JPH1163810A - Method and device for manufacturing low purity oxygen - Google Patents
Method and device for manufacturing low purity oxygenInfo
- Publication number
- JPH1163810A JPH1163810A JP21489497A JP21489497A JPH1163810A JP H1163810 A JPH1163810 A JP H1163810A JP 21489497 A JP21489497 A JP 21489497A JP 21489497 A JP21489497 A JP 21489497A JP H1163810 A JPH1163810 A JP H1163810A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- air
- low
- oxygen
- material air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04103—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、低純度酸素の製造
方法及び装置に関し、詳しくは、低温で空気を蒸留分離
することにより、主として低純度酸素(99%O2以
下)を製品として回収する方法及び装置に関する。BACKGROUND OF THE INVENTION The present invention relates to a method and apparatus for producing low purity oxygen, particularly, by distillation of air at low temperatures, mainly recovered low purity oxygen (99% O 2 or less) as a product Method and apparatus.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】低純度
酸素は、従来から鉄鋼、ガラス溶融等の分野において使
用されてきたが、原油資源の枯渇やエネルギーの有効利
用を考慮した石炭ガス化複合発電や、重質残渣ガス化発
電及び直接溶融還元製鋼等においても今後さらに需要が
見込まれている。これらの分野においては、大量の酸素
を消費することから、特に酸素の製造コストを低くする
ことが追及されている。2. Description of the Related Art Low-purity oxygen has been conventionally used in the fields of iron and steel, glass melting, etc., but coal gasification combined with depletion of crude oil resources and effective use of energy. Demand for power generation, heavy residue gasification power generation, direct smelting reduction steelmaking, etc. is expected in the future. In these fields, since a large amount of oxygen is consumed, it has been particularly sought to reduce the production cost of oxygen.
【0003】純度99%以下の低純度酸素を製造する方
法として、原料空気を低圧塔及び高圧塔を有する複式精
留設備で液化精留する方法が知られている。この液化精
留法では、一般に、低圧塔の下部から酸素をガス状ある
いは液状で抜出すが、低純度酸素を製造する場合は、低
圧塔の回収部において酸素とアルゴンとをほとんど分離
する必要がないため、この部分の下降液と上昇ガスと
を、高純度酸素を製造するプロセスと比較して少なくす
ることができる。As a method for producing low-purity oxygen having a purity of 99% or less, a method is known in which raw air is liquefied and rectified by a double rectification facility having a low-pressure column and a high-pressure column. In this liquefaction rectification method, oxygen is generally extracted in a gaseous or liquid state from the lower part of the low-pressure column, but when producing low-purity oxygen, it is necessary to almost separate oxygen and argon in the recovery part of the low-pressure column. Therefore, the descending liquid and the rising gas in this portion can be reduced as compared with the process for producing high-purity oxygen.
【0004】このため、例えば、特開昭55−3824
3号公報に記載されている方法では、原料空気を低圧と
高圧との2系統に分離し、低圧の原料空気を低圧塔に直
接導入するようにしている。これにより、高圧に圧縮す
る原料空気の流量が減少するため、原料空気の圧縮に要
する動力の削減が図れる。[0004] For this reason, for example, Japanese Patent Application Laid-Open No. 55-3824.
In the method described in Japanese Patent Publication No. 3 (1994), the raw material air is separated into two systems, low pressure and high pressure, and the low pressure raw material air is directly introduced into the low pressure column. As a result, the flow rate of the raw air compressed to a high pressure is reduced, so that the power required for compressing the raw air can be reduced.
【0005】しかし、この方法では、低圧及び高圧の2
系統の原料空気を、それぞれ異なる圧縮機で圧縮し、異
なる精製設備で不純物を除去するため、設備コストが増
加し、さらに、低圧側の精製設備では、原料空気から高
沸点の不純物を除去するために多量のエネルギーが必要
となり、装置に必要な動力が増大するという欠点があっ
た。[0005] However, in this method, two methods of low pressure and high pressure are used.
The raw material air of the system is compressed by different compressors, and impurities are removed by different purification equipment, which increases equipment costs.In addition, the purification equipment on the low pressure side removes high boiling impurities from the raw air. Requires a large amount of energy and increases the power required for the apparatus.
【0006】また、特開平5−296652号公報に記
載された方法では、原料空気の全量を高圧塔の運転圧力
に応じた圧力に圧縮して精製を行った後、原料空気の一
部を分岐させて膨張タービンで膨張させることにより低
圧の原料空気を得るとともに、膨張により得られた動力
を原料空気の圧縮動力として利用するようにしている。In the method described in Japanese Patent Application Laid-Open No. 5-296652, after purifying by compressing the entire amount of raw air to a pressure corresponding to the operating pressure of the high-pressure column, a part of the raw air is branched. Then, the compressed air is expanded by an expansion turbine to obtain low-pressure raw material air, and the power obtained by the expansion is used as compression power for the raw material air.
【0007】この方法では、膨張タービンでの膨張によ
り得られた仕事を原料空気の圧縮動力の一部として利用
し、動力を回収するようにしているが、流体の膨張によ
り得られるエネルギーは、膨張タービンや圧縮機の効率
等によって減少するため、このエネルギーの全てを圧縮
のためのエネルギーとして使用することはできなかっ
た。また、低圧塔に導入する低圧原料空気は、一旦高圧
塔の圧力まで圧縮された後、膨張タービンで膨張する
が、この膨張による仕事は、単に圧縮機の圧縮動力とし
て利用されるだけであり、低圧塔に導入する低圧原料空
気を高圧塔の圧力よりも低い圧力に圧縮するほうが効率
的である。In this method, the work obtained by the expansion in the expansion turbine is used as a part of the power for compressing the raw air, and the power is recovered. However, the energy obtained by the expansion of the fluid is expanded. All of this energy could not be used as compression energy because it would decrease due to the efficiency of the turbine or compressor. Also, the low-pressure feed air introduced into the low-pressure tower is once compressed to the pressure of the high-pressure tower and then expanded by the expansion turbine, but the work due to this expansion is merely used as the compression power of the compressor, It is more efficient to compress the low-pressure feed air introduced into the low-pressure column to a pressure lower than the pressure in the high-pressure column.
【0008】そこで本発明は、上述の各プロセスと比較
して酸素動力原単位を低減させ、製造コストの低減を図
ることができる低純度酸素の製造方法及び装置を提供す
ることを目的としている。Accordingly, an object of the present invention is to provide a method and an apparatus for producing low-purity oxygen that can reduce the unit cost of oxygen power and the production cost as compared with the above-described processes.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明の低純度酸素の製造方法は、原料空気を低圧
塔及び高圧塔を有する複式精留設備で液化精留すること
により低純度酸素を製造する方法において、原料空気を
前記高圧塔の操作圧力より低い圧力に圧縮する工程と、
圧縮原料空気を予冷する工程と、予冷した原料空気から
水分や二酸化炭素等の不純物を除去して精製する工程
と、精製原料空気を第1原料空気と第2原料空気とに分
岐し、分岐した第1原料空気を膨張させる工程と、分岐
した第2原料空気を昇圧する工程と、膨張させた第1原
料空気及び昇圧した第2原料空気を、液化精留で得られ
た流体との熱交換により冷却する工程と、冷却した第1
原料空気を前記低圧塔に、冷却した第2原料空気を前記
高圧塔に、それぞれ導入して液化精留することにより酸
素と窒素とに分離する工程と、液化精留で得られた低圧
塔下部の酸素の少なくとも一部を製品として回収する工
程とを含むことを特徴としている。Means for Solving the Problems To achieve the above object, the method for producing low-purity oxygen of the present invention is characterized in that the raw air is liquefied and rectified by a double rectification facility having a low-pressure column and a high-pressure column. In the method for producing oxygen, a step of compressing the feed air to a pressure lower than the operating pressure of the high-pressure column,
A step of pre-cooling the compressed raw air, a step of purifying by removing impurities such as moisture and carbon dioxide from the pre-cooled raw air, and a step of branching the purified raw air into a first raw air and a second raw air, and branching. A step of expanding the first raw material air, a step of increasing the pressure of the branched second raw material air, and a heat exchange of the expanded first raw material air and the raised second raw air with a fluid obtained by liquefaction rectification. Cooling, and the cooled first
A step of introducing raw material air into the low-pressure column and a step of introducing cooled second raw material air into the high-pressure column to separate into oxygen and nitrogen by liquefaction rectification, and the lower part of the low-pressure column obtained by liquefaction rectification And recovering at least a part of the oxygen as a product.
【0010】さらに、本発明の低純度酸素の製造方法
は、前記第2原料空気の昇圧を前記第1原料空気の膨張
による仕事を利用して行うこと、前記第1原料空気を膨
張させる前に加熱すること、前記第2原料空気を昇圧す
る前に冷却すること、前記製品酸素は、液化精留で得ら
れた低圧塔下部の液化酸素を圧縮した後、前記第2原料
空気の一部との熱交換によって蒸発させることにより回
収すること、この液化酸素と熱交換する第2原料空気の
一部を該熱交換によって液化した後、前記高圧塔におけ
る第2原料空気の導入位置より少なくとも1理論段上の
位置で高圧塔に導入することを特徴としている。Further, in the method for producing low-purity oxygen according to the present invention, the pressure of the second raw material air is increased by using the work of expansion of the first raw material air. Heating, cooling before pressurizing the second raw material air, the product oxygen compresses liquefied oxygen at the lower part of the low-pressure column obtained by liquefaction rectification, and then a part of the second raw material air. Of the second raw material air that exchanges heat with the liquefied oxygen after liquefaction by the heat exchange, and then at least one theoretical line from the introduction position of the second raw material air in the high-pressure column. It is characterized in that it is introduced into the high-pressure column at a position above the stage.
【0011】また、本発明の低純度酸素の製造装置は、
原料空気を低圧塔及び高圧塔を有する複式精留設備で液
化精留することにより低純度酸素を製造する装置におい
て、原料空気を圧縮する原料空気圧縮機と、圧縮原料空
気を予冷する予冷設備と、予冷した原料空気から水分や
二酸化炭素等の不純物を除去して精製する精製設備と、
精製原料空気の一部を膨張させる膨張タービンと、精製
原料空気の残部を昇圧する昇圧機と、膨張させた第1原
料空気及び昇圧した第2原料空気を液化精留で得られた
流体との熱交換により冷却する主熱交換器と、冷却した
第1原料空気を前記低圧塔に導入する経路と、冷却した
第2原料空気を前記高圧塔に導入する経路と、液化精留
により低圧塔下部に生成した酸素の少なくとも一部を製
品として回収する経路とを備えていることを特徴として
いる。[0011] The apparatus for producing low-purity oxygen of the present invention comprises:
In a device for producing low-purity oxygen by liquefying and rectifying raw material air in a double rectification facility having a low-pressure column and a high-pressure column, a raw material air compressor that compresses raw material air, and a pre-cooling device that pre-cools compressed raw material air A purification facility for purifying by removing impurities such as moisture and carbon dioxide from pre-cooled raw material air;
An expansion turbine that expands a part of the purified raw air, a booster that pressurizes the remainder of the purified raw air, and a fluid obtained by liquefying the expanded first raw air and the raised second raw air. A main heat exchanger for cooling by heat exchange, a path for introducing the cooled first raw material air to the low pressure column, a path for introducing the cooled second raw material air to the high pressure column, and a lower part of the low pressure column by liquefaction rectification. And a path for recovering at least a part of the generated oxygen as a product.
【0012】さらに、本発明の低純度酸素の製造装置
は、前記膨張タービンと前記昇圧機とが同軸上に連結さ
れていること、前記膨張タービンで膨張させる精製原料
空気を膨張させる前に加熱する熱交換器を備えているこ
と、前記昇圧機が前記主熱交換器における温端温度と冷
端温度との間の温度で精製原料空気を吸入して昇圧する
ものであること、前記酸素を製品として回収する経路
が、液化精留によって得られた低圧塔底部の液化酸素を
圧縮するポンプと、該ポンプで圧縮した液化酸素と前記
第2原料空気の一部とを熱交換させて液化酸素を蒸発さ
せるとともに第2原料空気を液化させる酸素蒸発器と、
該酸素蒸発器で液化した第2原料空気を、酸素蒸発器を
経由しない第2原料空気の高圧塔導入位置より少なくと
も1理論段上の位置で高圧塔に導入する経路とを備えて
いること、前記低圧塔及び高圧塔の少なくともいずれか
一方が充填式精留塔であることを特徴としている。Further, in the apparatus for producing low-purity oxygen of the present invention, the expansion turbine and the booster are coaxially connected, and the purified raw material air to be expanded by the expansion turbine is heated before being expanded. A heat exchanger, wherein the booster inhales purified air at a temperature between the hot end temperature and the cold end temperature in the main heat exchanger and increases the pressure, and the oxygen is a product. A pump for compressing liquefied oxygen at the bottom of the low-pressure column obtained by liquefied rectification, and heat exchange between the liquefied oxygen compressed by the pump and a part of the second raw material air to convert liquefied oxygen An oxygen evaporator for evaporating and liquefying the second raw material air;
A path for introducing the second raw material air liquefied by the oxygen evaporator into the high-pressure column at a position at least one theoretical stage higher than the high-pressure column introduction position of the second raw material air that does not pass through the oxygen evaporator; At least one of the low-pressure column and the high-pressure column is a packed rectification column.
【0013】[0013]
【発明の実施の形態】図1は、本発明の低純度酸素製造
装置の一形態例を示す系統図である。この低純度酸素製
造装置は、原料空気を低圧塔1及び高圧塔2を有する複
式精留設備で液化精留することにより低純度酸素を製造
する装置であって、原料空気を圧縮する原料空気圧縮機
3、圧縮原料空気を予冷する予冷設備4、予冷した原料
空気から水分や二酸化炭素等の不純物を除去して精製す
る精製設備5、精製原料空気の一部を膨張させる膨張タ
ービン6、精製原料空気の残部を昇圧する昇圧機7、膨
張させた第1原料空気及び昇圧した第2原料空気を液化
精留で得られた流体との熱交換により冷却する主熱交換
器8等を有するもので、製品の低純度酸素ガスは、低圧
塔1の下部から回収される。FIG. 1 is a system diagram showing one embodiment of the low-purity oxygen producing apparatus of the present invention. This low-purity oxygen production apparatus is an apparatus for producing low-purity oxygen by liquefying raw air in a double rectification facility having a low-pressure column 1 and a high-pressure column 2, and is a raw air compression system for compressing the raw air. Machine 3, pre-cooling equipment 4 for pre-cooling compressed raw air, purification equipment 5 for removing impurities such as moisture and carbon dioxide from the pre-cooled raw air, expansion turbine 6 for expanding a part of the purified raw air, purified raw material It has a booster 7 for increasing the pressure of the remainder of the air, a main heat exchanger 8 for cooling the expanded first raw material air and the pressurized second raw material air by heat exchange with a fluid obtained by liquefaction rectification, and the like. The low-purity oxygen gas of the product is recovered from the lower part of the low-pressure column 1.
【0014】以下、低圧塔1の運転圧力を1.4kg/
cm2abs、高圧塔2の運転圧力を5.6kg/cm
2absとし、製品酸素ガスを22355Nm3/h採
取する場合を例に挙げて説明する。Hereinafter, the operating pressure of the low pressure column 1 is set to 1.4 kg /
cm 2 abs, operating pressure of the high pressure column 2 is 5.6 kg / cm
The case where 2 abs is used and the product oxygen gas is collected at 22355 Nm 3 / h will be described as an example.
【0015】まず、経路50から導入される10210
0Nm3/hの原料空気は、原料空気圧縮機3で高圧塔
2の運転圧力より低く、低圧塔1の運転圧力よりは高
い、4.9kg/cm2absに圧縮されて経路51に
導出される。この圧縮原料空気は、経路51から熱交換
器11を通り、さらに、経路52から予冷設備4に導入
されて予冷され、経路53を通って精製設備5に導入さ
れる。First, 10210 introduced from the path 50
The feed air of 0 Nm 3 / h is compressed by the feed air compressor 3 to 4.9 kg / cm 2 abs, which is lower than the operating pressure of the high-pressure column 2 and higher than the operating pressure of the low-pressure column 1, and led out to the path 51. You. This compressed raw air passes through the heat exchanger 11 from the path 51, is further introduced into the precooling equipment 4 from the path 52, is precooled, and is introduced into the purification equipment 5 through the path 53.
【0016】精製設備5で水分や二酸化炭素等の不純物
を除去されて精製され、経路54に導出された精製原料
空気は、経路55の第1原料空気と経路56の第2原料
空気とに分岐する。経路55に分岐した25000Nm
3/hの第1原料空気は、前記熱交換器11で圧縮原料
空気と熱交換を行って130℃に加熱された後、経路5
7を通って膨張タービン6に流入し、低圧塔1の運転圧
力に対応した1.5kg/cm2absに膨張する。膨
張して低圧となった第1原料空気は、経路58を通って
主熱交換器8に流入し、液化精留で得られた流体、即ち
酸素ガス及び窒素ガスとの熱交換により冷却され、経路
59,60を経て低圧塔1の中段に導入される。The purified raw material air is purified by removing impurities such as moisture and carbon dioxide in the purifying equipment 5, and the purified raw material air led out to the path 54 is branched into a first raw material air in a path 55 and a second raw material air in a path 56. I do. 25000Nm branched to route 55
The 3 / h first raw material air is heat-exchanged with the compressed raw material air in the heat exchanger 11 and heated to 130 ° C.
7, flows into the expansion turbine 6, and expands to 1.5 kg / cm 2 abs corresponding to the operating pressure of the low-pressure tower 1. The first raw material air that has been expanded to a low pressure flows into the main heat exchanger 8 through a path 58, and is cooled by heat exchange with a fluid obtained by liquefaction rectification, that is, oxygen gas and nitrogen gas, It is introduced into the middle stage of the low-pressure column 1 via the paths 59 and 60.
【0017】経路56に分岐した77100Nm3/h
の第2原料空気は、前記膨張タービン6に同軸上に連結
された昇圧機7で、前記第1原料空気の膨張で得られた
仕事により、高圧塔2の運転圧力に対応した5.7kg
/cm2absに昇圧され、アフタークーラー12で冷
却されて経路61に導出する。昇圧した第1原料空気の
一部5800Nm3/hは、経路61から経路62に分
岐して第3の流れとなり、ブロワー13で8.7kg/
cm2absに圧縮された後、アフタークーラー14,
経路63を経て主熱交換器8に流入する。この第3原料
空気は、主熱交換器8の途中の−90℃の位置で経路6
4に抜出され、寒冷発生用の膨張タービン15で1.4
kg/cm2absに膨張し、装置の運転に必要な寒冷
を発生する。膨張タービン15で膨張して低圧となり、
経路65に導出された第3原料空気は、前記経路59の
第2原料空気と合流し、合計流量30800Nm3/h
となって前記経路60から低圧塔1に流入する。77100 Nm 3 / h branched to the path 56
5.7 kg corresponding to the operating pressure of the high pressure tower 2 by the work obtained by the expansion of the first raw material air by the booster 7 coaxially connected to the expansion turbine 6.
/ Cm 2 abs, cooled by the aftercooler 12, and led out to the path 61. 5800 Nm 3 / h of the pressurized first raw material air is branched from a path 61 to a path 62 to form a third flow, and the blower 13 supplies 8.7 kg / h.
After being compressed to cm 2 abs, the aftercooler 14,
It flows into the main heat exchanger 8 via the path 63. This third raw material air is supplied to a path 6 at a position of -90 ° C. in the middle of the main heat exchanger 8.
4 and expanded by the expansion turbine 15 for generating cold.
Expands to kg / cm 2 abs and generates the refrigeration required to operate the device. It expands in the expansion turbine 15 to a low pressure,
The third raw material air led out to the path 65 merges with the second raw material air in the path 59, and has a total flow rate of 30,800 Nm 3 / h.
And flows into the low pressure column 1 from the path 60.
【0018】一方、経路61から経路66に進んだ第2
原料空気71300Nm3/hは、主熱交換器8で露点
温度付近まで冷却された後、経路67を通って高圧塔2
の下部に導入される。この第2原料空気は、主凝縮蒸発
器16で凝縮して高圧塔2内を流下する還流液と気液接
触することにより液化精留され、塔上部の窒素ガスと塔
底部の酸素分が富化した液化空気とに分離する。窒素ガ
スは、塔上部から主凝縮蒸発器16に導入されて凝縮
し、凝縮した液化窒素の一部が、経路68,過冷器17
を経て弁18で低圧塔1の圧力に減圧された後、低圧塔
1の上部に導入される。また、塔底部から経路69に抜
出された液化空気は、過冷器19を経て弁20で低圧塔
1の圧力に減圧された後、低圧塔1の中段に導入され
る。On the other hand, the second traveling from the route 61 to the route 66
The raw material air 71300 Nm 3 / h is cooled to a temperature near the dew point in the main heat exchanger 8,
Introduced at the bottom. The second raw material air is condensed in the main condensing evaporator 16 and liquefied and rectified by gas-liquid contact with a reflux liquid flowing down in the high-pressure column 2. The nitrogen gas at the top of the column and the oxygen content at the bottom of the column are enriched. Separated into liquefied air. The nitrogen gas is introduced into the main condenser evaporator 16 from the top of the tower and condensed, and a part of the condensed liquefied nitrogen is supplied to the passage 68 and the subcooler 17.
After the pressure is reduced to the pressure of the low-pressure column 1 by the valve 18 via the valve 18, the pressure is introduced into the upper part of the low-pressure column 1. The liquefied air extracted from the bottom of the tower to the path 69 is depressurized to the pressure of the low-pressure tower 1 by the valve 20 via the subcooler 19, and then introduced into the middle stage of the low-pressure tower 1.
【0019】低圧塔1では、低圧塔1内を上昇する前記
第1原料空気,第3原料空気及び主凝縮蒸発器16で蒸
発したガスと、塔内を流下する前記液化窒素及び液化空
気との気液接触により精留が行われ、塔頂部の窒素ガス
と塔底部の液化酸素とに分離し、塔頂部の経路70から
は窒素ガス79445Nm3/hが抜出され、塔下部の
経路71からは、主凝縮蒸発器16で蒸発した酸素ガス
の一部22355Nm3/hが抜出される。塔頂部から
経路70に抜出された窒素ガスは、前記過冷器17,1
9及び経路72を通って主熱交換器8に流入し、原料空
気と熱交換して経路73に導出され、その一部が経路7
4に分岐し、再生用加熱器21を通って精製設備5の再
生に用いられた後、経路75から放出される。また、残
部の窒素ガスは、必要に応じて製品として採取すること
ができる。そして、経路71に抜出された酸素ガスは、
主熱交換器8で原料空気と熱交換して12℃に昇温し、
経路76から製品酸素として回収される。In the low-pressure column 1, the first raw material air, the third raw material air rising in the low-pressure column 1 and the gas evaporated in the main condensation evaporator 16 are combined with the liquefied nitrogen and liquefied air flowing down in the column. The rectification is carried out by gas-liquid contact to separate into nitrogen gas at the top of the column and liquefied oxygen at the bottom of the column. Nitrogen gas 79445 Nm 3 / h is extracted from the path 70 at the top of the tower, and from the path 71 at the bottom of the tower. A part of the oxygen gas evaporated in the main condensing evaporator 16 is extracted at 22355 Nm 3 / h. The nitrogen gas extracted from the top of the tower to the path 70 is supplied to the subcooler 17,1.
9 and the main heat exchanger 8 through the path 72, exchanges heat with the raw material air and is led out to the path 73, and a part of the
After being branched to 4 and passed through the regeneration heater 21 to be used for regeneration of the refining equipment 5, it is discharged from the path 75. Further, the remaining nitrogen gas can be collected as a product as needed. Then, the oxygen gas extracted to the path 71 is
The main heat exchanger 8 exchanges heat with the raw material air to raise the temperature to 12 ° C.
It is recovered as product oxygen from the passage 76.
【0020】上述のように、低純度酸素を製造するにあ
たり、原料空気を高圧塔2の圧力よりも低い圧力に圧縮
して精製することにより、原料空気圧縮機3から精製設
備5に至る系統を一本化できるので、原料空気を高圧及
び低圧の2系統で圧縮精製する従来法に比べて初期コス
トを低減できるとともに、低圧の原料空気から不純物を
除去する必要がなくなるため、これに必要な動力が削減
できる。As described above, in producing low-purity oxygen, the raw air is compressed to a pressure lower than the pressure of the high-pressure column 2 and purified, whereby the system from the raw air compressor 3 to the purification facility 5 is purified. Since it can be unified, the initial cost can be reduced as compared with the conventional method of compressing and refining the raw material air by two systems of high pressure and low pressure, and it is not necessary to remove impurities from the low pressure raw material air. Can be reduced.
【0021】さらに、原料空気の全部を高圧塔2の圧力
まで圧縮しないので、低圧塔1に供給する低圧側の原料
空気を圧縮及び膨張させる際の圧縮比や膨張比が小さく
なり、機械的ロスを低減することができる。特に、低圧
側の原料空気を膨張させる膨張タービン6と、高圧側の
原料空気を昇圧する昇圧機7とを同軸上に連結し、第1
原料空気の膨張による仕事を利用して高圧側の原料空気
を昇圧することにより、効率よく第2原料空気の昇圧を
行うことができ、エネルギーの有効利用が図れる。ま
た、第1原料空気を熱交換器11で加熱してから膨張タ
ービン6に導入して膨張させることにより、第1原料空
気の膨張を効率よく行うことができ、昇圧機7で昇圧す
る第2原料空気との温度差を大きくすることにより、昇
圧機7における圧縮比を高めることができる。Further, since all of the raw material air is not compressed to the pressure of the high-pressure column 2, the compression ratio and expansion ratio when compressing and expanding the low-pressure raw material air supplied to the low-pressure column 1 are reduced, and the mechanical loss is reduced. Can be reduced. In particular, an expansion turbine 6 for expanding the low-pressure side raw material air and a booster 7 for raising the high-pressure side raw material air are coaxially connected to each other.
By increasing the pressure of the high-pressure side raw material air using the work due to the expansion of the raw material air, the second raw material air can be efficiently raised, and effective use of energy can be achieved. Further, the first raw material air is heated by the heat exchanger 11 and then introduced into the expansion turbine 6 and expanded, whereby the first raw material air can be efficiently expanded. By increasing the temperature difference from the raw material air, the compression ratio in the booster 7 can be increased.
【0022】上述のようにして低純度酸素を製造した場
合の酸素動力原単位は、0.34kWh/Nm3とな
り、従来のプロセスと比較して10%程度の低減が図れ
る。When the low-purity oxygen is produced as described above, the unit oxygen power consumption is 0.34 kWh / Nm 3 , which can be reduced by about 10% as compared with the conventional process.
【0023】さらに、低圧塔1の下部から酸素を液で抜
出すこともできる。この場合は、図1に破線で示すよう
に、低圧塔下部から経路76に液化酸素を抜出し、液化
酸素ポンプ22で液化酸素の沸点と、加熱源として使用
する第2原料空気の沸点との差が適当な温度となる圧力
に圧縮して酸素蒸発器23に導入するとともに、前記経
路67を流れる第2原料空気の一部を経路77に分岐し
て酸素蒸発器23に加熱源として導入する。酸素蒸発器
23で第2原料空気の一部との熱交換により蒸発した酸
素ガスは、経路78を通って主熱交換器8に導入され、
原料空気と熱交換して昇温し、経路76から回収され
る。また、酸素蒸発器23で液化酸素との熱交換により
液化した第2原料空気は、経路79,弁24を通り、酸
素蒸発器23を経由しない第2原料空気の高圧塔導入位
置より少なくとも1理論段上の位置で高圧塔2に導入さ
れる。Further, oxygen can be extracted from the lower part of the low-pressure column 1 with a liquid. In this case, as shown by the broken line in FIG. 1, liquefied oxygen is extracted from the lower part of the low-pressure column to the path 76, and the difference between the boiling point of the liquefied oxygen and the boiling point of the second raw material air used as a heating source is supplied by the liquefied oxygen pump 22. Is compressed to a pressure at which it reaches an appropriate temperature and introduced into the oxygen evaporator 23, and a part of the second raw material air flowing through the path 67 is branched into a path 77 and introduced into the oxygen evaporator 23 as a heating source. The oxygen gas evaporated by the heat exchange with a part of the second raw material air in the oxygen evaporator 23 is introduced into the main heat exchanger 8 through the passage 78,
The temperature is raised by exchanging heat with the raw material air and collected from the passage 76. In addition, the second raw material air liquefied by heat exchange with liquefied oxygen in the oxygen evaporator 23 passes through the path 79 and the valve 24, and is at least one theoretical path from the position where the second raw material air that does not pass through the oxygen evaporator 23 is introduced into the high pressure column. It is introduced into the high-pressure column 2 at a position above the stage.
【0024】このように、低圧塔1から酸素を液で抜出
すことにより、低圧塔1から直接酸素ガスを抜出す場合
に比べて、低圧塔1の底部に貯留される液化酸素の純度
を一平衡段分低くすることができ、主凝縮蒸発器16で
の温度差が大きくとれるので、高圧塔2の圧力を低くす
ることができる。なお、液化酸素ポンプ22を用いるこ
となく、液化酸素を自らの位置ヘッドで加圧することも
できる。As described above, by extracting oxygen from the low-pressure column 1 with a liquid, the purity of the liquefied oxygen stored at the bottom of the low-pressure column 1 is reduced by one compared to the case of directly extracting oxygen gas from the low-pressure column 1. The pressure can be lowered by the equilibrium stage, and the temperature difference in the main condensation evaporator 16 can be made large, so that the pressure in the high-pressure column 2 can be lowered. The liquefied oxygen can be pressurized by its own position head without using the liquefied oxygen pump 22.
【0025】また、液化した第2原料空気を酸素蒸発器
23を経由しない第2原料空気の導入位置より少なくと
も1理論段上に導入することにより、高圧原料空気供給
段と液化空気供給段の間の還流比L/V(上昇ガスに対
する下降液の比)が1に近付くため、精留による分離を
促進させることができる。Further, the liquefied second raw material air is introduced at least one theoretical stage from the position where the second raw material air is introduced without passing through the oxygen evaporator 23, so that the high-pressure raw material air supply stage and the liquefied air supply stage are separated. Since the reflux ratio L / V (ratio of descending liquid to ascending gas) approaches 1, the separation by rectification can be promoted.
【0026】図2は、本発明の他の形態例を示す系統図
であり、第2原料空気の昇圧を低温圧縮で行う例を示し
ている。なお、前記形態例における構成要素と同一の構
成要素には同一符号を付して詳細な説明は省略する。以
下、前記同様に、低圧塔1の運転圧力を1.4kg/c
m2abs、高圧塔2の運転圧力を5.6kg/cm2
absとし、製品酸素を22355Nm3/h採取する
場合で説明する。FIG. 2 is a system diagram showing another embodiment of the present invention, in which the pressure of the second raw material air is increased by low-temperature compression. Note that the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. Hereinafter, similarly to the above, the operating pressure of the low pressure column 1 is set to 1.4 kg / c.
m 2 abs, operating pressure of the high pressure column 2 is 5.6 kg / cm 2
The case where abs is used and the product oxygen is collected at 22355 Nm 3 / h will be described.
【0027】経路50からの102100Nm3/hの
原料空気は、原料空気圧縮機3で4.9kg/cm2a
bsに圧縮され、経路51,予冷設備4,経路53を通
って精製設備5に導入され,精製されて経路54に導出
される。経路54の精製原料空気は、経路80の寒冷発
生用の第3原料空気と、経路81の低圧用の第1原料空
気と、経路82の高圧用の第2原料空気とに分岐する。The feed air of 102100 Nm 3 / h from the passage 50 is fed to the feed air compressor 3 at 4.9 kg / cm 2 a
bs, is introduced into the refining facility 5 through the path 51, the pre-cooling equipment 4, and the path 53, is purified, and is led out to the path 54. The purified raw air in the passage 54 is branched into a third raw air for generating cold in the passage 80, a first raw air for low pressure in the passage 81, and a second raw air for high pressure in the passage 82.
【0028】経路81の第1原料空気25200Nm3
/hは、膨張タービン6で1.4kg/cm2absに
膨張するとともに低温となり、経路83を通って主熱交
換器8の中間部に流入し、冷却されて経路84に導出す
る。また、経路82の第2原料空気71620Nm3/
hは、主熱交換器8で中間温度まで冷却された後、経路
85により昇圧機7に導入されて5.7kg/cm2a
bsに昇圧され、経路86により再び主熱交換器8に導
入されて冷却され、経路67を経て高圧塔2の下部に導
入される。First raw material air 25200 Nm 3 in path 81
/ H expands to 1.4 kg / cm 2 abs in the expansion turbine 6 and becomes low in temperature, flows into the middle part of the main heat exchanger 8 through the path 83, is cooled, and is led out to the path 84. In addition, the second raw material air 71620 Nm 3 /
h is cooled to the intermediate temperature in the main heat exchanger 8 and then introduced into the booster 7 through the path 85 to be 5.7 kg / cm 2 a
bs, is again introduced into the main heat exchanger 8 by the path 86, is cooled, and is introduced into the lower part of the high-pressure column 2 via the path 67.
【0029】経路80の第3原料空気5280Nm3/
hは、熱交換器25で加熱され、経路87を通ってブロ
ワー13で6.9kg/cm2absに圧縮され、アフ
タークーラー14,経路88,前記熱交換器25を経て
冷却された後、経路89により主熱交換器8に導入され
る。主熱交換器8で−100℃に冷却された第3原料空
気は、前記同様に経路64に導出されて寒冷発生用の膨
張タービン15に導入され、1.4kg/cm2abs
に膨張して寒冷を発生し、経路65を通って前記経路8
4の第1原料空気と合流し、経路60を経て低圧塔1の
中段に導入される。The third raw air 5280Nm 3 /
h is heated in the heat exchanger 25, is compressed to 6.9 kg / cm 2 abs by the blower 13 through the path 87, is cooled through the after cooler 14, the path 88, and the heat exchanger 25, and is then cooled. It is introduced into the main heat exchanger 8 by 89. The third raw material air cooled to −100 ° C. in the main heat exchanger 8 is led out to the path 64 in the same manner as described above and introduced into the expansion turbine 15 for generating cold, and 1.4 kg / cm 2 abs.
To generate cold, and through the path 65, the path 8
4 and is introduced into the middle stage of the low-pressure column 1 via the path 60.
【0030】そして、前記同様に低圧塔1及び高圧塔2
での液化精留の結果、低圧塔1の塔頂部の経路70から
窒素ガス79445Nm3/hが抜出され、主熱交換器
8を経て経路73に導出される。また、低圧塔1の下部
の経路71から酸素ガス22355Nm3/hが抜出さ
れ、主熱交換器8を経て経路76から回収される。ある
いは、低圧塔1の下部の経路76から液化酸素が抜出さ
れ、酸素蒸発器23で蒸発した後、主熱交換器8を経て
経路76から回収される。本形態例における酸素動力原
単位も、前記形態例と同じ0.34kWh/Nm3であ
った。Then, the low-pressure column 1 and the high-pressure column 2
As a result, the nitrogen gas 79445 Nm 3 / h is extracted from the passage 70 at the top of the low-pressure column 1 and is led out to the passage 73 via the main heat exchanger 8. Further, oxygen gas 22355 Nm 3 / h is extracted from the lower passage 71 of the low-pressure column 1 and recovered from the passage 76 via the main heat exchanger 8. Alternatively, liquefied oxygen is extracted from the lower passage 76 of the low-pressure tower 1, evaporated in the oxygen evaporator 23, and recovered from the passage 76 via the main heat exchanger 8. The unit oxygen power consumption in this embodiment was also 0.34 kWh / Nm 3, which was the same as in the above embodiment.
【0031】本形態例に示すように、膨張タービン6で
駆動される昇圧機7を低温仕様とし、第2原料空気を低
温で昇圧することにより、流体の体積流量が低下するの
で設備を小さくすることができる。また、第1原料空気
と第2原料空気との温度差を得るため、前記形態例で
は、膨張タービン6に導入する第1原料空気を、熱交換
器11で圧縮原料空気と熱交換させて昇温していたた
め、比較的大容量の熱交換器を設置していたが、本形態
例では、主熱交換器8で第2原料空気を冷却することに
よって温度差を得ているため、前記熱交換器11を省略
することができる。なお、第3原料空気の経路に、同様
の目的の熱交換器25が設置されているが、第3原料空
気の流量が少ないので、前記熱交換器11に比べてはる
かに小型のものですむ。As shown in this embodiment, the booster 7 driven by the expansion turbine 6 has a low-temperature specification, and the pressure of the second raw material air is raised at a low temperature. be able to. In addition, in order to obtain a temperature difference between the first raw material air and the second raw material air, in the above-described embodiment, the first raw material air introduced into the expansion turbine 6 is heat-exchanged with the compressed raw material air by the heat exchanger 11 to rise. Although a relatively large-capacity heat exchanger was installed because of the temperature, in the present embodiment, the temperature difference was obtained by cooling the second raw material air with the main heat exchanger 8, so The exchanger 11 can be omitted. Although the heat exchanger 25 for the same purpose is installed in the path of the third raw material air, the flow rate of the third raw material air is small, so that the heat exchanger 25 can be much smaller than the heat exchanger 11. .
【0032】さらに、各形態例おける酸素動力原単位
は、各精留塔を多孔板トレイを使用した棚段式で形成し
た場合の数値であり、両精留塔を、あるいは低圧塔及び
高圧塔のいずれか一方を充填式の精留塔とした場合は、
棚段式に比べて圧力損失が少ないので、更に大きな動力
削減効果が得られる。Further, the unit oxygen power consumption in each embodiment is a numerical value when each rectification column is formed in a tray type using a perforated plate tray, and both rectification columns or a low pressure column and a high pressure column are used. When either one of the packed rectification column,
Since the pressure loss is smaller than that of the shelf type, a greater power reduction effect can be obtained.
【0033】[0033]
【発明の効果】以上説明したように、本発明の低純度酸
素の製造方法及び装置は、精製設備では原料空気を1系
統とし、この後、高圧及び低圧の原料空気に分岐するの
で、精製設備及び原料空気圧縮機の初期コストを低減で
きる。また、低圧の空気から不純物を除去する必要がな
くなるため、これに必要な動力が低減できる。さらに、
原料空気の全部を高圧塔の圧力まで圧縮しないので、低
圧塔に供給する空気の圧縮及び膨張による機械的ロスを
低減することができる。したがって、従来より低コスト
で低純度酸素を製造することができる。As described above, according to the method and apparatus for producing low-purity oxygen of the present invention, in the purification facility, the raw material air is made into one system, and thereafter, is branched into high-pressure and low-pressure raw material air. And the initial cost of a raw material air compressor can be reduced. Further, since there is no need to remove impurities from the low-pressure air, the power required for this can be reduced. further,
Since all of the raw air is not compressed to the pressure of the high-pressure column, mechanical loss due to compression and expansion of the air supplied to the low-pressure column can be reduced. Therefore, low-purity oxygen can be produced at lower cost than before.
【図1】 本発明の低純度酸素製造装置の一形態例を示
す系統図である。FIG. 1 is a system diagram showing one embodiment of a low-purity oxygen production apparatus of the present invention.
【図2】 低純度酸素製造装置の他の形態例を示す系統
図である。FIG. 2 is a system diagram showing another embodiment of the low-purity oxygen production apparatus.
1…低圧塔、2…高圧塔、3…原料空気圧縮機、4…予
冷設備、5…精製設備、6…膨張タービン、7…昇圧
機、8…主熱交換器、11…熱交換器、13…ブロワ
ー、15…寒冷発生用の膨張タービン、16…主凝縮蒸
発器、17,19…過冷器、21…再生用加熱器、22
…液化酸素ポンプ、23…酸素蒸発器、25…熱交換器DESCRIPTION OF SYMBOLS 1 ... Low-pressure tower, 2 ... High-pressure tower, 3 ... Raw material air compressor, 4 ... Pre-cooling equipment, 5 ... Refining equipment, 6 ... Expansion turbine, 7 ... Pressure booster, 8 ... Main heat exchanger, 11 ... Heat exchanger, 13: blower, 15: expansion turbine for generating cold, 16: main condensing evaporator, 17, 19: subcooler, 21: heater for regeneration, 22
... liquefied oxygen pump, 23 ... oxygen evaporator, 25 ... heat exchanger
Claims (12)
式精留設備で液化精留することにより低純度酸素を製造
する方法において、原料空気を前記高圧塔の操作圧力よ
り低い圧力に圧縮する工程と、圧縮原料空気を予冷する
工程と、予冷した原料空気から水分や二酸化炭素等の不
純物を除去して精製する工程と、精製原料空気を第1原
料空気と第2原料空気とに分岐し、分岐した第1原料空
気を膨張させる工程と、分岐した第2原料空気を昇圧す
る工程と、膨張させた第1原料空気及び昇圧した第2原
料空気を、液化精留で得られた流体との熱交換により冷
却する工程と、冷却した第1原料空気を前記低圧塔に、
冷却した第2原料空気を前記高圧塔に、それぞれ導入し
て液化精留することにより酸素と窒素とに分離する工程
と、液化精留で得られた低圧塔下部の酸素の少なくとも
一部を製品として回収する工程とを含むことを特徴とす
る低純度酸素の製造方法。1. A method for producing low-purity oxygen by liquefying raw air in a double rectification facility having a low-pressure column and a high-pressure column, wherein the raw air is compressed to a pressure lower than the operating pressure of the high-pressure column. A step of pre-cooling the compressed raw air, a step of purifying by removing impurities such as moisture and carbon dioxide from the pre-cooled raw air, and branching the purified raw air into a first raw air and a second raw air. A step of expanding the branched first raw material air, a step of increasing the pressure of the branched second raw material air, and a step of converting the expanded first raw material air and the raised second raw air to a fluid obtained by liquefaction rectification. And cooling the first raw material air cooled in the low-pressure column,
A step of introducing the cooled second raw material air into the high-pressure column to separate into oxygen and nitrogen by liquefaction rectification, and converting at least a portion of the oxygen at the lower part of the low-pressure column obtained by liquefaction rectification into a product And recovering as low purity oxygen.
料空気の膨張による仕事を利用して行うことを特徴とす
る請求項1記載の低純度酸素の製造方法。2. The method for producing low-purity oxygen according to claim 1, wherein the step of increasing the pressure of the second raw material air is performed by utilizing work caused by expansion of the first raw material air.
熱することを特徴とする請求項1記載の低純度酸素の製
造方法。3. The method for producing low-purity oxygen according to claim 1, wherein the first raw material air is heated before being expanded.
することを特徴とする請求項1記載の低純度酸素の製造
方法。4. The method for producing low-purity oxygen according to claim 1, wherein the second raw material air is cooled before the pressure is increased.
れた低圧塔下部の液化酸素を圧縮した後、前記第2原料
空気の一部との熱交換によって蒸発させることにより行
うことを特徴とする請求項1記載の低純度酸素の製造方
法。5. The method according to claim 1, wherein the recovery of the product oxygen is performed by compressing liquefied oxygen obtained in the liquefaction rectification at the lower part of the low-pressure column and evaporating the compressed oxygen by heat exchange with a part of the second raw material air. The method for producing low-purity oxygen according to claim 1, wherein:
の一部は、該熱交換によって液化した後、前記高圧塔に
おける第2原料空気の導入位置より少なくとも1理論段
上の位置で高圧塔に導入することを特徴とする請求項5
記載の低純度酸素の製造方法。6. A part of the second raw material air which exchanges heat with the liquefied oxygen is liquefied by the heat exchange, and then is pressurized at a position at least one theoretical stage higher than the introduction position of the second raw material air in the high pressure column. 6. The method according to claim 5, wherein the gas is introduced into a tower.
The method for producing low-purity oxygen according to the above.
式精留設備で液化精留することにより低純度酸素を製造
する装置において、原料空気を圧縮する原料空気圧縮機
と、圧縮原料空気を予冷する予冷設備と、予冷した原料
空気から水分や二酸化炭素等の不純物を除去して精製す
る精製設備と、精製原料空気の一部を膨張させる膨張タ
ービンと、精製原料空気の残部を昇圧する昇圧機と、膨
張させた第1原料空気及び昇圧した第2原料空気を液化
精留で得られた流体との熱交換により冷却する主熱交換
器と、冷却した第1原料空気を前記低圧塔に導入する経
路と、冷却した第2原料空気を前記高圧塔に導入する経
路と、液化精留により低圧塔下部に生成した酸素の少な
くとも一部を製品として回収する経路とを備えているこ
とを特徴とする低純度酸素の製造装置。7. An apparatus for producing low-purity oxygen by liquefying raw air in a double rectification facility having a low-pressure tower and a high-pressure tower, wherein a raw air compressor for compressing the raw air, a compressed air for the raw air, Pre-cooling equipment for pre-cooling, purification equipment for purifying by removing impurities such as moisture and carbon dioxide from pre-cooled raw air, expansion turbine for expanding a part of the purified raw air, and pressurizing for boosting the remainder of the purified air A main heat exchanger for cooling the expanded first raw material air and the pressurized second raw material air by heat exchange with a fluid obtained by liquefaction rectification, and the cooled first raw material air to the low-pressure column. A path for introducing, a path for introducing the cooled second raw material air into the high-pressure column, and a path for recovering at least a part of oxygen generated at the lower part of the low-pressure column by liquefaction rectification as a product. And low net Degree oxygen production equipment.
軸上に連結されていることを特徴とする請求項7記載の
低純度酸素の製造装置。8. The apparatus for producing low-purity oxygen according to claim 7, wherein the expansion turbine and the booster are coaxially connected.
空気を、膨張させる前に加熱する熱交換器を備えている
ことを特徴とする請求項7記載の低純度酸素の製造装
置。9. The apparatus for producing low-purity oxygen according to claim 7, further comprising a heat exchanger for heating the purified air to be expanded by the expansion turbine before the air is expanded.
る温端温度と冷端温度との間の温度で精製原料空気を吸
入して昇圧するものであることを特徴とする請求項7記
載の低純度酸素の製造装置。10. The pressure booster according to claim 7, wherein the pressure of the purified raw material air is increased at a temperature between the hot end temperature and the cold end temperature in the main heat exchanger. Low purity oxygen production equipment.
は、液化精留によって得られた低圧塔底部の液化酸素を
圧縮するポンプと、該ポンプで圧縮した液化酸素と前記
第2原料空気の一部とを熱交換させて液化酸素を蒸発さ
せるとともに第2原料空気を液化させる酸素蒸発器と、
該酸素蒸発器で液化した第2原料空気を、酸素蒸発器を
経由しない第2原料空気の高圧塔導入位置より少なくと
も1理論段上の位置で高圧塔に導入する経路とを備えて
いることを特徴とする請求項7記載の低純度酸素の製造
装置。11. A path for recovering the oxygen as a product includes a pump for compressing liquefied oxygen at the bottom of the low-pressure column obtained by liquefaction rectification, and a part of the liquefied oxygen compressed by the pump and a part of the second raw material air. And an evaporator for evaporating liquefied oxygen by exchanging heat with liquefied second raw material air,
A path for introducing the second raw material air liquefied by the oxygen evaporator into the high-pressure column at a position at least one theoretical stage above the high-pressure column introduction position of the second raw material air that does not pass through the oxygen evaporator. The apparatus for producing low-purity oxygen according to claim 7, characterized in that:
ずれか一方が、充填式精留塔であることを特徴とする請
求項7記載の低純度酸素の製造装置。12. The apparatus for producing low-purity oxygen according to claim 7, wherein at least one of the low-pressure column and the high-pressure column is a packed rectification column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21489497A JP3737611B2 (en) | 1997-08-08 | 1997-08-08 | Method and apparatus for producing low purity oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21489497A JP3737611B2 (en) | 1997-08-08 | 1997-08-08 | Method and apparatus for producing low purity oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1163810A true JPH1163810A (en) | 1999-03-05 |
JP3737611B2 JP3737611B2 (en) | 2006-01-18 |
Family
ID=16663333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21489497A Expired - Fee Related JP3737611B2 (en) | 1997-08-08 | 1997-08-08 | Method and apparatus for producing low purity oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3737611B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028568A (en) * | 2001-07-17 | 2003-01-29 | Nippon Sanso Corp | Method and apparatus for separating air |
JP2006525487A (en) * | 2003-05-05 | 2006-11-09 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and system for producing pressurized air gas by cryogenic distillation of air |
JP2007518054A (en) * | 2004-01-12 | 2007-07-05 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Cryogenic distillation method and apparatus for air separation |
JP2009529648A (en) * | 2006-03-15 | 2009-08-20 | リンデ アクチエンゲゼルシヤフト | Cryogenic air separation method and apparatus |
EP2015012A3 (en) * | 2007-07-07 | 2012-08-22 | Linde AG | Process for the cryogenic separation of air |
CN108253732A (en) * | 2016-12-28 | 2018-07-06 | 林德股份公司 | For manufacturing the method for one or more Air Products and air separation equipment |
WO2020128205A1 (en) | 2018-12-21 | 2020-06-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus and method for separating air by cryogenic distillation |
CN111412724A (en) * | 2020-04-29 | 2020-07-14 | 杭州特盈能源技术发展有限公司 | Novel low-energy-consumption pressure oxygen enrichment preparation process for kiln |
CN111486663A (en) * | 2020-04-08 | 2020-08-04 | 广州广钢气体能源股份有限公司 | Nitrogen making machine suitable for electronic gas factory |
CN113623941A (en) * | 2021-08-11 | 2021-11-09 | 乔治洛德方法研究和开发液化空气有限公司 | Air separation unit suitable for retrofitting and method for retrofitting the air separation unit |
-
1997
- 1997-08-08 JP JP21489497A patent/JP3737611B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003028568A (en) * | 2001-07-17 | 2003-01-29 | Nippon Sanso Corp | Method and apparatus for separating air |
JP4520667B2 (en) * | 2001-07-17 | 2010-08-11 | 大陽日酸株式会社 | Air separation method and apparatus |
JP2006525487A (en) * | 2003-05-05 | 2006-11-09 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and system for producing pressurized air gas by cryogenic distillation of air |
JP4728219B2 (en) * | 2003-05-05 | 2011-07-20 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and system for producing pressurized air gas by cryogenic distillation of air |
JP2007518054A (en) * | 2004-01-12 | 2007-07-05 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Cryogenic distillation method and apparatus for air separation |
JP2009529648A (en) * | 2006-03-15 | 2009-08-20 | リンデ アクチエンゲゼルシヤフト | Cryogenic air separation method and apparatus |
EP2015012A3 (en) * | 2007-07-07 | 2012-08-22 | Linde AG | Process for the cryogenic separation of air |
CN108253732A (en) * | 2016-12-28 | 2018-07-06 | 林德股份公司 | For manufacturing the method for one or more Air Products and air separation equipment |
WO2020128205A1 (en) | 2018-12-21 | 2020-06-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus and method for separating air by cryogenic distillation |
CN111486663A (en) * | 2020-04-08 | 2020-08-04 | 广州广钢气体能源股份有限公司 | Nitrogen making machine suitable for electronic gas factory |
CN111486663B (en) * | 2020-04-08 | 2021-01-22 | 广州广钢气体能源股份有限公司 | Nitrogen making machine suitable for electronic gas factory |
CN111412724A (en) * | 2020-04-29 | 2020-07-14 | 杭州特盈能源技术发展有限公司 | Novel low-energy-consumption pressure oxygen enrichment preparation process for kiln |
CN111412724B (en) * | 2020-04-29 | 2021-06-04 | 杭州特盈能源技术发展有限公司 | Novel low-energy-consumption pressure oxygen enrichment preparation process for kiln |
CN113623941A (en) * | 2021-08-11 | 2021-11-09 | 乔治洛德方法研究和开发液化空气有限公司 | Air separation unit suitable for retrofitting and method for retrofitting the air separation unit |
Also Published As
Publication number | Publication date |
---|---|
JP3737611B2 (en) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2063928C (en) | Process for low-temperature air fractionation | |
JPH087019B2 (en) | High-pressure low-temperature distillation method for air | |
JPH06101963A (en) | High-pressure low-temperature distilling method of air | |
JP6092804B2 (en) | Air liquefaction separation method and apparatus | |
JP3737611B2 (en) | Method and apparatus for producing low purity oxygen | |
JP3190016B2 (en) | Low-temperature distillation method for feed air producing high-pressure nitrogen | |
JPH1073372A (en) | Process for cryogenic distillation of air feed to produce nitrogen | |
JP4230213B2 (en) | Air liquefaction separation apparatus and method | |
JP4447501B2 (en) | Air liquefaction separation method and apparatus | |
JPH07151459A (en) | Method and equipment for preparing at least one gas from airunder pressure | |
JP3181546B2 (en) | Method and apparatus for producing nitrogen and argon from air | |
JP3737612B2 (en) | Method and apparatus for producing low purity oxygen | |
JP3748677B2 (en) | Method and apparatus for producing low purity oxygen | |
JP3992387B2 (en) | Air separation device | |
JP3738213B2 (en) | Nitrogen production method and apparatus | |
JP4447502B2 (en) | Air liquefaction separation method and apparatus | |
JP3703943B2 (en) | Method and apparatus for producing low purity oxygen | |
JP6159242B2 (en) | Air separation method and apparatus | |
JPH11325716A (en) | Separation of air | |
JP2000258054A (en) | Method and apparatus for manufacturing low purity oxygen | |
JP4698989B2 (en) | Oxygen production equipment | |
JPH0814458B2 (en) | Nitrogen production method | |
JPS61276680A (en) | Method of liquefying and separating air | |
JPS6157550B2 (en) | ||
JPS61243273A (en) | Air liquefying separating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051027 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |