CN102445054A - Process for producing oxygen and nitrogen by air separation - Google Patents

Process for producing oxygen and nitrogen by air separation Download PDF

Info

Publication number
CN102445054A
CN102445054A CN2011104349408A CN201110434940A CN102445054A CN 102445054 A CN102445054 A CN 102445054A CN 2011104349408 A CN2011104349408 A CN 2011104349408A CN 201110434940 A CN201110434940 A CN 201110434940A CN 102445054 A CN102445054 A CN 102445054A
Authority
CN
China
Prior art keywords
oxygen
nitrogen
air
rectifying
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104349408A
Other languages
Chinese (zh)
Inventor
彭辉
王好民
赵永奎
卢昆鹏
陈秀连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Original Assignee
KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd filed Critical KAIFENG HUANGHE AIR SEPARATION GROUP CO Ltd
Priority to CN2011104349408A priority Critical patent/CN102445054A/en
Publication of CN102445054A publication Critical patent/CN102445054A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Abstract

The invention belongs to the technical field of air separation, in particular to a process for producing oxygen and nitrogen by air separation. The purified air is cooled to a saturation temperature and then enters a three-stage distillation system for distillation, a nitrogen product is obtained at the top of a distillation column, and an oxygen product is obtained at the lower part of an oxygen tower after the distillation. In the process for producing the nitrogen, an air compressor has low discharge pressure (0.5-1.0Mpa), and low energy consumption, so that the energy consumption requirements of a nitrogen production device by air separation are greatly reduced, the current requirements of energy saving and emission reduction in China on high energy consuming industries are met, and simultaneously, the extraction rate of the nitrogen can be up to 55-75%, and the extraction rate of the oxygen can be up to 60-75%.

Description

A kind of technology of producing oxygen and nitrogen by air separation
Technical field
The invention belongs to the air separation technology field, particularly a kind of technology of producing oxygen and nitrogen by air separation.
Background technology
Along with The development in society and economy, in recent years, the application of high-purity nitrogen plant is constantly expanded, and all has like industries such as petrochemical industry, glass, rubber, building board, polysilicon, carbon fibers to set foot in.Industry is ever-increasing to the demand of nitrogen and oxygen, simultaneously to the energy-saving and cost-reducing also constantly higher requirement of proposition.Therefore, want on market, to occupy whip hand, just must improve product extraction rate, reduce the operation energy consumption of device, the energy-saving potential of excavating equipment operation makes full use of air simultaneously as far as possible, extracts wherein nitrogen and air simultaneously.
Summary of the invention
The object of the present invention is to provide and a kind ofly produce the technology of oxygen and nitrogen, overcome that present handicraft product recovery rate is low, the bigger defective of device operation energy consumption by air separation.
The technical scheme that the present invention adopts is following:
A kind of technology of producing oxygen and nitrogen by air separation; Three grades of distillation systems of entering carried out rectifying after cleaned air passes was cooled to saturation temperature; Described three grades of distillation systems by the two-stage rectification system and the oxygen column after being connected in the two-stage rectification system constitute, described two-stage rectification system is made up of with following rectifying column the last rectifying column that condenser/evaporator connects as one, after the rectifying; Obtain product nitrogen gas at last rectifying column top, obtain product oxygen in the oxygen column bottom.
The following rectifying column of entering carried out rectifying after cleaned air passes was cooled to saturation temperature, obtained nitrogen at following rectifying column top, obtained oxygen-enriched liquid air in the bottom.
Can air be carried out removal of impurities, compression, precooling operation successively before purifying.
The preparation process of product nitrogen gas is specially: the nitrogen that following rectifying column top obtains is divided into A, B two parts; The condenser/evaporator that A partly gets into the rectifying column bottom as thermal source and in condenser/evaporator by on the oxygen-enriched liquid air of rectifier bottoms be cooled to liquid nitrogen; Be divided into A1 and A2 two parts simultaneously; Wherein the A1 part liquid nitrogen is crossed cold deutomerite through subcooler and is flowed into the rectifying column top as upward tower rectifying of phegma participation, and the nitrogen at last rectifying column top goes out tower after deliver to the user as nitrogen product behind subcooler and main heat exchanger re-heat to the normal temperature.
A2 partly gets into down the top of rectifying column as phegma.
The evaporimeter that B part nitrogen gets into the oxygen column bottom as thermal source and in evaporimeter by the liquid oxygen of oxygen column bottom be cooled to liquid nitrogen get under the top of rectifying column as phegma.
Wherein, in the nitrogen that following rectifying column top obtains, the nitrogen amount of B part is decided based on oxygen column bottom rising quantity of steam, and all the other then are the A part; Among the A, the nitrogen amount of A2 part is based on rectifying column nitrogen output and purity decision down, and all the other then are A1.
The oxygen that produces in the oxygen column bottom is delivered to the user as product gas behind main heat exchanger re-heat to normal temperature.
Further; Cross cold deutomerite at the oxygen-enriched liquid air of rectifier bottoms generation down through subcooler and flow into the rectifying column middle part; The oxygen-enriched liquid air throttling that produces in last rectifier bottoms gets into the oxygen column top as the oxygen column phegma, and the oxygen column bottom evaporimeter phase-change heat-exchange of liquid oxygen through the oxygen column bottom produces oxygen as rising steam.
Raw air is compressed to 0.5~1.0MPa (G) by air compressor after air cleaner is removed dust in air and impurity, reducing air themperature through chilldown system again is 5-8 ℃.
The dirty nitrogen that last rectifier produces goes out tower after get into the turbo-expander expansion after subcooler and the main heat exchanger re-heat; Direct regeneration gas after also getting into the turbo-expander expansion or get into the heat exchanger re-heat after the waste gas entering heat exchanger re-heat at oxygen column top as purification system.
Expansion is mended and is increased cold to turbo-expander, and the dirty nitrogen after the expansion reclaims the regeneration gas of cold rear section as purification system through main heat exchanger, and all the other diffuse.
Below set forth the technology that the present invention produces nitrogen and oxygen simultaneously from another angle again:
Raw air is removed dust in air and impurity through air cleaner, is compressed to 0.5~1.0MPa (G) by air compressor then, and reducing air themperature through chilldown system again is 5-8 ℃, gets into purification system after separating free water, removes H 2O, CO 2, C 2H 2And other hydrocarbon.Cleaned air passes is carried out heat exchange and is got into down the rectifying column bottom after being cooled to saturation temperature and carry out rectifying through main heat exchanger and the waste gas that backflows and nitrogen, oxygen, obtains nitrogen at rectifying column top down.
Nitrogen separated into two parts after the rectifying: a part (said A part promptly) gets into condenser/evaporator as thermal source; The oxygen-enriched liquid air of rectifier bottoms is cooled to liquid nitrogen on the quilt in condenser/evaporator; Be divided into two parts: wherein the top of rectifying column is as phegma under a part of (being the A2 part) entering, and a part (being the A1 part) liquid nitrogen is crossed cold deutomerite through subcooler and flowed into the rectifying column top as upward tower rectifying of phegma participation (partly can be used as nitrogen products takes out) in addition; A part of in addition nitrogen (being the B part) gets into the evaporimeter of oxygen column bottom as thermal source, and the top of in evaporimeter, being cooled off rectifying column under the entering by the liquid oxygen of oxygen column bottom is as phegma.
Rectifying column middle part on the oxygen-enriched liquid air that following rectifier bottoms obtains is crossed through subcooler that cold back throttling is laggard and gone into; The oxygen-enriched liquid air of condenser/evaporator bottom is heated as the rising steam of oxygen-enriched air as last rectifying column by the nitrogen by rectifying column top generation down; Last rectifying column is through after the rectifying; Obtain sending the user after product nitrogen gas process subcooler and the main heat exchanger re-heat at its top, take out dirty nitrogen at last rectifier and after subcooler and main heat exchanger re-heat, get into decompressor.
The oxygen-enriched liquid air of last rectifier bottoms takes out through getting into the oxygen column top after the throttling as phegma; Liquid oxygen in the evaporimeter of oxygen column bottom is that oxygen is as rising steam by the vaporized nitrogen by following rectifying column; The bottom produces oxygen and after the main heat exchanger re-heat, send the user after the process rectifying; The waste gas at top is joined and is expanded by entering decompressor after the dirty nitrogen entering heat exchanger re-heat of last rectifying column generation; Increase cold to the device benefit, the dirty nitrogen after the expansion reclaims the regeneration gas of cold rear section as purification system through main heat exchanger, and all the other diffuse.
Wherein also can do following adjustment based on arts demand:
1. go into main heat exchanger cooling back and get into rectifying column down through the booster expansion turbine supercharging is laggard through the part air that purifies.
2. the waste gas that produces of adjustment oxygen column directly gets into after the main heat exchanger re-heat as regeneration gas.
The recovery rate of the above-mentioned technology nitrogen of the present invention is 55-75%, and the nitrogen pressure of acquisition (being nitrogen product requirement pressure) is 0.2~0.35MPa (G), in the nitrogen 0 2≤1-100ppm.The recovery rate of oxygen is 60-75%, and the oxygen pressure of acquisition (being oxygen product requirement pressure) is 0.005~0.25MPa (G), oxygen content 80%-99.6%.Process energy consumption is 0.17-0.25 kWh/Nm 3(N 2+ O 2).
In the technology, concrete reflux ratio and other each parameters can be adjusted according to the situation of concrete rectifying column and oxygen column by those skilled in the art, also can assist means such as existing simulation softward, set forth no longer one by one here.
The present invention has following advantage with respect to prior art:
Nitrogen reparation technology air compressor of the present invention row pressure low (0.5-1.0Mpa); Energy consumption is low; Greatly reduce the energy consumption requirement of nitrogen production by air separation device; Meet the requirement of the present energy-saving and emission-reduction to high energy-consuming industry of country, the nitrogen recovery rate can reach 55-75% simultaneously, and the recovery rate of oxygen is 60-75%.
Description of drawings
Fig. 1 is produced the process chart of oxygen and nitrogen by air separation for embodiment 1.
The specific embodiment
Below with specific embodiment technical scheme of the present invention is described, but protection scope of the present invention is not limited thereto:
Embodiment 1
It is 0.3MPa (gauge pressure is all represented with gauge pressure with downforce) that this routine nitrogen product requires pressure, and it is 0.15MPa that oxygen product requires pressure.
In conjunction with Fig. 1, raw air is removed dust in air and impurity through air cleaner 1, be compressed to 0.8MPa by air compressor 2 then after, reduce air themperatures to 5-8 ℃ through chilldown system 3 again, get into purification system after separating free water, remove H 2O, CO 2, C 2H 2And other hydrocarbon.Cleaned air passes is carried out heat exchange and is cooled to saturation temperature through main heat exchanger 5 and the waste gas that backflows and nitrogen, oxygen, and the back gets into down rectifying column 6 bottoms and carries out rectifying, obtains nitrogen at rectifying 6 tops of tower down.
Nitrogen separated into two parts after the rectifying: wherein 55% nitrogen gets into condenser/evaporator 7 as thermal source; The oxygen-enriched liquid air of rectifying column 8 bottoms is cooled to liquid nitrogen on the quilt in condenser/evaporator 7; Be divided into two parts: wherein the top of rectifying column 6 is as phegma under 30% entering, and other 70% liquid nitrogen is crossed cold deutomerite through subcooler 9 and flowed into rectifying column 8 tops as upward tower rectifying of phegma participation (partly can be used as nitrogen products takes out); The evaporimeter that rectifying column 6 tops obtain nitrogen (45%) entering oxygen column 10 bottoms under all the other is as thermal source, and the top of in evaporimeter, being cooled off rectifying column 6 under the entering by the liquid oxygen of oxygen column 10 bottoms is as phegma.
Rectifying column 8 middle parts on the oxygen-enriched liquid air that obtains in following rectifying column 6 bottoms is crossed through subcooler 9 that cold back throttling is laggard and gone into; The oxygen-enriched liquid air of condenser/evaporator bottom is heated as the rising steam of oxygen-enriched air as last rectifying column 8 by the nitrogen by rectifying column 6 tops generation down; Through after the rectifying; Obtain sending the user after product nitrogen gas (0.3MPa) process subcooler 9 and main heat exchanger 5 re-heats at last rectifying column 8 tops, take out dirty nitrogen on last rectifying column 8 tops and after subcooler 9 and main heat exchanger 5 re-heats, get into decompressor 11.
The oxygen-enriched liquid air (containing oxygen 65.6%) of last rectifying column 8 bottoms takes out through getting into oxygen column 10 tops after the throttling as phegma; Liquid oxygen in the oxygen column 10 bottom evaporimeters is that oxygen is as rising steam by the vaporized nitrogen by following rectifying column 6; Through the rectifying rear lower produce oxygen (0.15MPa) after main heat exchanger 5 re-heats, send the user, the waste gas at top is directly as the purification system regeneration gas; Get into decompressor 11 after dirty nitrogen entering heat exchanger 5 re-heats by last rectifying column 8 generations and expand, increase cold to the device benefit, the dirty nitrogen after the expansion is the regeneration gas as purification system through main heat exchanger 5 recovery cold rear sections, and all the other diffuse.
The nitrogen recovery rate is 63%, and the recovery rate of oxygen is 71%, and energy consumption is 0.193 kWh/Nm 3(N 2+ O 2).
The foregoing description is the preferred embodiment of the present invention, but embodiment of the present invention is not restricted to the described embodiments, and other the change that any the present invention of not deviating from did all should be the substitute mode of equivalence, is included within protection scope of the present invention.

Claims (10)

1. technology of producing oxygen and nitrogen by air separation; It is characterized in that cleaned air passes is cooled to and gets into three grades of distillation systems after the saturation temperature and carry out rectifying, described three grades of distillation systems by the two-stage rectification system and the oxygen column after being connected in the two-stage rectification system constitute; Described two-stage rectification system is made up of with following rectifying column the last rectifying column that condenser/evaporator connects as one; After the rectifying, obtain product nitrogen gas, obtain product oxygen in the oxygen column bottom at last rectifying column top.
2. as claimed in claim 1ly produce the technology of oxygen and nitrogen by air separation, it is characterized in that, cleaned air passes is cooled to and gets into down after the saturation temperature that rectifying column carries out rectifying, obtains nitrogen at rectifying column top down, obtains oxygen-enriched liquid air in the bottom.
3. the technology of producing oxygen and nitrogen by air separation as claimed in claim 2; It is characterized in that; The nitrogen that following rectifying column top obtains is divided into A, B two parts; The condenser/evaporator that A partly gets into the rectifying column bottom as thermal source and in condenser/evaporator by on the oxygen-enriched liquid air of rectifier bottoms be cooled to liquid nitrogen; Be divided into A1 and A2 two parts simultaneously, wherein the A1 part liquid nitrogen is crossed cold deutomerite through subcooler and is flowed into the rectifying column top as upward tower rectifying of phegma participation, and the nitrogen at last rectifying column top goes out tower after deliver to the user as nitrogen product behind subcooler and main heat exchanger re-heat to the normal temperature.
4. as claimed in claim 3ly produce the technology of oxygen and nitrogen, it is characterized in that A2 partly gets into down the top of rectifying column as phegma by air separation.
5. the technology of producing oxygen and nitrogen by air separation as claimed in claim 3; It is characterized in that the top of rectifying column was as phegma under the evaporimeter that B part nitrogen gets into the oxygen column bottom was got into by the liquid oxygen cooling of oxygen column bottom as thermal source and in evaporimeter.
6. as claimed in claim 3ly produce the technology of oxygen and nitrogen, it is characterized in that the oxygen that produces in the oxygen column bottom is delivered to the user as product gas behind main heat exchanger re-heat to normal temperature by air separation.
7. the technology of producing oxygen and nitrogen by air separation as claimed in claim 6; It is characterized in that; Cross cold deutomerite at the oxygen-enriched liquid air of rectifier bottoms generation down through subcooler and flow into the rectifying column middle part; The oxygen-enriched liquid air throttling that produces in last rectifier bottoms gets into the oxygen column top as the oxygen column phegma, and the oxygen column bottom evaporimeter phase-change heat-exchange of liquid oxygen through the oxygen column bottom produces oxygen as rising steam.
8. like the described technology of producing oxygen and nitrogen by air separation of one of claim 3-7; Raw air is compressed to 0.5~1.0MPa (G) by air compressor after air cleaner is removed dust in air and impurity; Reducing air themperature through chilldown system again is 5-8 ℃, purifies then.
9. as claimed in claim 8ly produce the technology of oxygen and nitrogen, it is characterized in that the dirty nitrogen that last rectifier produces goes out tower after get into the turbo-expander expansion after subcooler and the main heat exchanger re-heat by air separation; Direct regeneration gas after also getting into the turbo-expander expansion or get into the heat exchanger re-heat after the waste gas entering heat exchanger re-heat at oxygen column top as purification system.
10. as claimed in claim 9ly produce the technology of oxygen and nitrogen by air separation, it is characterized in that, mend to turbo-expander and increase cold, the dirty nitrogen after the expansion reclaims the regeneration gas of cold rear section as purification system through main heat exchanger, and all the other diffuse.
CN2011104349408A 2011-12-22 2011-12-22 Process for producing oxygen and nitrogen by air separation Pending CN102445054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104349408A CN102445054A (en) 2011-12-22 2011-12-22 Process for producing oxygen and nitrogen by air separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104349408A CN102445054A (en) 2011-12-22 2011-12-22 Process for producing oxygen and nitrogen by air separation

Publications (1)

Publication Number Publication Date
CN102445054A true CN102445054A (en) 2012-05-09

Family

ID=46007790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104349408A Pending CN102445054A (en) 2011-12-22 2011-12-22 Process for producing oxygen and nitrogen by air separation

Country Status (1)

Country Link
CN (1) CN102445054A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706101A (en) * 2012-05-23 2012-10-03 苏州制氧机有限责任公司 Air separating device
CN103438663A (en) * 2013-07-11 2013-12-11 开封黄河空分集团有限公司 Device and process for preparing high-purity oxygen and nitrogen under ultra-low pressure
CN106185843A (en) * 2016-06-29 2016-12-07 芜湖杨燕制药有限公司 Medical nitrogen making machine
CN112062095A (en) * 2020-09-21 2020-12-11 江苏双泰阀机械有限公司 Double-air-passage mixed flow oxygen and nitrogen making machine
CN113883829A (en) * 2021-11-01 2022-01-04 四川空分设备(集团)有限责任公司 Method for preparing high-purity nitrogen with low energy consumption and method for preparing high-purity nitrogen with low energy consumption
WO2022238385A1 (en) * 2021-05-11 2022-11-17 Tecforlime Decarbonation process of carbonated materials in a multi-shaft vertical kiln
WO2022238387A1 (en) * 2021-05-11 2022-11-17 Tecforlime Decarbonation process of carbonated materials in a multi-shaft vertical kiln

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167246A (en) * 1996-03-01 1997-12-10 气体产品与化学公司 Double pure oxygen generator for compressor with reboiling device
CN1173626A (en) * 1996-08-13 1998-02-18 普拉塞尔技术有限公司 Cryogenic side column rectification system for producting low purity oxygen and high purity nitrogen
CN1231417A (en) * 1998-04-06 1999-10-13 普拉塞尔技术有限公司 Low temp. rectifying apparatus for producing high-purity oxygen or low-purity oxygen
US6626008B1 (en) * 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
CN2811892Y (en) * 2005-04-20 2006-08-30 苏州市兴鲁空分设备科技发展有限公司 Air separator by back streaming expansion
CN102003867A (en) * 2010-11-09 2011-04-06 上海启元科技发展有限公司 Method for producing high-purity nitrogen and low-purity oxygen
CN102032755A (en) * 2010-08-03 2011-04-27 苏州制氧机有限责任公司 Air separation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167246A (en) * 1996-03-01 1997-12-10 气体产品与化学公司 Double pure oxygen generator for compressor with reboiling device
CN1173626A (en) * 1996-08-13 1998-02-18 普拉塞尔技术有限公司 Cryogenic side column rectification system for producting low purity oxygen and high purity nitrogen
CN1231417A (en) * 1998-04-06 1999-10-13 普拉塞尔技术有限公司 Low temp. rectifying apparatus for producing high-purity oxygen or low-purity oxygen
US6626008B1 (en) * 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
CN2811892Y (en) * 2005-04-20 2006-08-30 苏州市兴鲁空分设备科技发展有限公司 Air separator by back streaming expansion
CN102032755A (en) * 2010-08-03 2011-04-27 苏州制氧机有限责任公司 Air separation device
CN102003867A (en) * 2010-11-09 2011-04-06 上海启元科技发展有限公司 Method for producing high-purity nitrogen and low-purity oxygen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706101A (en) * 2012-05-23 2012-10-03 苏州制氧机有限责任公司 Air separating device
CN102706101B (en) * 2012-05-23 2013-11-06 苏州制氧机有限责任公司 Air separating device
CN103438663A (en) * 2013-07-11 2013-12-11 开封黄河空分集团有限公司 Device and process for preparing high-purity oxygen and nitrogen under ultra-low pressure
CN106185843A (en) * 2016-06-29 2016-12-07 芜湖杨燕制药有限公司 Medical nitrogen making machine
CN106185843B (en) * 2016-06-29 2018-08-07 芜湖杨燕制药有限公司 Medical nitrogen making machine
CN112062095A (en) * 2020-09-21 2020-12-11 江苏双泰阀机械有限公司 Double-air-passage mixed flow oxygen and nitrogen making machine
WO2022238385A1 (en) * 2021-05-11 2022-11-17 Tecforlime Decarbonation process of carbonated materials in a multi-shaft vertical kiln
WO2022238387A1 (en) * 2021-05-11 2022-11-17 Tecforlime Decarbonation process of carbonated materials in a multi-shaft vertical kiln
CN113883829A (en) * 2021-11-01 2022-01-04 四川空分设备(集团)有限责任公司 Method for preparing high-purity nitrogen with low energy consumption and method for preparing high-purity nitrogen with low energy consumption
CN113883829B (en) * 2021-11-01 2023-02-28 四川空分设备(集团)有限责任公司 Method and device for preparing high-purity nitrogen with low energy consumption

Similar Documents

Publication Publication Date Title
CN102445054A (en) Process for producing oxygen and nitrogen by air separation
CN109838975B (en) Low-energy-consumption liquid nitrogen preparation device and process
CN101886871B (en) Method and device for producing pressure oxygen by air separation
CN203375800U (en) Deep cooling air separation oxygen generation system by adoption of synthesis ammonia process
CN104406364B (en) The argon of a kind of double tower coupling reclaims purifier apparatus and argon reclaims purification process
CN102538397A (en) Process for making nitrogen by air separation or making nitrogen and simultaneously producing oxygen in attached manner
CN102620520B (en) Process for preparing pressure oxygen and pressure nitrogen as well as by-product liquid argon through air separation
CN108106327B (en) Low-purity oxygen-enriched preparation device and method
CN103123203A (en) Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
CN215412752U (en) Double-tower low-temperature rectification high-purity nitrogen preparation device
CN101441023A (en) Energy-saving type air separation process
CN103759500A (en) Method and device for manufacturing high purity nitrogen in low energy consumption mode
CN203432208U (en) Device for extracting high-purity oxygen and nitrogen under ultra-low pressure
US20230212768A1 (en) Device and method for producing hydrogen and byproduct oxygen by using green electricity electrolyzed water
CN102530892A (en) Method for producing high purity nitrogen and under-pressure low purity oxygen
CN204718303U (en) A kind of air-separating plant preparing pressure oxygen
CN109883139B (en) Efficient argon extraction process based on oxygen-enriched air separation
CN203687518U (en) Low-purity oxygen preparing device with auxiliary rectifying tower
CN204373313U (en) A kind of argon gas of double tower coupling reclaims purifier apparatus
CN102589250A (en) Process of separating and preparing nitrogen by using air
CN204702504U (en) A kind of synthetic gas is separated hydrogen making and high-purity CO device
CN103438663A (en) Device and process for preparing high-purity oxygen and nitrogen under ultra-low pressure
CN207123117U (en) A kind of new double tower nitrogen device for making
CN203639434U (en) Coupling system of rectisol process and CO2 compressing process
CN101464085B (en) Ultra-low pressure single-column deep-cooling space division technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120509