introduced into the tank of column 8.
- the rest of the purified air in 2A is returned to the inlet of the ( p + 1) th stage of compressor 1 and is compressed by the following stages up to a first high air pressure, significantly higher than the average pressure of column 8, in practice greater than 9 bars.
- the compressed air, precooled in 19A, is again divided into two streams.
- the first flow representing at least 45% of the treated air flow, is boosted to a second high pressure by the booster 5, which is driven by the turbine 4.
- This second high air pressure is between approximately 25 bars and the condensing pressure air by vaporizing oxygen under the high oxygen pressure.
- the first air flow is then introduced to the hot end of exchanger 6 and completely cooled up to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20A of the exchanger, then is partially relaxed at low pressure in a relief valve 21 and partly to the average pressure in an expansion valve 21A and introduced respectively at an intermediate level in the column 9 and at the bottom of column 8. The rest air is relaxed at medium pressure in the turbine 4 then sent directly, via a line 22, at the bottom of column 8.
- the second stream is introduced under the first high pressure in exchange line 6, cooled and liquefied until the cold end of it in passages 20B, expanded in an expansion valve 21B and connected to the current from the expansion valve 21A.
- Low pressure nitrogen is heated in passages 28 of exchanger 6 then recovered via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, bottle 2B in the example considered, before to be evacuated via a pipe 31.
- part medium pressure liquid nitrogen is, after expansion in an expansion valve 32, stored in the tank 13, and that a production of liquid nitrogen and / or oxygen liquid is supplied via line 33 (for nitrogen) and / or 34 (for oxygen).
- the installation product in addition to low pressure nitrogen gas from directly from the head of column 9 and oxygen high pressure gas, pressurized nitrogen gas, obtained by vaporization in the heat exchange line a flow of liquid nitrogen taken from line 33 via a pipe 35. This nitrogen vaporization can especially by condensation of the air contained in passages 20A or 20B.
- FIG. 2 The installation shown in Figure 2 is intended to produce gaseous oxygen under pressure high, for example of the order of 40 bars. She understands essentially two air compressors 41 and 42, one apparatus 43 for adsorption purification, a double distillation column 44 consisting of a column medium pressure 45, operating at around 6 bars, surmounted by a low pressure column 46, operating at a pressure slightly higher than 1 bar, a heat exchange line 47, a sub-cooler 48, a liquid oxygen pump 49, a cold blower 50, a first turbine 51 whose wheel is mounted on the same tree as that of the cold blower, and a second turbine 52 braked by an appropriate brake 53 such than an alternator.
- a double distillation column 44 consisting of a column medium pressure 45, operating at around 6 bars, surmounted by a low pressure column 46, operating at a pressure slightly higher than 1 bar
- a heat exchange line 47 a sub-cooler 48
- a liquid oxygen pump 49 a cold blower 50
- a first turbine 51 whose wheel is mounted
- the first stream is directly cooled in passages 62 of the exchange line 47.
- a fraction of this air came out of the exchange line, relaxed at the low pressure in turbine 52, and blown into a intermediate point of the column 46 via a pipe 63.
- the rest of the medium pressure air continues to cool to the cold end of the exchange line, where it is near its dew point and then is sent to the bottom of column 45.
- the rest of the air from the device 43 is compressed at a first high pressure, for example from 16.5 bars, by compressor 42, then enters air cooling passages 64 of the exchange line.
- the blower 50 which provides this compression is driven by the turbine 51, so that none external energy is required. Take in account the mechanical losses, the amount of cold produced by this turbine is slightly higher than the heat of compression, and the excess contributes to keeping cold of the installation. The balance of the necessary frigories for this keeping cold is provided by the turbine 52, or, alternatively, if the oxygen to be produced must have a high purity, by air or nitrogen expansion to medium pressure in a turbine, in a conventional manner.
- the installation can also generate oxygen at a pressure low enough to allow vaporization of oxygen by condensation at the highest process air pressure.
- This oxygen pressure would be less than 8 for example bars.
- a second pump 70 compressing liquid oxygen reduced purity at lower intermediate pressure at 8 bars. This oxygen is vaporized by condensation of a corresponding part of the air supercharged by the blower 50, which only has to supply the heat of compensation for excess cold due to vaporization high pressure oxygen.
- mixed lines have been indicated on the Figure 2 a medium pressure liquid nitrogen pump 71 bringing this nitrogen, withdrawn from column 45, to a intermediate pressure low enough to allow its vaporization by air condensation at the highest process pressure, i.e. 23 bars.
- FIG. 2 Also shown in Figure 2 is a line 72 for the production of liquid oxygen withdrawn from the tank of the column 46, as well as a pipe 72A of production of liquid nitrogen from the head of the column 45.
- FIG. 3 The installation in Figure 3 is a variant of that of Figure 2.
- a fraction of the air coming from the compressor 42 is overpressed by a hot blower 73, cooled in 47 to temperature T2, again boosted by the blower cold 50, reintroduced into the exchange line at a temperature T3 higher than T2, then treated in two different flows from temperature T4, like previously.
- the rest of the air from compressor 42 is cooled in additional passages 74 of the exchange line 47 up to a temperature T5 included between temperatures T4 and T1, and, at this temperature, some of this air has come out of the exchange line, expanded at medium pressure in an additional turbine 75 coupled to the blower 73, then sent to the tank from column 45.
- the rest of the air carried by the passages 74 continues to cool down to the end cold of the exchange line, where it is liquefied and sub-cooled, then is relaxed at medium pressure in a expansion valve 76 and sent in the lower part from column 45.
- the invention is particularly advantageous, from an energy point of view, when the pressure of oxygen vaporization is greater than approximately 20 bars.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
La présente invention est relative à un procédé de production d'oxygène gazeux sous pression tel que défini dans le préambule de la revendication 1. Un tel procédé est connu du document FR-A-2 688 052.The present invention relates to a process for producing gaseous oxygen under pressure as defined in the preamble of claim 1. Such a process is known from document FR-A-2 688 052.
Dans le présent mémoire, les pressions indiquées sont des pressions absolues. De plus, on entend par "condensation" et "vaporisation" soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions sont subcritiques ou supercritiques.In this brief, the pressures shown are absolute pressures. In addition, we hear by "condensation" and "vaporization" is a condensation or an actual spray, either pseudo-condensation or pseudo-vaporization, depending on whether the pressures are subcritical or supercritical.
Les procédés du type ci-dessus, dits procédés "à pompe", présentent l'avantage de supprimer ou de réduire la nécessité de compresseurs d'oxygène gazeux, qui sont des machines coûteuses, posant de sérieux problèmes de fiabilité et dont le rendement est généralement médiocre.The processes of the above type, called processes "pump" have the advantage of eliminating or reduce the need for gaseous oxygen compressors, which are expensive machines, posing serious reliability issues and whose performance is generally poor.
L'invention a pour but de fournir un procédé "à pompe" offrant une grande liberté de régulation des paramètres de fonctionnement et particulièrement bien adapté, du point de vue de la consommation énergétique spécifique ainsi que de la production de liquide, aux installations de grande taille, c'est-à-dire produisant au moins 700 tonnes d'oxygène par jour.The object of the invention is to provide a method "pump" offering great freedom of regulation of operating parameters and particularly well adapted, from the point of view of energy consumption specific as well as liquid production, large installations, i.e. producing at least 700 tonnes of oxygen per day.
A cet effet, l'invention a pour objet un procédé de production d'oxyqène gazeux du type précité, dans lequel la première pression est la moyenne pression et une partie de l'air à la première pression est envoyée à la colonne moyenne pression sans être détendue.To this end, the subject of the invention is a process for the production of gaseous oxygen gas of the aforementioned type, in which the first press is the average pressure and part of the air at the first press is sent to the medium pressure column without being relaxed.
Le procédé suivant l'invention peut comporter une ou plusieurs des caractéristiques suivantes :
- on comprime une troisième fraction de l'air à distiller à une pression intermédiaire entre lesdites première et haute pressions d'air, on la refroidit, on la liquéfie, on la détend et on l'introduit dans la double colonne:
- ladite deuxième fraction d'air est portée à une pression d'air intermédiaire, n'est refroidie que partiellement, puis est surpressée par une soufflante froide, réintroduite dans la ligne d'échange thermique, et refroidie jusqu'à ladite température intermédiaire, à laquelle cet air est de nouveau sorti de la ligne d'échange thermique, détendu à la moyenne pression dans ladite turbine de détente, laquelle est couplée à la soufflante froide, et envoyé dans la double colonne;
- une partie de la troisième fraction d'air est détendue à la moyenne pression, après refroidissement partiel, dans une seconde turbine couplée à une soufflante de surpression de ladite deuxième fraction d'air, puis est envoyée à la colonne moyenne pression;
- une partie de l'air à la première pression est sorti de la ligne d'échange thermique à une troisième température intermédiaire de refroidissement, et détendu à la basse pression dans une turbine d'insufflation avant d'être introduit en un point intermédiaire de la colonne basse pression;
- ladite pression de vaporisation d'oxygène est sensiblement la pression de production.
- a third fraction of the air to be distilled is compressed to an intermediate pressure between said first and high air pressures, it is cooled, it is liquefied, it is expanded and it is introduced into the double column:
- said second fraction of air is brought to an intermediate air pressure, is only partially cooled, then is pressurized by a cold blower, reintroduced into the heat exchange line, and cooled to said intermediate temperature, at which this air is again out of the heat exchange line, expanded at medium pressure in said expansion turbine, which is coupled to the cold blower, and sent to the double column;
- part of the third fraction of air is expanded to medium pressure, after partial cooling, in a second turbine coupled to a blower for boosting said second fraction of air, then is sent to the medium pressure column;
- a part of the air at the first pressure is taken out of the heat exchange line at a third intermediate cooling temperature, and expanded at low pressure in a blowing turbine before being introduced at an intermediate point of the low pressure column;
- said oxygen vaporization pressure is substantially the production pressure.
L'invention a également pour objet une
installation de production d'oxygène gazeux destinée à
la mise en oeuvre du procédé défini ci-dessus
et comprenant les caractéristiques de la revendication 7. The subject of the invention is also a
installation for the production of gaseous oxygen intended for
the implementation of the process defined above
and comprising the features of
L'installation peut notamment comprendre un compresseur d'air unique à n étages, lesdits premiers moyens de compression étant constitués par un certain nombre p d'étages, avec p < n, et lesdits deuxièmes moyens de compression étant constitués par l'ensemble du compresseur.The installation may in particular comprise a single air compressor with n stages, said first compression means being constituted by a certain number p of stages, with p < n , and said second compression means being constituted by the whole of the compressor.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les Figures 1 à 3 représentent respectivement trois installations de production d'oxygène conformes à l'invention.Examples of implementation of the invention will now be described with reference to the drawings attached, in which Figures 1 to 3 show respectively three oxygen production plants according to the invention.
L'installation de distillation d'air représentée
à la Figure 1 comprend essentiellement : un
compresseur d'air 1; un appareil 2 d'épuration de l'air
comprimé en eau et en CO2 par adsorption, cet appareil
comprenant deux bouteilles d'adsorption 2A, 2B dont l'une
fonctionne en adsorption pendant que l'autre est en cours
de régénération; un ensemble turbine-soufflante 3
comprenant une turbine de détente 4 et une soufflante ou
surpresseur 5 dont les arbres sont couplés, la soufflante
étant éventuellement équipée d'un réfrigérant (non
représenté); un échangeur de chaleur 6 constituant la
ligne d'échange thermique de l'installation; une double
colonne de distillation 7 comprenant une colonne moyenne
pression 8 surmontée d'une colonne basse pression 9, avec
un vaporiseur-condenseur 10 mettant la vapeur de tête
(azote) de la colonne 8 en relation d'échange thermique
avec le liquide de cuve (oxygène) de la colonne 9; un
réservoir d'oxygène liquide 11 dont le fond est relié à
une pompe d'oxygène liquide 12; et un réservoir d'azote
liquide 13 dont le fond est relié à une pompe d'azote
liquide 14.The air distillation system shown
in Figure 1 essentially comprises: a
air compressor 1; an
Cette installation est principalement destinée à fournir, via une conduite 15, de l'oxygène gazeux sous une haute pression prédéterminée, qui peut être comprise entre environ 13 bars et quelques dizaines de bars. Il s'agit de quantités importantes d'oxygène gazeux, au moins égales à 700 t/jour environ et pouvant atteindre plusieurs milliers de tonnes par jour.This installation is mainly intended to supply, via a line 15, oxygen gaseous under a predetermined high pressure, which can be between approximately 13 bars and a few tens bars. These are significant amounts of oxygen gaseous, at least equal to around 700 t / day and capable of reach several thousand tonnes per day.
Pour cela, de l'oxygène liquide soutiré de la
cuve de la colonne 9 via une conduite 16 est stocké dans
le réservoir 11. Un débit d'oxygène, soutiré de ce
réservoir, est amené à la haute pression par la pompe 12
à l'état liquide, puis vaporisé et réchauffé sous cette
haute pression dans des passages 17 de l'échangeur 6.For this, liquid oxygen drawn from the
La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes.The heat necessary for this vaporization and to this reheating, as well as to reheating and possibly vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, in the following conditions.
Le compresseur 1 est un compresseur multi-étages,
à n étages. La totalité de l'air atmosphérique
entrant est comprimé par les p premiers étages à la
moyenne pression, qui est la pression de fonctionnement
de la colonne 8, puis est prérefroidi en 18 et refroidi
au voisinage de la température ambiante en 19, est épuré
dans l'une, 2A par exemple, des bouteilles d'adsorption,
et divisé en deux fractions.Compressor 1 is a multi-stage compressor, with n stages. All of the incoming atmospheric air is compressed by the first p stages at medium pressure, which is the operating pressure of
La première fraction, sous la moyenne
pression, représentant par exemple 40% environ du débit
d'air traité, est refroidie, du bout chaud au bout froid
de la ligne d'échange thermique 6, dans des passages 20
de celle-ci, jusqu'au voisinage de son point de rosée,
puis est directement introduite en cuve de la colonne 8.
Le reste de l'air épuré en 2A est renvoyé à l'entrée du
(p + 1) ème étage du compresseur 1 et est comprimé par
les étages suivants jusqu'à une première haute pression
d'air, nettement supérieure à la moyenne pression de la
colonne 8, en pratique supérieure à 9 bars.The first fraction, at medium pressure, representing for example approximately 40% of the flow of treated air, is cooled from the hot end to the cold end of the
L'air ainsi comprimé, prérefroidi en 19A, est de nouveau divisé en deux flux.The compressed air, precooled in 19A, is again divided into two streams.
Le premier flux, représentant au moins 45% du
débit d'air traité, est surpressé à une deuxième haute
pression par le surpresseur 5, lequel est entraíné par
la turbine 4. Cette deuxième haute pression d'air est
comprise entre 25 bars environ et la pression de condensation
de l'air par vaporisation de l'oxygène sous la
haute pression d'oxygène. The first flow, representing at least 45% of the
treated air flow, is boosted to a second high
pressure by the
Le premier flux d'air est alors introduit au
bout chaud de l'échangeur 6 et refroidi en totalité
jusqu'à une température intermédiaire. A cette température,
une fraction de l'air poursuit son refroidissement
et est liquéfiée dans des passages 20A de l'échangeur,
puis est détendue pour partie à la basse pression dans
une vanne de détente 21 et pour partie à la moyenne
pression dans une vanne de détente 21A et introduite
respectivement à un niveau intermédiaire dans la colonne
9 et dans la partie inférieure de la colonne 8. Le reste
de l'air est détendu à la moyenne pression dans la
turbine 4 puis envoyé directement, via une conduite 22,
à la base de la colonne 8.The first air flow is then introduced to the
hot end of
Le deuxième flux est introduit sous la
première haute pression dans la ligne d'échange 6,
refroidi et liquéfié jusqu'au bout froid de celle-ci dans
des passages 20B, détendu dans une vanne de détente 21B
et réuni au courant issu de la vanne de détente 21A.The second stream is introduced under the
first high pressure in
On reconnait par ailleurs sur la Figure 1 les
conduites habituelles des installations à double colonne,
celle représentée étant du type dit "à minaret", c' est-à-dire
avec production d'azote sous la basse pression :
les conduites 23 à 25 d'injection dans la colonne 9, à
des niveaux croissants, de "liquide riche" (air enrichi
en oxygène) détendu de "liquide pauvre inférieur" (azote
impur) détendu et de "liquide pauvre supérieur" (azote
pratiquement pur) détendu, respectivement, ces trois
fluides étant respectivement soutirés à la base, en un
point intermédiaire et au sommet de la colonne 8; et les
conduites 26 de soutirage d'azote gazeux partant du
sommet de la colonne 9 et 27 d'évacuation du gaz résiduaire
(azote impur) partant du niveau d'injection du
liquide pauvre inférieur. L'azote basse pression est
réchauffé dans des passages 28 de l'échangeur 6 puis
récupéré via une conduite 29, tandis que le gaz résiduaire,
après réchauffement dans des passages 30 de l'échangeur,
est utilisé pour régénérer une bouteille d'adsorption,
la bouteille 2B dans l'exemple considéré, avant
d'être évacué via une conduite 31.We also recognize in Figure 1 the
normal pipes in double column installations,
that represented being of the type known as "minaret", that is to say
with nitrogen production under low pressure:
the
On voit encore sur la Figure 1 qu'une partie
de l'azote liquide moyenne pression est, après détente
dans une vanne de détente 32, stockée dans le réservoir
13, et qu'une production d'azote liquide et/ou d'oxygène
liquide est fournie via une conduite 33 (pour l'azote)
et/ou 34 (pour l'oxygène). De plus, l'installation
produit, outre l'azote gazeux basse pression provenant
directement de la tête de la colonne 9 et l'oxygène
gazeux haute pression, de l'azote gazeux sous pression,
obtenu par vaporisation dans la ligne d'échange thermique
d'un débit d'azote liquide prélevé dans la conduite 33
via une conduite 35. Cette vaporisation d'azote peut
notamment s'effectuer par condensation de l'air contenu
dans les passages 20A ou 20B.We can still see in Figure 1 that part
medium pressure liquid nitrogen is, after expansion
in an
Comme expliqué dans d'autres demandes de
brevet qui décrivent des procédés "à pompe" et "à paliers
décalés", c'est-à-dire dans lesquels comme dans la
présente invention, l'air qui apporte l'essentiel de la
chaleur de vaporisation de l'oxygène se condense au-dessous
de la température de vaporisation de cet oxygène
(voir par exemple les demandes de brevet français n° 91-02
917, 91-15 935, 92-02 462, 92-07 662 et 93-04 274),
le bilan frigorifique de l'installation est équilibré,
avec un écart de température au bout chaud de la ligne
d'échange thermique de l'ordre de 3°C, en soutirant de
l'installation au moins un produit (oxygène et/ou azote)
sous forme liquide, via les conduites 33 et/ou 34.As explained in other requests for
patent describing "pump" and "step" processes
offset ", that is to say in which as in the
present invention, the air which provides most of the
heat of vaporization of oxygen condenses below
of the vaporization temperature of this oxygen
(see for example French patent applications n ° 91-02
917, 91-15 935, 92-02 462, 92-07 662 and 93-04 274),
the refrigeration balance of the installation is balanced,
with a temperature difference at the hot end of the line
heat exchange of the order of 3 ° C, drawing from
installation of at least one product (oxygen and / or nitrogen)
in liquid form, via
Dans le procédé ci-dessus, le fait de ne comprimer une partie de l'air entrant qu'à la moyenne pression réduit la quantité de liquide qu'il est nécessaire de soutirer de l'installation. Ceci est très avantageux dans le cas des grosses installations, où les quantités de liquide soutirées avec les procédés de l'art antérieur sont importantes. De plus, le fait de devoir soutirer une quantité réduite de liquide est parfaitement compatible avec les conditions d'exploitation de ces grosses installations, qui doivent généralement produire également une certaine quantité de liquide.In the above process, the fact of not compress some of the incoming air than average pressure reduces the amount of liquid it needs to extract from the installation. This is very advantageous in the case of large installations, where the quantities of liquid withdrawn with the processes of the art anterior are important. In addition, the fact of having to withdrawing a reduced amount of liquid is perfectly compatible with the operating conditions of these large installations, which usually have to produce also a certain amount of liquid.
Par ailleurs, les calculs montrent que le procédé décrit ci-dessus conduit à une énergie spécifique de production d'oxygène très avantageuse.Furthermore, calculations show that the process described above leads to a specific energy very advantageous oxygen production.
L'installation représentée à la Figure 2 est
destinée à produire de l'oxygène gazeux sous une pression
élevée, par exemple de l'ordre de 40 bars. Elle comprend
essentiellement deux compresseurs d'air 41 et 42, un
appareil 43 d'épuration par adsorption, une double
colonne de distillation 44 constituée d'une colonne
moyenne pression 45, fonctionnant sous environ 6 bars,
surmontée d'une colonne basse pression 46, fonctionnant
sous une pression légèrement supérieure à 1 bar, une
ligne d'échange thermique 47, un sous-refroidisseur 48,
une pompe à oxygène liquide 49, une soufflante froide 50,
une première turbine 51 dont la roue est montée sur le
même arbre que celle de la soufflante froide, et une
deuxième turbine 52 freinée par un frein approprié 53 tel
qu'un alternateur.The installation shown in Figure 2 is
intended to produce gaseous oxygen under pressure
high, for example of the order of 40 bars. She understands
essentially two
On reconnait sur le dessin les conduites
classiques de la double colonne, à savoir : une conduite
54 de remontée en un point intermédiaire de la colonne
46, après sous-refroidissement en 48 et détente à la
basse pression dans une vanne de détente 55, du "liquide
riche" (air enrichi en oxygène) recueilli en cuve de la
colonne 45; une conduite 56 de remontée en tête de la
colonne 46, après sous-refroidissement en 48 et détente
à la basse pression dans une vanne de détente 57, de
"liquide pauvre" (azote à peu près pur) soutiré en tête
de la colonne 45; et une conduite 58 de soutirage d'azote
impur, constituant le gaz résiduaire W de l'installation,
cette conduite partant de la tête de la colonne 46,
traversant le sous-refroidisseur 48 puis se raccordant
à des passages 59 de réchauffement d'azote de la ligne
d'échange 47. L'azote impur ainsi réchauffé jusqu'à la
température ambiante est évacué de l'installation via une
conduite 60.We recognize on the drawing the pipes
double column classics, namely: a
La pompe 49 aspire l'oxygène liquide sous
environ 1 bar en cuve de la colonne 46, le porte à la
pression de production désirée et l'introduit dans des
passages 61 de vaporisation-réchauffement d'oxygène de
la ligne d'échange.
L'air à distiller, comprimé à la moyenne
pression par le compresseur 41 et épuré en eau et en CO2
en 43, est divisé en deux flux.Air to be distilled, compressed to average
pressure by
Le premier flux est directement refroidi dans
des passages 62 de la ligne d'échange 47. A une température
T1 relativement froide mais supérieure à la température
du bout froid de cette ligne d'échange, une fraction
de cet air est sorti de la ligne d'échange, détendu à la
basse pression dans la turbine 52, et insufflé en un
point intermédiaire de la colonne 46 via une conduite 63.
Le reste de l'air moyenne pression poursuit son refroidissement
jusqu'au bout froid de la ligne d'échange, où
il se trouve au voisinage de son point de rosée, puis est
envoyé en cuve de la colonne 45.The first stream is directly cooled in
Le reste de l'air issu de l'appareil 43 est
comprimé à une première haute pression, par exemple de
16,5 bars, par le compresseur 42, puis pénètre dans des
passages 64 de refroidissement d'air de la ligne d'échange.The rest of the air from the
A une température intermédiaire T2 inférieure
à la température ambiante, nettement supérieure à T1 et
voisine de la température de vaporisation de l'oxygène,
une partie de cet air est sortie de la ligne d'échange
via une conduite 65 et amenée à l'aspiration de la
soufflante froide 50. Celle-ci porte cet air à la haute
pression de 23 bars et, via une conduite 66, l'air ainsi
surpressé est renvoyé dans la ligne d'échange, à une
température T3 supérieure à T2, et poursuit son refroidissement
dans des passages d'air surpressé 67 de cette
dernière. Une partie de l'air véhiculé par les passages
67 est de nouveau sorti de la ligne d'échange à une
deuxième température intermédiaire T4 inférieure à T2 et
supérieure à T1 et détendu à la moyenne pression (6
bars) dans la turbine 51. L'air qui s'échappe de cette
turbine est envoyé en cuve de la colonne 45. Le reste de
l'air véhiculé par les passages 67 poursuit son refroidissement
jusqu'au bout froid de la ligne d'échange, en
étant liquéfié puis sous-refroidi. Il est ensuite détendu
à la moyenne pression dans une vanne de détente 68 et
envoyé quelques plateaux au-dessus de la cuve de la
colonne 45. De même, l'air véhiculé par les passages 64
et non sortie via la conduite 65 est refroidi jusqu'au
bout froid de la ligne d'échange, puis détendu à la
moyenne pression dans une vanne de détente 69 et envoyé
quelques plateaux au-dessus de la cuve de la colonne 45.At a lower intermediate temperature T2
at room temperature, significantly higher than T1 and
close to the oxygen vaporization temperature,
some of this air has left the exchange line
via a
Comme expliqué dans la demande FR 92 02 462 précitée, la compression d'une partie au moins de l'air sous la première haute pression de la température intermédiaire T2, qui est voisine du palier de vaporisation de l'oxygène, à la température T3 introduit dans la ligne d'échange, entre ces deux températures, une quantité de chaleur qui compense sensiblement l'excédent de froid produit par cette vaporisation. On remarque qu'entre T3 et T2, l'oxygène échange de la chaleur avec la totalité de l'air à 16,5 bars et avec l'air surpressé à 23 bars. On peut ainsi obtenir un diagramme d'échange thermique (enthalpie en ordonnées, température en abscisses) très favorable, avec un faible écart de température, de l'ordre de 2 à 3°C, au bout chaud de la ligne d'échange.As explained in application FR 92 02 462 above, the compression of at least part of the air under the first high temperature pressure intermediate T2, which is close to the vaporization level oxygen, at the temperature T3 introduced into the exchange line, between these two temperatures, a amount of heat which substantially compensates for the excess of cold produced by this vaporization. We notice that between T3 and T2, the oxygen exchanges heat with all the air at 16.5 bars and with the compressed air at 23 bars. We can thus obtain an exchange diagram thermal (enthalpy on the ordinate, temperature in very favorable, with a small difference of temperature, of the order of 2 to 3 ° C, at the hot end of the exchange line.
La soufflante 50 qui assure cette compression
est entraínée par la turbine 51, de sorte qu'aucune
énergie extérieure n'est nécessaire. Compte-tenu des
pertes mécaniques, la quantité de froid produite par
cette turbine est légèrement supérieure à la chaleur de
compression, et l'excédent contribue au maintien en froid
de l'installation. Le solde des frigories nécessaires
pour ce maintien en froid est fourni par la turbine 52,
ou, en variante, si l'oxygène à produire doit avoir une
pureté élevée, par détente d'air ou d'azote à la moyenne
pression dans une turbine, de façon classique.The
Le très bon rendement énergétique assuré par
l'utilisation de la soufflante froide 50 est conservé
ici, avec en outre l'avantage, comme précédemment, d'une
production de liquide moindre, voire nulle dans ce cas,
et également avec l'avantage d'une alimentation simplifiée
de la turbine d'insufflation 52.The very good energy efficiency ensured by
the use of the
L'installation peut également produire de
l'oxygène sous une pression suffisamment basse pour
permettre la vaporisation d'oxygène par condensation
d'air à la plus haute pression d'air du procédé. Cette
pression d'oxygène serait par exemple inférieure à 8
bars. Ainsi, on a indiqué en traits mixtes à la Figure
2 une seconde pompe 70 comprimant de l'oxygène liquide
à pureté réduite à une pression intermédiaire inférieure
à 8 bars. Cet oxygène est vaporisé par condensation d'une
partie correspondante de l'air surpressé par la soufflante
50, laquelle n'a à fournir que la chaleur de
compensation de l'excédent de froid dû à la vaporisation
de l'oxygène haute pression.The installation can also generate
oxygen at a pressure low enough to
allow vaporization of oxygen by condensation
at the highest process air pressure. This
oxygen pressure would be less than 8 for example
bars. Thus, we have indicated in phantom in Figure
2 a
De même, on a indiqué en traits mixtes à la
Figure 2 une pompe 71 d'azote liquide moyenne pression
amenant cet azote, soutiré de la colonne 45, à une
pression intermédiaire suffisamment basse pour permettre
sa vaporisation par condensation d'air à la plus haute
pression du procédé, soit 23 bars.Likewise, mixed lines have been indicated on the
Figure 2 a medium pressure
On a également représenté sur la Figure 2 une
conduite 72 de production d'oxygène liquide soutiré de
la cuve de la colonne 46, ainsi qu'une conduite 72A de
production d'azote liquide provenant de la tête de la
colonne 45.Also shown in Figure 2 is a
L'installation de la Figure 3 est une
variante de celle de la Figure 2. Dans cette variante,
une fraction de l'air issu du compresseur 42 est surpressée
par une soufflante chaude 73, refroidie en 47 jusqu'à
la température T2, surpressée de nouveau par la soufflante
froide 50, réintroduite dans la ligne d'échange
à une température T3 supérieure à T2, puis traitée en
deux flux différents à partir de la température T4, comme
précédemment. Le reste de l'air issu du compresseur 42
est refroidi dans des passages additionnels 74 de la
ligne d'échange 47 jusqu'à une température T5 comprise
entre les températures T4 et T1, et, à cette température,
une partie de cet air est sorti de la ligne d'échange,
détendu à la moyenne pression dans une turbine additionnelle
75 couplée à la soufflante 73, puis envoyée en cuve
de la colonne 45. Le reste de l'air véhiculé par les
passages 74 poursuit son refroidissement jusqu'au bout
froid de la ligne d'échange, où il est liquéfié et sous-refroidi,
puis est détendu à la moyenne pression dans une
vanne de détente 76 et envoyé dans la partie inférieure
de la colonne 45.The installation in Figure 3 is a
variant of that of Figure 2. In this variant,
a fraction of the air coming from the
On comprend que l'invention est compatible avec de nombreuses variantes d'installation de production d'oxygène gazeux sous pression du type "à pompe" et "à paliers décalés", notamment telles que décrites dans les demandes de brevet précitées. We understand that the invention is compatible with many variants of production facilities of pressurized gaseous oxygen of the "pump" and " staggered bearings ", in particular as described in the aforementioned patent applications.
L'invention est particulièrement avantageuse, du point de vue énergétique, lorsque la pression de vaporisation d'oxygène est supérieure à 20 bars environ.The invention is particularly advantageous, from an energy point of view, when the pressure of oxygen vaporization is greater than approximately 20 bars.
Claims (12)
- Process for the production of gaseous oxygen under pressure, of the type in which: air is distilled in a plant with a double distillation column (7; 44) which includes a medium pressure column (8; 45) operating at a pressure called medium pressure, a low-pressure column (9; 46) operating at a pressure called low pressure, and a heat exchange line (6; 47) for placing the air to be distilled in heat exchange relationship with products drawn from the double column; liquid oxygen is drawn from the low-pressure column; this liquid oxygen is brought to an oxygen vaporization pressure of at least approximately 13 bars and is vaporized and is heated at this vaporization pressure by heat exchange with air to be distilled in the course of cooling,a first fraction of the air to be distilled is compressed (in 1; 41) to a first pressure, this air is cooled until it is near its dew point in the heat exchange line (6; 47) and is sent into the double column (7; 44);a second fraction of the air to be distilled is compressed (in 1, 5; 41, 42, 50; 41, 42, 73, 50) to a high air pressure, especially of at least approximately 25 bars, which is lower than the condensation pressure of the air by heat exchange with the oxygen in the course of vaporization at the said oxygen vaporization pressure, this air is cooled and a proportion of it is liquefied, which is next expanded (in 21, 21A; 68) before being introduced into the double column, whereas another proportion of the air at the high air pressure is taken out of the heat exchange line (6; 47) at an intermediate cooling temperature and is expanded to the medium pressure in a first expansion turbine (4; 51) and is then sent into the double column (7; 44); andat least one liquid product is drawn (in 33, 34; 72, 72A) from the plant, characterized in that the first pressure is the medium pressure, and a proportion of the air at the first pressure is sent to the medium-pressure column without being expanded.
- Process according to Claim 1, characterized in that a third fraction of the air to be distilled is compressed (in 1; 1, 42) to an intermediate pressure between the said first and high air pressures, is cooled, is liquefied (in 20B; 64; 74), is expanded (in 21B; 69; 76) and is introduced into the double column (7; 44).
- Process according to Claim 1 or 2, characterized in that the said second fraction of air is taken to an intermediate air pressure (in 42; 42, 73), is only partially cooled and is then boosted by a cold blower (in 50), reintroduced into the heat exchange line (47) and cooled to the said intermediate temperature, at which this air is again taken out of the heat exchange line, expanded to the medium pressure in the said expansion turbine (51), which is coupled to the cold blower, and sent into the double column (44).
- Process according to Claims 2 and 3 taken together, characterized in that a proportion of the third fraction of air is expanded to the medium pressure, after partial cooling, in a second turbine (75) coupled to a blower (73) for boosting the said second fraction of air, and is then sent to the medium pressure column (45).
- Process according to Claim 3 or 4, characterized in that a proportion of the air at the first pressure is taken out of the heat exchange line (47) at a third intermediate cooling temperature and is expanded to the low pressure in a blowing turbine (52) before being introduced at an intermediate point of the low-pressure column (46).
- Process according to any one of Claims 1 to 5, characterized in that the said oxygen vaporization pressure is substantially the output pressure.
- Plant for the production of gaseous oxygen under pressure, of the type including: a double air distillation column (7; 44) which includes a medium pressure column (8; 45) operating at a pressure called medium pressure, and a low-pressure column (9; 46) operating at a pressure called low pressure; a heat exchange line (6; 47) for placing the air to be distilled in heat exchange relationship with products originating from the double column; means for drawing liquid oxygen from the low-pressure column; and means (12; 49) for taking this liquid oxygen to an oxygen vaporization pressure of at least approximately 13 bars, the heat exchange line including means for placing the liquid oxygen at the said vaporization pressure in heat exchange relationship with air to be distilled in the course of cooling,first means of compression (1; 41) for compressing a first fraction of the air to be distilled to a first pressure close to the medium pressure, and passages (20; 62) of the heat exchange line which are connected, on the one hand, to these first means of compression and, on the other hand, to the double column (7; 44);second means of compression (1, 5; 41, 42, 50; 41, 42, 73, 50) for compressing a second fraction of the air to be distilled to a high air pressure, especially of at least approximately 25 bars, which is lower than the pressure of condensation of the air by heat exchange with the oxygen in the course of vaporization at the said vaporization pressure;the heat exchange line including high-pressure air passages (20A; 64) for cooling the said second fraction of air to an intermediate temperature and for cooling further and liquefying a proportion of this second fraction, and the plant including means (21A; 68, 69) for expansion of this liquefied proportion, which are connected to the double column;a first expansion turbine (4; 75) the suction of which is connected to the high-pressure air passages (74) and the exhaust of which is connected to the double column (7; 44); andmeans (72, 72A) for drawing at least one liquid product from the plant, characterized in that the first means of compression are connected to the medium-pressure column by means other than expansion means.
- Plant according to Claim 7, characterized in that it includes means (1; 1, 42) for compressing a third fraction of the air to be distilled to an intermediate pressure between the said first and high air pressures, the heat exchange line (6; 47) comprising passages (20B; 64; 74) for cooling and liquefying this third fraction, and a conduit connecting the cold end of these passages to the double column (7; 44) and equipped with an expansion valve (21B; 69; 76).
- Plant according to Claim 7 or 8, characterized in that it includes a single air compressor (1) with n stages, the said first means of compression consisting of a certain number p of stages, with p < n, and the said second means of compression consisting of the whole compressor.
- Plant according to Claim 7 or 8, characterized in that the second means of compression (42, 50) include a compressor the delivery of which is connected to the hot end of the heat exchange line (47), and a blower (50) the suction and the delivery of which are connected to intermediate points of the latter.
- Plant according to Claims 8 and 10 taken together, characterized in that the second means of compression include a blower (73) for boosting the said second fraction of air, coupled to a second turbine (75) for expanding a proportion of the said third fraction of air.
- Plant according to Claim 10 or 11, characterized in that the cold blower (50) is coupled to the said first turbine (51) and in that the plant includes a blowing turbine (52) fed by a proportion of the air at the first pressure and the exhaust which is connected to the low-pressure column (46).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9407531 | 1994-06-20 | ||
FR9407531A FR2721383B1 (en) | 1994-06-20 | 1994-06-20 | Process and installation for producing gaseous oxygen under pressure. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0689019A1 EP0689019A1 (en) | 1995-12-27 |
EP0689019B1 true EP0689019B1 (en) | 1999-07-28 |
Family
ID=9464405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95401443A Revoked EP0689019B1 (en) | 1994-06-20 | 1995-06-19 | Process and apparatus for producing gaseous oxygen under pressure |
Country Status (10)
Country | Link |
---|---|
US (1) | US5596885A (en) |
EP (1) | EP0689019B1 (en) |
JP (1) | JPH08175806A (en) |
KR (1) | KR960001706A (en) |
CN (1) | CN1081782C (en) |
CA (1) | CA2152010A1 (en) |
DE (1) | DE69511013T2 (en) |
ES (1) | ES2136259T3 (en) |
FR (1) | FR2721383B1 (en) |
ZA (1) | ZA955051B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114909189A (en) * | 2022-05-11 | 2022-08-16 | 重庆大学 | Novel adsorption type compression energy storage system |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2744795B1 (en) * | 1996-02-12 | 1998-06-05 | Grenier Maurice | PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN |
FR2776760B1 (en) * | 1998-03-31 | 2000-05-05 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
US6082135A (en) * | 1999-01-29 | 2000-07-04 | The Boc Group, Inc. | Air separation method and apparatus to produce an oxygen product |
US6202442B1 (en) * | 1999-04-05 | 2001-03-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'expoitation Des Procedes Georges Claude | Integrated apparatus for generating power and/or oxygen enriched fluid and process for the operation thereof |
EP1067345B1 (en) * | 1999-07-05 | 2004-06-16 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
FR2806152B1 (en) * | 2000-03-07 | 2002-08-30 | Air Liquide | PROCESS AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP1207362A1 (en) * | 2000-10-23 | 2002-05-22 | Air Products And Chemicals, Inc. | Process and apparatus for the production of low pressure gaseous oxygen |
DE10111428A1 (en) * | 2001-03-09 | 2002-09-12 | Linde Ag | Method and device for separating a gas mixture with emergency operation |
FR2854683B1 (en) * | 2003-05-05 | 2006-09-29 | Air Liquide | METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION |
FR2863348B1 (en) * | 2003-12-05 | 2006-12-22 | Air Liquide | GAS COMPRESSOR, APPARATUS FOR SEPARATING A GAS MIXTURE INCORPORATING SUCH A COMPRESSOR, AND METHOD FOR SEPARATING A GAS MIXTURE INCORPORATING SUCH A COMPRESSOR |
US6962062B2 (en) * | 2003-12-10 | 2005-11-08 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
EP1544559A1 (en) * | 2003-12-20 | 2005-06-22 | Linde AG | Process and device for the cryogenic separation of air |
FR2865024B3 (en) * | 2004-01-12 | 2006-05-05 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
US7272954B2 (en) * | 2004-07-14 | 2007-09-25 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude | Low temperature air separation process for producing pressurized gaseous product |
AU2005225027A1 (en) * | 2005-07-21 | 2007-02-08 | L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
EP1767884A1 (en) * | 2005-09-23 | 2007-03-28 | L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US20070095100A1 (en) * | 2005-11-03 | 2007-05-03 | Rankin Peter J | Cryogenic air separation process with excess turbine refrigeration |
FR2895068B1 (en) | 2005-12-15 | 2014-01-31 | Air Liquide | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION |
US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
FR2913760B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION |
EP1972875A1 (en) * | 2007-03-23 | 2008-09-24 | L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US20090100864A1 (en) * | 2007-07-06 | 2009-04-23 | Den Held Paul Anton | Process to compress air and its use in an air separation process and systems using said processes |
US20110197630A1 (en) * | 2007-08-10 | 2011-08-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude | Process and Apparatus for the Separation of Air by Cryogenic Distillation |
US20100192629A1 (en) * | 2009-01-30 | 2010-08-05 | Richard John Jibb | Oxygen product production method |
US20100192628A1 (en) * | 2009-01-30 | 2010-08-05 | Richard John Jibb | Apparatus and air separation plant |
US8726691B2 (en) * | 2009-01-30 | 2014-05-20 | Praxair Technology, Inc. | Air separation apparatus and method |
FR2943772A1 (en) * | 2009-03-27 | 2010-10-01 | Air Liquide | APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
US20130086941A1 (en) * | 2011-10-07 | 2013-04-11 | Henry Edward Howard | Air separation method and apparatus |
US20150114037A1 (en) * | 2013-10-25 | 2015-04-30 | Neil M. Prosser | Air separation method and apparatus |
FR3014545B1 (en) * | 2013-12-05 | 2018-12-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR3066809B1 (en) | 2017-05-24 | 2020-01-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
JP6900241B2 (en) | 2017-05-31 | 2021-07-07 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Gas production system |
EP3438585A3 (en) | 2017-08-03 | 2019-04-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method |
FR3072451B1 (en) * | 2017-10-13 | 2022-01-21 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2461906A1 (en) * | 1979-07-20 | 1981-02-06 | Air Liquide | CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE |
FR2652409A1 (en) * | 1989-09-25 | 1991-03-29 | Air Liquide | REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION. |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
FR2688052B1 (en) * | 1992-03-02 | 1994-05-20 | Maurice Grenier | PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION. |
FR2706595B1 (en) * | 1993-06-18 | 1995-08-18 | Air Liquide | Process and installation for producing oxygen and / or nitrogen under pressure with variable flow rate. |
-
1994
- 1994-06-20 FR FR9407531A patent/FR2721383B1/en not_active Expired - Fee Related
-
1995
- 1995-04-10 US US08/419,555 patent/US5596885A/en not_active Expired - Fee Related
- 1995-06-16 CA CA002152010A patent/CA2152010A1/en not_active Abandoned
- 1995-06-19 EP EP95401443A patent/EP0689019B1/en not_active Revoked
- 1995-06-19 DE DE69511013T patent/DE69511013T2/en not_active Expired - Fee Related
- 1995-06-19 ZA ZA955051A patent/ZA955051B/en unknown
- 1995-06-19 ES ES95401443T patent/ES2136259T3/en not_active Expired - Lifetime
- 1995-06-19 JP JP7152015A patent/JPH08175806A/en active Pending
- 1995-06-20 KR KR1019950016344A patent/KR960001706A/en active IP Right Grant
- 1995-06-20 CN CN95107033A patent/CN1081782C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114909189A (en) * | 2022-05-11 | 2022-08-16 | 重庆大学 | Novel adsorption type compression energy storage system |
Also Published As
Publication number | Publication date |
---|---|
ZA955051B (en) | 1996-02-15 |
ES2136259T3 (en) | 1999-11-16 |
JPH08175806A (en) | 1996-07-09 |
DE69511013D1 (en) | 1999-09-02 |
CN1081782C (en) | 2002-03-27 |
CA2152010A1 (en) | 1995-12-21 |
KR960001706A (en) | 1996-01-25 |
CN1120652A (en) | 1996-04-17 |
FR2721383A1 (en) | 1995-12-22 |
US5596885A (en) | 1997-01-28 |
EP0689019A1 (en) | 1995-12-27 |
FR2721383B1 (en) | 1996-07-19 |
DE69511013T2 (en) | 2000-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0576314B2 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0628778B2 (en) | Process and high pressure gas supply unit for an air constituent consuming installation | |
EP0504029B1 (en) | Process for the production of gaseous pressurised oxygen | |
EP0547946B1 (en) | Process and apparatus for the production of impure oxygen | |
WO2007068858A2 (en) | Process for separating air by cryogenic distillation | |
EP1711765B1 (en) | Cryogenic distillation method and installation for air separation | |
EP0606027B1 (en) | Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid | |
EP0789208A1 (en) | Process and installation for the production of gaseous oxygen under high pressure | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
EP0694746B1 (en) | Process for the production of a gas under pressure in variable quantities | |
WO2004099691A1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
EP1014020B1 (en) | Cryogenic process for separating air gases | |
FR2690982A1 (en) | Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine | |
FR2711778A1 (en) | Method and installation for producing oxygen and/or nitrogen under pressure | |
EP0677713B1 (en) | Process and installation for the production of oxygen by distillation of air | |
EP0641983B1 (en) | Process and installation for the production of gaseous oxygen and/or nitrogen under pressure | |
FR2688052A1 (en) | Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0611218B2 (en) | Process and installation for producing oxygen under pressure | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
EP0641982A1 (en) | Process and installation for the production of at least a gas from air under pressure | |
FR2837564A1 (en) | Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation | |
EP3913310A1 (en) | Method and device for air separation by cryogenic distilling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19960627 |
|
17Q | First examination report despatched |
Effective date: 19980203 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT LU NL SE |
|
REF | Corresponds to: |
Ref document number: 69511013 Country of ref document: DE Date of ref document: 19990902 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990825 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2136259 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 20000428 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010511 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20010517 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010518 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010522 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010523 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20010607 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010608 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010621 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020619 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020620 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020630 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20020630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030101 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020619 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20030207 |