EP1711765B1 - Cryogenic distillation method and installation for air separation - Google Patents

Cryogenic distillation method and installation for air separation Download PDF

Info

Publication number
EP1711765B1
EP1711765B1 EP05717658.8A EP05717658A EP1711765B1 EP 1711765 B1 EP1711765 B1 EP 1711765B1 EP 05717658 A EP05717658 A EP 05717658A EP 1711765 B1 EP1711765 B1 EP 1711765B1
Authority
EP
European Patent Office
Prior art keywords
air
column
turbines
pressure
booster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05717658.8A
Other languages
German (de)
French (fr)
Other versions
EP1711765A1 (en
EP1711765B8 (en
Inventor
Patrick Le Bot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PL05717658T priority Critical patent/PL1711765T3/en
Publication of EP1711765A1 publication Critical patent/EP1711765A1/en
Publication of EP1711765B1 publication Critical patent/EP1711765B1/en
Application granted granted Critical
Publication of EP1711765B8 publication Critical patent/EP1711765B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air

Definitions

  • the present invention relates to a method and an installation for air separation by cryogenic distillation.
  • the whole turbine coupled to the cold booster is associated with a system of energy dissipation (oil brake), integrated on the axis of the machines and technologically limited to small powers (of the order of 70 KW ).
  • the air supply diagrams is expanded in two turbines after being split into two parts upstream of the main exchange line. In addition, this scheme does not provide a mixing column.
  • An object of the invention is to provide an alternative that allows for cold booster method diagrams without energy dissipation system integrated into the turbine blower axis, and therefore to consider using this scheme for almost near all sizes of air separation units.
  • “Close in terms of pressure” means that the pressures differ by not more than 5 bar, preferably not more than 2 bar.
  • “Close in terms of temperature” means that the temperatures differ by at most 15 ° C, preferably at most 10 ° C.
  • a booster is a single-stage compressor.
  • condensation includes pseudo condensation.
  • vaporization includes pseudo vaporization.
  • This invention differs from US-A-5,475,980 in that in Figure 4 (optional turbine 9), the two turbines 8, 32 aspire at very different pressures, the difference being at least 14 bars and in Figure 5, the pressure difference is about 13 bars and a turbine escapes the low pressure, which is penalizing for pure oxygen.
  • Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.
  • the air 37 to 30 bar approximately liquefies in the exchange line and the liquid oxygen vaporizes in the exchange line, the temperature of vaporization of the liquid being close to the suction temperature of the second booster 23.
  • the liquefied air leaves the exchange line and is sent to the column system.
  • a flow of residual nitrogen 27 is heated in the exchange line 9.
  • the first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.
  • the column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown).
  • the low pressure column does not necessarily have a minaret.
  • the medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
  • the air 121 coming from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.
  • the liquefied air 37 is expanded in the valve 39 or possibly in a turbine and sent to the column system.
  • Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.
  • Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9.
  • Other liquids, pressurized or not, can vaporize in the exchange line.
  • Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.
  • Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.
  • Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.
  • the column can optionally produce argon by treating a flow 51 withdrawn in low pressure column 200.
  • the flow 52 is the tank liquid returned from the argon column, if there is one.
  • the mixing column 300 is fed at the top with an oxygen rich liquid withdrawn at an intermediate level of the low pressure column 200 pressurized by the pump 600 and in the tank by a flow of gaseous air 122 from the turbines 17, 19.
  • the mixing column is essentially at medium pressure.
  • a flow of oxygen gas 37 is withdrawn at the top of the mixing column and then warms in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve. It is possible to withdraw an intermediate flow from the column 300 which is sent to the low pressure column.
  • an air flow at atmospheric pressure is compressed to about 15 bar in a main compressor (not shown).
  • the air is then optionally cooled, before being purified to remove impurities (not shown).
  • the clean air is divided in two.
  • Part of the air 3 is sent to a booster 5 where it is compressed to a pressure of between 17 and 20 bars and then the air is cooled by a condenser water 7 before being sent at the hot end of the main exchange line 9 of the air separation apparatus.
  • the supercharged air 11 cools to an intermediate temperature before being divided into two fractions 103, 123.
  • the fraction 103 exits the exchange line and is divided again into two fractions.
  • a fraction 13 is sent into a turbine 17 and the remainder a fraction 15 is sent into a turbine 19.
  • the two turbines have the same temperature and suction pressure and at the same temperature and outlet pressure, but it is obviously possible that these temperatures and pressures are close to each other instead of being identical. Both flow rates are mixed to form a flow of air and sent to the double column.
  • the turbine 19 may be an insufflation turbine opening to the pressure of the low pressure column.
  • the fraction 123 continues cooling in the exchange line 9 and leaves it upstream of the cold end to be sent to the bottom reboiler 301 of the mixing column 300 where the fraction condenses at least partially to form the flow 125.
  • Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.
  • the air 37 to 30 bars approximately liquefies in the exchange line and the liquid oxygen 25 vaporizes in the exchange line, the vaporization temperature of the liquid being close to the suction temperature of the second
  • the liquefied air exits the exchange line and is sent to the column system after being mixed with the liquefied air 125 from the reboiler 301.
  • a flow of residual nitrogen 27 is heated in the exchange line 9.
  • the first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.
  • the column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown).
  • the low pressure column does not necessarily have a minaret.
  • the medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
  • the gaseous air 121 from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.
  • the liquefied air 37 is expanded in the valve 39 and sent at least to the medium pressure column 100.
  • Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.
  • Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9.
  • other liquids pressurized or not, can vaporize in the exchange line.
  • Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.
  • Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.
  • Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.
  • the column may possibly produce argon by treating a flow 51 withdrawn in low pressure column 200.
  • the mixing column 300 is fed solely at the top by an oxygen-rich liquid withdrawn at an intermediate level from the low pressure column 200 and pressurized in the pump 600.
  • the mixing column is operated essentially at medium pressure. By changing the pressure of the flow 123, the mixing column 300 can operate at a pressure different from the average pressure. Possibly part of the rich liquid 51 can be sent to the bottom of the column 300.
  • a flow of oxygen gas 37 is withdrawn at the top of the mixing column and is heated in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé et à une installation de séparation d'air par distillation cryogénique.The present invention relates to a method and an installation for air separation by cryogenic distillation.

Il est connu de produire un gaz de l'air sous pression par vaporisation de liquide pressurisé dans une ligne d'échange d'un appareil de séparation d'air par échange de chaleur avec un gaz comprimé à partir d'une température cryogénique. Des appareils de ce type sont connus de FR-A-2688052 , EP-A 0644388 , EP-A-1014020 et FR-A-2851330 .It is known to produce pressurized air gas by vaporizing pressurized liquid in an exchange line of an air separation apparatus by exchanging heat with a compressed gas from a cryogenic temperature. Devices of this type are known to FR-A-2688052 , EP-A 0644388 , EP-A-1014020 and FR-A-2851330 .

L'efficacité énergétique des appareils connus n'est pas excellente car il faut évacuer les entrées thermiques liées à la compression cryogénique.The energy efficiency of known devices is not excellent because it is necessary to evacuate the thermal inputs related to cryogenic compression.

De plus, pour les schémas tels que celui de la Figure 7 de US-A 5475980 , l'ensemble de la turbine couplée au surpresseur froid est associé à un système de dissipation d'énergie (frein d'huile), intégré sur l'axe des machines et technologiquement limité à de petites puissances (de l'ordre de 70 KW). Par ailleurs, pour les schémas de lal'air d'alimentation est détendu dans deux turbines après avoir été séparé en deux partie en amont de la ligne d'échange principale. De plus, ce schéma ne prévoit pas de colonne de mélange.In addition, for schemes such as that in Figure 7 of US-A 5475980 , the whole turbine coupled to the cold booster is associated with a system of energy dissipation (oil brake), integrated on the axis of the machines and technologically limited to small powers (of the order of 70 KW ). Furthermore, for the air supply diagrams is expanded in two turbines after being split into two parts upstream of the main exchange line. In addition, this scheme does not provide a mixing column.

Néanmoins, ce type de procédé paraît avoir un intérêt économique, en particulier lorsque l'énergie est peu valorisée ou disponible à faible coût. Il est donc potentiellement intéressant de pouvoir s'affranchir de la limite technologique du frein d'huile intégré à l'axe de l'ensemble turbine/booster.Nevertheless, this type of process seems to have an economic interest, in particular when the energy is little valorized or available at low cost. It is therefore potentially interesting to be able to overcome the technological limit of the oil brake integrated in the axis of the turbine / booster assembly.

L'application internationale WO-A-20041099690 publiée le 18.11.2004 décrit un procédé similaire avec une double colonne et une surpression cryogénique sur une partie de l'air alimentant la double colonne. Néanmoins, ce document ne propose pas d'intégrer une colonne de mélange dans ce procédé.The international application WO-A-20041099690 published on 18.11.2004 describes a similar process with a double column and a cryogenic overpressure on a part of the air supplying the double column. Nevertheless, this document does not propose to integrate a mixing column in this process.

Un but de l'invention est de proposer une alternative qui permette de réaliser des schémas de procédé à surpresseur froid sans système de dissipation d'énergie intégré à l'axe turbine surpresseur, et donc d'envisager d'utiliser ce schéma pour à peu près toutes les tailles d'appareils de séparation d'air.An object of the invention is to provide an alternative that allows for cold booster method diagrams without energy dissipation system integrated into the turbine blower axis, and therefore to consider using this scheme for almost near all sizes of air separation units.

Selon la présente invention, il est prévu un procédé selon la revendication 1.According to the present invention there is provided a method according to claim 1.

Selon d'autres aspects facultatifs de l'invention :

  • l'air envoyé à au moins une des turbines en amont de la colonne de mélange provient du surpresseur autre que le surpresseur froid et sort de ce surpresseur à une pression supérieure à la haute pression.
  • l'air provenant d'au moins une des turbines est envoyé à la cuve de la colonne de mélange pour participer à l'échange de matière.
According to other optional aspects of the invention:
  • the air sent to at least one of the turbines upstream of the mixing column comes from the booster other than the cold booster and leaves this booster at a pressure higher than the high pressure.
  • air from at least one of the turbines is sent to the tank of the mixing column to participate in the exchange of material.

Selon un autre aspect de l'invention, il est prévu une installation selon la revendication 4. Selon d'autres aspects facultatifs, l'installation comprend

  • des moyens pour envoyer une partie de l'air comprimé dans le surpresseur constituant le moyen de dissipation d'énergie ou faisant partie de celui-ci à au moins une turbine de détente en amont de la colonne de mélange,
  • des moyens pour envoyer de l'air provenant d'au moins une des turbines dans la cuve de colonne de mélange pour participer à l'échange de matière.
According to another aspect of the invention, there is provided an installation according to claim 4. According to other optional aspects, the installation includes
  • means for sending a portion of the compressed air into the blower constituting the energy dissipation means or forming part of it to at least one expansion turbine upstream of the mixing column,
  • means for supplying air from at least one of the turbines into the mixing column vessel to participate in the exchange of material.

On utilisera une turbine complémentaire, fonctionnant en parallèle de la turbine du premier ensemble turbine surpresseur, et équipée de son propre système de dissipation d'énergie. Favorablement, ce système sera un surpresseur suivi d'un réfrigérant à eau installé en partie chaude.It will use a complementary turbine, operating in parallel with the turbine of the first blower assembly booster, and equipped with its own energy dissipation system. Favorably, this system will be a booster followed by a water cooler installed in the hot part.

« Proches en termes de pression » veut dire que les pressions diffèrent d'au plus 5 bars, de préférence d'au plus 2 bars. « Proches en termes de température » veut dire que les températures diffèrent d'au plus de 15°C, e préférence au plus 10°C."Close in terms of pressure" means that the pressures differ by not more than 5 bar, preferably not more than 2 bar. "Close in terms of temperature" means that the temperatures differ by at most 15 ° C, preferably at most 10 ° C.

Un surpresseur est un compresseur à un seul étage.A booster is a single-stage compressor.

Toutes les pressions mentionnées sont des pressions absolues.All pressures mentioned are absolute pressures.

Le terme « condensation » comprend la pseudo condensation. Le terme « vaporisation » comprend la pseudo vaporisation.The term "condensation" includes pseudo condensation. The term "vaporization" includes pseudo vaporization.

Cette invention se distingue de US-A 5 475 980 en ce sens que dans la Figure 4 (turbine 9 optionnelle), les deux turbines 8, 32 aspirent à des pressions très différenciées, la différence étant d'au moins 14 bars et dans la Figure 5, la différence de pressions est d'environ 13 bars et une turbine échappe à la basse pression, ce qui est pénalisant pour de l'oxygène pur.This invention differs from US-A-5,475,980 in that in Figure 4 (optional turbine 9), the two turbines 8, 32 aspire at very different pressures, the difference being at least 14 bars and in Figure 5, the pressure difference is about 13 bars and a turbine escapes the low pressure, which is penalizing for pure oxygen.

L'invention sera décrite en plus de détails en se référant aux figures dans lesquelles :

  • Les Figures 1 et 2 représentent un appareil de séparation d'air selon l'invention.
  • Dans la Figure 1, un débit d'air à la pression atmosphérique est comprimé à environ 15 bars dans un compresseur principal (non-illustré). L'air est ensuite éventuellement refroidi, avant d'être épuré pour enlever les Impuretés (non-illustré). L'air épuré est divisé en deux. Une partie de l'air 3 est envoyée à un surpresseur 5 où elle est comprimée jusqu'à une pression d'entre 17 et 20 bars et ensuite l'air surpressé est refroidi par un réfrigérant à l'eau 7 avant d'être envoyé au bout chaud de la ligne d'échange principal 9 de l'appareil de séparation d'air. L'air surpressé 11 se refroidit jusqu'à une température intermédiaire avant de sortir de la ligne d'échange et d'être divisé en deux fractions. Il est évidemment possible qu'une fraction du débit 11 poursuive son refroidissement jusqu'au bout froid de la ligne d'échange 9 d'où il sortira liquéfié. Une fraction 13 est envoyée dans une turbine 17 et le reste, une fraction 15 est envoyée dans une turbine 19. Les deux turbines ont la même température et pression d'aspiration et la même température et pression de sortie mais il est évidemment possible que ces températures et pression soient proches les unes des autres au lieu d'être identiques. Les deux débits turbinés sont mélangés pour former un débit 21 d'air dont une partie 121 est envoyée vers la double colonne et le reste 122 vers la colonne de mélange 300. Le débit 122 constitue une partie du débit 21 ou éventuellement une fraction de la partie gazeuse du débit 21 dans le cas où celui-ci est diphasique. Il est évidemment possible d'envoyer tout le débit 21 à la colonne moyenne pression 100 et d'en sortir une partie gazeuse 122 pour envoi à la colonne de mélange, la colonne moyenne pression remplaçant dans ce cas, le séparateur de phases. Les pressions de la colonne moyenne pression et de la colonne de mélange peuvent être différentes. En variante, la turbine 19 peut être une turbine d'insufflation débouchant à la pression de la colonne basse pression.
The invention will be described in more detail with reference to the figures in which:
  • The Figures 1 and 2 represent an air separation apparatus according to the invention.
  • In the Figure 1 an air flow at atmospheric pressure is compressed to about 15 bar in a main compressor (not shown). The air is then optionally cooled, before being purified to remove impurities (not shown). The clean air is divided in two. Part of the air 3 is sent to a booster 5 where it is compressed to a pressure of between 17 and 20 bars and then the air is cooled by a condenser water 7 before being sent at the hot end of the main exchange line 9 of the air separation apparatus. The pressurized air 11 cools to an intermediate temperature before exiting the exchange line and being divided into two fractions. It is obviously possible for a fraction of the flow 11 to continue cooling down to the cold end of the exchange line 9 from which it will exit liquefied. A fraction 13 is sent into a turbine 17 and the remainder, a fraction 15 is sent into a turbine 19. The two turbines have the same temperature and suction pressure and the same temperature and outlet pressure but it is obviously possible that these temperatures and pressure are close to each other instead of being identical. The two turbined flow rates are mixed to form an air flow 21 of which a portion 121 is sent to the double column and the remainder 122 to the mixing column 300. The flow 122 constitutes a part of the flow 21 or possibly a fraction of the gas part of the flow 21 in the case where it is two-phase. It is obviously possible to send all the flow 21 to the medium pressure column 100 and to leave a gaseous part 122 for sending to the mixing column, the medium pressure column replacing in this case the phase separator. The pressures of the medium pressure column and the mixing column may be different. Alternatively, the turbine 19 may be an insufflation turbine opening to the pressure of the low pressure column.

Une autre partie 2 de l'air à 15 bars constituant le reste de l'air est refroidie dans la ligne d'échange à une température intermédiaire supérieure à la température d'aspiration des turbines 17, 19, comprimée dans un deuxième surpresseur 23 jusqu'à 30 bars environ et reintroduite dans la ligne d'échange 9 à une température plus élevée afin de poursuivre son refroidissement.Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.

Ainsi, l'air 37 à 30 bars environ se liquéfie dans la ligne d'échange et de l'oxygène liquide 25 se vaporise dans la ligne d'échange, la température de vaporisation du liquide étant proche de la température d'aspiration du deuxième surpresseur 23. L'air liquéfié sort de la ligne d'échange et est envoyé vers le système de colonnes.Thus, the air 37 to 30 bar approximately liquefies in the exchange line and the liquid oxygen vaporizes in the exchange line, the temperature of vaporization of the liquid being close to the suction temperature of the second booster 23. The liquefied air leaves the exchange line and is sent to the column system.

Un débit d'azote résiduaire 27 se réchauffe dans la ligne d'échange 9.A flow of residual nitrogen 27 is heated in the exchange line 9.

Le premier surpresseur 5 est couplé avec l'une des turbines 17, 19 et le deuxième surpresseur 23 est couplé avec l'autre des turbines 19, 17.The first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.

Le système de colonnes d'un appareil de séparation d'air est constitué par une colonne moyenne pression 100 thermiquement reliée avec une colonne basse pression 200 à minaret, une colonne de mélange 300 et une colonne argon optionnelle (non-illustrée). La colonne basse pression ne comporte pas obligatoirement de minaret.The column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown). The low pressure column does not necessarily have a minaret.

La colonne moyenne pression opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.

L'air 121 provenant des deux turbines 17, 19 est le débit envoyé en cuve de la colonne moyenne pression 100.The air 121 coming from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.

L'air liquéfié 37 est détendu dans la vanne 39 ou éventuellement dans une turbine et envoyé au système de colonnes.The liquefied air 37 is expanded in the valve 39 or possibly in a turbine and sent to the column system.

Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans des vannes et de sous-refroidissement.Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.

De l'oxygène liquide est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. D'autres liquides, pressurisés ou non, peuvent se vaporiser dans la ligne d'échange.Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9. Other liquids, pressurized or not, can vaporize in the exchange line.

De l'azote gazeux est optionnellement soutiré de la colonne moyenne pression et se refroidit également dans la ligne d'échange 9.Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.

De l'azote 33 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.

De l'azote résiduaire 27 est soutiré d'un niveau inférieur de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.

La colonne peut éventuellement produire de l'argon en traitant un débit 51 soutiré en colonne basse pression 200. Le débit 52 est le liquide de cuve renvoyé de la colonne argon, s'il y en a une.The column can optionally produce argon by treating a flow 51 withdrawn in low pressure column 200. The flow 52 is the tank liquid returned from the argon column, if there is one.

La colonne de mélange 300 est alimentée en tête par un liquide 35 riche en oxygène soutiré à un niveau intermédiaire de la colonne basse pression 200 pressurisé par la pompe 600 et en cuve par un débit d'air gazeux 122 provenant des turbines 17, 19. La colonne de mélange s'opère essentiellement à la moyenne pression.The mixing column 300 is fed at the top with an oxygen rich liquid withdrawn at an intermediate level of the low pressure column 200 pressurized by the pump 600 and in the tank by a flow of gaseous air 122 from the turbines 17, 19. The mixing column is essentially at medium pressure.

Un débit d'oxygène gazeux 37 est soutiré en tête de la colonne de mélange et se réchauffe ensuite dans la ligne d'échange 9 et un débit liquide 41 est soutiré en cuve et envoyé à la colonne basse pression après détente dans une vanne. Il est possible de soutirer un débit intermédiaire de la colonne 300 qui est envoyé à la colonne basse pression.A flow of oxygen gas 37 is withdrawn at the top of the mixing column and then warms in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve. It is possible to withdraw an intermediate flow from the column 300 which is sent to the low pressure column.

Dans la Figure 2, un débit d'air à la pression atmosphérique est comprimé à environ 15 bars dans un compresseur principal (non-illustré). L'air est ensuite éventuellement refroidi, avant d'être épuré pour enlever les impuretés (non-illustré). L'air épuré est divisé en deux. Une partie de l'air 3 est envoyée à un surpresseur 5 où elle est comprimée jusqu'à une pression d'entre 17 et 20 bars et ensuite l'air surpressé est refroidi par un réfrigérant à l'eau 7 avant d'être envoyé au bout chaud de la ligne d'échange principal 9 de l'appareil de séparation d'air. L'air surpressé 11 se refroidit jusqu'à une température intermédiaire avant d'être divisé en deux fractions 103, 123. La fraction 103 sort de la ligne d'échange et est divisée de nouveau en deux fractions. Une fraction 13 est envoyée dans une turbine 17 et le reste, une fraction 15 est envoyée dans une turbine 19. Les deux turbines ont la même température et pression d'aspiration et !a même température et pression de sortie mais il est évidemment possible que ces températures et pression soient proches les unes des autres au lieu d'être identiques. Les deux débits turbinés sont mélangés pour former un débit 21 d'air et envoyés vers la double colonne. En variante, la turbine 19 peut être une turbine d'insufflation débouchant à la pression de la colonne basse pression.In the Figure 2 an air flow at atmospheric pressure is compressed to about 15 bar in a main compressor (not shown). The air is then optionally cooled, before being purified to remove impurities (not shown). The clean air is divided in two. Part of the air 3 is sent to a booster 5 where it is compressed to a pressure of between 17 and 20 bars and then the air is cooled by a condenser water 7 before being sent at the hot end of the main exchange line 9 of the air separation apparatus. The supercharged air 11 cools to an intermediate temperature before being divided into two fractions 103, 123. The fraction 103 exits the exchange line and is divided again into two fractions. A fraction 13 is sent into a turbine 17 and the remainder a fraction 15 is sent into a turbine 19. The two turbines have the same temperature and suction pressure and at the same temperature and outlet pressure, but it is obviously possible that these temperatures and pressures are close to each other instead of being identical. Both flow rates are mixed to form a flow of air and sent to the double column. Alternatively, the turbine 19 may be an insufflation turbine opening to the pressure of the low pressure column.

La fraction 123 poursuit son refroidissement dans la ligne d'échange 9 et en sort en amont du bout froid pour être envoyé au rebouilleur de cuve 301 de la colonne de mélange 300 où la fraction se condense au moins partiellement pour former le débit 125.The fraction 123 continues cooling in the exchange line 9 and leaves it upstream of the cold end to be sent to the bottom reboiler 301 of the mixing column 300 where the fraction condenses at least partially to form the flow 125.

Une autre partie 2 de l'air à 15 bars constituant le reste de l'air est refroidie dans la ligne d'échange à une température intermédiaire supérieure à la température d'aspiration des turbines 17, 19, comprimée dans un deuxième surpresseur 23 jusqu'à 30 bars environ et réintroduite dans la ligne d'échange 9 à une température plus élevée afin de poursuivre son refroidissement.Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.

Ainsi, l'air 37 à 30 bars environ se liquéfie dans la ligne d'échange et de l'oxygène liquide 25 se vaporise dans la ligne d'échange, la température de vaporisation du liquide étant proche de la température d'aspiration du deuxième surpresseur 23. L'air liquéfié sort de la ligne d'échange et est envoyé vers le système de colonnes après être mélangé avec l'air liquéfié 125 provenant du rebouilleur 301.Thus, the air 37 to 30 bars approximately liquefies in the exchange line and the liquid oxygen 25 vaporizes in the exchange line, the vaporization temperature of the liquid being close to the suction temperature of the second The liquefied air exits the exchange line and is sent to the column system after being mixed with the liquefied air 125 from the reboiler 301.

Un débit d'azote résiduaire 27 se réchauffe dans la ligne d'échange 9.A flow of residual nitrogen 27 is heated in the exchange line 9.

Le premier surpresseur 5 est couplé avec l'une des turbines 17, 19 et le deuxième surpresseur 23 est couplé avec l'autre des turbines 19, 17.The first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.

Le système de colonnes d'un appareil de séparation d'air est constitué par une colonne moyenne pression 100 thermiquement reliée avec une colonne basse pression 200 à minaret, une colonne de mélange 300 et une colonne argon optionnelle (non-illustrée). La colonne basse pression ne comporte pas obligatoirement de minaret.The column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown). The low pressure column does not necessarily have a minaret.

La colonne moyenne pression opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.

L'air gazeux 121 provenant des deux turbines 17, 19 est !e débit envoyé en cuve de la colonne moyenne pression 100.The gaseous air 121 from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.

L'air liquéfié 37 est détendu dans la vanne 39 et envoyé au moins à la colonne moyenne pression 100.The liquefied air 37 is expanded in the valve 39 and sent at least to the medium pressure column 100.

Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans des vannes et de sous-refroidissement.Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.

De l'oxygène liquide est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. En addition ou alternativement d'autres liquides, pressurisés ou non, peuvent se vaporiser dans la ligne d'échange.Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9. In addition or alternatively other liquids, pressurized or not, can vaporize in the exchange line.

De l'azote gazeux est optionnellement soutiré de la colonne moyenne pression et se refroidit également dans la ligne d'échange 9.Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.

De l'azote 33 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.

De l'azote résiduaire 27 est soutiré d'un niveau inférieur de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.

La colonne peut éventuellement produire de l'argon en traitant un débit 51 soutiré en colonne basse pression 200.The column may possibly produce argon by treating a flow 51 withdrawn in low pressure column 200.

La colonne de mélange 300 est alimentée uniquement en tête par un liquide 35 riche en oxygène soutiré à un niveau Intermédiaire de la colonne basse pression 200 et pressurisé dans la pompe 600. La colonne de mélange s'opère essentiellement à la moyenne pression. En modifiant la pression du débit 123, la colonne de mélange 300 peut opérer à une pression différente de la moyenne pression. Eventuellement une partie du liquide riche 51 peut être envoyée en cuve de la colonne 300.The mixing column 300 is fed solely at the top by an oxygen-rich liquid withdrawn at an intermediate level from the low pressure column 200 and pressurized in the pump 600. The mixing column is operated essentially at medium pressure. By changing the pressure of the flow 123, the mixing column 300 can operate at a pressure different from the average pressure. Possibly part of the rich liquid 51 can be sent to the bottom of the column 300.

Un débit d'oxygène gazeux 37 est soutiré en tête de la colonne de mélange et se réchauffe dans la ligne d'échange 9 et un débit liquide 41 est soutiré en cuve et envoyé à la colonne basse pression après détente dans une vanne.A flow of oxygen gas 37 is withdrawn at the top of the mixing column and is heated in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve.

Claims (6)

  1. Process for separating air by cryogenic distillation in an installation comprising a double or triple air separation column (100, 200), the column of which operating at the higher pressure (100) operates at what is called the medium pressure, an exchange line (9), and in addition to the double or triple column, a mixing column (300), in which:
    a) all the air is raised to a high pressure, optionally at least 5 bar above the medium pressure, and purified, optionally at this high pressure;
    b) one portion of the stream of purified air is cooled in the exchange line and is then divided into two fractions;
    c) each fraction is expanded in a turbine (17, 19);
    d) the intake pressure of the two turbines is respectively the intake pressures of the two turbines are at least 5 bar above the medium pressure;
    e) the delivery pressure of at least one of the two turbines is substantially equal to the medium pressure;
    f) at least one portion of the air expanded in at least one of the turbines is sent to the medium-pressure column of a double or triple column;
    g) a cold booster (23) mechanically coupled to one of the expansion turbines takes in air, which has undergone cooling in the exchange line, and delivers the air at a temperature above the intake temperature, and the fluid thus compressed is reintroduced into the exchange line in which at least one portion of the fluid undergoes condensation or pseudo condensation;
    h) at least one pressurized liquid coming from one of the columns undergoes (pseudo)vaporization in the exchange line at a vaporization temperature, and
    i) the turbine (17) not coupled to the cold booster is coupled to a booster (5) followed by a cooler; and, optionally,
    j) the intake temperature of the cold booster (23) is close to the vaporization or pseudo vaporization temperature of the liquid, and
    k) either air coming from at least one of the turbines (17, 19) is sent to the mixing column, optionally after having passed through the medium-pressure column (100), or air (123) at least at the high pressure is sent to a bottom reboiler (301) of the mixing column (300) where it at least partially condenses before being sent to the double or triple column.
  2. Process according to Claim 1, in which the air sent to at least one of the turbines (17, 19) upstream of the mixing column comes from the booster (5) other than the cold booster (23) and leaves this booster at a pressure above the high pressure.
  3. Process according to either of Claims 1 and 2, in which air (13, 15) expanded in at least one of the turbines (17, 19) is sent to the bottom of the mixing column (300), in order to participate in mass exchange therein.
  4. Installation for separating air by cryogenic distillation, comprising:
    a) a double or triple air separation column (100, 200), the column (100) of which, operating at the higher pressure, operates at what is called the medium pressure;
    b) an exchange line (9);
    c) means for raising all the air to a high pressure, above the medium pressure, and means for purifying it, optionally at this high pressure;
    d) means for sending one portion of the purified air stream into the exchange line in order to cool it and means for dividing this cooled air into two fractions;
    e) two turbines (17, 19) and means for sending one air fraction to each turbine;
    f) means for sending at least one portion of the air expanded in at least one of the turbines to the medium-pressure column of the double or triple column;
    g) a cold booster (23), means for sending air, preferably withdrawn from an intermediate point on the main exchange line, to the cold booster and means for sending air boosted in the cold booster into the exchange line at an intermediate point upstream of the withdrawal point;
    h) means (500) for pressurizing at least one liquid coming from one of the columns, means for sending the at least one pressurized liquid into the exchange line, and means for expelling a vaporized liquid from the exchange line;
    i) the cold booster is coupled to one of the turbines (19);
    j) the turbine (17) not coupled to the cold booster is coupled to a booster (5) followed by a cooler; and
    k) a mixing column and either means for sending air to the mixing column from at least one of the turbines (17, 19), or means for sending air (123) at least at the high pressure into a bottom reboiler (301) of the mixing column (300) and means for sending air at least partially condensed in this bottom reboiler to the double or triple column.
  5. Installation according to Claim 4, which includes means for sending one portion of the air compressed in the booster (5) constituting the energy dissipation means, or forming part of the latter, to at least one expansion turbine (17, 19) upstream of the mixing column.
  6. Installation according to either of Claims 4 and 5, where the means for sending air, coming from at least one of the turbines (17, 19), into the mixing column are connected to the bottom of the mixing column (300) in order to participate in mass exchange therein.
EP05717658.8A 2004-01-12 2005-01-07 Cryogenic distillation method and installation for air separation Not-in-force EP1711765B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05717658T PL1711765T3 (en) 2004-01-12 2005-01-07 Cryogenic distillation method and installation for air separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450067A FR2865024B3 (en) 2004-01-12 2004-01-12 METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
PCT/FR2005/050011 WO2005073651A1 (en) 2004-01-12 2005-01-07 Cryogenic distillation method and installation for air separation

Publications (3)

Publication Number Publication Date
EP1711765A1 EP1711765A1 (en) 2006-10-18
EP1711765B1 true EP1711765B1 (en) 2013-06-19
EP1711765B8 EP1711765B8 (en) 2013-08-28

Family

ID=34685057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05717658.8A Not-in-force EP1711765B8 (en) 2004-01-12 2005-01-07 Cryogenic distillation method and installation for air separation

Country Status (11)

Country Link
US (1) US20080223076A1 (en)
EP (1) EP1711765B8 (en)
JP (1) JP2007518054A (en)
CN (1) CN100432601C (en)
BR (1) BRPI0506789B1 (en)
ES (1) ES2425944T3 (en)
FR (1) FR2865024B3 (en)
PL (1) PL1711765T3 (en)
RU (1) RU2360194C2 (en)
UA (1) UA89365C2 (en)
WO (1) WO2005073651A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005225027A1 (en) * 2005-07-21 2007-02-08 L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2895068B1 (en) * 2005-12-15 2014-01-31 Air Liquide AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
DE102012017484A1 (en) * 2012-09-04 2014-03-06 Linde Aktiengesellschaft Process and plant for the production of liquid and gaseous oxygen products by cryogenic separation of air
ES2834478T3 (en) * 2012-11-02 2021-06-17 Linde Gmbh Cryogenic air separation method in air separation plant and air separation plant
IT201700042150A1 (en) * 2017-04-14 2018-10-14 Cristiano Galbiati SEPARATION EQUIPMENT
EP3438584B1 (en) 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for air separation by cryogenic distilling
CN111406192B (en) * 2017-11-29 2022-04-08 乔治洛德方法研究和开发液化空气有限公司 Cryogenic rectification method and apparatus for producing pressurized air by expander booster braked in conjunction with nitrogen expander
US20220074657A1 (en) * 2018-12-19 2022-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting up a cryogenic air separation unit and associated air separation unit
FR3090831B1 (en) * 2018-12-21 2022-06-03 L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Cryogenic distillation air separation apparatus and method
CN114174747B (en) * 2019-07-26 2024-05-28 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for separating air by cryogenic distillation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216510A1 (en) * 1982-05-03 1983-11-03 Linde Ag, 6200 Wiesbaden Process for recovery of gaseous oxygen under elevated pressure
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2721383B1 (en) * 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
US5454227A (en) * 1994-08-17 1995-10-03 The Boc Group, Inc. Air separation method and apparatus
US5490391A (en) * 1994-08-25 1996-02-13 The Boc Group, Inc. Method and apparatus for producing oxygen
FR2731781B1 (en) * 1995-03-15 1997-05-23 Air Liquide METHOD AND APPARATUS FOR VAPORIZING LIQUID FLOW
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
FR2744795B1 (en) * 1996-02-12 1998-06-05 Grenier Maurice PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN
JP3737611B2 (en) * 1997-08-08 2006-01-18 大陽日酸株式会社 Method and apparatus for producing low purity oxygen
FR2787560B1 (en) * 1998-12-22 2001-02-09 Air Liquide PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
DE19951521A1 (en) * 1999-10-26 2001-05-03 Linde Ag Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column
FR2851330B1 (en) * 2003-02-13 2006-01-06 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION

Also Published As

Publication number Publication date
WO2005073651A1 (en) 2005-08-11
CN100432601C (en) 2008-11-12
BRPI0506789B1 (en) 2018-02-06
ES2425944T3 (en) 2013-10-18
RU2006129296A (en) 2008-02-20
PL1711765T3 (en) 2013-10-31
UA89365C2 (en) 2010-01-25
RU2360194C2 (en) 2009-06-27
US20080223076A1 (en) 2008-09-18
JP2007518054A (en) 2007-07-05
BRPI0506789A (en) 2007-05-22
FR2865024B3 (en) 2006-05-05
FR2865024A1 (en) 2005-07-15
EP1711765A1 (en) 2006-10-18
EP1711765B8 (en) 2013-08-28
CN1910419A (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP1711765B1 (en) Cryogenic distillation method and installation for air separation
EP1623171B1 (en) Cryogenic distillation method and system for air separation
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0628778B1 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0547946B1 (en) Process and apparatus for the production of impure oxygen
EP1623172B1 (en) Method and system for the production of pressurized air gas by cryogenic distillation of air
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP3631327B1 (en) Method and apparatus for air separation by cryogenic distillation
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
CA2146831A1 (en) Process and unit for producing oxygen by air distillation
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
FR2701553A1 (en) Method and installation for producing oxygen under pressure.
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
FR2973485A1 (en) Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
EP2938414B1 (en) Method and apparatus for separating a carbon dioxide-rich gas
CA2828716C (en) Device and method for separating air by cryogenic distillation
FR2929697A1 (en) PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
WO2005047790A2 (en) Method and installation for enriching a gas stream with one of the components thereof
FR2990748A1 (en) METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE
FR2844864A1 (en) Vaporization of a cryogenic liquid by heat exchange with water in a steam-heated pool involves using a water-cooling circuit having a compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

17Q First examination report despatched

Effective date: 20090224

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE BOT, PATRICK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 617884

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005040043

Country of ref document: DE

Effective date: 20130808

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2425944

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 617884

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130919

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

26N No opposition filed

Effective date: 20140320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005040043

Country of ref document: DE

Effective date: 20140320

BERE Be: lapsed

Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140107

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050107

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20171220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180227

Year of fee payment: 14

Ref country code: DE

Payment date: 20180122

Year of fee payment: 14

Ref country code: GB

Payment date: 20180119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180129

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005040043

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190107