JP3737611B2 - Method and apparatus for producing low purity oxygen - Google Patents

Method and apparatus for producing low purity oxygen Download PDF

Info

Publication number
JP3737611B2
JP3737611B2 JP21489497A JP21489497A JP3737611B2 JP 3737611 B2 JP3737611 B2 JP 3737611B2 JP 21489497 A JP21489497 A JP 21489497A JP 21489497 A JP21489497 A JP 21489497A JP 3737611 B2 JP3737611 B2 JP 3737611B2
Authority
JP
Japan
Prior art keywords
raw material
material air
low
oxygen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21489497A
Other languages
Japanese (ja)
Other versions
JPH1163810A (en
Inventor
康浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP21489497A priority Critical patent/JP3737611B2/en
Publication of JPH1163810A publication Critical patent/JPH1163810A/en
Application granted granted Critical
Publication of JP3737611B2 publication Critical patent/JP3737611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低純度酸素の製造方法及び装置に関し、詳しくは、低温で空気を蒸留分離することにより、主として低純度酸素(99%O以下)を製品として回収する方法及び装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
低純度酸素は、従来から鉄鋼、ガラス溶融等の分野において使用されてきたが、原油資源の枯渇やエネルギーの有効利用を考慮した石炭ガス化複合発電や、重質残渣ガス化発電及び直接溶融還元製鋼等においても今後さらに需要が見込まれている。これらの分野においては、大量の酸素を消費することから、特に酸素の製造コストを低くすることが追及されている。
【0003】
純度99%以下の低純度酸素を製造する方法として、原料空気を低圧塔及び高圧塔を有する複式精留設備で液化精留する方法が知られている。この液化精留法では、一般に、低圧塔の下部から酸素をガス状あるいは液状で抜出すが、低純度酸素を製造する場合は、低圧塔の回収部において酸素とアルゴンとをほとんど分離する必要がないため、この部分の下降液と上昇ガスとを、高純度酸素を製造するプロセスと比較して少なくすることができる。
【0004】
このため、例えば、特開昭55−38243号公報に記載されている方法では、原料空気を低圧と高圧との2系統に分離し、低圧の原料空気を低圧塔に直接導入するようにしている。これにより、高圧に圧縮する原料空気の流量が減少するため、原料空気の圧縮に要する動力の削減が図れる。
【0005】
しかし、この方法では、低圧及び高圧の2系統の原料空気を、それぞれ異なる圧縮機で圧縮し、異なる精製設備で不純物を除去するため、設備コストが増加し、さらに、低圧側の精製設備では、原料空気から高沸点の不純物を除去するために多量のエネルギーが必要となり、装置に必要な動力が増大するという欠点があった。
【0006】
また、特開平5−296652号公報に記載された方法では、原料空気の全量を高圧塔の運転圧力に応じた圧力に圧縮して精製を行った後、原料空気の一部を分岐させて膨張タービンで膨張させることにより低圧の原料空気を得るとともに、膨張により得られた動力を原料空気の圧縮動力として利用するようにしている。
【0007】
この方法では、膨張タービンでの膨張により得られた仕事を原料空気の圧縮動力の一部として利用し、動力を回収するようにしているが、流体の膨張により得られるエネルギーは、膨張タービンや圧縮機の効率等によって減少するため、このエネルギーの全てを圧縮のためのエネルギーとして使用することはできなかった。また、低圧塔に導入する低圧原料空気は、一旦高圧塔の圧力まで圧縮された後、膨張タービンで膨張するが、この膨張による仕事は、単に圧縮機の圧縮動力として利用されるだけであり、低圧塔に導入する低圧原料空気を高圧塔の圧力よりも低い圧力に圧縮するほうが効率的である。
【0008】
そこで本発明は、上述の各プロセスと比較して酸素動力原単位を低減させ、製造コストの低減を図ることができる低純度酸素の製造方法及び装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の低純度酸素の製造方法は、原料空気を低圧塔及び高圧塔を有する複式精留設備で液化精留することにより低純度酸素を製造する方法において、原料空気を前記高圧塔の運転圧力より低い圧力に圧縮する工程と、圧縮原料空気を予冷する工程と、予冷した原料空気から水分や二酸化炭素等の不純物を除去して精製する工程と、精製原料空気を第1原料空気と第2原料空気とに分岐し、分岐した第1原料空気を膨張させる工程と、分岐した第2原料空気を昇圧する工程と、膨張させた第1原料空気及び昇圧した第2原料空気を、液化精留で得られた流体との熱交換により冷却する工程と、冷却した第1原料空気を前記低圧塔に、冷却した第2原料空気を前記高圧塔に、それぞれ導入して液化精留することにより酸素と窒素とに分離する工程と、液化精留で得られた低圧塔下部の酸素の少なくとも一部を製品として回収する工程とを含むことを特徴としている。
【0010】
さらに、本発明の低純度酸素の製造方法は、前記第2原料空気の昇圧を前記第1原料空気の膨張による仕事を利用して行うこと、前記第1原料空気を膨張させる前に加熱すること、前記第2原料空気を昇圧する前に冷却すること、前記製品酸素は、液化精留で得られた低圧塔下部の液化酸素を圧縮した後、前記第2原料空気の一部との熱交換によって蒸発させることにより回収すること、この液化酸素と熱交換する第2原料空気の一部を該熱交換によって液化した後、前記高圧塔における第2原料空気の導入位置より少なくとも1理論段上の位置で高圧塔に導入することを特徴としている。
【0011】
また、本発明の低純度酸素の製造装置は、原料空気を低圧塔及び高圧塔を有する複式精留設備で液化精留することにより低純度酸素を製造する装置において、原料空気を前記高圧塔の運転圧力より低い圧力に圧縮する原料空気圧縮機と、圧縮原料空気を予冷する予冷設備と、予冷した原料空気から水分や二酸化炭素等の不純物を除去して精製する精製設備と、精製原料空気の一部を膨張させる膨張タービンと、精製原料空気の残部を昇圧する昇圧機と、膨張させた第1原料空気及び昇圧した第2原料空気を液化精留で得られた流体との熱交換により冷却する主熱交換器と、冷却した第1原料空気を前記低圧塔に導入する経路と、冷却した第2原料空気を前記高圧塔に導入する経路と、液化精留により低圧塔下部に生成した酸素の少なくとも一部を製品として回収する経路とを備えていることを特徴としている。
【0012】
さらに、本発明の低純度酸素の製造装置は、前記膨張タービンと前記昇圧機とが同軸上に連結されていること、前記膨張タービンで膨張させる精製原料空気を膨張させる前に加熱する熱交換器を備えていること、前記昇圧機が前記主熱交換器における温端温度と冷端温度との間の温度で精製原料空気を吸入して昇圧するものであること、前記酸素を製品として回収する経路が、液化精留によって得られた低圧塔底部の液化酸素を圧縮するポンプと、該ポンプで圧縮した液化酸素と前記第2原料空気の一部とを熱交換させて液化酸素を蒸発させるとともに第2原料空気を液化させる酸素蒸発器と、該酸素蒸発器で液化した第2原料空気を、酸素蒸発器を経由しない第2原料空気の高圧塔導入位置より少なくとも1理論段上の位置で高圧塔に導入する経路とを備えていること、前記低圧塔及び高圧塔の少なくともいずれか一方が充填式精留塔であることを特徴としている。
【0013】
【発明の実施の形態】
図1は、本発明の低純度酸素製造装置の一形態例を示す系統図である。この低純度酸素製造装置は、原料空気を低圧塔1及び高圧塔2を有する複式精留設備で液化精留することにより低純度酸素を製造する装置であって、原料空気を圧縮する原料空気圧縮機3、圧縮原料空気を予冷する予冷設備4、予冷した原料空気から水分や二酸化炭素等の不純物を除去して精製する精製設備5、精製原料空気の一部を膨張させる膨張タービン6、精製原料空気の残部を昇圧する昇圧機7、膨張させた第1原料空気及び昇圧した第2原料空気を液化精留で得られた流体との熱交換により冷却する主熱交換器8等を有するもので、製品の低純度酸素ガスは、低圧塔1の下部から回収される。
【0014】
以下、低圧塔1の運転圧力を1.4kg/cmabs、高圧塔2の運転圧力を5.6kg/cmabsとし、製品酸素ガスを22355Nm/h採取する場合を例に挙げて説明する。
【0015】
まず、経路50から導入される102100Nm/hの原料空気は、原料空気圧縮機3で高圧塔2の運転圧力より低く、低圧塔1の運転圧力よりは高い、4.9kg/cmabsに圧縮されて経路51に導出される。この圧縮原料空気は、経路51から熱交換器11を通り、さらに、経路52から予冷設備4に導入されて予冷され、経路53を通って精製設備5に導入される。
【0016】
精製設備5で水分や二酸化炭素等の不純物を除去されて精製され、経路54に導出された精製原料空気は、経路55の第1原料空気と経路56の第2原料空気とに分岐する。経路55に分岐した25000Nm/hの第1原料空気は、前記熱交換器11で圧縮原料空気と熱交換を行って130℃に加熱された後、経路57を通って膨張タービン6に流入し、低圧塔1の運転圧力に対応した1.5kg/cmabsに膨張する。膨張して低圧となった第1原料空気は、経路58を通って主熱交換器8に流入し、液化精留で得られた流体、即ち酸素ガス及び窒素ガスとの熱交換により冷却され、経路59,60を経て低圧塔1の中段に導入される。
【0017】
経路56に分岐した77100Nm/hの第2原料空気は、前記膨張タービン6に同軸上に連結された昇圧機7で、前記第1原料空気の膨張で得られた仕事により、高圧塔2の運転圧力に対応した5.7kg/cmabsに昇圧され、アフタークーラー12で冷却されて経路61に導出する。昇圧した第1原料空気の一部5800Nm/hは、経路61から経路62に分岐して第3の流れとなり、ブロワー13で8.7kg/cmabsに圧縮された後、アフタークーラー14,経路63を経て主熱交換器8に流入する。この第3原料空気は、主熱交換器8の途中の−90℃の位置で経路64に抜出され、寒冷発生用の膨張タービン15で1.4kg/cmabsに膨張し、装置の運転に必要な寒冷を発生する。膨張タービン15で膨張して低圧となり、経路65に導出された第3原料空気は、前記経路59の第2原料空気と合流し、合計流量30800Nm/hとなって前記経路60から低圧塔1に流入する。
【0018】
一方、経路61から経路66に進んだ第2原料空気71300Nm/hは、主熱交換器8で露点温度付近まで冷却された後、経路67を通って高圧塔2の下部に導入される。この第2原料空気は、主凝縮蒸発器16で凝縮して高圧塔2内を流下する還流液と気液接触することにより液化精留され、塔上部の窒素ガスと塔底部の酸素分が富化した液化空気とに分離する。窒素ガスは、塔上部から主凝縮蒸発器16に導入されて凝縮し、凝縮した液化窒素の一部が、経路68,過冷器17を経て弁18で低圧塔1の圧力に減圧された後、低圧塔1の上部に導入される。また、塔底部から経路69に抜出された液化空気は、過冷器19を経て弁20で低圧塔1の圧力に減圧された後、低圧塔1の中段に導入される。
【0019】
低圧塔1では、低圧塔1内を上昇する前記第1原料空気,第3原料空気及び主凝縮蒸発器16で蒸発したガスと、塔内を流下する前記液化窒素及び液化空気との気液接触により精留が行われ、塔頂部の窒素ガスと塔底部の液化酸素とに分離し、塔頂部の経路70からは窒素ガス79445Nm/hが抜出され、塔下部の経路71からは、主凝縮蒸発器16で蒸発した酸素ガスの一部22355Nm/hが抜出される。塔頂部から経路70に抜出された窒素ガスは、前記過冷器17,19及び経路72を通って主熱交換器8に流入し、原料空気と熱交換して経路73に導出され、その一部が経路74に分岐し、再生用加熱器21を通って精製設備5の再生に用いられた後、経路75から放出される。また、残部の窒素ガスは、必要に応じて製品として採取することができる。そして、経路71に抜出された酸素ガスは、主熱交換器8で原料空気と熱交換して12℃に昇温し、経路76から製品酸素として回収される。
【0020】
上述のように、低純度酸素を製造するにあたり、原料空気を高圧塔2の圧力よりも低い圧力に圧縮して精製することにより、原料空気圧縮機3から精製設備5に至る系統を一本化できるので、原料空気を高圧及び低圧の2系統で圧縮精製する従来法に比べて初期コストを低減できるとともに、低圧の原料空気から不純物を除去する必要がなくなるため、これに必要な動力が削減できる。
【0021】
さらに、原料空気の全部を高圧塔2の圧力まで圧縮しないので、低圧塔1に供給する低圧側の原料空気を圧縮及び膨張させる際の圧縮比や膨張比が小さくなり、機械的ロスを低減することができる。特に、低圧側の原料空気を膨張させる膨張タービン6と、高圧側の原料空気を昇圧する昇圧機7とを同軸上に連結し、第1原料空気の膨張による仕事を利用して高圧側の原料空気を昇圧することにより、効率よく第2原料空気の昇圧を行うことができ、エネルギーの有効利用が図れる。また、第1原料空気を熱交換器11で加熱してから膨張タービン6に導入して膨張させることにより、第1原料空気の膨張を効率よく行うことができ、昇圧機7で昇圧する第2原料空気との温度差を大きくすることにより、昇圧機7における圧縮比を高めることができる。
【0022】
上述のようにして低純度酸素を製造した場合の酸素動力原単位は、0.34kWh/Nmとなり、従来のプロセスと比較して10%程度の低減が図れる。
【0023】
さらに、低圧塔1の下部から酸素を液で抜出すこともできる。この場合は、図1に破線で示すように、低圧塔下部から経路76に液化酸素を抜出し、液化酸素ポンプ22で液化酸素の沸点と、加熱源として使用する第2原料空気の沸点との差が適当な温度となる圧力に圧縮して酸素蒸発器23に導入するとともに、前記経路67を流れる第2原料空気の一部を経路77に分岐して酸素蒸発器23に加熱源として導入する。酸素蒸発器23で第2原料空気の一部との熱交換により蒸発した酸素ガスは、経路78を通って主熱交換器8に導入され、原料空気と熱交換して昇温し、経路76から回収される。また、酸素蒸発器23で液化酸素との熱交換により液化した第2原料空気は、経路79,弁24を通り、酸素蒸発器23を経由しない第2原料空気の高圧塔導入位置より少なくとも1理論段上の位置で高圧塔2に導入される。
【0024】
このように、低圧塔1から酸素を液で抜出すことにより、低圧塔1から直接酸素ガスを抜出す場合に比べて、低圧塔1の底部に貯留される液化酸素の純度を一平衡段分低くすることができ、主凝縮蒸発器16での温度差が大きくとれるので、高圧塔2の圧力を低くすることができる。なお、液化酸素ポンプ22を用いることなく、液化酸素を自らの位置ヘッドで加圧することもできる。
【0025】
また、液化した第2原料空気を酸素蒸発器23を経由しない第2原料空気の導入位置より少なくとも1理論段上に導入することにより、高圧原料空気供給段と液化空気供給段の間の還流比L/V(上昇ガスに対する下降液の比)が1に近付くため、精留による分離を促進させることができる。
【0026】
図2は、本発明の他の形態例を示す系統図であり、第2原料空気の昇圧を低温圧縮で行う例を示している。なお、前記形態例における構成要素と同一の構成要素には同一符号を付して詳細な説明は省略する。以下、前記同様に、低圧塔1の運転圧力を1.4kg/cmabs、高圧塔2の運転圧力を5.6kg/cmabsとし、製品酸素を22355Nm/h採取する場合で説明する。
【0027】
経路50からの102100Nm/hの原料空気は、原料空気圧縮機3で4.9kg/cmabsに圧縮され、経路51,予冷設備4,経路53を通って精製設備5に導入され,精製されて経路54に導出される。経路54の精製原料空気は、経路80の寒冷発生用の第3原料空気と、経路81の低圧用の第1原料空気と、経路82の高圧用の第2原料空気とに分岐する。
【0028】
経路81の第1原料空気25200Nm/hは、膨張タービン6で1.4kg/cmabsに膨張するとともに低温となり、経路83を通って主熱交換器8の中間部に流入し、冷却されて経路84に導出する。また、経路82の第2原料空気71620Nm/hは、主熱交換器8で中間温度まで冷却された後、経路85により昇圧機7に導入されて5.7kg/cmabsに昇圧され、経路86により再び主熱交換器8に導入されて冷却され、経路67を経て高圧塔2の下部に導入される。
【0029】
経路80の第3原料空気5280Nm/hは、熱交換器25で加熱され、経路87を通ってブロワー13で6.9kg/cmabsに圧縮され、アフタークーラー14,経路88,前記熱交換器25を経て冷却された後、経路89により主熱交換器8に導入される。主熱交換器8で−100℃に冷却された第3原料空気は、前記同様に経路64に導出されて寒冷発生用の膨張タービン15に導入され、1.4kg/cmabsに膨張して寒冷を発生し、経路65を通って前記経路84の第1原料空気と合流し、経路60を経て低圧塔1の中段に導入される。
【0030】
そして、前記同様に低圧塔1及び高圧塔2での液化精留の結果、低圧塔1の塔頂部の経路70から窒素ガス79445Nm/hが抜出され、主熱交換器8を経て経路73に導出される。また、低圧塔1の下部の経路71から酸素ガス22355Nm/hが抜出され、主熱交換器8を経て経路76から回収される。あるいは、低圧塔1の下部の経路76から液化酸素が抜出され、酸素蒸発器23で蒸発した後、主熱交換器8を経て経路76から回収される。本形態例における酸素動力原単位も、前記形態例と同じ0.34kWh/Nmであった。
【0031】
本形態例に示すように、膨張タービン6で駆動される昇圧機7を低温仕様とし、第2原料空気を低温で昇圧することにより、流体の体積流量が低下するので設備を小さくすることができる。また、第1原料空気と第2原料空気との温度差を得るため、前記形態例では、膨張タービン6に導入する第1原料空気を、熱交換器11で圧縮原料空気と熱交換させて昇温していたため、比較的大容量の熱交換器を設置していたが、本形態例では、主熱交換器8で第2原料空気を冷却することによって温度差を得ているため、前記熱交換器11を省略することができる。なお、第3原料空気の経路に、同様の目的の熱交換器25が設置されているが、第3原料空気の流量が少ないので、前記熱交換器11に比べてはるかに小型のものですむ。
【0032】
さらに、各形態例おける酸素動力原単位は、各精留塔を多孔板トレイを使用した棚段式で形成した場合の数値であり、両精留塔を、あるいは低圧塔及び高圧塔のいずれか一方を充填式の精留塔とした場合は、棚段式に比べて圧力損失が少ないので、更に大きな動力削減効果が得られる。
【0033】
【発明の効果】
以上説明したように、本発明の低純度酸素の製造方法及び装置は、精製設備では原料空気を1系統とし、この後、高圧及び低圧の原料空気に分岐するので、精製設備及び原料空気圧縮機の初期コストを低減できる。また、低圧の空気から不純物を除去する必要がなくなるため、これに必要な動力が低減できる。さらに、原料空気の全部を高圧塔の圧力まで圧縮しないので、低圧塔に供給する空気の圧縮及び膨張による機械的ロスを低減することができる。したがって、従来より低コストで低純度酸素を製造することができる。
【図面の簡単な説明】
【図1】 本発明の低純度酸素製造装置の一形態例を示す系統図である。
【図2】 低純度酸素製造装置の他の形態例を示す系統図である。
【符号の説明】
1…低圧塔、2…高圧塔、3…原料空気圧縮機、4…予冷設備、5…精製設備、6…膨張タービン、7…昇圧機、8…主熱交換器、11…熱交換器、13…ブロワー、15…寒冷発生用の膨張タービン、16…主凝縮蒸発器、17,19…過冷器、21…再生用加熱器、22…液化酸素ポンプ、23…酸素蒸発器、25…熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing low-purity oxygen, and more particularly to a method and apparatus for recovering mainly low-purity oxygen (99% O 2 or less) as a product by distilling and separating air at a low temperature.
[0002]
[Prior art and problems to be solved by the invention]
Low-purity oxygen has been used in fields such as steel and glass melting. Coal gasification combined power generation, heavy residue gasification power generation, and direct smelting reduction with consideration of depletion of crude resources and effective use of energy Further demand is expected for steelmaking. In these fields, since a large amount of oxygen is consumed, it is sought to reduce the production cost of oxygen in particular.
[0003]
As a method for producing low-purity oxygen having a purity of 99% or less, there is known a method in which raw material air is liquefied and rectified by a double rectification facility having a low-pressure column and a high-pressure column. In this liquefaction rectification method, oxygen is generally extracted from the lower part of the low-pressure column in the form of gas or liquid. However, when producing low-purity oxygen, it is necessary to almost separate oxygen and argon in the recovery part of the low-pressure column. Therefore, it is possible to reduce the descending liquid and the rising gas in this part as compared with the process for producing high-purity oxygen.
[0004]
For this reason, for example, in the method described in JP-A-55-38243, the raw material air is separated into two systems of low pressure and high pressure, and the low pressure raw material air is directly introduced into the low pressure column. . Thereby, since the flow volume of the raw material air compressed to high pressure reduces, the motive power required for compression of raw material air can be reduced.
[0005]
However, in this method, low-pressure and high-pressure raw material air is compressed by different compressors, and impurities are removed by different purification equipment, so that the equipment cost increases. Furthermore, in the low-pressure purification equipment, A large amount of energy is required to remove impurities having a high boiling point from the raw material air, and the power required for the apparatus is increased.
[0006]
In the method described in Japanese Patent Laid-Open No. 5-296665, the entire amount of the raw material air is compressed to a pressure corresponding to the operating pressure of the high-pressure tower and purified, and then a part of the raw material air is branched to expand. The low-pressure raw material air is obtained by expansion with a turbine, and the power obtained by the expansion is used as the compression power of the raw material air.
[0007]
In this method, the work obtained by the expansion in the expansion turbine is used as a part of the compression power of the raw air, and the power is recovered. All of this energy could not be used as energy for compression because it was reduced by machine efficiency. In addition, the low-pressure raw air introduced into the low-pressure column is once compressed to the pressure of the high-pressure column and then expanded in the expansion turbine, but the work due to this expansion is merely used as the compression power of the compressor, It is more efficient to compress the low-pressure raw air introduced into the low-pressure column to a pressure lower than that of the high-pressure column.
[0008]
Therefore, an object of the present invention is to provide a method and an apparatus for producing low-purity oxygen, which can reduce the oxygen power basic unit and reduce the production cost as compared with the above-described processes.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing low-purity oxygen of the present invention is a method for producing low-purity oxygen by liquefying raw material air in a double rectification facility having a low-pressure column and a high-pressure column. Compressing the compressed raw material air to a pressure lower than the operating pressure of the high-pressure tower, precooling the compressed raw material air, removing the impurities such as moisture and carbon dioxide from the precooled raw material air, Branching into the first raw material air and the second raw material air, expanding the branched first raw material air, increasing the pressure of the branched second raw material air, the expanded first raw material air, and the increased second pressure A step of cooling the raw material air by heat exchange with the fluid obtained by liquefaction rectification, a cooled first raw material air is introduced into the low-pressure column, and a cooled second raw material air is introduced into the high-pressure column. By liquefying and rectifying And separating the the element and nitrogen, and characterized in that it comprises a step of recovering at least a portion of the resulting lower pressure column bottom oxygen liquefaction rectification as a product.
[0010]
Furthermore, in the method for producing low-purity oxygen according to the present invention, pressurization of the second raw material air is performed using work due to expansion of the first raw material air, and heating is performed before the first raw material air is expanded. Cooling the second raw material air before pressurization, and compressing liquefied oxygen in the lower part of the low-pressure column obtained by liquefaction rectification, and then exchanging heat with a part of the second raw material air And a part of the second raw material air that exchanges heat with the liquefied oxygen is liquefied by the heat exchange, and then at least one theoretical plate higher than the introduction position of the second raw material air in the high-pressure column. It is characterized by being introduced into the high-pressure tower at a location.
[0011]
The low-purity oxygen production apparatus of the present invention is an apparatus for producing low-purity oxygen by liquefying raw material air in a double rectification facility having a low-pressure column and a high- pressure column. A raw material air compressor that compresses to a pressure lower than the operating pressure, a precooling facility that precools the compressed raw material air, a purification facility that removes impurities such as moisture and carbon dioxide from the precooled raw material air, and a purified raw material air Cooling by heat exchange between an expansion turbine that expands a part, a booster that pressurizes the remainder of the purified raw material air, and a fluid obtained by liquefaction rectification of the expanded first raw material air and the pressurized second raw material air Main heat exchanger, a path for introducing the cooled first raw material air to the low pressure column, a path for introducing the cooled second raw material air to the high pressure column, and oxygen generated in the lower part of the low pressure column by liquefaction rectification At least one of It is characterized by comprising a path for recovering as a product the.
[0012]
Further, the low-purity oxygen production apparatus of the present invention is such that the expansion turbine and the booster are coaxially connected, and the heat exchanger that heats the purified raw material air expanded by the expansion turbine before expansion. The booster is configured to inhale and raise the pressure of purified raw material air at a temperature between the hot end temperature and the cold end temperature in the main heat exchanger, and recover the oxygen as a product The path evaporates liquefied oxygen by exchanging heat between the pump that compresses liquefied oxygen at the bottom of the low-pressure column obtained by liquefying rectification, and the liquefied oxygen compressed by the pump and a part of the second raw material air. The oxygen evaporator for liquefying the second raw material air and the second raw material air liquefied by the oxygen evaporator at a position at least one theoretical stage higher than the high-pressure tower introduction position of the second raw material air not passing through the oxygen evaporator Introduced to the tower That it has a route, at least one of the low pressure column and the higher pressure column is characterized in that it is a packed type rectification column.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an embodiment of the low-purity oxygen production apparatus of the present invention. This low-purity oxygen production apparatus is an apparatus for producing low-purity oxygen by liquefying rectification of raw material air in a double rectification facility having a low-pressure column 1 and a high-pressure column 2, and compresses the raw material air. Machine 3, pre-cooling equipment 4 for pre-cooling compressed raw material air, purification equipment 5 for removing impurities such as moisture and carbon dioxide from the pre-cooled raw material air for purification, expansion turbine 6 for expanding a part of the purified raw material air, purified raw material It has a booster 7 that pressurizes the remainder of the air, a main heat exchanger 8 that cools the expanded first raw material air and the pressurized second raw material air by heat exchange with the fluid obtained by liquefaction rectification, and the like. The low-purity oxygen gas of the product is recovered from the lower part of the low-pressure column 1.
[0014]
Hereinafter, an example in which the operating pressure of the low pressure column 1 is 1.4 kg / cm 2 abs, the operating pressure of the high pressure column 2 is 5.6 kg / cm 2 abs, and product oxygen gas is sampled 22355 Nm 3 / h will be described as an example. To do.
[0015]
First, the raw material air of 102100 Nm 3 / h introduced from the path 50 is 4.9 kg / cm 2 abs, which is lower than the operating pressure of the high-pressure tower 2 and higher than the operating pressure of the low-pressure tower 1 in the raw air compressor 3. Compressed and routed to path 51. The compressed raw material air passes through the heat exchanger 11 from the path 51, is further introduced into the precooling facility 4 from the path 52, is precooled, and is introduced into the purification facility 5 through the path 53.
[0016]
The purified raw material air purified by removing impurities such as moisture and carbon dioxide in the purification facility 5 and led out to the path 54 is branched into the first raw material air in the path 55 and the second raw material air in the path 56. The first raw material air of 25000 Nm 3 / h branched to the path 55 is heated to 130 ° C. by exchanging heat with the compressed raw material air in the heat exchanger 11, and then flows into the expansion turbine 6 through the path 57. And expands to 1.5 kg / cm 2 abs corresponding to the operating pressure of the low pressure column 1. The first raw material air, which has been expanded to a low pressure, flows into the main heat exchanger 8 through the path 58 and is cooled by heat exchange with the fluid obtained by liquefaction rectification, that is, oxygen gas and nitrogen gas, It is introduced into the middle stage of the low-pressure column 1 via paths 59 and 60.
[0017]
The second raw material air of 77100 Nm 3 / h branched to the path 56 is supplied to the high-pressure tower 2 by the work obtained by the expansion of the first raw material air by the booster 7 coaxially connected to the expansion turbine 6. The pressure is increased to 5.7 kg / cm 2 abs corresponding to the operating pressure, cooled by the aftercooler 12 and led to the path 61. A portion of the pressurized first raw material air 5800 Nm 3 / h branches from the path 61 to the path 62 to become a third flow, and is compressed to 8.7 kg / cm 2 abs by the blower 13. It flows into the main heat exchanger 8 via the path 63. This third raw material air is extracted to the path 64 at a position of −90 ° C. in the middle of the main heat exchanger 8 and expanded to 1.4 kg / cm 2 abs by the expansion turbine 15 for generating cold, and the operation of the apparatus is performed. Generates the necessary cold. The third raw material air that has been expanded by the expansion turbine 15 to a low pressure and led to the path 65 joins the second raw material air in the path 59 to become a total flow rate of 30800 Nm 3 / h from the path 60 to the low pressure column 1. Flow into.
[0018]
On the other hand, the second raw material air 71300 Nm 3 / h traveling from the path 61 to the path 66 is cooled to near the dew point temperature by the main heat exchanger 8 and then introduced into the lower part of the high-pressure tower 2 through the path 67. This second raw material air is liquefied and rectified by gas-liquid contact with the reflux liquid condensed in the main condensing evaporator 16 and flowing down in the high-pressure tower 2, and is rich in nitrogen gas at the top of the tower and oxygen at the bottom of the tower. Separated into liquefied liquefied air. Nitrogen gas is introduced into the main condensing evaporator 16 from the top of the tower to condense, and a part of the condensed liquefied nitrogen is reduced to the pressure of the low-pressure tower 1 by the valve 18 via the path 68 and the supercooler 17. , Introduced into the upper part of the low-pressure column 1. The liquefied air extracted from the bottom of the column to the path 69 is reduced to the pressure of the low-pressure column 1 by the valve 20 through the supercooler 19 and then introduced into the middle stage of the low-pressure column 1.
[0019]
In the low-pressure column 1, gas-liquid contact between the first raw material air, the third raw material air and the gas evaporated in the main condensing evaporator 16 rising in the low-pressure column 1 and the liquefied nitrogen and liquefied air flowing down in the column. Is separated into nitrogen gas at the top of the column and liquefied oxygen at the bottom of the column, nitrogen gas 79445 Nm 3 / h is withdrawn from the channel 70 at the top of the column, and main channel 71 from the channel 71 at the bottom of the column. A part of 22355 Nm 3 / h of oxygen gas evaporated by the condenser evaporator 16 is extracted. The nitrogen gas extracted from the top of the tower to the path 70 flows into the main heat exchanger 8 through the supercoolers 17 and 19 and the path 72, and is exchanged with the raw air to be led to the path 73. A part branches into the path 74, passes through the regeneration heater 21, is used for regeneration of the purification equipment 5, and is then discharged from the path 75. Further, the remaining nitrogen gas can be collected as a product as necessary. The oxygen gas extracted into the path 71 is heat-exchanged with the raw material air in the main heat exchanger 8 to be heated to 12 ° C., and is recovered as product oxygen from the path 76.
[0020]
As described above, in producing low-purity oxygen, the raw air is compressed to a pressure lower than the pressure of the high-pressure tower 2 and purified, so that the system from the raw air compressor 3 to the purification equipment 5 is unified. As a result, the initial cost can be reduced compared to the conventional method of compressing and purifying the raw material air with two systems of high pressure and low pressure, and it is not necessary to remove impurities from the low pressure raw material air, so the power required for this can be reduced. .
[0021]
Furthermore, since not all of the raw material air is compressed to the pressure of the high pressure column 2, the compression ratio and the expansion ratio when compressing and expanding the low pressure side raw material air supplied to the low pressure column 1 are reduced, and mechanical loss is reduced. be able to. In particular, an expansion turbine 6 that expands the low-pressure side raw material air and a booster 7 that pressurizes the high-pressure side raw material air are connected on the same axis, and the high-pressure side raw material is utilized by utilizing the work caused by the expansion of the first raw material air. By increasing the pressure of the air, the pressure of the second raw material air can be increased efficiently, and the energy can be effectively used. In addition, the first raw material air is heated by the heat exchanger 11 and then introduced into the expansion turbine 6 to be expanded, whereby the first raw material air can be efficiently expanded. By increasing the temperature difference from the raw material air, the compression ratio in the booster 7 can be increased.
[0022]
When the low purity oxygen is produced as described above, the oxygen kinetic unit is 0.34 kWh / Nm 3 , which is about 10% lower than that of the conventional process.
[0023]
Further, oxygen can be extracted from the lower portion of the low pressure column 1 with a liquid. In this case, as shown by a broken line in FIG. 1, liquefied oxygen is extracted from the lower portion of the low-pressure column to the path 76, and the difference between the boiling point of the liquefied oxygen by the liquefied oxygen pump 22 and the boiling point of the second raw material air used as a heating source. Is compressed to an appropriate temperature and introduced into the oxygen evaporator 23, and part of the second raw material air flowing through the path 67 is branched into the path 77 and introduced into the oxygen evaporator 23 as a heat source. Oxygen gas evaporated by heat exchange with a part of the second raw material air in the oxygen evaporator 23 is introduced into the main heat exchanger 8 through the path 78, and heat-exchanged with the raw material air to increase the temperature. Recovered from. Further, the second raw material air liquefied by heat exchange with liquefied oxygen in the oxygen evaporator 23 passes through the path 79 and the valve 24, and at least one theory from the high-pressure column introduction position of the second raw material air that does not pass through the oxygen evaporator 23. It is introduced into the high pressure column 2 at a position above the stage.
[0024]
Thus, by extracting oxygen from the low-pressure column 1 with liquid, the purity of the liquefied oxygen stored at the bottom of the low-pressure column 1 can be reduced by one equilibrium stage as compared with the case where oxygen gas is directly extracted from the low-pressure column 1. Since the temperature difference in the main condensing evaporator 16 can be increased, the pressure in the high pressure column 2 can be reduced. Note that the liquefied oxygen can be pressurized by its own position head without using the liquefied oxygen pump 22.
[0025]
Further, by introducing the liquefied second raw material air at least one theoretical stage from the introduction position of the second raw material air that does not pass through the oxygen evaporator 23, the reflux ratio between the high pressure raw material air supply stage and the liquefied air supply stage Since L / V (ratio of descending liquid to ascending gas) approaches 1, separation by rectification can be promoted.
[0026]
FIG. 2 is a system diagram showing another embodiment of the present invention, and shows an example in which the pressure of the second raw material air is increased by low-temperature compression. In addition, the same code | symbol is attached | subjected to the component same as the component in the said example, and detailed description is abbreviate | omitted. Hereinafter, in the same manner as described above, the operation pressure of the low pressure column 1 is 1.4 kg / cm 2 abs, the operation pressure of the high pressure column 2 is 5.6 kg / cm 2 abs, and the product oxygen is sampled 22355 Nm 3 / h. .
[0027]
The raw material air of 102100 Nm 3 / h from the route 50 is compressed to 4.9 kg / cm 2 abs by the raw material air compressor 3, introduced into the purification facility 5 through the route 51, the precooling facility 4 and the route 53, and purified. To the route 54. The purified raw material air in the path 54 branches into a third raw material air for generating cold in the path 80, a low-pressure first raw material air in the path 81, and a high-pressure second raw material air in the path 82.
[0028]
The first raw material air 25200 Nm 3 / h in the path 81 is expanded to 1.4 kg / cm 2 abs by the expansion turbine 6 and becomes low temperature, flows into the intermediate part of the main heat exchanger 8 through the path 83, and is cooled. To the path 84. Further, the second raw material air 71620Nm 3 / h in the path 82 is cooled to an intermediate temperature in the main heat exchanger 8, and then introduced into the booster 7 through the path 85 to be pressurized to 5.7 kg / cm 2 abs. It is again introduced into the main heat exchanger 8 through the path 86 and cooled, and is introduced into the lower part of the high-pressure tower 2 through the path 67.
[0029]
The 3rd raw material air 5280Nm < 3 > / h of the path | route 80 is heated with the heat exchanger 25, and is compressed to 6.9 kg / cm < 2 > abs with the blower 13 through the path | route 87, the aftercooler 14, the path | route 88, the said heat exchange After being cooled through the vessel 25, it is introduced into the main heat exchanger 8 through a path 89. The third raw material air cooled to −100 ° C. by the main heat exchanger 8 is led out to the path 64 and introduced into the expansion turbine 15 for generating cold and expanded to 1.4 kg / cm 2 abs as described above. Cold is generated, merged with the first raw material air of the path 84 through the path 65, and introduced into the middle stage of the low-pressure column 1 through the path 60.
[0030]
As described above, as a result of the liquefaction rectification in the low pressure column 1 and the high pressure column 2, nitrogen gas 79445 Nm 3 / h is extracted from the channel 70 at the top of the low pressure column 1 and passes through the main heat exchanger 8 and the channel 73. To be derived. In addition, oxygen gas 22355 Nm 3 / h is extracted from the lower path 71 of the low-pressure column 1 and is recovered from the path 76 via the main heat exchanger 8. Alternatively, liquefied oxygen is withdrawn from the lower path 76 of the low-pressure column 1, evaporated in the oxygen evaporator 23, and then recovered from the path 76 via the main heat exchanger 8. The oxygen power basic unit in this embodiment was also 0.34 kWh / Nm 3 as in the above embodiment.
[0031]
As shown in the present embodiment, the booster 7 driven by the expansion turbine 6 has a low temperature specification, and the pressure of the second raw material air is increased at a low temperature, so that the volume flow rate of the fluid is reduced and the equipment can be made smaller. . Further, in order to obtain a temperature difference between the first raw material air and the second raw material air, in the above-described embodiment, the first raw material air introduced into the expansion turbine 6 is exchanged with the compressed raw material air by the heat exchanger 11 and is raised. Since the heat exchanger was heated, a relatively large-capacity heat exchanger was installed, but in this embodiment, the temperature difference is obtained by cooling the second raw material air in the main heat exchanger 8, and thus the heat The exchanger 11 can be omitted. In addition, although the heat exchanger 25 for the same purpose is installed in the path of the third raw material air, the flow rate of the third raw material air is small, so that it is much smaller than the heat exchanger 11. .
[0032]
Furthermore, the oxygen kinetic unit in each embodiment is a numerical value when each rectification column is formed in a shelf type using a perforated plate tray, and both the rectification columns or either the low pressure column or the high pressure column If one of them is a packed rectification column, the pressure loss is smaller than that of the shelf type, so that a greater power reduction effect can be obtained.
[0033]
【The invention's effect】
As described above, the method and apparatus for producing low-purity oxygen according to the present invention uses a single source air in the refining facility, and then branches into high-pressure and low-pressure source air. The initial cost can be reduced. Moreover, since it is not necessary to remove impurities from the low-pressure air, the power required for this can be reduced. Furthermore, since all of the raw material air is not compressed to the pressure of the high pressure column, mechanical loss due to compression and expansion of the air supplied to the low pressure column can be reduced. Therefore, low-purity oxygen can be produced at a lower cost than before.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of a low-purity oxygen production apparatus according to the present invention.
FIG. 2 is a system diagram showing another example of a low-purity oxygen production apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Low pressure column, 2 ... High pressure column, 3 ... Raw material air compressor, 4 ... Precooling equipment, 5 ... Purification equipment, 6 ... Expansion turbine, 7 ... Booster, 8 ... Main heat exchanger, 11 ... Heat exchanger, DESCRIPTION OF SYMBOLS 13 ... Blower, 15 ... Expansion turbine for cold generation, 16 ... Main condensing evaporator, 17, 19 ... Supercooler, 21 ... Regeneration heater, 22 ... Liquid oxygen pump, 23 ... Oxygen evaporator, 25 ... Heat Exchanger

Claims (12)

原料空気を低圧塔及び高圧塔を有する複式精留設備で液化精留することにより低純度酸素を製造する方法において、原料空気を前記高圧塔の運転圧力より低い圧力に圧縮する工程と、圧縮原料空気を予冷する工程と、予冷した原料空気から水分や二酸化炭素等の不純物を除去して精製する工程と、精製原料空気を第1原料空気と第2原料空気とに分岐し、分岐した第1原料空気を膨張させる工程と、分岐した第2原料空気を昇圧する工程と、膨張させた第1原料空気及び昇圧した第2原料空気を、液化精留で得られた流体との熱交換により冷却する工程と、冷却した第1原料空気を前記低圧塔に、冷却した第2原料空気を前記高圧塔に、それぞれ導入して液化精留することにより酸素と窒素とに分離する工程と、液化精留で得られた低圧塔下部の酸素の少なくとも一部を製品として回収する工程とを含むことを特徴とする低純度酸素の製造方法。In the method for producing low purity oxygen by liquefying rectification of raw material air in a double rectification facility having a low pressure column and a high pressure column, a step of compressing the raw material air to a pressure lower than the operating pressure of the high pressure column, and a compressed raw material A step of precooling air, a step of purifying by removing impurities such as moisture and carbon dioxide from the precooled raw material air, a first raw material branching the purified raw material air into a first raw material air and a second raw material air The step of expanding the raw material air, the step of pressurizing the branched second raw material air, and the expanded first raw material air and the pressurized second raw material air are cooled by heat exchange with the fluid obtained by liquefaction rectification. Introducing the cooled first raw material air into the low pressure column, introducing the cooled second raw material air into the high pressure column and liquefying and rectifying, respectively, Under the low-pressure tower obtained by distillation Low purity oxygen production method which comprises a step of recovering at least a portion as product oxygen. 前記第2原料空気の昇圧は、前記第1原料空気の膨張による仕事を利用して行うことを特徴とする請求項1記載の低純度酸素の製造方法。The method for producing low-purity oxygen according to claim 1, wherein the pressurization of the second raw material air is performed by utilizing work due to expansion of the first raw material air. 前記第1原料空気は、膨張させる前に加熱することを特徴とする請求項1記載の低純度酸素の製造方法。The method for producing low-purity oxygen according to claim 1, wherein the first raw material air is heated before being expanded. 前記第2原料空気は、昇圧する前に冷却することを特徴とする請求項1記載の低純度酸素の製造方法。The method for producing low-purity oxygen according to claim 1, wherein the second raw material air is cooled before the pressure is increased. 前記製品酸素の回収は、液化精留で得られた低圧塔下部の液化酸素を圧縮した後、前記第2原料空気の一部との熱交換によって蒸発させることにより行うことを特徴とする請求項1記載の低純度酸素の製造方法。The recovery of the product oxygen is performed by compressing the liquefied oxygen in the lower part of the low-pressure column obtained by liquefaction rectification and evaporating it by heat exchange with a part of the second raw material air. The method for producing low-purity oxygen according to 1. 前記液化酸素と熱交換する第2原料空気の一部は、該熱交換によって液化した後、前記高圧塔における第2原料空気の導入位置より少なくとも1理論段上の位置で高圧塔に導入することを特徴とする請求項5記載の低純度酸素の製造方法。Part of the second raw material air that exchanges heat with the liquefied oxygen is liquefied by the heat exchange and then introduced into the high pressure column at a position at least one theoretical plate higher than the introduction position of the second raw material air in the high pressure column. The method for producing low-purity oxygen according to claim 5. 原料空気を低圧塔及び高圧塔を有する複式精留設備で液化精留することにより低純度酸素を製造する装置において、原料空気を前記高圧塔の運転圧力より低い圧力に圧縮する原料空気圧縮機と、圧縮原料空気を予冷する予冷設備と、予冷した原料空気から水分や二酸化炭素等の不純物を除去して精製する精製設備と、精製原料空気の一部を膨張させる膨張タービンと、精製原料空気の残部を昇圧する昇圧機と、膨張させた第1原料空気及び昇圧した第2原料空気を液化精留で得られた流体との熱交換により冷却する主熱交換器と、冷却した第1原料空気を前記低圧塔に導入する経路と、冷却した第2原料空気を前記高圧塔に導入する経路と、液化精留により低圧塔下部に生成した酸素の少なくとも一部を製品として回収する経路とを備えていることを特徴とする低純度酸素の製造装置。A raw material air compressor for compressing raw material air to a pressure lower than the operating pressure of the high pressure column in an apparatus for producing low purity oxygen by liquefying rectification of the raw material air in a double rectification facility having a low pressure column and a high pressure column; , A pre-cooling facility for pre-cooling the compressed raw material air, a purification facility for removing impurities such as moisture and carbon dioxide from the pre-cooled raw material air, an expansion turbine for expanding a part of the purified raw material air, and a purified raw material air A booster that pressurizes the remainder, a main heat exchanger that cools the expanded first raw material air and the pressurized second raw material air by heat exchange with the fluid obtained by liquefaction rectification, and the cooled first raw material air And a path for introducing the cooled second raw material air to the high-pressure tower, and a path for recovering at least a part of oxygen produced in the lower part of the low-pressure tower by liquefaction rectification as a product. Have Apparatus for producing low purity oxygen, characterized in that. 前記膨張タービンと前記昇圧機とが、同軸上に連結されていることを特徴とする請求項7記載の低純度酸素の製造装置。The apparatus for producing low-purity oxygen according to claim 7, wherein the expansion turbine and the booster are connected coaxially. 前記膨張タービンで膨張させる精製原料空気を、膨張させる前に加熱する熱交換器を備えていることを特徴とする請求項7記載の低純度酸素の製造装置。The apparatus for producing low-purity oxygen according to claim 7, further comprising a heat exchanger that heats purified raw material air expanded by the expansion turbine before expansion. 前記昇圧機は、前記主熱交換器における温端温度と冷端温度との間の温度で精製原料空気を吸入して昇圧するものであることを特徴とする請求項7記載の低純度酸素の製造装置。8. The low-purity oxygen gas according to claim 7, wherein the booster is configured to suck in purified raw material air at a temperature between a warm end temperature and a cold end temperature in the main heat exchanger to increase the pressure. Manufacturing equipment. 前記酸素を製品として回収する経路は、液化精留によって得られた低圧塔底部の液化酸素を圧縮するポンプと、該ポンプで圧縮した液化酸素と前記第2原料空気の一部とを熱交換させて液化酸素を蒸発させるとともに第2原料空気を液化させる酸素蒸発器と、該酸素蒸発器で液化した第2原料空気を、酸素蒸発器を経由しない第2原料空気の高圧塔導入位置より少なくとも1理論段上の位置で高圧塔に導入する経路とを備えていることを特徴とする請求項7記載の低純度酸素の製造装置。The route for recovering the oxygen as a product is a heat exchange between a pump that compresses liquefied oxygen at the bottom of the low-pressure tower obtained by liquefaction rectification, and a portion of the second raw material air that is compressed by the pump. The oxygen evaporator that evaporates the liquefied oxygen and liquefies the second raw material air, and the second raw material air liquefied by the oxygen evaporator is at least one from the high-pressure column introduction position of the second raw material air that does not pass through the oxygen evaporator. The apparatus for producing low-purity oxygen according to claim 7, further comprising a path for introducing the high-pressure column at a position on the theoretical plate. 前記低圧塔及び高圧塔の少なくともいずれか一方が、充填式精留塔であることを特徴とする請求項7記載の低純度酸素の製造装置。The apparatus for producing low-purity oxygen according to claim 7, wherein at least one of the low-pressure column and the high-pressure column is a packed rectification column.
JP21489497A 1997-08-08 1997-08-08 Method and apparatus for producing low purity oxygen Expired - Fee Related JP3737611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21489497A JP3737611B2 (en) 1997-08-08 1997-08-08 Method and apparatus for producing low purity oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21489497A JP3737611B2 (en) 1997-08-08 1997-08-08 Method and apparatus for producing low purity oxygen

Publications (2)

Publication Number Publication Date
JPH1163810A JPH1163810A (en) 1999-03-05
JP3737611B2 true JP3737611B2 (en) 2006-01-18

Family

ID=16663333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21489497A Expired - Fee Related JP3737611B2 (en) 1997-08-08 1997-08-08 Method and apparatus for producing low purity oxygen

Country Status (1)

Country Link
JP (1) JP3737611B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520667B2 (en) * 2001-07-17 2010-08-11 大陽日酸株式会社 Air separation method and apparatus
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
DE102006012241A1 (en) * 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
DE102007031765A1 (en) * 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
EP3343158A1 (en) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system
FR3090831B1 (en) 2018-12-21 2022-06-03 L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Cryogenic distillation air separation apparatus and method
CN111486663B (en) * 2020-04-08 2021-01-22 广州广钢气体能源股份有限公司 Nitrogen making machine suitable for electronic gas factory
CN111412724B (en) * 2020-04-29 2021-06-04 杭州特盈能源技术发展有限公司 Novel low-energy-consumption pressure oxygen enrichment preparation process for kiln
CN113623941B (en) * 2021-08-11 2022-08-26 乔治洛德方法研究和开发液化空气有限公司 Air separation unit suitable for retrofitting and method for retrofitting the air separation unit

Also Published As

Publication number Publication date
JPH1163810A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
CA1174587A (en) Nitrogen generator cycle
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
JPH087019B2 (en) High-pressure low-temperature distillation method for air
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
KR910004123B1 (en) Air seperation process with modified single distillation column
JPH06101963A (en) High-pressure low-temperature distilling method of air
CN106595221A (en) Oxygen production system and oxygen production method
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP3190013B2 (en) Low temperature distillation method of air raw material for producing nitrogen
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
KR100207890B1 (en) Air separation method and apparatus
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP2005221199A (en) Air separation device
JP3737612B2 (en) Method and apparatus for producing low purity oxygen
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP3738213B2 (en) Nitrogen production method and apparatus
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JP6159242B2 (en) Air separation method and apparatus
JPH09170872A (en) Introducing method of multicomponent liquid supply raw-material flow into distillation column
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
KR100694376B1 (en) Sub-zero air separation apparatus and an operating method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees