JP2003028568A - Method and apparatus for separating air - Google Patents

Method and apparatus for separating air

Info

Publication number
JP2003028568A
JP2003028568A JP2001216564A JP2001216564A JP2003028568A JP 2003028568 A JP2003028568 A JP 2003028568A JP 2001216564 A JP2001216564 A JP 2001216564A JP 2001216564 A JP2001216564 A JP 2001216564A JP 2003028568 A JP2003028568 A JP 2003028568A
Authority
JP
Japan
Prior art keywords
nitrogen
oxygen
air
distillation
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001216564A
Other languages
Japanese (ja)
Other versions
JP4520667B2 (en
Inventor
Nobuaki Ekoshi
信明 江越
Hiroshi Tachibana
博志 橘
Hiroshi Kawakami
浩 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2001216564A priority Critical patent/JP4520667B2/en
Publication of JP2003028568A publication Critical patent/JP2003028568A/en
Application granted granted Critical
Publication of JP4520667B2 publication Critical patent/JP4520667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for separating air capable of separating air to ensure energy saving upon collecting nitrogen and oxygen. SOLUTION: Stock air RA is cooled by heat exchange with an oxygen distillation passage 53 on an air condensation passage 51 and is partially liquefied to separate nitrogen rich air of gas phase and oxygen rich air of liquid phase (1). The nitrogen rich air is distilled on a nitrogen distillation passage 52 while being cooled by heat exchange with the oxygen distillation passage 53 to separate product middle pressure nitrogen MGN where nitrogen is concentrated and nitrogen contents with low nitrogen concentration (2). The nitrogen contents and the foregoing oxygen rich air are distilled in a distillation tower 6 to separate product low pressure nitrogen GN where nitrogen is concentrated and coarse oxygen where oxygen is concentrated (3). The coarse oxygen is distilled on the oxygen distillation passage 53 while being heated by heat exchange with the passages 51, 52 to separate product liquefied oxygen GO where oxygen is concentrated (4).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気を低温蒸留す
ることにより、窒素および酸素を分離する空気分離方法
および装置に関する。
TECHNICAL FIELD The present invention relates to an air separation method and apparatus for separating nitrogen and oxygen by cryogenic distillation of air.

【0002】[0002]

【従来の技術】空気を低温蒸留して、窒素、酸素等を生
産するには、高圧塔と低圧塔からなる複式蒸留塔が使用
されている。近年、空気分離を行う際の動力消費量を抑
制し製造コストを低減するため、熱交換型蒸留装置を利
用した空気分離方法が提案されている。例えば、特許第
2833594号には、熱交換型蒸留装置を用いて、中
純度の酸素(酸素濃度85〜99%)を製造する方法が
開示されている。ここに開示されている方法では、熱交
換型蒸留装置として、2つの通路を熱交換可能となるよ
うに配設したプレートフィン熱交換器が用いられてい
る。この方法では、原料空気を熱交換型蒸留装置の第1
通路で蒸留し、通路上部から低沸点の窒素に富む気相生
成物を採取し、通路下部から高沸点の酸素に富む液相生
成物を採取する。第2通路では、上記酸素に富む液相生
成物を、第1通路内の原料空気と熱交換させつつ蒸留
し、通路上部から窒素に富む気相生成物を採取し、通路
下部から製品酸素を得ることができる。また、特開平8
−36499号公報にも、熱交換型蒸留装置を用いた空
気分離方法が開示されている。この方法では、原料空気
を、熱交換型蒸留装置の第1通路で蒸留して、通路上部
から窒素に富む気相生成物を導出し、これを凝縮させ、
その一部を第2通路に還流液として導入し、第2の通路
の下部から酸素濃度70%以上の製品を採取する。
2. Description of the Related Art A double distillation column consisting of a high pressure column and a low pressure column is used to produce nitrogen, oxygen, etc. by low temperature distillation of air. In recent years, an air separation method utilizing a heat exchange type distillation apparatus has been proposed in order to suppress the power consumption when performing air separation and reduce the manufacturing cost. For example, Japanese Patent No. 2833594 discloses a method for producing medium purity oxygen (oxygen concentration 85 to 99%) using a heat exchange type distillation apparatus. In the method disclosed herein, a plate fin heat exchanger in which two passages are arranged so that heat can be exchanged is used as a heat exchange type distillation apparatus. In this method, the raw material air is fed to the first heat exchange type distillation apparatus first.
Distill in the passage to collect a low-boiling nitrogen-rich gas phase product from the upper portion of the passage and a high-boiling oxygen-rich liquid phase product from the lower portion of the passage. In the second passage, the oxygen-rich liquid-phase product is distilled while heat-exchanged with the raw material air in the first passage, the nitrogen-rich gas-phase product is collected from the upper portion of the passage, and product oxygen is obtained from the lower portion of the passage. Obtainable. In addition, JP-A-8
No. 36499 also discloses an air separation method using a heat exchange type distillation apparatus. In this method, the raw material air is distilled in the first passage of the heat exchange type distillation apparatus, the gas phase product rich in nitrogen is led out from the upper portion of the passage, and this is condensed,
A part thereof is introduced into the second passage as a reflux liquid, and a product having an oxygen concentration of 70% or more is collected from the lower portion of the second passage.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
空気分離方法において、熱交換効率を高め、十分な純度
の製品を得るためには、原料空気を高圧にする必要があ
る。このため、消費動力が嵩む問題があった。本発明
は、上記事情に鑑みてなされたもので、熱交換効率を高
め、動力消費量を削減することができる空気分離方法お
よび装置を提供することを目的とする。
However, in the conventional air separation method, in order to improve the heat exchange efficiency and obtain a product with sufficient purity, it is necessary to make the raw material air have a high pressure. Therefore, there is a problem that power consumption increases. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air separation method and device that can improve heat exchange efficiency and reduce power consumption.

【0004】[0004]

【課題を解決するための手段】本発明の空気分離方法
は、空気凝縮通路と、窒素蒸留通路と、これら通路と熱
交換可能とされた酸素蒸留通路とを備えた熱交換型蒸留
装置と、蒸留塔とを用い、(1)原料空気を圧縮した
後、この原料空気を、空気凝縮通路において、酸素蒸留
通路との熱交換により冷却して部分液化させ、気相の窒
素富化空気と液相の酸素富化空気とを分離し、(2)窒
素富化空気を、窒素蒸留通路において、酸素蒸留通路と
の熱交換により冷却しつつ蒸留して、窒素が濃縮された
窒素濃縮物と、これより窒素濃度が低い窒素含有物とを
分離し、窒素濃縮物を製品中圧窒素として回収し、
(3)窒素含有物と前記酸素富化空気を、蒸留塔におい
て蒸留し、窒素が濃縮された製品低圧窒素と、酸素が濃
縮された粗酸素とを分離し、製品低圧窒素を回収し、
(4)粗酸素を、酸素蒸留通路において、空気凝縮通路
および窒素蒸留通路との熱交換により加熱しつつ蒸留
し、酸素が濃縮された製品液化酸素を分離し、この製品
液化酸素を回収することを特徴とする。本発明の空気分
離方法では、窒素蒸留通路によって分離された気液混和
状態の窒素濃縮物を気液分離し、液相部を蒸留塔に導入
することができる。本発明では、窒素蒸留通路によって
分離された窒素濃縮物の一部を、粗酸素との熱交換によ
り液化させて蒸留塔に導入することができる。本発明で
は、圧縮された原料空気の一部をさらに圧縮し、得られ
た二次圧縮原料空気との熱交換により、製品液化酸素を
気化させることができる。本発明では、窒素蒸留通路に
よって分離された窒素濃縮物の一部を圧縮した後、断熱
膨張させ、この断熱膨張時に得られる動力を利用して前
記窒素濃縮物の圧縮を行うことができる。
The air separation method of the present invention comprises a heat exchange type distillation apparatus comprising an air condensing passage, a nitrogen distillation passage, and an oxygen distillation passage capable of exchanging heat with these passages. (1) After compressing the raw material air by using a distillation column, the raw material air is cooled by heat exchange with the oxygen distillation passage in the air condensing passage to be partially liquefied, and the gas phase nitrogen-enriched air and liquid A phase-separated from the oxygen-enriched air of the phase, and (2) the nitrogen-enriched air is distilled while cooling in the nitrogen distillation passage by heat exchange with the oxygen distillation passage, and a nitrogen concentrate enriched in nitrogen; Nitrogen-containing substances with a lower nitrogen concentration than this are separated, and the nitrogen concentrate is recovered as product intermediate-pressure nitrogen,
(3) Nitrogen-containing material and the oxygen-enriched air are distilled in a distillation column to separate nitrogen-enriched product low-pressure nitrogen and oxygen-enriched crude oxygen, and recover product low-pressure nitrogen,
(4) In the oxygen distillation passage, crude oxygen is distilled while being heated by heat exchange with the air condensing passage and the nitrogen distillation passage, and the product liquefied oxygen enriched with oxygen is separated and the product liquefied oxygen is recovered. Is characterized by. In the air separation method of the present invention, the gas-liquid mixed nitrogen concentrate separated by the nitrogen distillation passage can be gas-liquid separated, and the liquid phase portion can be introduced into the distillation column. In the present invention, a part of the nitrogen concentrate separated by the nitrogen distillation passage can be liquefied by heat exchange with crude oxygen and introduced into the distillation column. In the present invention, a part of the compressed raw material air is further compressed, and the product liquefied oxygen can be vaporized by heat exchange with the obtained secondary compressed raw material air. In the present invention, after compressing a part of the nitrogen concentrate separated by the nitrogen distillation passage, it is adiabatically expanded, and the power obtained during the adiabatic expansion can be used to compress the nitrogen concentrate.

【0005】本発明の空気分離装置は、原料空気を圧縮
する空気圧縮機と、圧縮された原料空気を冷却する主熱
交換器と、冷却された原料空気を蒸留する熱交換型蒸留
装置と、熱交換型蒸留装置を経た蒸留物をさらに蒸留す
る蒸留塔とを備え、熱交換型蒸留装置が、空気凝縮通路
と、窒素蒸留通路と、これら通路と熱交換可能とされた
酸素蒸留通路とを備え、空気凝縮通路が、原料空気を、
酸素蒸留通路との熱交換により冷却して部分液化させ、
気相の窒素富化空気と液相の酸素富化空気とを得ること
ができるようにされ、窒素蒸留通路が、この窒素富化空
気を、酸素蒸留通路との熱交換により冷却しつつ蒸留し
て、窒素が濃縮された窒素濃縮物である製品中圧窒素
と、これより窒素濃度が低い窒素含有物とを得ることが
できるようにされ、蒸留塔が、この窒素含有物と前記酸
素富化空気を蒸留し、窒素が濃縮された製品低圧窒素
と、酸素が濃縮された粗酸素とを得ることができるよう
にされ、酸素蒸留通路が、粗酸素を、空気凝縮通路およ
び窒素蒸留通路との熱交換により加熱しつつ蒸留し、酸
素が濃縮された製品液化酸素を得ることができるように
されていることを特徴とする。本発明の空気分離装置
は、窒素蒸留通路によって分離された気液混和状態の窒
素濃縮物を気液分離する気液分離器を備え、この気液分
離器で分離された液相部を蒸留塔に導入できる構成とす
ることができる。本発明の空気分離装置は、窒素蒸留通
路によって分離された窒素濃縮物の一部を、粗酸素との
熱交換により液化させる凝縮器を備え、この凝縮器で得
られた液相部を蒸留塔に導入することができる構成とす
ることもできる。本発明の空気分離装置は、空気圧縮機
で圧縮された原料空気の一部をさらに圧縮する二次圧縮
機と、この圧縮機によって圧縮された二次圧縮原料空気
を用いて製品液化酸素を気化させる酸素蒸発器とを備え
た構成とすることもできる。本発明の空気分離装置は、
製品液化酸素を昇圧する昇圧ポンプを備えた構成とする
こともできる。
The air separation apparatus of the present invention comprises an air compressor for compressing raw material air, a main heat exchanger for cooling the compressed raw material air, a heat exchange type distillation apparatus for distilling the cooled raw material air, The heat exchange type distillation apparatus is provided with a distillation column for further distilling the distillate that has passed through the heat exchange type distillation apparatus, and the heat exchange type distillation apparatus has an air condensation passage, a nitrogen distillation passage, and an oxygen distillation passage capable of heat exchange with these passages. The air condensing passage is provided with the raw material air,
Partial liquefaction by cooling by heat exchange with the oxygen distillation passage,
Gas phase nitrogen-enriched air and liquid phase oxygen-enriched air are made available, and a nitrogen distillation passage distills the nitrogen-enriched air while cooling it by heat exchange with the oxygen distillation passage. To obtain product medium-pressure nitrogen, which is a nitrogen concentrate enriched with nitrogen, and a nitrogen-containing substance having a lower nitrogen concentration than the product, and the distillation column uses the nitrogen-containing substance and the oxygen-enriched substance. It is made possible to distill air to obtain nitrogen-enriched product low-pressure nitrogen and oxygen-enriched crude oxygen, and an oxygen distillation passage is used to remove the crude oxygen from the air condensation passage and the nitrogen distillation passage. It is characterized in that product liquefied oxygen enriched with oxygen can be obtained by distillation while heating by heat exchange. The air separation device of the present invention includes a gas-liquid separator for separating a nitrogen concentrate in a gas-liquid mixed state separated by a nitrogen distillation passage into a gas-liquid separator, and a liquid phase portion separated by the gas-liquid separator is a distillation column. It can be configured to be introduced into. The air separation device of the present invention is provided with a condenser for liquefying a part of the nitrogen concentrate separated by the nitrogen distillation passage by heat exchange with crude oxygen, and the liquid phase portion obtained by this condenser is used in a distillation column. It is also possible to adopt a configuration that can be introduced into. The air separation device of the present invention vaporizes product liquefied oxygen using a secondary compressor that further compresses a part of the raw material air compressed by the air compressor, and the secondary compressed raw material air that is compressed by this compressor. It is also possible to adopt a configuration including an oxygen evaporator that allows The air separation device of the present invention,
It is also possible to employ a configuration provided with a booster pump that boosts the product liquefied oxygen.

【0006】[0006]

【発明の実施の形態】図1は、本発明の空気分離装置の
第1の実施形態を示す系統図である。ここに示す空気分
離装置10は、原料空気RAを圧縮する空気圧縮機1
と、圧縮された原料空気の圧縮熱を取り除く空気予冷器
2と、空気予冷器2を経た原料空気中の不純物(水分、
二酸化炭素等)を除去する精製器3と、精製器3を経た
原料空気を冷却する主熱交換器4と、主熱交換器4を経
た原料空気を蒸留する熱交換型蒸留装置5と、熱交換型
蒸留装置5を経た蒸留物をさらに蒸留する蒸留塔6と、
膨張タービン7と、気液分離器8、9と、過冷器11
と、昇圧機13とを主要な構成機器とする。また符号1
5は保冷槽を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing a first embodiment of an air separation device of the present invention. The air separation device 10 shown here is an air compressor 1 for compressing raw material air RA.
And an air precooler 2 that removes the compression heat of the compressed raw material air, and impurities (water content, etc.) in the raw material air that has passed through the air precooler 2.
A purifier 3 for removing (carbon dioxide, etc.), a main heat exchanger 4 for cooling the raw material air that has passed through the purifier 3, a heat exchange type distillation apparatus 5 for distilling the raw material air that has passed through the main heat exchanger 4, A distillation column 6 for further distilling the distillate passed through the exchangeable distillation apparatus 5,
Expansion turbine 7, gas-liquid separators 8 and 9, and supercooler 11
And the booster 13 are major components. Also, reference numeral 1
Reference numeral 5 indicates a cold storage tank.

【0007】熱交換型蒸留装置5は、空気凝縮通路51
と、窒素蒸留通路52と、これら通路51、52と熱交
換可能とされた酸素蒸留通路53とを備えている。熱交
換型蒸留装置5としては、プレートフィン式熱交換器を
使用することができる。図2は、熱交換型蒸留装置5と
して使用可能なプレートフィン式熱交換器の一例を示す
もので、ここに示すプレートフィン式熱交換器20は、
箱状の密閉された外装体21の内部に、流体が流通する
上部流通空間25、25と、下部流通空間26、26が
設けられている。
The heat exchange type distillation apparatus 5 includes an air condensing passage 51.
, A nitrogen distillation passage 52, and an oxygen distillation passage 53 capable of exchanging heat with the passages 51, 52. As the heat exchange type distillation apparatus 5, a plate fin type heat exchanger can be used. FIG. 2 shows an example of a plate fin type heat exchanger that can be used as the heat exchange type distillation apparatus 5. The plate fin type heat exchanger 20 shown here is
Inside the box-shaped hermetically sealed exterior body 21, upper circulation spaces 25, 25 in which a fluid circulates and lower circulation spaces 26, 26 are provided.

【0008】これら流通空間25、26は、複数の隔壁
22によって第1流路23と第2流路24とに区画され
ている。これら第1流路23と第2流路24とは、流通
空間25、26の一側から他側にかけて交互に設けられ
ている。この熱交換器20では、下部流通空間26の第
1流路23aが空気凝縮通路51となっており、上部流
通空間25の第1流路23bが窒素蒸留通路52となっ
ている。第2流路24は、酸素蒸留通路53となってい
る。
The distribution spaces 25 and 26 are divided into a first flow path 23 and a second flow path 24 by a plurality of partition walls 22. The first flow path 23 and the second flow path 24 are alternately provided from one side of the circulation spaces 25, 26 to the other side. In this heat exchanger 20, the first flow passage 23a of the lower circulation space 26 is the air condensing passage 51, and the first flow passage 23b of the upper circulation space 25 is the nitrogen distillation passage 52. The second flow path 24 serves as an oxygen distillation passage 53.

【0009】なお、図示例の熱交換型蒸留装置5では、
通路51〜53が外装体21内に組み込まれて一体化さ
れているが、本発明では、熱交換型蒸留装置を2つに分
割してもよい。すなわち、酸素蒸留通路を上部通路と下
部通路とに分割し、この上部通路と窒素蒸留通路を有す
る第1熱交換型蒸留部と、下部通路と空気凝縮通路とを
有する第2熱交換型蒸留部とを備えた熱交換型蒸留装置
を使用することもできる。昇圧機13は、膨張タービン
7での断熱膨張の際に得られる動力を利用して駆動する
ことができる構成とするのが好ましい。
In the heat exchange type distillation apparatus 5 of the illustrated example,
Although the passages 51 to 53 are integrated and integrated in the exterior body 21, the heat exchange distillation apparatus may be divided into two in the present invention. That is, the oxygen distillation passage is divided into an upper passage and a lower passage, and a first heat exchange type distillation section having the upper passage and the nitrogen distillation passage and a second heat exchange type distillation section having the lower passage and the air condensation passage. It is also possible to use a heat exchange type distillation apparatus equipped with and. It is preferable that the booster 13 be configured to be able to be driven by using the power obtained during adiabatic expansion in the expansion turbine 7.

【0010】次に、この空気分離装置10を用いた場合
を例として、本発明の空気分離方法の第1の実施形態を
説明する。まず、大気などの原料空気RAを、空気圧縮
機1で圧縮し(例えば約400kPaに圧縮)、空気予冷
器2で常温まで冷却した後、精製器3において、原料空
気中の水分および二酸化炭素等の不純物を吸着除去す
る。
Next, the first embodiment of the air separation method of the present invention will be described by taking the case of using this air separation device 10 as an example. First, the raw material air RA such as the atmosphere is compressed by the air compressor 1 (for example, compressed to about 400 kPa) and cooled to the room temperature by the air precooler 2, and then the water and carbon dioxide in the raw material air are purified by the purifier 3. The impurities of are removed by adsorption.

【0011】次いで、精製器3を経た原料空気を、主熱
交換器4において、後述する製品低圧窒素、製品液化酸
素等の低温流体との熱交換により約−178℃に冷却し
部分液化させた後、管路L1を通して、空気凝縮通路5
1上部に導入する。導入された原料空気は、酸素蒸留通
路53内の流体(後述する粗酸素)と熱交換して冷却さ
れつつ空気凝縮通路51内を下降する。原料空気は、部
分液化により気液混和状態となって、通路51の下部か
ら管路L2を通して気液分離器8に導入され、気液分離
器8において気相の窒素富化空気と、液相の酸素富化空
気とに分離される。
Next, the raw material air that has passed through the purifier 3 is partially liquefied in the main heat exchanger 4 by heat exchange with a low-temperature fluid such as product low-pressure nitrogen and product liquefied oxygen, which will be described later, to about -178 ° C. After that, through the pipe line L1, the air condensing passage 5
1 Introduce to the top. The introduced raw material air descends in the air condensing passage 51 while being cooled by exchanging heat with the fluid (crude oxygen described later) in the oxygen distillation passage 53. The raw material air becomes a gas-liquid mixed state due to partial liquefaction and is introduced into the gas-liquid separator 8 from the lower part of the passage 51 through the pipe line L2, and in the gas-liquid separator 8, the gas-phase nitrogen-enriched air and the liquid phase Is separated into oxygen-enriched air.

【0012】液相の酸素富化空気は、気液分離器8の下
部から導出され、管路L3を経て過冷器11を通過し、
管路L4の減圧弁V1で減圧後、蒸留塔6の下部に導入さ
れる。一方、気相の窒素富化空気は、気液分離器8の上
部から導出され、管路L5を通って窒素蒸留通路52の
下部に導入される。
The liquid-phase oxygen-enriched air is discharged from the lower part of the gas-liquid separator 8, passes through the line L3 and the subcooler 11,
After the pressure is reduced by the pressure reducing valve V1 of the line L4, it is introduced into the lower part of the distillation column 6. On the other hand, the gas-phase nitrogen-enriched air is discharged from the upper portion of the gas-liquid separator 8 and introduced into the lower portion of the nitrogen distillation passage 52 through the pipe line L5.

【0013】この窒素富化空気は、窒素蒸留通路52内
を上昇する過程で、酸素蒸留通路53内の流体(粗酸
素)と熱交換して冷却されつつ蒸留され、気相中に窒素
が濃縮する。得られた窒素濃縮物(例えば窒素濃度が9
8%以上、酸素含有量2%以下)は、窒素蒸留通路52
の上部から管路L6を通して導出され、気液分離器9に
導入される。窒素濃縮物が気液混和状態である場合に
は、この窒素濃縮物は、気液分離器9で気液分離され、
分離された液相部は、気液分離器9の下部から管路L
7、過冷器11、管路L8を経て、減圧弁V2で減圧され
て蒸留塔6の上部に供給される。
In the process of rising in the nitrogen distillation passage 52, this nitrogen-enriched air is heat-exchanged with the fluid (crude oxygen) in the oxygen distillation passage 53 to be distilled while being cooled, and nitrogen is concentrated in the gas phase. To do. The resulting nitrogen concentrate (for example, a nitrogen concentration of 9
8% or more, oxygen content 2% or less), the nitrogen distillation passage 52
Is led out from the upper part of the pipe through the line L6 and introduced into the gas-liquid separator 9. When the nitrogen concentrate is in a gas-liquid mixed state, the nitrogen concentrate is gas-liquid separated by the gas-liquid separator 9,
The separated liquid phase portion is supplied from the lower part of the gas-liquid separator 9 to the pipe line L.
7. After passing through the supercooler 11 and the pipe L8, the pressure is reduced by the pressure reducing valve V2 and supplied to the upper portion of the distillation column 6.

【0014】気相部の窒素濃縮物は、気液分離器9の上
部から導出され、管路L9を通して主熱交換器4を経て
中圧窒素MGNとして回収される。この窒素濃縮物の一
部は、管路L16を通して昇圧機13に導入されて昇圧さ
れた後、膨張タービン7で断熱膨張されて低温となっ
て、管路L17により主熱交換器4に導入される。これに
よって、原料空気の冷却を効率よく行うことができる。
主熱交換器4を経た窒素濃縮物は、排出ガスWGとして
排出される。昇圧機13で窒素濃縮物の昇圧を行う際に
は、膨張タービン7で窒素濃縮物を断熱膨張させる際に
得られる動力を利用して昇圧機13を駆動するのが好ま
しい。これによって、動力効率を向上させることができ
る。
The nitrogen concentrate in the gas phase is discharged from the upper part of the gas-liquid separator 9 and recovered as medium pressure nitrogen MGN through the line L9 and the main heat exchanger 4. A part of this nitrogen concentrate is introduced into the booster 13 through the line L16 to increase its pressure, then adiabatically expanded by the expansion turbine 7 to a low temperature, and introduced into the main heat exchanger 4 through the line L17. It As a result, the raw material air can be efficiently cooled.
The nitrogen concentrate that has passed through the main heat exchanger 4 is discharged as an exhaust gas WG. When boosting the pressure of the nitrogen concentrate with the booster 13, it is preferable to drive the booster 13 using the power obtained when the expansion turbine 7 adiabatically expands the nitrogen concentrate. Thereby, power efficiency can be improved.

【0015】窒素蒸留通路52で窒素富化空気が蒸留さ
れる過程では、液相中の窒素濃度が低くなり、低窒素濃
度の液状の窒素含有物が得られる。この窒素含有物は、
窒素蒸留通路52下部から管路L14によって導出され、
管路L3を通って過冷器11に導入され、管路L4の減圧
弁V1で減圧されて、蒸留塔6の下部に供給される。
In the process of distilling the nitrogen-enriched air in the nitrogen distillation passage 52, the nitrogen concentration in the liquid phase becomes low, and a liquid nitrogen-containing substance having a low nitrogen concentration is obtained. This nitrogen content is
Derived from the lower part of the nitrogen distillation passage 52 by a pipe line L14,
It is introduced into the subcooler 11 through the pipe line L3, decompressed by the pressure reducing valve V1 of the pipe line L4, and supplied to the lower part of the distillation column 6.

【0016】蒸留塔6では、上部から導入された液相生
成物と、下部から導入された窒素含有物および酸素富化
空気とが蒸留され、その過程で気相中に窒素が濃縮する
とともに、液相中に酸素が濃縮される。気相生成物(例
えば窒素濃度98%以上、酸素含有量2%以下)は、蒸
留塔6の上部から導出され、管路L10、過冷器11、管
路L11を通して、主熱交換器4に導入され、ここで加熱
された後、製品低圧窒素GNとして回収される。
In the distillation column 6, the liquid phase product introduced from the upper part and the nitrogen-containing substance and oxygen-enriched air introduced from the lower part are distilled, and in the process nitrogen is concentrated in the gas phase, Oxygen is concentrated in the liquid phase. The gas phase product (for example, a nitrogen concentration of 98% or more and an oxygen content of 2% or less) is led out from the upper part of the distillation column 6 and is passed through the line L10, the subcooler 11, and the line L11 to the main heat exchanger 4. After being introduced and heated here, it is recovered as the product low-pressure nitrogen GN.

【0017】一方、液相の酸素濃縮物である粗酸素は、
蒸留塔6の下部から導出され、管路L12を経て酸素蒸留
通路53に導入される。この粗酸素は、酸素蒸留通路5
3を下降する過程で、空気凝縮通路51内の原料空気、
および窒素蒸留通路52内の窒素富化空気と熱交換し加
熱される。この過程では、蒸留により気相中の窒素濃度
が高くなり、液相中の酸素濃度が高くなる。これによっ
て、気相の窒素含有気体と、液相の酸素濃縮物(例えば
酸素濃度95%以上)である製品液化酸素とが得られ
る。窒素含有気体は、酸素蒸留通路53の上部から、管
路L15を通して蒸留塔6下部に再び導入される。
On the other hand, crude oxygen, which is a liquid-phase oxygen concentrate, is
It is led out from the lower part of the distillation column 6 and introduced into the oxygen distillation passage 53 through a pipe line L12. This crude oxygen passes through the oxygen distillation passage 5
In the process of descending 3, the raw material air in the air condensing passage 51,
And is heated by exchanging heat with the nitrogen-enriched air in the nitrogen distillation passage 52. In this process, distillation raises the concentration of nitrogen in the gas phase and the concentration of oxygen in the liquid phase. As a result, a gas-phase nitrogen-containing gas and a liquid-phase oxygen concentrate (for example, an oxygen concentration of 95% or more) which is product liquefied oxygen are obtained. The nitrogen-containing gas is reintroduced from the upper part of the oxygen distillation passage 53 to the lower part of the distillation column 6 through the line L15.

【0018】一方、製品液化酸素は、酸素蒸留通路53
の下部から管路L13を通して主熱交換器4に導入され、
原料空気との熱交換により気化し、ガス状の製品液化酸
素GOとして回収される。製品液化酸素は、昇圧ポンプ
12によって昇圧し、圧力を高めて回収することもでき
る。
On the other hand, the product liquefied oxygen is passed through the oxygen distillation passage 53.
Is introduced into the main heat exchanger 4 from the lower part of the pipe through the line L13,
It is vaporized by heat exchange with the raw material air and is recovered as gaseous product liquefied oxygen GO. The product liquefied oxygen can be recovered by increasing the pressure by increasing the pressure by the pressure increasing pump 12.

【0019】本実施形態の空気分離方法では、空気凝縮
通路51と窒素蒸留通路52と酸素蒸留通路53とを備
えた熱交換型蒸留装置5と、蒸留塔6とを用いるので、
原料空気と窒素富化空気と粗酸素との間の熱交換を効率
よく行わせることができる。このため、空気圧縮機1に
より圧縮される原料空気の圧力を低く設定することがで
きる。例えば、従来方法において必要な原料空気圧力約
500kPaを、約400kPaとすることができる。
従って、動力消費量を大幅に削減することができる。例
えば、複式蒸留塔を備えた従来の空気分離装置を用いた
場合に比べ、約20%の省エネルギー化が可能となる。
In the air separation method of this embodiment, since the heat exchange type distillation apparatus 5 having the air condensing passage 51, the nitrogen distillation passage 52 and the oxygen distillation passage 53 and the distillation column 6 are used,
The heat exchange between the feed air, the nitrogen-enriched air, and the crude oxygen can be efficiently performed. Therefore, the pressure of the raw material air compressed by the air compressor 1 can be set low. For example, the raw material air pressure of about 500 kPa required in the conventional method can be set to about 400 kPa.
Therefore, power consumption can be significantly reduced. For example, it is possible to save energy by about 20% as compared with the case of using a conventional air separation device equipped with a double distillation column.

【0020】なお、本発明では、図1に破線で示す管路
L18を用いて、精製器3からの原料空気の一部を、二次
圧縮機14を用いて二次圧縮した後(例えば約400k
Pa)、管路L3を通して蒸留塔6に導入することもでき
る。この場合には、空気圧縮機1での原料空気の圧力を
さらに低く(例えば約350kPa)することができる。
このため、動力消費量をさらに削減できる。
In the present invention, a part of the raw material air from the purifier 3 is secondarily compressed by the secondary compressor 14 using the line L18 shown by the broken line in FIG. 400k
It can also be introduced into the distillation column 6 through Pa) and the line L3. In this case, the pressure of the raw material air in the air compressor 1 can be further lowered (for example, about 350 kPa).
Therefore, the power consumption can be further reduced.

【0021】次に、本発明の空気分離装置の第2の実施
形態を説明する。図3は、本発明の空気分離装置の第2
の実施形態を示す系統図である。ここに示す空気分離装
置30は、窒素蒸留通路52から管路L6を通して導出
される窒素濃縮物の一部を冷却し液化させる凝縮器31
が設けられている点、製品液化酸素を原料空気との熱交
換により気化させる酸素蒸発器32が設けられている
点、気液分離器9が設けられていない点で図1に示す空
気分離装置10と異なる。
Next, a second embodiment of the air separation device of the present invention will be described. FIG. 3 shows a second embodiment of the air separation device of the present invention.
3 is a system diagram showing an embodiment of FIG. The air separation device 30 shown here is a condenser 31 for cooling and liquefying a part of the nitrogen concentrate discharged from the nitrogen distillation passage 52 through the line L6.
1 is provided, an oxygen evaporator 32 for vaporizing product liquefied oxygen by heat exchange with raw material air is provided, and a gas-liquid separator 9 is not provided. Different from 10.

【0022】凝縮器31は、蒸留塔6から導出された粗
酸素との熱交換により上記窒素濃縮物を液化させること
ができるようになっている。酸素蒸発器32は、二次圧
縮機14で圧縮され、主熱交換器4を経た二次圧縮原料
空気との熱交換により、製品液化酸素を気化させること
ができるようになっている。
The condenser 31 is capable of liquefying the nitrogen concentrate by heat exchange with the crude oxygen discharged from the distillation column 6. The oxygen evaporator 32 is compressed by the secondary compressor 14 and is capable of vaporizing the product liquefied oxygen by heat exchange with the secondary compressed raw material air that has passed through the main heat exchanger 4.

【0023】次に、この空気分離装置30を用いた場合
を例として、本発明の空気分離方法の第2の実施形態を
説明する。原料空気は、空気圧縮機1で圧縮され(例え
ば圧力約350kPa)、空気予冷器2で常温まで冷却さ
れた後、精製器3で不純物を除去されて、管路L1を通
して熱交換型蒸留装置5の空気凝縮通路51に導入され
る。原料空気の一部は、精製器3を経た後、二次圧縮機
14に導入されて450〜500kPaとなるように圧縮
され、主熱交換器4により冷却され、管路L18aにより
酸素蒸発器32に導入される。ここで、酸素蒸留通路5
3からの製品液化酸素と熱交換することによって、上記
原料空気は液化し、管路L18b、管路L3、過冷器11、
管路L4を経て蒸留塔6の下部に導入される。
Next, a second embodiment of the air separation method of the present invention will be described by taking the case of using this air separation device 30 as an example. The raw material air is compressed by the air compressor 1 (for example, pressure is about 350 kPa), cooled to room temperature by the air precooler 2, impurities are removed by the purifier 3, and the heat exchange type distillation apparatus 5 is passed through the line L1. Is introduced into the air condensing passage 51. After passing through the purifier 3, a part of the raw material air is introduced into the secondary compressor 14 and compressed to 450 to 500 kPa, cooled by the main heat exchanger 4, and cooled by the line L18a to the oxygen evaporator 32. Will be introduced to. Here, the oxygen distillation passage 5
By heat exchange with the product liquefied oxygen from 3, the raw material air is liquefied, and the line L18b, the line L3, the supercooler 11,
It is introduced into the lower part of the distillation column 6 via the line L4.

【0024】窒素蒸留通路52では、窒素富化空気が蒸
留され、気相の窒素濃縮物が管路L6から導出され、管
路L9を通して製品中圧窒素MGNとして回収される。こ
の窒素濃縮物の一部は、管路L31を通して凝縮器31に
導入される。凝縮器31に導入された窒素濃縮物は、蒸
留塔6からの粗酸素との熱交換により液化し、液化物
は、凝縮器31の下部から管路L32、過冷器11、管路
L8を経て蒸留塔6上部に導入される。凝縮器31に導
入された窒素濃縮物が気液混和状態である場合には、こ
の窒素濃縮物は凝縮器31において気液分離され、分離
された液相部が、上記液化物とともに凝縮器31の下部
から蒸留塔6上部に導入される。このため、気液分離器
9を使用することなく、気液混和状態の窒素濃縮物を気
液分離することができ、気液分離器9に要する装置コス
トを削減できる。
In the nitrogen distillation passage 52, the nitrogen-enriched air is distilled, the gas-phase nitrogen concentrate is discharged from the line L6, and is recovered as the product intermediate-pressure nitrogen MGN through the line L9. A portion of this nitrogen concentrate is introduced into condenser 31 via line L31. The nitrogen concentrate introduced into the condenser 31 is liquefied by heat exchange with the crude oxygen from the distillation column 6, and the liquefied product is fed from the lower part of the condenser 31 through the line L32, the supercooler 11, and the line L8. It is then introduced into the upper part of the distillation column 6. When the nitrogen concentrate introduced into the condenser 31 is in a gas-liquid mixed state, the nitrogen concentrate is gas-liquid separated in the condenser 31, and the separated liquid phase part is condensed with the liquefaction product in the condenser 31. Is introduced into the upper part of the distillation column 6 from the lower part of. Therefore, the nitrogen concentrate in the gas-liquid mixed state can be gas-liquid separated without using the gas-liquid separator 9, and the device cost required for the gas-liquid separator 9 can be reduced.

【0025】蒸留塔6での蒸留によって得られた粗酸素
は、管路L12aを通して凝縮器31に導入され、上記窒
素濃縮物と熱交換した後、管路L12bを通して酸素蒸留
通路53に導入され、蒸留により酸素が濃縮された製品
液化酸素が得られる。
The crude oxygen obtained by the distillation in the distillation column 6 is introduced into the condenser 31 through the line L12a, exchanges heat with the nitrogen concentrate, and then introduced into the oxygen distillation line 53 through the line L12b. Distillation gives product liquefied oxygen enriched with oxygen.

【0026】製品液化酸素は、管路L13aを通して酸素
蒸発器32に導入され、原料空気との熱交換によって気
化した後、管路L13b、主熱交換器4を経て回収され
る。製品液化酸素は、管路L13aに設けた昇圧ポンプ1
2を用いて昇圧した後に酸素蒸発器32で気化させて回
収することもできる。この場合には、高圧の製品液化酸
素を回収することができる。
The product liquefied oxygen is introduced into the oxygen evaporator 32 through the line L13a, vaporized by heat exchange with the raw material air, and then recovered through the line L13b and the main heat exchanger 4. Product liquefied oxygen is the booster pump 1 installed in the line L13a.
Alternatively, the pressure may be increased by using 2, and then the oxygen vaporizer 32 may be vaporized and recovered. In this case, high-pressure product liquefied oxygen can be recovered.

【0027】本実施形態の空気分離方法では、第1実施
形態の方法と同様に、熱交換型蒸留装置5と蒸留塔6と
を用いることによって、原料空気と窒素富化空気と粗酸
素との間の熱交換を効率よく行わせ、原料空気の圧力を
低く設定することができる。従って、動力消費量を大幅
に削減することができる。
In the air separation method of this embodiment, as in the method of the first embodiment, by using the heat exchange type distillation apparatus 5 and the distillation column 6, the feed air, the nitrogen-enriched air and the crude oxygen are separated. The heat exchange between them can be efficiently performed, and the pressure of the raw material air can be set low. Therefore, power consumption can be significantly reduced.

【0028】[0028]

【発明の効果】以上説明したように、本発明の空気分離
方法では、空気凝縮通路と窒素蒸留通路と酸素蒸留通路
とを備えた熱交換型蒸留装置と、蒸留塔とを用いるの
で、原料空気と窒素富化空気と粗酸素との間の熱交換を
効率よく行わせることができる。このため、原料空気の
圧力を低く設定することができる。従って、動力消費量
を大幅に削減することができる。
As described above, in the air separation method of the present invention, the heat exchange type distillation apparatus having the air condensing passage, the nitrogen distillation passage and the oxygen distillation passage and the distillation column are used. The heat exchange between the nitrogen-enriched air and the crude oxygen can be efficiently performed. Therefore, the pressure of the raw material air can be set low. Therefore, power consumption can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の空気分離装置の第1の実施形態を示
す系統図。
FIG. 1 is a system diagram showing a first embodiment of an air separation device of the present invention.

【図2】 図1に示す空気分離装置に熱交換型蒸留装置
として使用可能なプレートフィン式熱交換器を示す一部
切開図。
FIG. 2 is a partial cutaway view showing a plate fin type heat exchanger usable as a heat exchange type distillation apparatus in the air separation apparatus shown in FIG.

【図3】 本発明の空気分離装置の第2の実施形態を示
す系統図。
FIG. 3 is a system diagram showing a second embodiment of the air separation device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・空気圧縮機、4・・・主熱交換器、5・・・熱交換型蒸
留装置、6・・・蒸留塔、7・・・膨張タービン、8、9・・・
気液分離器、10、30・・・空気分離装置、13・・・昇圧
機、14・・・二次圧縮機、20…プレートフィン式熱交
換器(熱交換型蒸留装置)、31・・・凝縮器、32・・・酸
素蒸発器、51・・・空気凝縮通路、52・・・窒素蒸留通
路、53・・・酸素蒸留通路、RA・・・原料空気、MGN・・・
製品中圧窒素、GN・・・製品低圧窒素、GO・・・製品液化酸
DESCRIPTION OF SYMBOLS 1 ... Air compressor, 4 ... Main heat exchanger, 5 ... Heat exchange type distillation apparatus, 6 ... Distillation tower, 7 ... Expansion turbine, 8, 9 ...
Gas-liquid separator, 10, 30 ... Air separator, 13 ... Booster, 14 ... Secondary compressor, 20 ... Plate fin type heat exchanger (heat exchange type distillation apparatus), 31 ... -Condenser, 32 ... Oxygen evaporator, 51 ... Air condensing passage, 52 ... Nitrogen distillation passage, 53 ... Oxygen distillation passage, RA ... Raw material air, MGN ...
Product medium pressure nitrogen, GN ... Product low pressure nitrogen, GO ... Product liquefied oxygen

フロントページの続き (72)発明者 川上 浩 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 Fターム(参考) 4D047 AA08 AB01 AB02 CA09 DA05 DA14 DA17 EA03 Continued front page    (72) Inventor Hiroshi Kawakami             1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Japan Acid             Inside the corporation F-term (reference) 4D047 AA08 AB01 AB02 CA09 DA05                       DA14 DA17 EA03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 空気の低温蒸留により酸素と窒素とを
分離する空気分離方法において、 空気凝縮通路と、窒素蒸留通路と、これら通路と熱交換
可能とされた酸素蒸留通路とを備えた熱交換型蒸留装置
と、蒸留塔とを用い、(1)原料空気を圧縮した後、こ
の原料空気を、空気凝縮通路において、酸素蒸留通路と
の熱交換により冷却して部分液化させ、気相の窒素富化
空気と液相の酸素富化空気とを分離し、(2)窒素富化
空気を、窒素蒸留通路において、酸素蒸留通路との熱交
換により冷却しつつ蒸留して、窒素が濃縮された窒素濃
縮物と、これより窒素濃度が低い窒素含有物とを分離
し、窒素濃縮物を製品中圧窒素として回収し、(3)窒
素含有物と前記酸素富化空気を、蒸留塔において蒸留
し、窒素が濃縮された製品低圧窒素と、酸素が濃縮され
た粗酸素とを分離し、製品低圧窒素を回収し、(4)粗
酸素を、酸素蒸留通路において、空気凝縮通路および窒
素蒸留通路との熱交換により加熱しつつ蒸留し、酸素が
濃縮された製品液化酸素を分離し、この製品液化酸素を
回収することを特徴とする空気分離方法。
1. An air separation method for separating oxygen and nitrogen by cryogenic distillation of air, the heat exchange comprising an air condensing passage, a nitrogen distillation passage, and an oxygen distillation passage capable of exchanging heat with these passages. (1) After compressing the raw material air using a type distillation apparatus and a distillation column, the raw material air is cooled in the air condensation passage by heat exchange with the oxygen distillation passage to be partially liquefied, and vapor phase nitrogen is obtained. The enriched air and the liquid-phase oxygen-enriched air are separated, and (2) the nitrogen-enriched air is distilled while being cooled by heat exchange with the oxygen distillation passage in the nitrogen distillation passage to concentrate nitrogen. A nitrogen concentrate and a nitrogen-containing substance having a lower nitrogen concentration are separated, and the nitrogen concentrate is recovered as product intermediate-pressure nitrogen. (3) The nitrogen-containing substance and the oxygen-enriched air are distilled in a distillation column. , Nitrogen-enriched products low-pressure nitrogen and oxygen Condensed crude oxygen is separated and product low-pressure nitrogen is recovered, and (4) crude oxygen is distilled while being heated in the oxygen distillation passage by heat exchange with the air condensing passage and the nitrogen distillation passage, and oxygen is concentrated. A method for separating air, characterized in that the product liquefied oxygen is separated and the product liquefied oxygen is recovered.
【請求項2】 窒素蒸留通路によって分離された気液
混和状態の窒素濃縮物を気液分離し、液相部を蒸留塔に
導入することを特徴とする請求項1記載の空気分離方
法。
2. The air separation method according to claim 1, wherein the nitrogen concentrate in a gas-liquid mixed state separated by the nitrogen distillation passage is gas-liquid separated, and the liquid phase portion is introduced into the distillation column.
【請求項3】 窒素蒸留通路によって分離された窒素
濃縮物の一部を、粗酸素との熱交換により液化させて蒸
留塔に導入することを特徴とする請求項1記載の空気分
離方法。
3. The air separation method according to claim 1, wherein a part of the nitrogen concentrate separated by the nitrogen distillation passage is liquefied by heat exchange with crude oxygen and introduced into the distillation column.
【請求項4】 圧縮された原料空気の一部をさらに圧
縮し、得られた二次圧縮原料空気との熱交換により、製
品液化酸素を気化させることを特徴とする請求項1記載
の空気分離方法。
4. The air separation method according to claim 1, wherein a part of the compressed raw material air is further compressed, and the product liquefied oxygen is vaporized by heat exchange with the obtained secondary compressed raw material air. Method.
【請求項5】 窒素蒸留通路によって分離された窒素
濃縮物の一部を圧縮した後、断熱膨張させ、この断熱膨
張時に得られる動力を利用して前記窒素濃縮物の圧縮を
行うことを特徴とする請求項1記載の空気分離方法。
5. The method according to claim 5, wherein a part of the nitrogen concentrate separated by the nitrogen distillation passage is compressed and then adiabatically expanded, and the power obtained during the adiabatic expansion is used to compress the nitrogen concentrate. The air separation method according to claim 1.
【請求項6】 空気の低温蒸留により酸素と窒素とを
分離する空気分離装置において、 原料空気を圧縮する空気圧縮機と、圧縮された原料空気
を冷却する主熱交換器と、冷却された原料空気を蒸留す
る熱交換型蒸留装置と、熱交換型蒸留装置を経た蒸留物
をさらに蒸留する蒸留塔とを備え、 熱交換型蒸留装置が、空気凝縮通路と、窒素蒸留通路
と、これら通路と熱交換可能とされた酸素蒸留通路とを
備え、 空気凝縮通路が、原料空気を、酸素蒸留通路との熱交換
により冷却して部分液化させ、気相の窒素富化空気と液
相の酸素富化空気とを得ることができるようにされ、 窒素蒸留通路が、この窒素富化空気を、酸素蒸留通路と
の熱交換により冷却しつつ蒸留して、窒素が濃縮された
窒素濃縮物である製品中圧窒素と、これより窒素濃度が
低い窒素含有物とを得ることができるようにされ、 蒸留塔が、この窒素含有物と前記酸素富化空気を蒸留
し、窒素が濃縮された製品低圧窒素と、酸素が濃縮され
た粗酸素とを得ることができるようにされ、 酸素蒸留通路が、粗酸素を、空気凝縮通路および窒素蒸
留通路との熱交換により加熱しつつ蒸留し、酸素が濃縮
された製品液化酸素を得ることができるようにされてい
ることを特徴とする空気分離装置。
6. An air separation apparatus for separating oxygen and nitrogen by cryogenic distillation of air, an air compressor for compressing raw material air, a main heat exchanger for cooling compressed raw material air, and a cooled raw material. A heat exchange type distillation apparatus for distilling air and a distillation column for further distilling the distillate passed through the heat exchange type distillation apparatus are provided, and the heat exchange type distillation apparatus has an air condensing passage, a nitrogen distillation passage, and these passages. A heat-exchangeable oxygen distillation passage is provided, and an air condensing passage cools the raw material air by heat exchange with the oxygen distillation passage to partially liquefy it, so that gas-phase nitrogen-enriched air and liquid-phase oxygen-enriched air are enriched. A product which is a nitrogen concentrate enriched with nitrogen, wherein the nitrogen distillation passage distills this nitrogen-enriched air while cooling by heat exchange with the oxygen distillation passage to obtain nitrogen. Medium pressure nitrogen and lower nitrogen concentration A nitrogen column is made available to obtain a nitrogen-containing material, and a distillation column distills the nitrogen-containing material and the oxygen-enriched air to produce a product containing low-pressure nitrogen enriched with nitrogen and crude oxygen enriched with oxygen. In order to obtain an oxygen-enriched product liquefied oxygen, the oxygen distillation passage distills the crude oxygen while heating it by heat exchange with the air condensation passage and the nitrogen distillation passage. Air separation device characterized by being.
【請求項7】 窒素蒸留通路によって分離された気液
混和状態の窒素濃縮物を気液分離する気液分離器を備
え、この気液分離器で分離された液相部を蒸留塔に導入
できるようになっていることを特徴とする請求項6記載
の空気分離装置。
7. A gas-liquid separator for gas-liquid separating the nitrogen concentrate in a gas-liquid mixed state separated by the nitrogen distillation passage, and the liquid phase part separated by this gas-liquid separator can be introduced into the distillation column. The air separation device according to claim 6, wherein the air separation device is configured as follows.
【請求項8】 窒素蒸留通路によって分離された窒素
濃縮物の一部を、粗酸素との熱交換により液化させる凝
縮器を備え、 この凝縮器で得られた液相部を蒸留塔に導入することが
できるようになっていることを特徴とする請求項6記載
の空気分離装置。
8. A condenser for liquefying a part of the nitrogen concentrate separated by the nitrogen distillation passage by heat exchange with crude oxygen, and introducing the liquid phase portion obtained by this condenser into a distillation column. 7. The air separation device according to claim 6, wherein the air separation device is capable of being operated.
【請求項9】 空気圧縮機で圧縮された原料空気の一
部をさらに圧縮する二次圧縮機と、この圧縮機によって
圧縮された二次圧縮原料空気を用いて製品液化酸素を気
化させる酸素蒸発器とを備えていることを特徴とする請
求項6記載の空気分離装置。
9. A secondary compressor for further compressing part of raw material air compressed by an air compressor, and oxygen evaporation for vaporizing product liquefied oxygen using the secondary compressed raw material air compressed by this compressor. The air separation device according to claim 6, further comprising:
【請求項10】 製品液化酸素を昇圧する昇圧ポンプ
を備えていることを特徴とする請求項6記載の空気分離
装置。
10. The air separation device according to claim 6, further comprising a booster pump for boosting the product liquefied oxygen.
JP2001216564A 2001-07-17 2001-07-17 Air separation method and apparatus Expired - Fee Related JP4520667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001216564A JP4520667B2 (en) 2001-07-17 2001-07-17 Air separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001216564A JP4520667B2 (en) 2001-07-17 2001-07-17 Air separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2003028568A true JP2003028568A (en) 2003-01-29
JP4520667B2 JP4520667B2 (en) 2010-08-11

Family

ID=19051028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001216564A Expired - Fee Related JP4520667B2 (en) 2001-07-17 2001-07-17 Air separation method and apparatus

Country Status (1)

Country Link
JP (1) JP4520667B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349319A (en) * 2005-06-20 2006-12-28 Taiyo Nippon Sanso Corp Air separator
JP2009520176A (en) * 2005-12-20 2009-05-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Air separation device by cryogenic distillation
JP2010196981A (en) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp Heat exchange type distillation device
CN101893367A (en) * 2010-08-13 2010-11-24 唐建峰 Method for liquefying natural gas by using mixed coolant
CN101625191B (en) * 2009-08-10 2011-01-05 中国科学院理化技术研究所 Low-temperature gas liquefaction and separation system applying effect of segregation
CN104061756A (en) * 2014-06-09 2014-09-24 杭州杭氧股份有限公司 Method and device for producing belt pressure nitrogen product by coupling backflow dirty nitrogen entering pressure tower through part expansion refrigeration and part pressure boosting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500972A (en) * 1983-03-31 1985-06-27 エリクソン、ドナルド・シ− Low-temperature recirculating distillation with multiple latent heat exchange
JPS62152194U (en) * 1986-03-19 1987-09-26
JPS63220080A (en) * 1987-03-06 1988-09-13 日本酸素株式会社 Air liquefying separating method
JPH08247647A (en) * 1995-02-23 1996-09-27 Boc Group Plc:The Separation of gas mixture
JPH09113130A (en) * 1995-08-29 1997-05-02 Air Prod And Chem Inc Air separating method by low-temperature distribution manufacturing ultra-high purity oxygen
JPH10132458A (en) * 1996-10-28 1998-05-22 Nippon Sanso Kk Method and equipment for producing oxygen gas
JP2833594B2 (en) * 1995-10-03 1998-12-09 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテッド Low temperature process and equipment for oxygen product production
JPH1163812A (en) * 1997-08-13 1999-03-05 Nippon Sanso Kk Manufacture and device for low-purity oxygen
JPH1163810A (en) * 1997-08-08 1999-03-05 Nippon Sanso Kk Method and device for manufacturing low purity oxygen
JPH11153383A (en) * 1997-11-25 1999-06-08 Nippon Sanso Kk Method and device for manufacturing nitrogen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500972A (en) * 1983-03-31 1985-06-27 エリクソン、ドナルド・シ− Low-temperature recirculating distillation with multiple latent heat exchange
JPS62152194U (en) * 1986-03-19 1987-09-26
JPS63220080A (en) * 1987-03-06 1988-09-13 日本酸素株式会社 Air liquefying separating method
JPH08247647A (en) * 1995-02-23 1996-09-27 Boc Group Plc:The Separation of gas mixture
JPH09113130A (en) * 1995-08-29 1997-05-02 Air Prod And Chem Inc Air separating method by low-temperature distribution manufacturing ultra-high purity oxygen
JP2833594B2 (en) * 1995-10-03 1998-12-09 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテッド Low temperature process and equipment for oxygen product production
JPH10132458A (en) * 1996-10-28 1998-05-22 Nippon Sanso Kk Method and equipment for producing oxygen gas
JPH1163810A (en) * 1997-08-08 1999-03-05 Nippon Sanso Kk Method and device for manufacturing low purity oxygen
JPH1163812A (en) * 1997-08-13 1999-03-05 Nippon Sanso Kk Manufacture and device for low-purity oxygen
JPH11153383A (en) * 1997-11-25 1999-06-08 Nippon Sanso Kk Method and device for manufacturing nitrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349319A (en) * 2005-06-20 2006-12-28 Taiyo Nippon Sanso Corp Air separator
JP4519010B2 (en) * 2005-06-20 2010-08-04 大陽日酸株式会社 Air separation device
JP2009520176A (en) * 2005-12-20 2009-05-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Air separation device by cryogenic distillation
JP2010196981A (en) * 2009-02-25 2010-09-09 Taiyo Nippon Sanso Corp Heat exchange type distillation device
CN101625191B (en) * 2009-08-10 2011-01-05 中国科学院理化技术研究所 Low-temperature gas liquefaction and separation system applying effect of segregation
CN101893367A (en) * 2010-08-13 2010-11-24 唐建峰 Method for liquefying natural gas by using mixed coolant
CN104061756A (en) * 2014-06-09 2014-09-24 杭州杭氧股份有限公司 Method and device for producing belt pressure nitrogen product by coupling backflow dirty nitrogen entering pressure tower through part expansion refrigeration and part pressure boosting

Also Published As

Publication number Publication date
JP4520667B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JPH07174461A (en) Manufacture of gaseous oxygen product at supply pressure by separating air
JP2002327981A (en) Cryogenic air-separation method of three-tower type
US5170630A (en) Process and apparatus for producing nitrogen of ultra-high purity
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
JPH10227560A (en) Air separation method
EP0624767B1 (en) Process and apparatus for producing oxygen
US4895583A (en) Apparatus and method for separating air
JPH06257939A (en) Distilling method at low temperature of air
JPH09269189A (en) Preparation of nitrogen and nitrogen generator
JPH0914832A (en) Method and equipment for manufacturing ultra-high purity oxygen
JP2002516980A (en) Method and apparatus for producing nitrogen by cryogenic distillation using a dephlegmator
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
JP4520667B2 (en) Air separation method and apparatus
JP4519010B2 (en) Air separation device
JP4520668B2 (en) Air separation method and apparatus
JPH08170876A (en) Method and equipment for manufacturing oxygen by cooling distribution
JPH03170785A (en) Extremely low temperature air separation and its apparatus
JP4787796B2 (en) Air separation method and apparatus
JP4447501B2 (en) Air liquefaction separation method and apparatus
JPH10153384A (en) Method of producing ultrapure liquid oxygen
JPS6140909B2 (en)
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP4150107B2 (en) Nitrogen production method and apparatus
JP4577977B2 (en) Air liquefaction separation method and apparatus
JP3056979B2 (en) Quick start air separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees