JPH102664A - Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity - Google Patents

Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity

Info

Publication number
JPH102664A
JPH102664A JP9044150A JP4415097A JPH102664A JP H102664 A JPH102664 A JP H102664A JP 9044150 A JP9044150 A JP 9044150A JP 4415097 A JP4415097 A JP 4415097A JP H102664 A JPH102664 A JP H102664A
Authority
JP
Japan
Prior art keywords
column
oxygen
stream
purity
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9044150A
Other languages
Japanese (ja)
Inventor
Jeffrey Alan Hopkins
アラン ホプキンス ジェフリー
Agrawal Rakesh
アグロウォル ラケシュ
Jianguo Xu
ジャングオ クー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of JPH102664A publication Critical patent/JPH102664A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing oxygen products having two different purities from one plant of air separating process. SOLUTION: Oxygen product 38 of low purity is produced from a normal low purity tower 25 through a low temperature distillation process for compressed raw material air flow 10 and oxygen product 36 of high purity is produced by refining a flow 35 full of oxygen flowing from distrillation facilities 15, 25 with a high purity tower 23. First process flow 30 is supplied to a re- boiler 31 in a low purity tower and then second process flow 21 having a higher pressure than that of first process flow 30 is supplied to a re-boiler 22 of a high purity tower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明の目的は、高純度酸素
が少量だけ必要とされる場合に、同一の空気分離工場か
ら異なる二つの純度の酸素を効率的に且つ原価効率的に
生産することである。本発明はまた、定期的に低純度酸
素を製造する工場で、要求されるならば少量の粗アルゴ
ン製品を製造する方法も提供する。これは、コレックス
(COREX)製鋼法を基にした新しいグラスルーツ製
鋼所の要求条件と一致する。
It is an object of the present invention to efficiently and cost-effectively produce two different purities of oxygen from the same air separation plant when only a small amount of high purity oxygen is required. It is. The present invention also provides a method for producing small amounts of crude argon product, if required, in a factory that regularly produces low purity oxygen. This is consistent with the requirements of a new grassroots steel mill based on the COREX steelmaking process.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】過去に
おいては、同一の設備から異なる二つの純度の酸素を製
造するのに、普通に使用される二つの方法があった。一
つは、各純度に対して一つずつ、二つの独立した低温系
列(cryogenic train)を建設すること
であった。これは資本費がかさみ、そして複雑である。
他方は、工場全体を高純度用に設計することであって、
高純度酸素に相応した圧力の主空気圧縮機吐出圧力が必
要であった。これは、空気の多くは低純度酸素を発生さ
せるのに相応した低い方の圧力に昇圧することが必要な
だけであるので、エネルギー効率的でない。
BACKGROUND OF THE INVENTION In the past, there have been two commonly used methods for producing two different purity oxygens from the same facility. One was to build two independent cryogenic trains, one for each purity. This is expensive and complex.
The other is to design the entire factory for high purity,
A main air compressor discharge pressure of a pressure corresponding to the high purity oxygen was required. This is not energy efficient because much of the air only needs to be boosted to a lower pressure corresponding to generating low purity oxygen.

【0003】低純度の酸素を製造するための多数の効率
的な工場が文献でもって知られている。米国特許第47
02757号、同第4704148号及び同第4936
099号各明細書には、多数のリボイラー・コンデンサ
ーを使用する非常に効率的なプロセスサイクルが多数記
載されている。ところが、これらのサイクルのいずれの
ものも、酸素製品の一部分を95%より高い純度で併せ
て生産するものではない。
[0003] A number of efficient factories for producing low-purity oxygen are known in the literature. US Patent No. 47
Nos. 0,075, 4,704,148 and 4,936
No. 099 describes a number of very efficient process cycles using multiple reboiler condensers. However, none of these cycles jointly produce a portion of the oxygen product with a purity higher than 95%.

【0004】米国特許第5515833号明細書には、
コンパンダーからの膨張させたガスの一部分を使って複
式リボイラー低圧(LP)塔の塔底リボイラーを再沸さ
せるサイクルが記載されている。このサイクルでは、二
つの製品のために一つの二塔式集成装置を使用する。プ
ロセスへの全ての原料空気は、エキスパンダーの排気で
低圧塔の塔底リボイラーにおいて高純度酸素を再沸させ
るのに十分な圧力まで圧縮される。高圧(HP)塔の塔
頂部からの高圧窒素流は、低純度酸素の抜き出し箇所よ
り上方の箇所にある中間リボイラーに供給される。これ
は、高純度と低純度の両方の気体酸素製品用に、そして
また低純度酸素の抜き出し箇所より上方での蒸留のため
の全ての蒸気流用に、沸騰を行わせるため大量の空気を
低圧塔の塔底リボイラーで凝縮させる必要があることか
ら、酸素の回収率を、そして殊に窒素の回収率をあまり
高くすることができないという点で、プロセスを非効率
的にする。低圧塔の塔底リボイラーで凝縮させる必要の
ある大量の空気は、利用できる液体窒素還流の量を減少
させ、酸素の回収率にマイナスの影響を与える。更に、
純粋酸素との熱交換でより高い圧力で凝縮させなくては
ならない空気のうちの大部分はエネルギー消費量を増加
させ、それにより圧縮エネルギーをむだにする。この方
法はまた、低圧塔を全部の原料空気用の大きさにし、潜
在的な製造及び移送上の故障を招く。
[0004] US Pat. No. 5,515,833 describes:
A cycle is described in which a portion of the expanded gas from the compander is used to reboil the bottom reboiler of a dual reboiler low pressure (LP) column. This cycle uses one double column assembly for the two products. All feed air to the process is compressed at the outlet of the expander to a pressure sufficient to reboil high purity oxygen in the bottom reboiler of the low pressure column. The high pressure nitrogen stream from the top of the high pressure (HP) column is fed to an intermediate reboiler located above the point where low purity oxygen is withdrawn. This is because large volumes of air are forced into the low pressure column to bring boiling for both high and low purity gaseous oxygen products and also for all vapor streams for distillation above the point of low purity oxygen withdrawal. The need to condense in the bottoms reboiler makes the process inefficient in that the recovery of oxygen and especially the recovery of nitrogen cannot be too high. The large amount of air that needs to be condensed in the bottom reboiler of the low pressure column reduces the amount of available liquid nitrogen reflux and negatively affects oxygen recovery. Furthermore,
Most of the air that must be condensed at higher pressures in heat exchange with pure oxygen increases energy consumption and thereby wastes compression energy. This method also makes the low pressure column sized for all feed air, leading to potential production and transport failures.

【0005】米国特許第5515833号明細書には、
二つの酸素製品抜き出し箇所の間で主蒸留塔につながれ
たアルゴンサイドアーム塔も示されている。この供給箇
所は、サイドアーム塔の供給原料から窒素をなくすのに
必要である。ところが、それは非常に低いアルゴン濃度
(Arが4%未満)のサイドアーム塔供給原料をもたら
す。これは、この蒸留をサイドアーム塔供給原料のアル
ゴンが9〜14%の範囲にある場合よりもはるかに困難
にする。所定の酸素の回収率について、サイドアーム塔
への供給原料中のアルゴン濃度が低いために、アルゴン
の回収率は不十分になる。
[0005] US Pat. No. 5,515,833 describes:
Also shown is an argon side arm column connected to the main distillation column between the two oxygen product withdrawal points. This feed point is necessary to eliminate nitrogen from the feed to the side arm column. However, it results in a side arm column feed with very low argon concentration (Ar less than 4%). This makes this distillation much more difficult than when the side arm column feed argon is in the range of 9-14%. For a given oxygen recovery, the argon recovery in the feed to the side arm column is low, resulting in an insufficient argon recovery.

【0006】明らかに、高純度の酸素も低純度の酸素も
高い効率で且つ容易な操作で製造するためのより効率的
なサイクルが必要とされている。
Clearly, there is a need for a more efficient cycle for producing both high and low purity oxygen with high efficiency and ease of operation.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも二
つのレベルの純度の酸素を効率的に製造するための、窒
素と酸素を含有している流れの低温(cryogeni
c)蒸留に関する。第一の製品は、97%未満の酸素
(とは言え一般には80%より多くの酸素)を含有する
低純度酸素流であり、第二の製品は、97%より多くの
酸素、好ましくは99.5%より多くの酸素を含有する
高純度酸素製品流である。本発明により低純度酸素の生
産のために高い効率のプロセスサイクルを採用しそして
それを変更することによって、高い効率が得られる。こ
の高い効率のプロセスサイクルは、少なくとも、供給原
料流を蒸留して塔底部から低純度酸素を、そして塔頂部
から窒素に富む流れを生じさせる蒸留塔からなる。この
塔の底部には、適当なプロセス流を凝縮させて蒸留塔に
沸騰の負荷を供給するリボイラーがある。本発明によれ
ば、酸素濃度が上記の供給原料流のそれと少なくとも等
しい液体流をこの第一の塔の塔底部から(塔底リボイラ
ーの箇所で)抜き出すか、あるいは、低純度酸素の抜き
出し箇所よりもいくつかの分離段の分だけ上にある箇所
から抜き出して、そしてサイドレッグ塔の上部へ供給す
る。このサイドレッグ塔の塔底液は適当なプロセス流体
によって沸騰させられ、そしてこのサイドレッグ塔の塔
底部から高純度酸素製品が抜き出される。サイドレッグ
塔の塔頂部からの蒸気は第一の塔1、好ましくは上記の
液体の供給流が抜き出されるのと同じ分離段へ、戻され
る。
SUMMARY OF THE INVENTION The present invention provides a cryogeni stream of a stream containing nitrogen and oxygen for efficiently producing oxygen of at least two levels of purity.
c) For distillation. The first product is a low purity oxygen stream containing less than 97% oxygen (but generally more than 80% oxygen) and the second product is more than 97% oxygen, preferably 99% oxygen. A high purity oxygen product stream containing more than 0.5% oxygen. By employing and modifying a high efficiency process cycle for the production of low purity oxygen according to the present invention, high efficiency is obtained. This high efficiency process cycle comprises at least a distillation column that distills the feed stream to produce low purity oxygen from the bottom and a nitrogen rich stream from the top. At the bottom of the column is a reboiler that condenses the appropriate process stream and supplies a boiling load to the distillation column. According to the invention, a liquid stream whose oxygen concentration is at least equal to that of the above-mentioned feed stream is withdrawn from the bottom of this first column (at the point of the bottom reboiler) or from the point of withdrawal of low-purity oxygen. Is also withdrawn from the point above several separation stages and fed to the top of the side-leg tower. The bottoms of the side leg column are boiled with a suitable process fluid and high purity oxygen product is withdrawn from the bottom of the side leg column. The vapor from the top of the side-leg column is returned to the first column 1, preferably to the same separation stage from which the liquid feed stream is withdrawn.

【0008】アルゴンを同時に生産することが所望され
る場合には、高純度酸素を製造するサイドレッグ塔の適
切な箇所にアルゴンサイドアーム塔を取り付け、すなわ
ちサイドレッグ塔の中間の箇所からの蒸気原料をアルゴ
ンサイドアーム塔へ供給してこの塔の塔頂部からアルゴ
ンを製造し、そしてこの塔の塔底部からの液体流をサイ
ドレッグ塔へ戻す。
[0008] If it is desired to produce argon simultaneously, an argon side arm column is installed at a suitable location in the side leg column for producing high purity oxygen, ie, the steam feed from the middle of the side leg column. To the argon side arm column to produce argon from the top of the column and return the liquid stream from the bottom of the column to the side leg column.

【0009】この方法の利点は、高純度酸素の高温での
焚き上げ(沸騰)が最小限に保持されることである。低
純度酸素を生産する箇所では、はるかに多量の熱が供給
される。これはエネルギーの実質的な節約をもたらす。
The advantage of this method is that the high temperature boil of high purity oxygen is kept to a minimum. Much more heat is supplied where low purity oxygen is produced. This results in substantial energy savings.

【0010】一番広い側面において、本発明は、低純度
(97%未満)の酸素製品流と窒素に富む流れを製造す
る低純度塔を含み、この塔には適当な第一のプロセス流
を凝縮させてこの塔のための沸騰の負荷を供給する塔底
リボイラーがある蒸留設備において圧縮原料空気流を低
温蒸留するための方法であって、酸素濃度が当該低純度
塔への原料のそれと少なくとも等しい酸素に富む流れを
当該蒸留設備から抜き出しそして高純度塔で精留して高
純度(97%より高い)の酸素製品流を提供し、この高
純度塔の塔底液のリボイラーの熱は適当な第二のプロセ
ス流の凝縮によって供給し、この第二のプロセス流は上
記第一のプロセス流より高い圧力にあることを特徴とす
る圧縮原料空気流の低温蒸留方法を提供する。
In its broadest aspect, the present invention comprises a low purity column for producing a low purity (less than 97%) oxygen product stream and a nitrogen rich stream, wherein the column comprises a suitable first process stream. A method for cryogenically distilling a compressed feed air stream in a distillation facility having a bottom reboiler to condense and provide a boiling load for the column, wherein the oxygen concentration is at least as high as that of the feed to the low purity column. An equal oxygen-rich stream is withdrawn from the distillation facility and rectified in a high purity column to provide a high purity (> 97%) oxygen product stream, the bottoms reboiler heat of the high purity column A second process stream, the second process stream being at a higher pressure than the first process stream.

【0011】通常、低純度酸素製品流は80%より多く
の酸素を含有し、好ましくは少なくとも90%の酸素を
含有する。高純度酸素製品流は、好ましくは少なくとも
99.5の酸素を含有する。
Typically, the low purity oxygen product stream contains more than 80% oxygen, and preferably contains at least 90% oxygen. The high purity oxygen product stream preferably contains at least 99.5 oxygen.

【0012】本発明の現時点で好ましい態様では、蒸留
設備は高圧塔と低圧塔を含み、そして、(a)圧縮原料
空気のうちの少なくとも一部分を高圧塔へ供給し、そこ
において原料空気を精留して高圧窒素の塔頂生成物と高
圧の粗液体酸素塔底液とにし、(b)この高圧の粗液体
酸素塔底液のうちの少なくとも一部分を低圧塔へ供給
し、そこにおいて高圧の粗液体酸素塔底液を精留して低
圧窒素の塔頂生成物と低圧の液体酸素塔底液とにし、
(c)高圧窒素の塔頂生成物のうちの少なくとも一部分
を凝縮させて、凝縮した高圧窒素塔頂生成物のうちの少
なくとも一部分を高圧塔へ還流として戻し、(d)低圧
の液体酸素塔底液のうちの少なくとも一部分を塔底リボ
イラーにより沸騰させ、このリボイラーにおいては適当
な第一のプロセス流を凝縮させ、(e)低純度酸素製品
流を低圧塔から抜き出し、(f)酸素濃度が高圧の粗液
体酸素塔底液のそれと少なくとも等しい酸素に富んだ流
れを蒸留設備から抜き出して高純度塔へ供給し、そこに
おいてそれを精留して酸素量の減少した塔頂蒸気と高純
度の液体酸素塔底液とにし、(g)この高純度の液体酸
素塔底液のうちの少なくとも一部分を、低圧塔を沸騰さ
せる第一のプロセス流の圧力よりも高い圧力まで圧縮し
た適当な第二のプロセス流の凝縮により塔底リボイラー
によって沸騰させ、(h)高純度塔から高純度の酸素製
品流を抜き出す。
In a presently preferred embodiment of the present invention, the distillation facility includes a high pressure column and a low pressure column, and (a) feeds at least a portion of the compressed feed air to the high pressure column where the feed air is rectified. (B) supplying at least a portion of the high pressure crude liquid oxygen bottoms to the low pressure column, where the high pressure crude liquid oxygen Rectifying the liquid oxygen bottoms into a low pressure nitrogen top product and a low pressure liquid oxygen bottoms,
(C) condensing at least a portion of the high pressure nitrogen overhead product and returning at least a portion of the condensed high pressure nitrogen overhead product to the high pressure column as reflux, and (d) a low pressure liquid oxygen bottom. At least a portion of the liquid is boiled in a bottom reboiler, in which a suitable first process stream is condensed, (e) a low purity oxygen product stream is withdrawn from the low pressure column, and (f) the oxygen concentration is increased to a high pressure. An oxygen-rich stream at least equal to that of the crude liquid oxygen column bottoms is withdrawn from the distillation facility and fed to a high-purity column, where it is rectified to reduce overhead oxygen vapor and high-purity liquid (G) compressing at least a portion of the high purity liquid oxygen bottoms to a pressure higher than the pressure of the first process stream for boiling the low pressure column. Step Boiled by bottom reboiler by condensation of Seth stream, withdrawing the high purity oxygen product stream from (h) high purity column.

【0013】塔底液の再沸を行う高純度塔へのプロセス
流は、圧縮原料空気のうちの一部分を更に圧縮したもの
である。この圧縮原料空気部分のうちの少なくとも一部
は、高圧塔及び/又は低圧塔へ供給することができる。
[0013] The process stream to the high purity column for reboiling the bottoms liquid is a further compression of a portion of the compressed feed air. At least a portion of the compressed feed air portion can be supplied to a high pressure column and / or a low pressure column.

【0014】あるいは、塔底液の再沸を行う高純度塔へ
のプロセス流は、高圧窒素の塔頂生成物のうちの少なく
とも一部分を更に圧縮したものでもよい。
Alternatively, the process stream to the high purity column for reboiling the bottoms may be a further compression of at least a portion of the high pressure nitrogen top product.

【0015】酸素に富む流れは低圧塔から、通常はその
液溜まりから、抜き出すことができ、そして好ましく
は、酸素量の減少した塔頂蒸気は、酸素に富む流れを抜
き出したのと実質的に同じ箇所で、低圧塔へ戻される。
[0015] The oxygen-rich stream can be withdrawn from the low pressure column, usually from its sump, and preferably, the reduced oxygen overhead vapor is substantially equivalent to the withdrawal of the oxygen-rich stream. At the same point, it is returned to the low pressure column.

【0016】あるいは、酸素に富む流れは高圧塔から、
適切には高圧粗液体酸素塔底液のうちの一部分として、
抜き出すことができる。低圧塔からは、高圧粗液体酸素
塔底液の供給箇所よりも下方の箇所で蒸気流を抜き出し
て、高純度塔へ酸素に富む流れの供給箇所よりも下方の
箇所で供給することができる。
Alternatively, the oxygen-rich stream is passed from a high pressure column,
Suitably as part of the high pressure crude liquid oxygen bottoms,
Can be extracted. From the low-pressure column, a vapor stream can be extracted at a point below the supply point of the high-pressure crude liquid oxygen column bottom liquid and supplied to the high-purity column at a point below the supply point of the oxygen-rich stream.

【0017】塔底液の再沸を行う低圧塔へのプロセス流
は、高圧窒素塔頂生成物のうちの少なくとも一部分又は
圧縮原料空気のうちの一部分でよい。それが圧縮原料空
気のうちの一部分である場合には、得られた凝縮した原
料のうちの少なくとも一部分を高圧塔及び/又は低圧塔
へ供給することができる。低圧塔の再沸を行うために高
圧窒素塔頂生成物を凝縮させない場合には、その少なく
とも一部分を低圧塔の中間の箇所で凝縮させることがで
きる。
The process stream to the lower pressure column for reboiling the bottoms may be at least a portion of the high pressure nitrogen overhead product or a portion of the compressed feed air. If it is a portion of the compressed feed air, at least a portion of the resulting condensed feed can be fed to a high and / or low pressure column. If the high pressure nitrogen overhead product is not condensed to reboil the low pressure column, at least a portion thereof can be condensed at an intermediate point in the low pressure column.

【0018】先に述べたように、高純度塔の中間の箇所
から抜き出したアルゴンに富む蒸気流をアルゴン塔で分
離して、アルゴン製品流と、高純度塔へ戻される、アル
ゴンのなくなった液体流とを製造することができる。
As mentioned earlier, the argon-rich vapor stream withdrawn from the middle of the high-purity column is separated by the argon column and the argon product stream and the argon-free liquid returned to the high-purity column are returned to the high-purity column. Flow and can be manufactured.

【0019】高圧窒素塔頂生成物を低圧塔の中間の箇所
で凝縮させる場合には、酸素に富む流れは適切には、当
該中間の箇所より上の箇所で低圧塔から抜き出され、そ
して高純度塔の中間の箇所から抜き出したアルゴンに富
む蒸気流をアルゴン塔で分離して、アルゴン製品流と、
高純度塔へ戻される、アルゴンのなくなった液体流とを
製造することができる。
If the high pressure nitrogen overhead product is condensed at an intermediate point in the low pressure column, the oxygen-rich stream is suitably withdrawn from the low pressure column at a point above the intermediate point and The argon-rich vapor stream withdrawn from the middle point of the purity column is separated by an argon column, and an argon product stream,
An argon-free liquid stream can be produced that is returned to the high purity column.

【0020】アルゴン塔からのアルゴン塔頂生成物は、
高圧粗液体酸素塔底液のうちの一部分を沸騰させること
により凝縮させることができ、そして気化した高圧粗液
体酸素塔底液は、低圧塔及び/又は高純度塔へ供給する
ことができる。
The argon overhead product from the argon column is:
A portion of the high pressure crude liquid oxygen bottoms can be condensed by boiling, and the vaporized high pressure crude liquid oxygen bottoms can be fed to a low pressure column and / or a high purity column.

【0021】圧縮原料空気のうちの一部分を低圧塔へ供
給することができ、あるいは圧縮原料空気のうちの一部
分を、高圧塔への主たる圧縮原料空気の部分よりも高い
圧力まで更に圧縮し、そしてこの更に圧縮した原料空気
部分のうちの少なくとも一部分を高圧塔及び/又は低圧
塔へ供給することができる。
[0021] A portion of the compressed feed air may be fed to the low pressure column, or a portion of the compressed feed air may be further compressed to a higher pressure than the portion of the main compressed feed air to the high pressure column, and At least a portion of this further compressed feed air portion can be fed to a high pressure column and / or a low pressure column.

【0022】凝縮した高圧窒素塔頂生成物のうちの少な
くとも一部分は、低圧塔へ還流として供給することがで
きる。あるいは、凝縮した高圧窒素塔頂生成物の全部を
高圧塔へ還流として供給し、そして高圧塔から抜き出し
た側流(サイドストリーム)を低圧塔の還流としてもよ
い。窒素に富むこの側流の一部を高純度塔へ供給しても
よい。
At least a portion of the condensed high pressure nitrogen overhead product can be fed as reflux to the low pressure column. Alternatively, all of the condensed high-pressure nitrogen overhead product may be fed to the high-pressure column as reflux, and the side stream withdrawn from the high-pressure column may be used as reflux for the low-pressure column. A portion of this nitrogen-rich side stream may be fed to a high purity column.

【0023】高圧窒素塔頂生成物の全部を凝縮させない
場合には、残りの部分を製品として回収することができ
る。
If not all of the high pressure nitrogen overhead product is condensed, the remainder can be recovered as product.

【0024】低純度酸素製品流は、高圧塔へ供給される
圧縮原料空気のうちの一部分との熱交換で沸騰させて、
その圧縮原料空気部分を少なくとも部分的に気化させる
ことができる。
The low purity oxygen product stream is boiled by heat exchange with a portion of the compressed feed air supplied to the high pressure column,
The compressed feed air portion can be at least partially vaporized.

【0025】低純度酸素製品流と高純度酸素製品流はそ
れそれ低圧塔と高純度塔から液として抜き出すことがで
き、そして昇圧してから主圧縮原料空気と熱交換させて
昇圧した酸素製品を作ることができる。
The low-purity oxygen product stream and the high-purity oxygen product stream can be withdrawn from the low-pressure column and the high-purity column, respectively, as liquid, and then pressurized, and then heat-exchanged with the main compressed feed air to remove the pressurized oxygen product. Can be made.

【0026】本発明はまた、上述の一番広い側面として
説明した方法(請求項1の方法)により圧縮原料空気を
低温蒸留することで低純度酸素製品と高純度酸素製品を
製造するための装置であり、 (i)圧縮原料空気を精留するための設備であって低純
度(97%未満)の酸素製品流と窒素に富む流れとを製
造するための低純度塔を含む蒸留設備、 (ii)適当な第一のプロセス流を凝縮させて低純度塔の
再沸を行うための、当該低純度塔内の塔底リボイラー、 (iii)このリボイラーに第一のプロセス流を供給するた
めの手段、 (iv)当該装置から低純度酸素製品を抜き出すための手
段、を含む装置であって、下記の(v)〜(ix)を更
に含むことを特徴とする装置も提供する。
The present invention also provides an apparatus for producing a low-purity oxygen product and a high-purity oxygen product by low-temperature distillation of compressed raw material air by the method described as the broadest aspect (the method of claim 1). (I) a distillation facility comprising a low-purity column for rectifying compressed feed air and producing a low-purity (less than 97%) oxygen product stream and a nitrogen-rich stream; ii) a bottom reboiler in the low purity column for condensing a suitable first process stream to reboil the low purity column, and (iii) supplying the first process stream to the reboiler. Means, (iv) means for extracting the low-purity oxygen product from the apparatus, wherein the apparatus further comprises the following (v) to (ix).

【0027】(v)酸素濃度が供給原料のそれと少なく
とも等しい酸素に富む流れを精留して高純度(97%よ
り高い)酸素製品流を提供するための高純度塔。 (vi)上記の蒸留設備からこの酸素に富む流れを抜き出
しそしてそれを高純度塔へ供給するための手段。 (vii)適当な第二のプロセス流を凝縮させて高純度塔の
再沸を行うための、当該高純度塔内の塔底リボイラー。 (viii)この高純度塔リボイラーに第二のプロセス流
を、当該第二のプロセス流が低純度塔リボイラーへ供給
される圧力よりも高い圧力で供給するための手段。 (ix)当該装置から高純度酸素製品流を抜き出すための
手段。
(V) A high purity column for rectifying an oxygen-rich stream having an oxygen concentration at least equal to that of the feed to provide a high purity (> 97%) oxygen product stream. (Vi) means for withdrawing this oxygen-rich stream from the distillation facility and feeding it to a high purity column. (Vii) a bottom reboiler in the high purity column for condensing a suitable second process stream to reboil the high purity column. (Viii) means for supplying a second process stream to the high purity column reboiler at a pressure higher than the pressure at which the second process stream is supplied to the low purity column reboiler. (Ix) means for withdrawing a high purity oxygen product stream from the apparatus.

【0028】この装置の側面の現時点で好ましい態様に
おいては、蒸留設備は次に掲げる(1)〜(12)を含
む。
In a presently preferred embodiment of this aspect of the apparatus, the distillation facility includes the following (1) to (12).

【0029】(1)圧縮原料空気のうちの少なくとも一
部分を精留して高圧の窒素塔頂生成物と高圧の粗液体酸
素塔底液とにするための高圧塔。 (2)高圧の粗液体酸素塔底液を精留して低圧の窒素塔
頂生成物と低圧の液体酸素塔底液とにするための低圧
塔。 (3)高圧粗液体酸素塔底液のうちの少なくとも一部分
を低圧塔へ供給するための手段。 (4)高圧窒素塔頂生成物のうちの少なくとも一部分を
凝縮させ、凝縮した高圧窒素塔頂生成物のうちの少なく
とも一部分を高圧塔へ還流として戻すための手段。 (5)適当な第一のプロセス流を凝縮させて低圧塔の再
沸を行うための、低圧塔内の塔底リボイラー。 (6)このリボイラーに第一のプロセス流を供給するた
めの手段。 (7)当該装置から低純度酸素製品流を抜き出すための
手段。 (8)酸素に富んだ流れを精留して酸素量の減少した塔
頂蒸気と高純度の液体酸素塔底液とにするための高純度
塔。 (9)蒸留設備から酸素に富む流れを抜き出してそれを
高純度塔へ供給するための手段。 (10)適当な第二のプロセス流を凝縮させて高純度塔
の再沸を行うための、高純度塔内の塔底リボイラー。 (11)第二のプロセス流を当該第二のプロセス流が低
圧塔リボイラーへ供給される圧力より高い圧力で高純度
塔リボイラーへ供給するための手段。 (12)当該装置から高純度酸素製品流を抜き出すため
の手段。
(1) A high-pressure column for rectifying at least a portion of the compressed feed air into a high-pressure nitrogen overhead product and a high-pressure crude liquid oxygen bottom solution. (2) A low pressure column for rectifying a high pressure crude liquid oxygen bottom liquid into a low pressure nitrogen top product and a low pressure liquid oxygen bottom liquid. (3) A means for supplying at least a portion of the high pressure crude liquid oxygen column bottom liquid to the low pressure column. (4) means for condensing at least a portion of the high pressure nitrogen overhead product and returning at least a portion of the condensed high pressure nitrogen overhead product to the high pressure column as reflux. (5) A bottom reboiler in the low pressure column for condensing a suitable first process stream to reboil the low pressure column. (6) Means for supplying a first process stream to the reboiler. (7) Means for extracting a low purity oxygen product stream from the device. (8) A high-purity column for rectifying an oxygen-rich stream into a vapor having a reduced oxygen content and a high-purity liquid oxygen column bottoms. (9) Means for extracting an oxygen-rich stream from a distillation facility and supplying it to a high-purity column. (10) A bottom reboiler in the high purity column for condensing a suitable second process stream to reboil the high purity column. (11) Means for supplying the second process stream to the high-purity column reboiler at a pressure higher than the pressure at which the second process stream is supplied to the low-pressure column reboiler. (12) Means for extracting a high purity oxygen product stream from the apparatus.

【0030】[0030]

【発明の実施の形態】次に、本発明の現時点において好
ましい態様を、例示のみを目的とし、添付の図面を参照
して説明する。全ての図面において、同一の又は同等の
構成要素を示すのに同一の参照番号が使用されている。
BRIEF DESCRIPTION OF THE DRAWINGS The presently preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings. In all the drawings, the same reference numbers are used to indicate the same or equivalent components.

【0031】以下、本発明の原理を図1を参照して説明
する。簡単に言えば、高圧塔(15)、低圧塔(2
5)、及びサイドレッグ塔(23)を含む設備を使用す
る。低圧塔(25)の塔底部から低純度の酸素製品(9
5% GOX)を得る。高純度の酸素製品(99.5%
GOX)はサイドレッグ塔(23)の塔底部から得ら
れ、この塔では低圧塔(25)の塔底部からの液体流
(35)を原料空気(10)のうちの圧力を上昇させた
一部分(21)により蒸留及び沸騰させる。サイドレッ
グ塔(23)の塔頂部からの蒸気(37)は低圧塔(2
5)の塔底部へ戻される。
Hereinafter, the principle of the present invention will be described with reference to FIG. Briefly, the high pressure column (15) and the low pressure column (2)
5), and equipment including a side leg tower (23) is used. Low-purity oxygen products (9
5% GOX). High purity oxygen products (99.5%
GOX) is obtained from the bottom of the side-leg column (23), in which the liquid stream (35) from the bottom of the low-pressure column (25) is fed to a portion of the feed air (10) at elevated pressure (10). Distill and boil according to 21). The steam (37) from the top of the side-leg tower (23) is converted to the low-pressure tower (2).
Return to the bottom of 5).

【0032】もっと詳しく説明すると、前置(フロント
エンド)精製設備(1)からの清浄な乾燥圧縮空気(1
0)を分割して三つの流れ(11、12、13)にす
る。第一の原料空気流(11)は主熱交換器(14)へ
直接供給し、そこでその露点温度近くまで冷却してから
高圧塔(15)へ供給される(11’)。第二の原料空
気流(12)は、コンパンダー(17)の圧縮機側(1
6)を経て主熱交換器(14)へ供給され、そこから側
流(18)として抜き出されて、コンパンダー(17)
のエキスパンダー側(19)を経て低圧塔(25)へ供
給される。このコンパンダー(17)はサイクルのため
の寒冷を発生させる。第三の原料空気流(13)は低圧
ブースター空気圧縮機(20)を経て主熱交換器(1
4)へ供給され、そこでその露点近くまで冷却される。
得られた冷却流(21)は高純度又はサイドレッグ塔
(23)の塔底部のリボイラー(22)へ供給されて、
この塔の再沸を行う。このリボイラー(22)からの液
化空気(24)は高圧塔(15)へ供給される。
More specifically, clean dry compressed air (1) from the front-end refining facility (1) is used.
0) is divided into three flows (11, 12, 13). The first feed air stream (11) is fed directly to the main heat exchanger (14), where it is cooled to near its dew point and then fed to the high pressure column (15) (11 '). The second raw material air stream (12) is supplied to the compressor side (1) of the compander (17).
6) to the main heat exchanger (14), from which it is withdrawn as a side stream (18) and into a compander (17)
Is supplied to the low-pressure column (25) via the expander side (19). This compander (17) generates refrigeration for the cycle. The third feed air stream (13) is passed through a low pressure booster air compressor (20) to the main heat exchanger (1).
4) where it is cooled to near its dew point.
The resulting cooling stream (21) is fed to a high purity or reboiler (22) at the bottom of the side leg column (23),
The column is reboiled. The liquefied air (24) from the reboiler (22) is supplied to the high-pressure column (15).

【0033】あるいは、液化空気(24)のうちの一部
又は全部を過冷却して、高圧塔(15)ではなく低圧塔
(25)へ供給してもよい。
Alternatively, part or all of the liquefied air (24) may be supercooled and supplied to the low pressure column (25) instead of the high pressure column (15).

【0034】高圧塔(15)は空気の最初の蒸留を行っ
て、塔底部から液体の酸素の富む(粗液体酸素)流(2
6)を生じさせ、塔頂部から高圧の気体窒素流(27)
を生じさせる。粗液体酸素流(26)の酸素含有量は通
常30%より多く、35%より多いことがよくある。こ
の流れ(26)は、過冷却器(29)で低圧塔(25)
の塔頂部からの低圧窒素流(28)との熱交換で過冷却
され、次いで減圧して低圧塔(25)の中間の箇所へ供
給される。加温された低圧気体窒素流(28’)は主熱
交換器(14)で更に加温してから、大気へ放出するか
(廃棄物)又は連産製品流として回収する。
The high-pressure column (15) performs an initial distillation of air to form a liquid oxygen-rich (crude liquid oxygen) stream (2) from the bottom of the column.
6) and a high pressure gaseous nitrogen stream (27)
Cause. The oxygen content of the crude liquid oxygen stream (26) is usually greater than 30%, often greater than 35%. This stream (26) is passed through the subcooler (29) to the low pressure column (25).
Is supercooled by heat exchange with a low-pressure nitrogen stream (28) from the top of the column and then depressurized and fed to an intermediate point of the low-pressure column (25). The warmed low pressure gaseous nitrogen stream (28 ') is further heated in the main heat exchanger (14) and then released to the atmosphere (waste) or recovered as a coproduct stream.

【0035】高圧塔(15)の塔頂部からの高圧気体窒
素(27)のうちの大半部分(30)は低圧塔(25)
の塔底部のリボイラー(31)に供給される。このリボ
イラー(31)からの凝縮窒素流は分割されて二つの分
割流(32、33)を供給する。一方の分割流(32)
は高圧塔(15)へ還流を供給するために使用され、他
方の分割流(33)は過冷却器(29)で冷却されてか
ら低圧塔(25)へ還流を供給するために使用される。
The majority (30) of the high pressure gaseous nitrogen (27) from the top of the high pressure column (15) comprises the low pressure column (25).
Is supplied to the reboiler (31) at the bottom of the column. The condensed nitrogen stream from the reboiler (31) is split to provide two split streams (32, 33). One split flow (32)
Is used to supply reflux to the high pressure column (15), while the other split stream (33) is cooled by a subcooler (29) and then used to supply reflux to the low pressure column (25) .

【0036】高圧塔(15)の塔頂部から抜き出された
気体の窒素流(27)のうちの一部(34)は、製品
(GAN)として回収するため主熱交換器(14)で加
温される。窒素製品が必要とされない場合、抜き出した
高圧窒素流(27)の全部をリボイー(31)へ供給す
ることができる。とは言え、大量の製品窒素が要求され
る場合には、低圧塔(25)からこれを得るのが典型的
により効率的である。
A portion (34) of the gaseous nitrogen stream (27) withdrawn from the top of the high pressure column (15) is added in the main heat exchanger (14) for recovery as a product (GAN). Warmed up. If no nitrogen product is required, the entire withdrawn high pressure nitrogen stream (27) can be fed to the reboiler (31). However, if large quantities of product nitrogen are required, it is typically more efficient to obtain it from the low pressure column (25).

【0037】非常に高純度(酸素がppmレベル)の窒
素が必要とされる場合には、低圧塔(25)の還流を純
粋でない液体窒素で行うのがより効率的であろう。この
場合には、リボイラー(31)からの凝縮窒素流の全て
を高圧塔(15)の塔頂部へ供給して、低圧塔(25)
の還流は、高圧塔(15)の塔頂より数段下から抜き出
し次いで過冷却器(29)で冷却してから低圧塔(2
5)に供給される側流(図示せず)で行う。
If very high purity (ppm levels of oxygen) is required, it may be more efficient to reflux the low pressure column (25) with impure liquid nitrogen. In this case, all of the condensed nitrogen stream from the reboiler (31) is supplied to the top of the high pressure column (15), and the low pressure column (25)
Is refluxed from the top of the high-pressure column (15) several stages below, cooled by a supercooler (29), and then cooled to a low-pressure column (2).
This is performed by a side flow (not shown) supplied to 5).

【0038】低純度の液体酸素流(35)を低圧塔(2
5)の液溜まりから抜き出して、サイドレッグ塔(2
3)の塔頂部へ供給する。この低純度の酸素は蒸留さ
れ、そしてリボイラー(22)へ供給される冷却された
第三の原料空気流(21)との熱交換で沸騰させられ
る。高純度の気体酸素流(36)がサイドレッグ塔(2
3)の液溜まりの上から取り出されて主熱交換器(1
4)へ供給され、そこから製品(99.5% GOX)
として回収される。酸素量の減少した塔頂蒸気流(3
7)は、サイドレッグ塔(23)から低圧塔(25)の
液溜まりの直ぐ上に戻される。サイドレッグ塔(23)
のための液体原料(35)は粗液体酸素原料(26’)
の供給箇所より下方の箇所で低圧塔(25)から抜き出
されるので、この液体原料(35)における酸素の濃度
は粗液体酸素原料(26’)におけるそれより高い。
The low-purity liquid oxygen stream (35) is passed through the low-pressure column (2).
5) Withdraw from the liquid pool of the side leg tower (2)
Feed to the top of 3). This low purity oxygen is distilled and boiled in heat exchange with the cooled third feed air stream (21) fed to the reboiler (22). A high-purity gaseous oxygen stream (36) is supplied to the side leg tower (2
The main heat exchanger (1)
4), from which the product (99.5% GOX)
Will be collected as The overhead vapor stream with reduced oxygen content (3
7) is returned from the side leg column (23) to just above the pool in the low pressure column (25). Side leg tower (23)
Raw material (35) for crude liquid oxygen raw material (26 ')
Is extracted from the low-pressure column (25) at a point below the supply point, the oxygen concentration in the liquid feed (35) is higher than that in the crude liquid oxygen feed (26 ').

【0039】低純度の酸素製品流(38)は低圧塔(2
5)の塔底部から抜き出して主熱交換器(14)へ供給
され、そこから製品(95% GOX)として回収され
る。
The low purity oxygen product stream (38) is fed to the low pressure column (2).
5) Withdrawn from the bottom of the tower and supplied to the main heat exchanger (14), from which it is recovered as a product (95% GOX).

【0040】図1では、熱交換器(22)でもってサイ
ドレッグ塔(23)の塔底液を再沸させるのに使用され
る第三の原料空気流(13)を圧縮するために別個のブ
ースター圧縮機(20)が用意されている。とは言え、
この原料空気流(13)はコンパンダー装置(17)の
圧縮機側(16)で増圧することができよう。
In FIG. 1, a separate feed air stream (13) is used to compress the third feed air stream (13) used to reboil the bottoms of the side leg column (23) with the heat exchanger (22). A booster compressor (20) is provided. but,
This feed air stream (13) could be intensified on the compressor side (16) of the compander device (17).

【0041】図2の態様は、低純度酸素流(38)を低
圧塔(25)から液体流として抜き出して液体酸素沸騰
気化器(210)で第一の冷却原料空気流(11)のう
ちの一部分(215)との熱交換で沸騰させ、リボイラ
ー(31)を低圧塔(25)の中間の箇所に移転させ、
そして冷却原料空気流(212)が供給される更に別の
リボイラー(211)を低圧塔(25)の塔底部に配置
する点において、図1の態様と異なる。次に、これら二
つの設備における違いだけを説明する。
In the embodiment of FIG. 2, the low-purity oxygen stream (38) is withdrawn from the low-pressure column (25) as a liquid stream and is passed through a liquid oxygen boiling vaporizer (210) in the first cooling feed air stream (11). Boil by heat exchange with a part (215), transfer the reboiler (31) to the middle point of the low pressure column (25),
1 in that a further reboiler (211) to which the cooling air stream (212) is supplied is arranged at the bottom of the low-pressure column (25). Next, only the differences between these two facilities will be described.

【0042】冷却した第一の原料空気流(11’)のう
ちの少量部分を分割流(212)として抜き出し、そし
て低圧塔(25)の塔底リボイラー(211)へ供給す
る。このリボイラー(211)からの凝縮空気(21
3)は高圧塔(15)の中間の箇所へ供給される。
A small portion of the cooled first feed air stream (11 ') is withdrawn as a split stream (212) and fed to the bottom reboiler (211) of the low pressure column (25). Condensed air (21) from this reboiler (211)
3) is fed to an intermediate point of the high pressure column (15).

【0043】冷却した第一の原料空気流(11’)のう
ちの残りの(より多くの)部分(215)は、液体酸素
(LOX)沸騰気化器(210)で、低圧塔(25)か
らの低純度液体酸素製品(38)との熱交換により部分
的に凝縮させる。得られた二相原料空気流(214)
は、次いで高圧塔(15)の塔底部へ供給される。
The remaining (more) portion (215) of the cooled first feed air stream (11 ') is a liquid oxygen (LOX) boiling vaporizer (210) from the low pressure column (25). Is partially condensed by heat exchange with the low purity liquid oxygen product (38). The resulting two-phase feed air stream (214)
Is then fed to the bottom of the high pressure column (15).

【0044】必要ならば、凝縮した空気(213)を、
上記の中間の箇所の代わりに二相原料空気(214)と
同じところで高圧塔(15)へ供給することができる。
この構成はより単純であるが、効率は中間の箇所へ供給
するより低くなる。
If necessary, the condensed air (213) is
Instead of the above intermediate point, it can be supplied to the high pressure column (15) at the same place as the two-phase feed air (214).
This configuration is simpler, but the efficiency is lower than feeding to an intermediate point.

【0045】空気を供給されるリボイラー(22、21
1)からの液化空気の一部又は全部を過冷却器(29)
で冷却し、そして高圧塔(15)の代わりに低圧塔(2
5)へ供給してもよい。
Reboilers (22, 21) supplied with air
Part or all of the liquefied air from 1) is supercooled (29)
And replace the high pressure column (15) with the low pressure column (2).
5).

【0046】高圧塔の塔頂部からの高圧の気体窒素流
(27)のうちの少なくとも大半部分は、図1の設備と
比べると低圧塔(25)の中間の箇所に移転されている
リボイラー(31)へ供給される。
At least a majority of the high pressure gaseous nitrogen stream (27) from the top of the high pressure column is relocated to an intermediate location in the low pressure column (25) compared to the installation of FIG. ).

【0047】圧力がそれ自身の静頭によりわずかに上昇
している、低圧塔(25)の液溜まりから抜き出した低
純度液体酸素流(38)は、液体酸素沸騰気化器(21
0)へ供給される。この酸素流(38)は冷却された第
一の空気流(215)により沸騰させられ、次いで製品
(95% GOX)として回収するため主熱交換器(1
4)で加温される。液体酸素沸騰気化器(210)は低
純度酸素蒸気の圧力を上昇させ、こうして圧縮動力を減
少させる。
The low-purity liquid oxygen stream (38) withdrawn from the sump of the low-pressure column (25), whose pressure has risen slightly due to its own static head, is supplied to the liquid oxygen boiling vaporizer (21).
0). This oxygen stream (38) is boiled by the cooled first air stream (215) and then recycled to the main heat exchanger (1) for recovery as product (95% GOX).
Heated in 4). The liquid oxygen boiling vaporizer (210) increases the pressure of the low purity oxygen vapor and thus reduces the compression power.

【0048】図3の態様は、第二の原料空気流(12)
を圧縮機(310)で増圧し、コンパンダー(17)の
エキスパンダー側(19)からの吐出流(311)を低
圧塔(25)の代わりに高圧塔(15)に供給し、追加
の原料空気(312/313、312/314)を低圧
塔(25)及び/又は高圧塔(15)へ供給し、凝縮し
た高圧窒素流(315)のうちの非還流部分(33)を
低圧塔(25)へ供給する代わりに最終的に気体製品
(GAN)として抜き出し、液体酸素沸騰気化器を省
き、高純度酸素製品(36)の流れをサイドレッグ塔
(23)から液体として抜き出し、低純度酸素流(3
8)、高純度酸素流(36)及び窒素製品流(33)を
液体ポンプ(316、317、318)を使って昇圧し
て昇圧した酸素製品及び窒素製品を生じさせ、そして低
圧塔(25)の還流を高圧塔(15)からの側流(31
9)を用いて行う点で、図2の態様と異なる。次に、こ
れら二つの設備における違いだけを説明する。
The embodiment of FIG. 3 shows a second feed air stream (12).
Is increased by the compressor (310), and the discharge stream (311) from the expander side (19) of the compander (17) is supplied to the high pressure column (15) instead of the low pressure column (25), and additional raw material air is supplied. (312/313, 312/314) to the low pressure column (25) and / or the high pressure column (15), and the non-refluxed portion (33) of the condensed high pressure nitrogen stream (315) is supplied to the low pressure column (25). Instead of being fed to the gaseous product (GAN), the liquid oxygen boiling vaporizer is omitted, the stream of high-purity oxygen product (36) is withdrawn from the side-leg tower (23) as liquid, and the low-purity oxygen stream (GAN) is removed. 3
8) pressurizing the high purity oxygen stream (36) and the nitrogen product stream (33) using liquid pumps (316, 317, 318) to produce pressurized oxygen and nitrogen products, and the low pressure column (25) Is returned to the side stream (31) from the high pressure column (15).
9) is different from the embodiment of FIG. Next, only the differences between these two facilities will be described.

【0049】分割流(212)の抜き出し後に残ってい
る第一の原料空気流(11’)のうちの一部分(21
5)は、高圧塔(15)の塔底部へ直接供給される。
A part (21) of the first raw material air stream (11 ') remaining after the withdrawal of the split stream (212)
5) is fed directly to the bottom of the high pressure column (15).

【0050】第二の原料空気流(12)は高圧ブースタ
ー空気圧縮機(310)でもって圧縮され、そして二つ
の分割流(312、320)に分割される。圧縮された
空気のうちの大半部分を含有している、量の多いほうの
分割流(312)は、主熱交換器(14)へ供給され、
そこで凝縮されて、液体製品を気化させる。図3に示し
たように、液化空気のうちの一部(314)は高圧塔
(15)へ供給することができ、残り(313)は過冷
却器(29)で冷却して低圧塔(25)へ供給すること
ができる。とは言え、液化空気の全部を高圧塔(15)
あるいは低圧塔(25)へ供給することができよう。
The second feed air stream (12) is compressed in a high pressure booster air compressor (310) and split into two split streams (312, 320). The larger split stream (312), containing the majority of the compressed air, is fed to the main heat exchanger (14),
It is condensed there and vaporizes the liquid product. As shown in FIG. 3, a part (314) of the liquefied air can be supplied to the high-pressure column (15), and the remaining (313) is cooled by the supercooler (29) and is cooled by the low-pressure column (25). ). However, all of the liquefied air is transferred to the high pressure tower (15).
Alternatively, it could be fed to the low pressure column (25).

【0051】ブースター圧縮機(310)からの空気の
うちの量が少ないほうの分割流(320)はコンパンダ
ー(17)の圧縮機側(16)に供給され、そして主熱
交換器(14)で部分的に冷却後、コンパンダー(1
7)のエキスパンダー側(19)に供給されてプラント
のための寒冷を発生させる。エキスパンダーの吐出空気
(311)は冷却した第一の原料空気流の一部分(21
5)と一緒にされ、高圧塔(15)の塔底部へ供給され
る。コンパンダーの供給原料は、図3に示したようにブ
ースター圧縮機(310)の吐出側からの代わりにブー
スター圧縮機(310)の中間段からの側流として得て
もよい。
The smaller portion of the air from the booster compressor (310), the smaller stream (320), is fed to the compressor side (16) of the compander (17) and to the main heat exchanger (14). After partially cooling with the compander (1
7) is supplied to the expander side (19) to generate refrigeration for the plant. The discharge air (311) of the expander is a part (21) of the cooled first raw material air stream.
5) and fed to the bottom of the high pressure column (15). The feed to the compander may be obtained as a side stream from an intermediate stage of the booster compressor (310) instead of from the discharge side of the booster compressor (310) as shown in FIG.

【0052】第二の原料空気の分割流(320)をコン
パンダーで処理する代わりに、単純に膨張させることが
好ましいことがある。その場合には、コンパンダー(1
7)を省き、部分的に冷却した分割流(320)を主熱
交換器(14)から、コンパンダー(17)のエキスパ
ンダー側(19)に代わるほかのエキスパンダーへ供給
する。
[0052] Instead of treating the second split stream of feed air (320) with a compander, it may be preferable to simply expand it. In that case, the compander (1
7) is omitted and the partially cooled split stream (320) is supplied from the main heat exchanger (14) to another expander instead of the expander side (19) of the compander (17).

【0053】二つのブースター圧縮機(20、310)
に代えて共通のブースター圧縮機を使用することが有利
なこともある。この場合、サイドレッグ塔(23)を再
沸するために必要とされる圧縮された第三の原料空気流
(13)は、この共通のブースター圧縮機からあるいは
共通のブースター圧縮機の吐出生成物から側流として抜
き出すことができる。
Two booster compressors (20, 310)
It may be advantageous to use a common booster compressor instead. In this case, the compressed third feed air stream (13) required to reboil the side leg column (23) is fed from this common booster compressor or from the discharge product of the common booster compressor. Can be extracted as a side stream.

【0054】純粋でない還流の側流(319)は、高圧
塔(15)の塔頂より何段か下から抜き出され、過冷却
器(29)で冷却され、そして低圧塔(25)の塔頂部
へ供給される(319’)。
The impure reflux side stream (319) is withdrawn from the top of the high pressure column (15) several stages below, cooled in a subcooler (29) and then removed from the column of the low pressure column (25). It is fed to the top (319 ').

【0055】高圧塔(15)の塔頂部から抜き出された
高圧窒素流(27)は中間リボイラー(31)で凝縮さ
れ、凝縮した高圧窒素流は還流分割流(32)と製品流
(33)とに分割される。製品流(33)は液体ポンプ
(318)で昇圧されてから、気体窒素製品(GAN)
として集めるため主熱交換器(14)で気化される。
The high-pressure nitrogen stream (27) withdrawn from the top of the high-pressure column (15) is condensed in the intermediate reboiler (31), and the condensed high-pressure nitrogen stream is divided into a reflux split stream (32) and a product stream (33). And divided into The product stream (33) is pressurized by a liquid pump (318) and then gaseous nitrogen product (GAN)
Is vaporized in the main heat exchanger (14).

【0056】低圧塔(25)の液溜まりから抜き出され
た低純度液体酸素流(38)も液体ポンプ(316)で
昇圧されてから、低純度気体酸素製品(95% GO
X)として集めるため主熱交換器(14)で気化され
る。
The low-purity liquid oxygen stream (38) extracted from the liquid pool of the low-pressure column (25) is also pressurized by the liquid pump (316), and then is supplied with a low-purity gas oxygen product (95% GO).
It is vaporized in the main heat exchanger (14) to be collected as X).

【0057】同様に、サイドレッグ塔(23)からの高
純度液体酸素流(36)は液体ポンプ(317)により
昇圧されてから、高純度気体酸素製品(99.5% G
OX)として集めるため主熱交換器(14)で気化され
る。
Similarly, the high-purity liquid oxygen stream (36) from the side leg column (23) is pressurized by the liquid pump (317), and then the high-purity gaseous oxygen product (99.5% G
It is vaporized in the main heat exchanger (14) to be collected as OX).

【0058】図3の態様においては、製品(GAN、9
5% GOX、99.5% GOX)の全てを液体ポン
プと主熱交換器(14)での気化によって回収する必要
はない。塔からの液体製品と気体製品の任意の組み合わ
せが可能である。
In the embodiment of FIG. 3, the product (GAN, 9
It is not necessary to collect all of the 5% GOX, 99.5% GOX) by vaporization in the liquid pump and main heat exchanger (14). Any combination of liquid and gaseous products from the tower is possible.

【0059】図4の態様は図2のそれを単純にしたもの
であって、液体酸素沸騰気化器(210)が省かれてお
り、冷却した第一の原料空気流(11’)のうちの(よ
り多量の方の)一部分(215)を高圧塔(15)の塔
底部へ直接供給する。低純度の酸素製品流(438)を
低圧塔(25)の液溜まりから、液としてではなく気体
として抜き出す。
The embodiment of FIG. 4 is a simplification of that of FIG. 2, in which the liquid oxygen boiling vaporizer (210) is omitted and the cooled first feed air stream (11 ') The (larger) portion (215) is fed directly to the bottom of the higher pressure column (15). A low purity oxygen product stream (438) is withdrawn from the sump of the low pressure column (25) as a gas rather than as a liquid.

【0060】図5の態様は、サイドレッグ塔(23)へ
の原料供給とそれからの戻りが低圧塔(25)の中間リ
ボイラー(31)より上方の箇所にあり、そしてアルゴ
ンサイドアーム塔(510)が加えられている点で、図
2の態様と異なる。次に、これら二つの設備における違
いだけを説明する。
The embodiment of FIG. 5 shows that the feed to the side leg column (23) and the return from it are located above the intermediate reboiler (31) of the low pressure column (25), and the argon side arm column (510) Is different from the embodiment of FIG. Next, only the differences between these two facilities will be described.

【0061】図5では、サイドレッグ塔(23)への原
料流(35)を、図2におけるように低圧塔(25)の
液溜まりから抜き出す代わりに、その塔の中ほどの、中
間リボイラー(31)より上方から抜き出す。あるいは
また、サイドレッグ塔(23)への原料流(35)は中
間リボイラー(31)より下方の箇所で、とは言え低圧
塔(25)の液溜まりより上方の箇所で、抜き出すこと
ができよう。サイドレッグ塔(23)の塔頂部からの蒸
気流(37)は、好ましくは低圧塔(25)のこの同じ
箇所へ戻される。高純度酸素製品流(36)はサイドレ
ッグ塔(23)の塔底部から、気体として(図2におけ
るように)かあるいは液として(図3におけるように)
抜き出される。
In FIG. 5, instead of extracting the feed stream (35) to the side leg column (23) from the liquid pool of the low pressure column (25) as in FIG. 2, an intermediate reboiler ( 31) Pull out from above. Alternatively, the feed stream (35) to the side leg column (23) could be withdrawn below the intermediate reboiler (31), but above the pool of the low pressure column (25). . The vapor stream (37) from the top of the side leg column (23) is preferably returned to this same point of the low pressure column (25). The high purity oxygen product stream (36) exits the bottom of the side leg column (23) as a gas (as in FIG. 2) or as a liquid (as in FIG. 3).
It is extracted.

【0062】アルゴンに富む蒸気の側流(511)がサ
イドレッグ塔(23)の中ほどの、塔内蒸気の窒素含有
量が少ない箇所から抜き出される。このアルゴンに富む
蒸気の側流(511)の窒素濃度は、通常1%未満、好
ましくは0.5%未満、とりわけ100ppm未満であ
る。アルゴンに富む側流(511)は粗アルゴン塔又は
サイドアーム塔(510)で更に蒸留される。この塔か
らの生成物は大部分がアルゴンであり、そして塔内の段
数に依存して4%ほどの、あるいは1ppmほどの少量
の酸素を含有することがある。側流(511)は、必要
なら任意の適当な精製器で更に精製することができる。
サイドアーム塔(510)の塔底部からのアルゴン量の
減少した液体流(512)は、好ましくは蒸気の側流
(511)を抜き出したのと同じ箇所で、サイドレッグ
塔(23)の中ほどへ戻される。サイドアーム塔(51
0)の塔頂部のアルゴンは、リボイラー(514)にお
いて過冷却した粗液体酸素のうちの一部分(513)を
沸騰させることにより凝縮される。気化した粗液体酸素
(515)は低圧塔(25)の適当な箇所へ供給され
る。サイドアーム塔(510)の塔頂部からのアルゴン
流のうちの一部分はアルゴン製品流として回収される。
好ましくは、このアルゴン製品流はリボイラー(51
4)からの凝縮した流れのうちの一部分(520)であ
る。
A side stream (511) of vapor rich in argon is withdrawn from the middle of the side leg column (23), where the nitrogen content of the vapor in the column is low. The nitrogen concentration of this argon-rich vapor side stream (511) is usually less than 1%, preferably less than 0.5%, especially less than 100 ppm. The argon-rich side stream (511) is further distilled in a crude argon column or side arm column (510). The product from this column is largely argon and may contain as little as 4% or as little as 1 ppm oxygen, depending on the number of stages in the column. The side stream (511) can be further purified in any suitable purifier if necessary.
The liquid stream (512) with a reduced amount of argon from the bottom of the side arm column (510) is preferably at the same point where the side stream of vapor (511) is withdrawn, in the middle of the side leg column (23). Returned to Side arm tower (51
The argon at the top of 0) is condensed by boiling a portion (513) of the supercooled crude liquid oxygen in a reboiler (514). The vaporized crude liquid oxygen (515) is supplied to an appropriate point of the low pressure column (25). A portion of the argon stream from the top of the side arm column (510) is recovered as an argon product stream.
Preferably, the argon product stream is reboiler (51
Part (520) of the condensed stream from 4).

【0063】図6の態様は、サイドレッグ塔(23)が
低圧塔(25)に連結されず、そしてアルゴンのサイド
アーム塔(510)が加えられている点で、図3の態様
と異なる。次に、これらの二つの設備における違いだけ
を説明する。
The embodiment of FIG. 6 differs from that of FIG. 3 in that the side leg column (23) is not connected to the low pressure column (25) and an argon side arm column (510) is added. Next, only the differences between these two facilities will be described.

【0064】図6においては、サイドレッグ塔への原料
は、低圧塔(25)から抜き出す代わりに、サイドレッ
グ塔(23)の塔頂部へ過冷却した窒素に富む純粋でな
い還流(319)のうちの一部分(610)を供給し、
そしてサイドレッグ塔(23)の中間の箇所へ低圧塔
(25)への粗液体酸素の還流(26)のうちの過冷却
した一部分(611)を供給することにより提供され
る。
In FIG. 6, the feed to the side leg column is extracted from the low-pressure column (25) instead of the supercooled nitrogen-rich impure reflux (319) to the top of the side leg column (23). To provide a portion (610) of
And it is provided by feeding a supercooled portion (611) of the reflux (26) of the crude liquid oxygen to the low pressure column (25) to an intermediate point of the side leg column (23).

【0065】サイドレッグ塔(23)の塔頂部からの蒸
気流(612)は酸素量の減少した廃棄物であり、低圧
塔(25)の塔頂部からの酸素量の減少した廃棄物(2
8)と混合される。
The vapor stream (612) from the top of the side-leg tower (23) is a reduced oxygen waste and the reduced oxygen (2) from the top of the low pressure column (25) (2)
8) is mixed.

【0066】高純度酸素製品(36)はサイドレッグ塔
(23)の塔底部から、液として(図3におけるよう
に)かあるいは気体として(図2におけるように)抜き
出される。
The high purity oxygen product (36) is withdrawn from the bottom of the side leg column (23) as a liquid (as in FIG. 3) or as a gas (as in FIG. 2).

【0067】アルゴンに富む蒸気の側流(511)は、
サイドレッグ塔(23)の中ほどの塔内蒸気の窒素含有
量が少ない箇所から抜き出される。このアルゴンに富む
蒸気の側流(511)の窒素濃度は、通常1%未満であ
り、好ましくは0.5%未満、とりわけ100ppm未
満である。このアルゴンに富む側流(511)はサイド
アーム塔(510)で更に蒸留される。この塔からの生
成物は大部分がアルゴンであり、そして塔内の段数に依
存して4%ほどの、あるいは1ppmほどの少量の酸素
を含有することがある。側流(511)は、必要なら任
意の適当な精製器で更に精製することができる。サイド
アーム塔(510)の塔底部からのアルゴン量の減少し
た液体流(512)は、好ましくは蒸気の側流(51
1)を抜き出したのと同じ箇所で、サイドレッグ塔(2
3)の中ほどへ戻される。サイドアーム塔(510)の
塔頂部のアルゴンは、リボイラー(514)において過
冷却した粗液体酸素のうちの一部分(513)を沸騰さ
せることにより凝縮される。気化した粗液体酸素(61
3)はサイドレッグ塔(23)の適当な箇所へ供給され
る。リボイラー(514)からの凝縮したアルゴン流の
うちの一部分(520)はアルゴン製品流として回収さ
れる。
The argon-rich vapor side stream (511) is:
It is extracted from the middle part of the side leg tower (23) where the nitrogen content of the steam in the tower is low. The nitrogen concentration of this argon-rich vapor side stream (511) is usually less than 1%, preferably less than 0.5%, especially less than 100 ppm. This argon-rich side stream (511) is further distilled in a side arm column (510). The product from this column is largely argon and may contain as little as 4% or as little as 1 ppm oxygen, depending on the number of stages in the column. The side stream (511) can be further purified in any suitable purifier if necessary. The reduced argon liquid stream (512) from the bottom of the side arm column (510) is preferably a vapor side stream (51).
At the same place where 1) was extracted, the side leg tower (2
3) Returned to the middle. The argon at the top of the side arm column (510) is condensed by boiling a portion (513) of the supercooled crude liquid oxygen in the reboiler (514). Evaporated crude liquid oxygen (61
3) is fed to a suitable point in the side leg tower (23). A portion (520) of the condensed argon stream from reboiler (514) is recovered as an argon product stream.

【0068】図6の方法のこのほかのいくつかの変形で
は、蒸気流を低圧塔(25)への粗液体酸素原料(2
6)の供給箇所より下方の段から抜き出し、気化した粗
液体酸素(613)の供給箇所より下方の箇所でサイド
レッグ塔(23)へ供給すことができる。
In some other variants of the method of FIG. 6, the vapor stream is fed to the low pressure column (25) with the crude liquid oxygen feed (2).
It can be extracted from the stage below the supply point of 6) and supplied to the side leg tower (23) at a point below the supply point of the vaporized crude liquid oxygen (613).

【0069】図7の態様は、サイドアーム塔(510)
の塔頂部からの気化した粗液体酸素(713)を低圧塔
(25)に供給して、低圧塔(25)のこれが供給され
る箇所より下方の箇所から抜き出した蒸気流(711)
をサイドレッグ塔(23)へ供給する点で、図6の態様
と異なる。
FIG. 7 shows a side arm tower (510).
The vaporized crude liquid oxygen (713) from the top of the column is supplied to the low-pressure column (25), and the vapor stream (711) extracted from a portion of the low-pressure column (25) below the point where it is supplied
Is supplied to the side leg tower (23).

【0070】上述の態様の全てにおいて、サイドレッグ
塔の再沸を行うのに空気の代わりに窒素を使用すること
が可能である。例えば、窒素製品流(GAN)を低圧ブ
ースター圧縮機(20)で第三の原料空気流(13)に
代えて圧縮する。主熱交換器(14)において低温(c
ryogenic temperature)まで冷却
後、この圧縮した窒素製品流をサイドレッグ塔(23)
のリボイラー(22)へ供給する。得られた凝縮窒素は
高圧塔(15)の任意の適当な箇所へ供給することがで
きる。
In all of the above embodiments, it is possible to use nitrogen instead of air to reboil the side leg column. For example, a nitrogen product stream (GAN) is compressed by a low pressure booster compressor (20) instead of a third feed air stream (13). Low temperature (c) in the main heat exchanger (14)
After cooling to ryogenic temperature, the compressed nitrogen product stream is passed through a side-leg tower (23).
To the reboiler (22). The obtained condensed nitrogen can be supplied to any appropriate point of the high-pressure column (15).

【0071】これらの態様の全てにおいて、前置設備
(1)からの供給空気の圧力は低純度酸素を沸騰させる
のに必要とされる圧力に過ぎない。これは、複式リボイ
ラーサイクルの低圧と合致する。サイドレッグ酸素を作
るのに必要な空気の部分のみを、高純度酸素を沸騰させ
るのに必要とされる圧力まで圧縮する。これは、高純度
酸素を作るのに原料空気の全部が使用されるサイクル以
上に圧縮動力を低下させ、そして米国特許第55158
33号明細書のサイクルと比較される。
In all of these embodiments, the pressure of the feed air from the pre-installation (1) is only the pressure required to boil low-purity oxygen. This is consistent with the low pressure of a double reboiler cycle. Only the portion of the air required to make the side leg oxygen is compressed to the pressure required to boil high purity oxygen. This reduces the compression power beyond the cycle in which all of the feed air is used to make high purity oxygen, and US Pat.
Compared to the cycle of No. 33.

【0072】本発明の新しいサイクルはまた、低圧塔
(25)の大きさを小さくするのも可能にする。サイド
レッグ塔(23)を図6におけるように連結させない場
合には、低圧塔(25)の全体の直径はそれが空気流の
全部を精製しないのでより小さくなる。それはまた、大
きな主塔(15、25)がもはや高純度酸素を作る必要
がないので、直径が大きくなくてはならない段の数を減
らすのも可能にする。
The new cycle of the present invention also makes it possible to reduce the size of the low pressure column (25). If the side leg columns (23) are not connected as in FIG. 6, the overall diameter of the low pressure column (25) will be smaller because it does not purify the entire air stream. It also makes it possible to reduce the number of stages that have to be large in diameter, since the large main towers (15, 25) no longer need to make high-purity oxygen.

【0073】サイドアーム塔(510)への供給原料
(511)をサイドレッグ塔(23)の中間の箇所から
取り出すことにより、この供給原料はアルゴンに富んで
いる(典型的にArが6〜22%、好ましくは9〜15
%)。これは、アルゴンがひどく減少した供給原料(典
型的にArが4%未満)から開始しなくてはならない米
国特許第5515833号明細書のサイクル以上にサイ
ドアーム塔を簡素化し且つ短くするだけでなく、アルゴ
ンの回収率をはるかに高くする。
By withdrawing the feed (511) to the side arm tower (510) from an intermediate point in the side leg tower (23), the feed is rich in argon (typically 6 to 22 Ar). %, Preferably 9 to 15
%). This not only simplifies and shortens the side arm column beyond the cycle of U.S. Pat. No. 5,515,833, which must start from a feedstock with a significantly reduced argon (typically less than 4% Ar). , Make the argon recovery much higher.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の(基本的な)態様を示す図であ
る。
FIG. 1 illustrates a first (basic) embodiment of the present invention.

【図2】低純度酸素製品のために液体酸素沸騰気化器を
使用する本発明の第二の態様を示す図である。
FIG. 2 illustrates a second embodiment of the present invention using a liquid oxygen boiling vaporizer for low purity oxygen products.

【図3】液体ポンプを使用して昇圧した酸素製品と窒素
製品を作る本発明の第三の態様を示す図である。
FIG. 3 illustrates a third embodiment of the present invention for making pressurized oxygen and nitrogen products using a liquid pump.

【図4】図2の態様を簡素化して液体酸素沸騰気化器を
省いた本発明の第四の態様を示す図である。
FIG. 4 is a diagram showing a fourth embodiment of the present invention in which the embodiment of FIG. 2 is simplified and the liquid oxygen boiling vaporizer is omitted.

【図5】粗アルゴンサイドアーム塔を取り入れて図2の
態様を改造した本発明の第五の態様を示す図である。
FIG. 5 is a diagram showing a fifth embodiment of the present invention in which the embodiment of FIG. 2 is modified by incorporating a crude argon side arm column.

【図6】図3の態様を改造して粗アルゴンサイドアーム
塔を取り入れ、そして低圧塔との結合を断ったサイドレ
ッグ塔を有する、本発明の第六の態様を示す図である。
FIG. 6 is a modification of the embodiment of FIG. 3 incorporating a crude argon side arm column and showing a sixth embodiment of the present invention having a side leg column disconnected from the low pressure column.

【図7】図6の態様を改造し、低圧塔をサイドアーム塔
とサイドレッグ塔の両方と結合させた本発明の第七の態
様を示す図である。
FIG. 7 is a modification of the embodiment of FIG. 6, showing a seventh embodiment of the present invention in which a low pressure column is combined with both a side arm column and a side leg column.

【符号の説明】[Explanation of symbols]

10…原料空気 14…主熱交換器 15…高圧塔 16…コンパンダー圧縮機 17…コンパンダー 19…コンパンダーエキスパンダー 20…低圧ブースター圧縮機 22…リボイラー 23…サイドレッグ塔 25…低圧塔 29…過冷却器 31…中間リボイラー 210…液体酸素沸騰気化器 211…塔底リボイラー 310…圧縮機 316、317、318…液体ポンプ 510…アルゴンサイドアーム塔 514…リボイラー DESCRIPTION OF SYMBOLS 10 ... Feed air 14 ... Main heat exchanger 15 ... High pressure tower 16 ... Compander compressor 17 ... Compander 19 ... Compander expander 20 ... Low pressure booster compressor 22 ... Reboiler 23 ... Side leg tower 25 ... Low pressure tower 29 ... Excess Cooler 31 ... Intermediate reboiler 210 ... Liquid oxygen boiling vaporizer 211 ... Bottom reboiler 310 ... Compressor 316,317,318 ... Liquid pump 510 ... Argon side arm tower 514 ... Reboiler

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年8月25日[Submission date] August 25, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】低純度酸素製品流は、高圧塔へ供給される
圧縮原料空気のうちの一部分との熱交換で沸騰させて、
その圧縮原料空気部分を少なくとも部分的に凝縮させる
ことができる。
The low purity oxygen product stream is boiled by heat exchange with a portion of the compressed feed air supplied to the high pressure column,
The compressed feed air portion can be at least partially condensed .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】(v)酸素濃度が上記の低純度塔への供給
原料のそれと少なくとも等しい酸素に富む流れを精留し
て高純度(97%より高い)酸素製品流を提供するため
の高純度塔。 (vi)上記の蒸留設備からこの酸素に富む流れを抜き出
しそしてそれを高純度塔へ供給するための手段。 (vii)適当な第二のプロセス流を凝縮させて高純度塔の
再沸を行うための、当該高純度塔内の塔底リボイラー。 (viii)この高純度塔リボイラーに第二のプロセス流
を、上記のプロセス流が低純度塔リボイラーへ供給
される圧力よりも高い圧力で供給するための手段。 (ix)当該装置から高純度酸素製品流を抜き出すための
手段。
(V) a high purity column for rectifying an oxygen-rich stream having an oxygen concentration at least equal to that of the feed to the low purity column to provide a high purity (> 97%) oxygen product stream; . (Vi) means for withdrawing this oxygen-rich stream from the distillation facility and feeding it to a high purity column. (Vii) a bottom reboiler in the high purity column for condensing a suitable second process stream to reboil the high purity column. (Viii) the second process stream to the high purity column reboiler, means for supplying at a pressure higher than the pressure which the first process stream is supplied to the low purity column reboiler. (Ix) means for withdrawing a high purity oxygen product stream from the apparatus.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】(1)圧縮原料空気のうちの少なくとも一
部分を精留して高圧の窒素塔頂生成物と高圧の粗液体酸
素塔底液とにするための高圧塔。 (2)高圧の粗液体酸素塔底液を精留して低圧の窒素塔
頂生成物と低圧の液体酸素塔底液とにするための低圧
塔。 (3)高圧粗液体酸素塔底液のうちの少なくとも一部分
を低圧塔へ供給するための手段。 (4)高圧窒素塔頂生成物のうちの少なくとも一部分を
凝縮させ、凝縮した高圧窒素塔頂生成物のうちの少なく
とも一部分を高圧塔へ還流として戻すための手段。 (5)適当な第一のプロセス流を凝縮させて低圧塔の再
沸を行うための、低圧塔内の塔底リボイラー。 (6)このリボイラーに第一のプロセス流を供給するた
めの手段。 (7)当該装置から低純度酸素製品流を抜き出すための
手段。 (8)酸素に富んだ流れを精留して酸素量の減少した塔
頂蒸気と高純度の液体酸素塔底液とにするための高純度
塔。 (9)蒸留設備から酸素に富む流れを抜き出してそれを
高純度塔へ供給するための手段。 (10)適当な第二のプロセス流を凝縮させて高純度塔
の再沸を行うための、高純度塔内の塔底リボイラー。 (11)第二のプロセス流を第一のプロセス流が低圧塔
リボイラーへ供給される圧力より高い圧力で高純度塔リ
ボイラーへ供給するための手段。 (12)当該装置から高純度酸素製品流を抜き出すため
の手段。
(1) A high-pressure column for rectifying at least a portion of the compressed feed air into a high-pressure nitrogen overhead product and a high-pressure crude liquid oxygen bottom solution. (2) A low pressure column for rectifying a high pressure crude liquid oxygen bottom liquid into a low pressure nitrogen top product and a low pressure liquid oxygen bottom liquid. (3) A means for supplying at least a portion of the high pressure crude liquid oxygen column bottom liquid to the low pressure column. (4) means for condensing at least a portion of the high pressure nitrogen overhead product and returning at least a portion of the condensed high pressure nitrogen overhead product to the high pressure column as reflux. (5) A bottom reboiler in the low pressure column for condensing a suitable first process stream to reboil the low pressure column. (6) Means for supplying a first process stream to the reboiler. (7) Means for extracting a low purity oxygen product stream from the device. (8) A high-purity column for rectifying an oxygen-rich stream into a vapor having a reduced oxygen content and a high-purity liquid oxygen column bottoms. (9) Means for extracting an oxygen-rich stream from a distillation facility and supplying it to a high-purity column. (10) A bottom reboiler in the high purity column for condensing a suitable second process stream to reboil the high purity column. (11) means for supplying the second process stream to the high purity column reboiler at a pressure higher than the pressure at which the first process stream is supplied to the low pressure column reboiler. (12) Means for extracting a high purity oxygen product stream from the apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ジェフリー アラン ホプキンス アメリカ合衆国,ペンシルバニア 18052, ホワイトホール,ペリクルズ プレース 1225,アパートメント 6 (72)発明者 ラケシュ アグロウォル アメリカ合衆国,ペンシルバニア 18049, エマウス,コモンウェルス ドライブ 4312 (72)発明者 クー ジャングオ アメリカ合衆国,ペンシルバニア 18051, フォーゲルスビル,ホワイト バーチ サ ークル 8121 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Jeffrey Alan Hopkins United States, Pennsylvania 18052, Whitehall, Pellicles Place 1225, Apartment 6 (72) Inventor Rakesh Agrowol United States, Pennsylvania 18049, Emaus, Commonwealth Drive 4312 (72) Inventor Ku Junguo United States of America, Pennsylvania 18051, Vogelsville, White Birch Circle 8121

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 低純度(97%未満)の酸素製品流(3
8)と窒素に富む流れ(28)を製造する低純度塔(2
5)を含み、この塔(25)には適当な第一のプロセス
流(30、212)を凝縮させてこの塔(25)のため
の沸騰の負荷を供給する塔底リボイラー(31、21
1)がある蒸留設備(15、25)において圧縮原料空
気流(10)を低温蒸留するための方法であって、酸素
濃度が当該低純度塔(25)への原料(26’)のそれ
と少なくとも等しい酸素に富む流れ(35、611)を
当該蒸留設備(15、25)から抜き出しそして高純度
塔(23)で精留して高純度(97%より高い)の酸素
製品流(36)を提供し、この高純度塔(23)の塔底
液のリボイラーの熱は適当な第二のプロセス流(21)
の凝縮によって供給し、この第二のプロセス流(21)
は上記第一のプロセス流(30、212)より高い圧力
にあることを特徴とする圧縮原料空気流の低温蒸留方
法。
1. An oxygen product stream of low purity (less than 97%) (3%).
8) and a low-purity column (2) producing a stream rich in nitrogen (28).
5) in which a suitable first process stream (30, 212) is condensed to provide a boiling load for the column (25).
1) A method for cryogenic distillation of a compressed feed air stream (10) in a distillation facility (15, 25), wherein the oxygen concentration is at least as high as that of the feed (26 ') to the low purity column (25). An equal oxygen-rich stream (35,611) is withdrawn from the distillation facility (15,25) and rectified in a high purity column (23) to provide a high purity (> 97%) oxygen product stream (36). The bottoms reboiler heat of the high purity column (23) is then transferred to a suitable second process stream (21).
Of this second process stream (21)
At a higher pressure than the first process stream (30, 212).
【請求項2】 前記蒸留設備が高圧塔(15)と低圧塔
(25)を含み、そして、 (a)前記圧縮原料空気(10)のうちの少なくとも一
部分(11)を当該高圧塔(15)へ供給し、そこにお
いて当該原料空気(11)を精留して高圧窒素の塔頂生
成物(27)と高圧の粗液体酸素塔底液(26)とに
し、 (b)この高圧の粗液体酸素塔底液(26)のうちの少
なくとも一部分を当該低圧塔(25)へ供給し、そこに
おいてこの高圧の粗液体酸素塔底液(26)を精留して
低圧窒素の塔頂生成物(28)と低圧の液体酸素塔底液
とにし、 (c)上記の高圧窒素塔頂生成物(27)のうちの少な
くとも一部分(30)を凝縮させて、凝縮した高圧窒素
塔頂生成物のうちの少なくとも一部分(32)を高圧塔
(15)へ還流として戻し、 (d)上記の低圧液体酸素塔底液のうちの少なくとも一
部分を塔底リボイラー(31、211)により沸騰さ
せ、このリボイラーにおいて適当な第一のプロセス流
(30、212)を凝縮させ、 (e)前記低純度酸素製品流(38)を当該低圧塔(2
5)から抜き出し、 (f)酸素濃度が上記の高圧粗液体酸素塔底液(26)
のそれと少なくとも等しい酸素に富んだ流れ(26、3
5)を当該蒸留設備(15、25)から抜き出して高純
度塔(23)へ供給し、そこにおいてそれを精留して酸
素量の減少した塔頂蒸気(37)と高純度の液体酸素塔
底液とにし、 (g)この高純度の液体酸素塔底液のうちの少なくとも
一部分を、低圧塔(25)を沸騰させる第一のプロセス
流(30、212)の圧力よりも高い圧力まで圧縮した
適当な第二のプロセス流(21)の凝縮により塔底リボ
イラー(22)によって沸騰させ、 (h)当該高純度塔(23)から高純度の酸素製品流
(36)を抜き出す、請求項1記載の方法。
2. The distillation facility includes a high pressure column (15) and a low pressure column (25), and (a) removing at least a portion (11) of the compressed feed air (10) from the high pressure column (15). Where the feed air (11) is rectified into a high pressure nitrogen top product (27) and a high pressure crude liquid oxygen column bottoms (26); (b) the high pressure crude liquid At least a portion of the oxygen bottoms (26) is fed to the low pressure column (25), where the high pressure crude liquid oxygen bottoms (26) is rectified to obtain a low pressure nitrogen top product (26). And (c) condensing at least a portion (30) of the high-pressure nitrogen overhead product (27) to obtain a low-pressure liquid oxygen bottom product. Returning at least a portion (32) of the to the high pressure column (15) as reflux, (d) (E) condensing a suitable first process stream (30, 212) in the bottom reboiler (31, 211) to condense the first process stream (30, 212) in the reboiler; The pure oxygen product stream (38) is passed through the low pressure column (2).
(F) the oxygen concentration is above the high pressure crude liquid oxygen bottom liquid (26)
An oxygen-rich stream (26, 3
5) is withdrawn from the distillation equipment (15, 25) and supplied to the high-purity column (23), where it is rectified and the overhead vapor (37) with reduced oxygen content and the high-purity liquid oxygen column (G) compressing at least a portion of the high purity liquid oxygen column bottoms to a pressure higher than the pressure of the first process stream (30, 212) for boiling the low pressure column (25). 2. A high purity oxygen product stream (36) is withdrawn from said high purity column (23) by boiling the bottom reboiler (22) by condensing the appropriate second process stream (21). The described method.
【請求項3】 前記高純度塔(23)の塔底リボイラー
(22)へのプロセス流が前記圧縮原料空気(10)の
うちの更に圧縮された一部分(21)である、請求項2
記載の方法。
3. The process stream to the bottom reboiler (22) of the high purity column (23) is a further compressed portion (21) of the compressed feed air (10).
The described method.
【請求項4】 前記高純度塔(23)の塔底リボイラー
(22)へのプロセス流が前記高圧窒素塔頂生成物(2
7)のうちの更に圧縮された少なくとも一部分である、
請求項2記載の方法。
4. The process stream to the bottom reboiler (22) of the high purity column (23) is fed to the high pressure nitrogen top product (2).
7) at least a part of a further compression of
The method of claim 2.
【請求項5】 前記酸素に富む流れ(35)を前記低圧
塔(25)から抜き出す、請求項2から4までのいずれ
か一つに記載の方法。
5. The process according to claim 2, wherein the oxygen-rich stream (35) is withdrawn from the low-pressure column (25).
【請求項6】 前記酸素量の減少した塔頂蒸気(37)
を前記酸素に富む流れ(35)を抜き出したのと実質的
に同じ箇所で前記低圧塔(25)へ戻す、請求項5記載
の方法。
6. The overhead vapor having a reduced oxygen content (37).
6. The process according to claim 5, wherein the oxygen is returned to the low pressure column (25) at substantially the same point as the oxygen-rich stream (35) is withdrawn.
【請求項7】 前記酸素に富む流れ(35)を前記低圧
塔(25)の液溜まりから抜き出す、請求項5又は6記
載の方法。
7. The method according to claim 5, wherein the oxygen-rich stream (35) is withdrawn from a sump of the low-pressure column (25).
【請求項8】 前記酸素に富む流れ(611)が前記高
圧粗液体酸素塔底液(26)のうちの一部分である、請
求項2から4までのいずれか一つに記載の方法。
8. The process according to claim 2, wherein the oxygen-rich stream (611) is a part of the high pressure crude liquid oxygen bottoms (26).
【請求項9】 前記低圧塔(25)の前記高圧粗液体酸
素塔底液(26)の供給箇所より下方の箇所から蒸気流
(711)を抜き出して、前記高純度塔(23)の前記
酸素に富む流れ(611)の供給箇所より下方の箇所へ
供給する、請求項8記載の方法。
9. A vapor stream (711) is withdrawn from a point of the low-pressure column (25) below a point where the high-pressure crude liquid oxygen column bottom liquid (26) is supplied, and the oxygen stream of the high-purity column (23) is extracted. The method according to claim 8, wherein the feed is supplied to a point below the point of supply of the rich stream (611).
【請求項10】 前記低圧塔の塔底リボイラー(21
1)へのプロセス流が前記圧縮原料空気(10)のうち
の一部分(212)であり、前記高圧窒素塔頂生成物
(27)のうちの少なくとも一部分(30)の凝縮を前
記低圧塔(25)の中間の箇所のリボイラー(31)で
もって行う、請求項2から9までのいずれか一つに記載
の方法。
10. The bottom reboiler (21) of the low pressure column.
The process stream to 1) is a portion (212) of the compressed feed air (10) and condenses at least a portion (30) of the high pressure nitrogen overhead product (27) to the low pressure column (25). The method according to any one of claims 2 to 9, wherein the method is carried out with a reboiler (31) at an intermediate position of (1).
【請求項11】 前記酸素に富む流れ(35)を前記低
圧塔(25)の前記中間のリボイラー(31)より上方
の箇所から抜き出し、そして前記高純度塔(23)の中
間の箇所から抜き出したアルゴンに富む蒸気流(51
1)をアルゴン塔((510)で分離してアルゴン製品
流とアルゴン量の減少した液体流(512)とを製造
し、この液体流を当該高純度塔(23)へ戻す、請求項
10記載の方法。
11. The oxygen-rich stream (35) is withdrawn from a point above the middle reboiler (31) of the low pressure column (25) and from a middle point of the high purity column (23). Argon-rich vapor stream (51
11) Separating 1) in an argon column (510) to produce an argon product stream and a reduced argon liquid stream (512), and returning this liquid stream to the high purity column (23). the method of.
【請求項12】 請求項2に記載された蒸留設備を含
み、前記凝縮させた高圧窒素塔頂生成物(27)の全部
を前記高圧塔へ還流として供給し、前記低圧塔(25)
の還流を当該高圧塔(15)から抜き出した側流(31
9)で行う、請求項2から11までのいずれか一つに記
載の方法。
12. The low pressure column (25), comprising the distillation installation according to claim 2, wherein all of the condensed high pressure nitrogen overhead product (27) is fed as reflux to the high pressure column.
Reflux from the high pressure column (15).
The method according to any one of claims 2 to 11, wherein the method is performed in 9).
【請求項13】 窒素に富む前記側流(319)のうち
の一部分(610)を前記高純度塔(23)へ供給す
る、請求項12記載の方法。
13. The method according to claim 12, wherein a portion (610) of the nitrogen-rich side stream (319) is fed to the high-purity column (23).
【請求項14】 請求項1の方法により圧縮原料空気
(10)を低温蒸留することで低純度酸素製品と高純度
酸素製品を製造するための装置であり、 (i)圧縮原料空気(10)を精留するための設備であ
って低純度(97%未満)の酸素製品流(38)と窒素
に富む流れ(28)とを製造するための低純度塔(2
5)を含む蒸留設備(15、25)、 (ii)適当な第一のプロセス流を凝縮させて当該低純度
塔(25)の再沸を行うための、当該低純度塔(25)
内の塔底リボイラー(31、211)、 (iii)このリボイラーに上記第一のプロセス流を供給す
るための手段(27、30、11、212)、 (iv)当該装置から上記の低純度酸素製品を抜き出すた
めの手段(38)、を含む装置であって、下記の(v)
〜(ix)を更に含むことを特徴とする装置。 (v)酸素濃度が上記の低純度塔(25)への供給原料
(26’)のそれと少なくとも等しい酸素に富む流れを
精留して高純度(97%より高い)酸素製品流を提供す
るための高純度塔(23) (vi)上記の蒸留設備(15、25)からこの酸素に富
む流れを抜き出しそしてそれを上記の高純度塔(23)
へ供給するための手段(35、26、611) (vii)適当な第二のプロセス流を凝縮させて当該高純度
塔(23)の沸騰を行うための、当該高純度塔(23)
内の塔底リボイラー(22) (viii)この高純度塔リボイラー(22)に上記の第二
のプロセス流を、上記第一のプロセス流が当該低純度塔
のリボイラー(31、211)へ供給される圧力よりも
高い圧力で供給するための手段(20、21) (ix)当該装置から上記高純度酸素製品流を抜き出すた
めの手段(36)
14. An apparatus for producing a low-purity oxygen product and a high-purity oxygen product by distilling a compressed raw air (10) at a low temperature according to the method of claim 1, and (i) compressed raw air (10). Column for rectifying a low-purity (<97%) oxygen product stream (38) and a nitrogen-rich stream (28)
Distillation apparatus (15, 25) comprising 5); (ii) the low purity column (25) for condensing a suitable first process stream to reboil the low purity column (25).
(Iii) means for supplying the first process stream to the reboiler (27, 30, 11, 212); (iv) the low purity oxygen from the apparatus. Means for extracting the product (38), comprising:
To (ix). (V) for rectifying an oxygen-rich stream having an oxygen concentration at least equal to that of the feed (26 ') to the low purity column (25) to provide a high purity (> 97%) oxygen product stream; (Vi) withdrawing the oxygen-rich stream from the distillation facility (15, 25) and removing it from the high-purity column (23)
(35, 26, 611) (vii) the high-purity column (23) for condensing a suitable second process stream and boiling the high-purity column (23)
(Viii) The high-purity tower reboiler (22) is supplied with the second process stream, and the first process stream is supplied to the low-purity tower reboiler (31, 211). (20, 21) means for supplying at a pressure higher than the pressure at which the high purity oxygen product stream is withdrawn from the apparatus (36).
【請求項15】 前記蒸留設備が次に掲げる(1)〜
(12)を含む、請求項14記載の装置。 (1)前記圧縮原料空気(10)のうちの少なくとも一
部分を精留して高圧の窒素塔頂生成物と高圧の粗液体酸
素塔底液とにするための高圧塔(15) (2)この高圧の粗液体酸素塔底液を精留して低圧の窒
素塔頂生成物と低圧の液体酸素塔底液とにするための低
圧塔(25) (3)上記の高圧粗液体酸素塔底液のうちの少なくとも
一部分を上記低圧塔(25)へ供給するための手段(2
6、29) (4)上記の高圧窒素塔頂生成物のうちの少なくとも一
部分を凝縮させ、凝縮した高圧窒素塔頂生成物のうちの
少なくとも一部分を上記高圧塔(15)へ還流として戻
すための手段(27、31、32) (5)適当な第一のプロセス流を凝縮させて上記低圧塔
(25)の沸騰を行うための、当該低圧塔(25)内の
塔底リボイラー(31、211) (6)このリボイラー(31、211)に上記第一のプ
ロセス流を供給するための手段(27、30、11、2
12) (7)当該装置から低純度酸素製品流(38)を抜き出
すための手段 (8)酸素に富んだ流れを精留して酸素量の減少した塔
頂蒸気(37)と高純度の液体酸素塔底液とにするため
の高純度塔(23) (9)当該蒸留設備(15、25)から酸素に富む流れ
を抜き出してそれを上記高純度塔(23)へ供給するた
めの手段(26、35) (10)適当な第二のプロセス流を凝縮させて上記高純
度塔(23)の沸騰を行うための、当該高純度塔(2
3)内の塔底リボイラー(22) (11)当該第二のプロセス流を上記第一のプロセス流
が上記低圧塔リボイラー(31、211)へ供給される
圧力より高い圧力で上記高純度塔リボイラー(22)へ
供給するための手段(20、21) (12)当該装置から上記の高純度酸素製品流を抜き出
すための手段(36)
15. The distillation equipment according to the following (1) to (1).
15. The device according to claim 14, comprising (12). (1) A high-pressure column (15) for rectifying at least a part of the compressed feed air (10) into a high-pressure nitrogen overhead product and a high-pressure crude liquid oxygen bottom solution. A low-pressure column for rectifying the high-pressure crude liquid oxygen bottom liquid into a low-pressure nitrogen top product and a low-pressure liquid oxygen bottom liquid (25) (3) The above-mentioned high-pressure crude liquid oxygen bottom liquid Means (2) for supplying at least a portion of the mixture to the low pressure column (25).
(6) 29) (4) for condensing at least a portion of the high pressure nitrogen overhead product and returning at least a portion of the condensed high pressure nitrogen overhead product to the high pressure column (15) as reflux. Means (27, 31, 32) (5) Bottom reboiler (31, 211) in said low pressure column (25) for condensing a suitable first process stream to bring said low pressure column (25) to boiling (6) means (27, 30, 11, 2) for supplying the first process stream to the reboiler (31, 211).
12) (7) Means for extracting a low-purity oxygen product stream (38) from the apparatus. (8) Oxygen-rich stream is rectified to reduce the oxygen content of the overhead vapor (37) and high-purity liquid. High-purity column (23) for use as oxygen column bottom liquid (9) Means for extracting a stream rich in oxygen from the distillation equipment (15, 25) and supplying it to the high-purity column (23) ( 26, 35) (10) The high-purity column (2) for condensing a suitable second process stream and boiling the high-purity column (23).
3) The bottom reboiler in (22) (11) The high purity column reboiler at a pressure higher than the pressure at which the first process stream is supplied to the low pressure column reboiler (31, 211) (22) Means for feeding (20, 21) (12) Means for withdrawing the high purity oxygen product stream from the apparatus (36)
【請求項16】 請求項3から13までのいずれか一つ
に記載された個々の方法を実施するのに必要とされる構
成要素を含む、請求項15記載の装置。
16. Apparatus according to claim 15, comprising the components required to carry out the individual method according to any one of claims 3 to 13.
JP9044150A 1996-03-01 1997-02-27 Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity Pending JPH102664A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB96301423:8 1996-03-01
EP96301423A EP0793069A1 (en) 1996-03-01 1996-03-01 Dual purity oxygen generator with reboiler compressor

Publications (1)

Publication Number Publication Date
JPH102664A true JPH102664A (en) 1998-01-06

Family

ID=8224839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9044150A Pending JPH102664A (en) 1996-03-01 1997-02-27 Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity

Country Status (6)

Country Link
EP (1) EP0793069A1 (en)
JP (1) JPH102664A (en)
KR (1) KR970066477A (en)
CN (1) CN1167246A (en)
ID (1) ID16093A (en)
ZA (1) ZA971656B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349669A (en) * 2000-04-04 2001-12-21 L'air Liquide Method and apparatus for manufacturing oxygen-rich fluid by low temperature distillation
JP2009528448A (en) * 2006-03-03 2009-08-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for integrating a blast furnace and an air separation device
JP2013513775A (en) * 2009-12-11 2013-04-22 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and unit for separation of air by cryogenic distillation
JP2015114083A (en) * 2013-12-13 2015-06-22 大陽日酸株式会社 Air separation method and apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669236A (en) * 1996-08-05 1997-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing low purity oxygen and high purity oxygen
US5865041A (en) * 1998-05-01 1999-02-02 Air Products And Chemicals, Inc. Distillation process using a mixing column to produce at least two oxygen-rich gaseous streams having different oxygen purities
US5934104A (en) * 1998-06-02 1999-08-10 Air Products And Chemicals, Inc. Multiple column nitrogen generators with oxygen coproduction
FR2787559A1 (en) * 1998-12-22 2000-06-23 Air Liquide Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions
FR2787561A1 (en) * 1998-12-22 2000-06-23 Air Liquide Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns
US6295836B1 (en) * 2000-04-14 2001-10-02 Praxair Technology, Inc. Cryogenic air separation system with integrated mass and heat transfer
US8191386B2 (en) * 2008-02-14 2012-06-05 Praxair Technology, Inc. Distillation method and apparatus
FR2930330B1 (en) * 2008-04-22 2013-09-13 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2943772A1 (en) * 2009-03-27 2010-10-01 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN103282733B (en) * 2010-07-05 2015-11-25 乔治洛德方法研究和开发液化空气有限公司 By equipment and the method for separating air by cryogenic distillation
CN102080921B (en) * 2010-12-23 2013-09-04 上海启元科技发展有限公司 Method and device for producing high-pressure nitrogen and low-pressure oxygen
FR2973865B1 (en) 2011-04-08 2015-11-06 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN102445054A (en) * 2011-12-22 2012-05-09 开封黄河空分集团有限公司 Process for producing oxygen and nitrogen by air separation
EP2938952A2 (en) * 2012-12-27 2015-11-04 Linde Aktiengesellschaft Method and device for low-temperature air separation
EP2770286B1 (en) * 2013-02-21 2017-05-24 Linde Aktiengesellschaft Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
FR3010778B1 (en) * 2013-09-17 2019-05-24 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
CN104833174B (en) * 2015-05-26 2017-08-11 杭州杭氧股份有限公司 A kind of auxiliary oxygen column low energy consumption with pressure produces the device and method of low purity oxygen with pressure and high pure oxygen product
CN105066587A (en) * 2015-09-16 2015-11-18 开封空分集团有限公司 Cryogenic separation and low-purity oxygen and high-purity oxygen and nitrogen production device and method
CN109737691B (en) * 2019-01-31 2020-05-19 东北大学 Air separation system of iron and steel enterprise
CN113670003B (en) * 2021-07-29 2022-08-09 北京科技大学 High-safety energy storage, power generation and substance recovery external compression air separation process flow

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1216192A (en) * 1967-01-23 1970-12-16 British Oxygen Co Ltd Air separation process
GB8828134D0 (en) * 1988-12-02 1989-01-05 Boc Group Plc Air separation
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
US5315833A (en) * 1991-10-15 1994-05-31 Liquid Air Engineering Corporation Process for the mixed production of high and low purity oxygen
US5425241A (en) * 1994-05-10 1995-06-20 Air Products And Chemicals, Inc. Process for the cryogenic distillation of an air feed to produce an ultra-high purity oxygen product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349669A (en) * 2000-04-04 2001-12-21 L'air Liquide Method and apparatus for manufacturing oxygen-rich fluid by low temperature distillation
JP2009528448A (en) * 2006-03-03 2009-08-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for integrating a blast furnace and an air separation device
JP2013513775A (en) * 2009-12-11 2013-04-22 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and unit for separation of air by cryogenic distillation
JP2015114083A (en) * 2013-12-13 2015-06-22 大陽日酸株式会社 Air separation method and apparatus

Also Published As

Publication number Publication date
KR970066477A (en) 1997-10-13
ZA971656B (en) 1998-06-23
CN1167246A (en) 1997-12-10
EP0793069A1 (en) 1997-09-03
ID16093A (en) 1997-09-04

Similar Documents

Publication Publication Date Title
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
US5098457A (en) Method and apparatus for producing elevated pressure nitrogen
US4604116A (en) High pressure oxygen pumped LOX rectifier
US4533375A (en) Cryogenic air separation with cold argon recycle
US4615716A (en) Process for producing ultra high purity oxygen
US4702757A (en) Dual air pressure cycle to produce low purity oxygen
CA2228799C (en) Air separation with intermediate pressure vaporization and expansion
US4783210A (en) Air separation process with modified single distillation column nitrogen generator
JPH08233458A (en) Method and equipment for separating low-temperature air
US5682764A (en) Three column cryogenic cycle for the production of impure oxygen and pure nitrogen
EP0962732B1 (en) Multiple column nitrogen generators with oxygen coproduction
US4895583A (en) Apparatus and method for separating air
MXPA97008225A (en) A cryogenic cycle of three columns for the production of impure oxygen and nitrogen p
EP0823606B1 (en) Process to produce nitrogen using a double column plus an auxiliary low pressure separation zone
US5682762A (en) Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
US6305191B1 (en) Separation of air
JP2000346547A (en) Cryogenic distillation for separating air
JP2000356465A (en) Low-temperature distillating system for separating air
JPH11325717A (en) Separation of air
CA2097865A1 (en) Air separation
JPH08170876A (en) Method and equipment for manufacturing oxygen by cooling distribution
JPH10153384A (en) Method of producing ultrapure liquid oxygen
US6170291B1 (en) Separation of air
CA2254635C (en) Reflux condenser cryogenic rectification system for producing lower purity oxygen
AU683651B2 (en) Air separation process and apparatus for the production of high purity nitrogen