JP2015114083A - Air separation method and apparatus - Google Patents

Air separation method and apparatus Download PDF

Info

Publication number
JP2015114083A
JP2015114083A JP2013258504A JP2013258504A JP2015114083A JP 2015114083 A JP2015114083 A JP 2015114083A JP 2013258504 A JP2013258504 A JP 2013258504A JP 2013258504 A JP2013258504 A JP 2013258504A JP 2015114083 A JP2015114083 A JP 2015114083A
Authority
JP
Japan
Prior art keywords
liquefied
air
oxygen
nitrogen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258504A
Other languages
Japanese (ja)
Other versions
JP6159242B2 (en
Inventor
紀英 川島
Norihide Kawashima
紀英 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2013258504A priority Critical patent/JP6159242B2/en
Publication of JP2015114083A publication Critical patent/JP2015114083A/en
Application granted granted Critical
Publication of JP6159242B2 publication Critical patent/JP6159242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen

Abstract

PROBLEM TO BE SOLVED: To provide an air separation method and apparatus capable of further improving air separation efficiency in AB processing and reducing more power cost.SOLUTION: An air separation method for collecting product oxygen through cryogenic liquefaction/separation of compressed, refined and cooled raw material air includes: a first distillation step of separating into first nitrogen gas and oxygen enriched liquid; a second distillation step of separating into second nitrogen gas and liquefied oxygen; a first indirect heat exchange step of indirect heat exchanging the first nitrogen gas and part of the liquefied oxygen; a second indirect heat exchange step of indirect heat exchanging low-temperature compressed second raw material air and the remaining of the liquefied oxygen; and a third indirect heat exchange step of decompressing third liquefied air to an intermediate pressure followed by indirect heat exchanging for third nitrogen gas.

Description

本発明は、空気分離方法及び装置に関し、詳しくは、原料空気を深冷液化分離して製品酸素を採取する空気分離方法及び装置に関する。   The present invention relates to an air separation method and apparatus, and more particularly to an air separation method and apparatus for collecting product oxygen by cryogenic liquefaction separation of raw material air.

原料空気を深冷液化分離して製品酸素を採取する際には、一般的に、複精留塔を備えた空気分離装置が用いられている。図7は、製品酸素を採取するための複精留塔を備えた空気分離装置の基本的な構成例を示す系統図である。図7において、空気圧縮機101で圧縮された原料空気は、アフタークーラー101aで常温まで冷却された後、モレキュラーシーブス等を充填した精製設備102に導入され、二酸化炭素や水分等の不純物が吸着除去される。精製設備102で精製された原料空気は、経路121を通り、主熱交換器103で、製品酸素ガス等の低温戻りガスと間接熱交換して露点温度付近まで冷却され、全量がガスの状態又は一部液化した状態で経路122を通り、複精留塔の第一蒸留塔(中圧塔)104の下部に導入される。   When collecting product oxygen by cryogenic liquefaction separation of raw material air, an air separation device equipped with a double rectification column is generally used. FIG. 7 is a system diagram showing a basic configuration example of an air separation device equipped with a double rectification column for collecting product oxygen. In FIG. 7, the raw material air compressed by the air compressor 101 is cooled to room temperature by an aftercooler 101a and then introduced into a purification facility 102 filled with molecular sieves and the like, and impurities such as carbon dioxide and moisture are removed by adsorption. Is done. The raw material air purified by the purification facility 102 passes through the path 121 and is cooled to the dew point temperature by indirect heat exchange with a low-temperature return gas such as product oxygen gas in the main heat exchanger 103. It passes through the path 122 in a partially liquefied state and is introduced into the lower part of the first distillation column (medium pressure column) 104 of the double rectification column.

第一蒸留塔104では、塔底部から導入された原料空気が塔内上昇ガスとなり、塔頂からの還流液との気液接触により低温蒸留が行われ、塔頂部に窒素ガス、塔底部に酸素富化液がそれぞれ分離する。塔頂部に分離した窒素ガスは、経路123を通って第二蒸留塔(低圧塔)105の底部に設置された主凝縮器106に導入され、第二蒸留塔105の底部に分離した液化酸素と間接熱交換を行い、液化酸素を気化させて酸素ガスにするとともに、窒素ガスは液化して液化窒素となる。この液化窒素は経路124に導出され、その一部が経路125を通って第一蒸留塔104の頂部に還流液として戻され、第一蒸留塔104内を下降する。残りの液化窒素は、経路126を通り、過冷器107で冷却され、減圧弁108で第二蒸留塔105の頂部圧力に減圧された後、第二蒸留塔105の頂部に還流液として導入される。   In the first distillation column 104, the raw air introduced from the bottom of the column becomes the rising gas in the column, and low-temperature distillation is performed by gas-liquid contact with the reflux liquid from the top of the column, with nitrogen gas at the top and oxygen at the bottom. Each enrichment separates. The nitrogen gas separated at the top of the column is introduced into the main condenser 106 installed at the bottom of the second distillation column (low pressure column) 105 through the path 123 and separated into the liquefied oxygen separated at the bottom of the second distillation column 105. Indirect heat exchange is performed to vaporize liquefied oxygen into oxygen gas, and nitrogen gas is liquefied to become liquefied nitrogen. The liquefied nitrogen is led to the path 124, and a part of the liquefied nitrogen is returned as a reflux liquid to the top of the first distillation column 104 through the path 125 and descends in the first distillation column 104. The remaining liquefied nitrogen passes through the path 126, is cooled by the supercooler 107, is reduced to the top pressure of the second distillation column 105 by the pressure reducing valve 108, and is then introduced into the top of the second distillation column 105 as a reflux liquid. The

また、第一蒸留塔104の底部に分離した酸素富化液は、経路127に抜き出され、前記過冷器107で冷却され、減圧弁109で第二蒸留塔105の中段部圧力まで減圧された後、第二蒸留塔105の中段部に還流液として導入される。   Further, the oxygen-enriched liquid separated at the bottom of the first distillation column 104 is extracted into the path 127, cooled by the supercooler 107, and depressurized by the pressure reducing valve 109 to the middle pressure of the second distillation column 105. After that, it is introduced into the middle stage of the second distillation column 105 as a reflux liquid.

第二蒸留塔105では、大気圧力に近い低圧の操作圧力で、経路126,127から導入された還流液(液化窒素及び酸素富化液)と、塔底部の主凝縮器106で気化して塔内を上昇する酸素ガスとの気液接触によって低温蒸留が行われ、塔頂部に窒素ガスが分離するとともに塔底部に液化酸素が分離する。   The second distillation column 105 is vaporized by the reflux liquid (liquefied nitrogen and oxygen-enriched liquid) introduced from the paths 126 and 127 and the main condenser 106 at the bottom of the column at an operating pressure close to the atmospheric pressure. Low temperature distillation is performed by gas-liquid contact with oxygen gas rising inside, and nitrogen gas is separated at the top of the column and liquefied oxygen is separated at the bottom of the column.

第二蒸留塔105の頂部に分離した窒素ガスは、経路128に抜出され、過冷器107及び主熱交換器103で熱回収されて常温付近まで昇温した後、経路129から廃ガスとして導出される。この廃ガスの一部は、前記精製設備102の再生ガスとして用いられる。   The nitrogen gas separated at the top of the second distillation column 105 is withdrawn into the path 128, recovered by the supercooler 107 and the main heat exchanger 103 and heated up to near room temperature, and then discharged as waste gas from the path 129. Derived. A part of the waste gas is used as a regeneration gas for the purification facility 102.

また、前記主凝縮器106での熱交換によって気化した酸素ガスの一部は、経路130に抜出されて主熱交換器103に導入され、原料空気と熱交換することにより熱回収されて常温付近まで昇温し、経路131から製品酸素ガスとして採取される。また、液化酸素の一部は、第二蒸留塔105の底部から経路132に保安液酸として抜き出される。   Also, part of the oxygen gas vaporized by heat exchange in the main condenser 106 is extracted to the path 130 and introduced into the main heat exchanger 103, where heat is recovered by exchanging heat with the raw material air, and the room temperature. The temperature is raised to the vicinity and collected as product oxygen gas from the path 131. A part of the liquefied oxygen is extracted from the bottom of the second distillation column 105 to the path 132 as a safety liquid acid.

さらに、運転中の熱損失を補償するための寒冷発生回路140が設けられている。この寒冷発生回路140は、圧縮、精製後の原料空気の一部を経路141に分流し、ブロワ(膨張タービン制動ブロワ)142で昇圧してアフタークーラー142aで常温まで冷却し、更に主熱交換器103で中間温度まで冷却した後、経路143から膨張タービン144に導入して第二蒸留塔105の中段部圧力まで断熱膨張させてるとともに、寒冷を発生させた後、経路145から第二蒸留塔105の中段部に導入している。   Furthermore, a cold generation circuit 140 is provided to compensate for heat loss during operation. This cold generation circuit 140 divides a part of the compressed and refined raw material air into a path 141, pressurizes it with a blower (expansion turbine braking blower) 142, cools it to room temperature with an aftercooler 142a, and further heats the main heat exchanger. After cooling to the intermediate temperature at 103, the refrigerant is introduced into the expansion turbine 144 from the path 143 to adiabatically expand to the middle stage pressure of the second distillation tower 105, and after generating cold, the second distillation tower 105 from the path 145 is cooled. It is introduced in the middle part of

このような基本的な構成に対し、消費動力を低減させるための各種構成が数多く提案されているが、その一つとして、いわゆる、空気蒸発プロセス(Air−Boiling Process、(ABプロセス))が知られている(例えば、特許文献1〜5参照。)。   Many various configurations for reducing the power consumption have been proposed for such a basic configuration. One of them is a so-called air-evaporation process (AB process). (For example, refer to Patent Documents 1 to 5.)

図8は、このABプロセスを採用した空気分離装置の基本的な構成例を示す系統図である。なお、図8の説明において、前記図7に示した空気分離装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 8 is a system diagram showing an example of a basic configuration of an air separation apparatus employing this AB process. In the description of FIG. 8, the same components as those of the air separation device shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8において、この空気分離装置は、前記第二蒸留塔105の底部に設けた主凝縮器(以下、第一間接熱交換器という)106の下方に、仕切板105aを介して第二間接熱交換器151を設け、該第二間接熱交換器151で第二蒸留塔105の塔底部に分離した前記液化酸素の一部と前記原料空気の一部とを間接熱交換させるようにしている。   In FIG. 8, this air separation device is provided with a second indirect heat via a partition plate 105a below a main condenser (hereinafter referred to as a first indirect heat exchanger) 106 provided at the bottom of the second distillation column 105. An exchanger 151 is provided so that a part of the liquefied oxygen separated into the bottom of the second distillation column 105 by the second indirect heat exchanger 151 and a part of the raw air are indirectly heat-exchanged.

すなわち、第二蒸留塔105の塔底部に分離した液化酸素の一部は、経路152を通って第二間接熱交換器151に導入され、前記経路122を流れる原料空気の一部が、経路153に分流して第二間接熱交換器151に導入される。第二間接熱交換器151では、液化酸素が気化して酸素ガスになるとともに原料空気が液化して液化空気となる。この液化空気は、経路154を通って第一蒸留塔104の中段部に還流液として導入される。   That is, a part of the liquefied oxygen separated at the bottom of the second distillation column 105 is introduced into the second indirect heat exchanger 151 through the path 152, and a part of the raw air flowing through the path 122 is converted into the path 153. And is introduced into the second indirect heat exchanger 151. In the second indirect heat exchanger 151, the liquefied oxygen is vaporized to become oxygen gas and the raw material air is liquefied to become liquefied air. The liquefied air is introduced as a reflux liquid into the middle stage of the first distillation column 104 through the path 154.

また、第二間接熱交換器151で気化した酸素ガスの一部は、経路130に抜出されて主熱交換器103で熱回収され、経路131から製品酸素ガスとして採取される。残部の酸素ガスは、経路155を通って第二蒸留塔105の下部に上昇ガスとして導入される。   Further, a part of the oxygen gas vaporized by the second indirect heat exchanger 151 is extracted to the path 130, recovered by the main heat exchanger 103, and collected as product oxygen gas from the path 131. The remaining oxygen gas is introduced as a rising gas into the lower part of the second distillation column 105 through the path 155.

さらに、第一蒸留塔104の中段部からは、塔内を流下する窒素富化液の一部が経路156に抜き出され、過冷器107を通り、減圧弁157で減圧されてから第二蒸留塔105の中段上部に還流液として導入される。   Further, from the middle stage of the first distillation column 104, a part of the nitrogen-enriched liquid flowing down in the column is extracted to the path 156, passes through the supercooler 107, and is depressurized by the pressure reducing valve 157, and then the second stage. A reflux liquid is introduced into the upper middle part of the distillation column 105.

特開平6−117753号公報JP-A-6-117753 特開平6−101963号公報JP-A-6-101963 特開平10−185425号公報JP-A-10-185425 特開平11−257845号公報Japanese Patent Laid-Open No. 11-257845 特開2011−518307号公報JP 2011-518307 A

しかし、各特許文献に記載されたABプロセスでは、原料空気圧力の低減を図ることによってある程度の効果は期待できるものの、装置構成や運転性に問題があった。   However, in the AB process described in each patent document, there is a problem in the apparatus configuration and operability although a certain degree of effect can be expected by reducing the raw material air pressure.

そこで本発明は、ABプロセスにおける空気分離効率を更に向上させて動力費のさらなる低減を図ることができる空気分離方法及び装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide an air separation method and apparatus capable of further improving the air separation efficiency in the AB process and further reducing the power cost.

上記目的を達成するため、本発明の空気分離方法は、圧縮、精製、冷却した原料空気を深冷液化分離することによって製品酸素を採取する空気分離方法において、第一原料空気、第一液化空気、第一液化窒素及び第三液化窒素をあらかじめ設定された第一圧力で低温蒸留して第一窒素ガスと酸素富化液とに分離する第一蒸留工程と、第二液化窒素、第二液化空気、酸素富化液、第三原料空気及び酸素ガスを前記第一圧力より低い第二圧力で低温蒸留して第二窒素ガスと液化酸素とに分離する第二蒸留工程と、あらかじめ設定された圧力に圧縮され、精製、冷却した原料空気を第一原料空気と第二原料空気とに分流する段階と、前記第一原料空気を前記第一蒸留工程に導入する段階と、前記第二原料空気を前記第一圧力より高い第三圧力に低温圧縮する低温圧縮工程と、前記酸素富化液を前記第二圧力に減圧して前記第二蒸留工程に導入する段階と、前記第一窒素ガスの一部を第三窒素ガスとして分流する段階と、前記第一窒素ガスと前記液化酸素の一部とを間接熱交換させ、前記第一窒素ガスを液化して第一液化窒素にするとともに前記液化酸素を気化して酸素ガスにする第一間接熱交換工程と、低温圧縮した前記第二原料空気と前記液化酸素の残部とを間接熱交換させ、前記第二原料空気を液化して液化空気にするとともに前記液化酸素を気化して酸素ガスにする第二間接熱交換工程と、前記液化空気を第一液化空気、第二液化空気及び第三液化空気に分流する段階と、前記第一液化空気を第一圧力に減圧して前記第一蒸留工程に導入する段階と、前記第二液化空気を第二圧力に減圧して前記第二蒸留工程に導入する段階と、前記第三液化空気を中間圧力に減圧してから前記第三窒素ガスと間接熱交換させ、前記第三窒素ガスを液化して第二液化窒素にするとともに、前記第三液化空気を気化して第三原料空気にする第三間接熱交換工程と、前記第二液化窒素の一部を第三液化窒素として分流する段階と、前記第三液化窒素及び前記第一液化窒素を前記第一蒸留工程にそれぞれ導入する段階と、前記第二液化窒素の残部を第二圧力に減圧して前記第二蒸留工程に導入する段階と、前記第三原料空気を断熱膨張させて前記第二圧力に減圧してから前記第二蒸留工程に導入する段階と、前記酸素ガスの一部を熱回収後に製品酸素ガスとして採取する段階、前記酸素ガスの残部を前記第二蒸留工程に導入する段階と、前記第二窒素ガスを熱回収後に導出する段階とを含むことを特徴としている。   In order to achieve the above object, the air separation method of the present invention includes a first raw material air, a first liquefied air, and a first raw material air, a first liquefied air. A first distillation step in which the first liquefied nitrogen and the third liquefied nitrogen are subjected to low-temperature distillation at a preset first pressure to be separated into a first nitrogen gas and an oxygen-enriched liquid; a second liquefied nitrogen and a second liquefied liquid A second distillation step in which air, oxygen-enriched liquid, third raw material air and oxygen gas are subjected to low-temperature distillation at a second pressure lower than the first pressure to separate into second nitrogen gas and liquefied oxygen, and are set in advance A step of diverting the raw material air compressed to pressure, purified and cooled into a first raw material air and a second raw material air, a step of introducing the first raw material air into the first distillation step, and the second raw material air The first pressure higher than the third pressure to low temperature A step of compressing, a step of reducing the oxygen-enriched liquid to the second pressure and introducing it into the second distillation step, and a step of diverting a part of the first nitrogen gas as a third nitrogen gas; Indirect heat exchange between the first nitrogen gas and a part of the liquefied oxygen, the first nitrogen gas is liquefied to form first liquefied nitrogen and the liquefied oxygen is vaporized to form oxygen gas. Indirect heat exchange between the heat exchange step and the low-temperature compressed second raw material air and the remainder of the liquefied oxygen, liquefying the second raw material air into liquefied air and vaporizing the liquefied oxygen into oxygen gas A second indirect heat exchanging step, a step of diverting the liquefied air into a first liquefied air, a second liquefied air, and a third liquefied air, and reducing the first liquefied air to a first pressure to reduce the first distillation. Introducing the second liquefied air to the second pressure; And introducing the second liquefied air into the second distillation step, reducing the third liquefied air to an intermediate pressure, and then indirectly exchanging with the third nitrogen gas, liquefying the third nitrogen gas, and liquefying the second liquefied nitrogen And a third indirect heat exchange step to vaporize the third liquefied air to form third raw material air, a step of diverting a part of the second liquefied nitrogen as third liquefied nitrogen, and the third liquefied Introducing nitrogen and the first liquefied nitrogen into the first distillation step, reducing the remaining pressure of the second liquefied nitrogen to a second pressure and introducing the second liquefied nitrogen into the second distillation step; and the third raw material. A step of adiabatic expansion of air to reduce the pressure to the second pressure and then introducing the second distillation step; a step of collecting a part of the oxygen gas as a product oxygen gas after heat recovery; and a balance of the oxygen gas. Introducing into the second distillation step, and the second nitrogen. And a step of deriving the raw gas after heat recovery.

さらに、本発明の空気分離方法は、前記窒素富化ガスを断熱膨張させる際に発生するエネルギーで前記第二原料空気を前記第二圧力に昇圧することを特徴としている。   Furthermore, the air separation method of the present invention is characterized in that the second raw material air is boosted to the second pressure with energy generated when the nitrogen-enriched gas is adiabatically expanded.

また、本発明の空気分離装置は、圧縮、精製、冷却した原料空気を深冷液化分離することによって製品酸素を採取する空気分離装置において、第一原料空気、第一液化空気、第一液化窒素及び第三液化窒素をあらかじめ設定された第一圧力で低温蒸留して第一窒素ガスと酸素富化液とに分離する第一蒸留塔と、第二液化窒素、第二液化空気、酸素富化液、第三原料空気及び酸素ガスを前記第一圧力より低い第二圧力で低温蒸留して第二窒素ガスと液化酸素とに分離する第二蒸留塔と、あらかじめ設定された圧力に圧縮され、精製、冷却した原料空気を第一原料空気と第二原料空気とに分流する経路と、前記第一原料空気を前記第一蒸留塔に導入する経路と、前記第二原料空気を前記第一圧力より高い第三圧力に低温圧縮する低温圧縮機と、前記酸素富化液を前記第二圧力に減圧して前記第二蒸留塔に導入する経路と、前記第一窒素ガスの一部を第三窒素ガスとして分流する経路と、前記第一窒素ガスと前記液化酸素の一部とを間接熱交換させ、前記第一窒素ガスを液化して第一液化窒素にするとともに前記液化酸素を気化して酸素ガスにする第一間接熱交換器と、低温圧縮した前記第二原料空気と前記液化酸素の残部とを間接熱交換させ、前記第二原料空気を液化して液化空気にするとともに前記液化酸素を気化して酸素ガスにする第二間接熱交換器と、前記液化空気を第一液化空気、第二液化空気及び第三液化空気に分流する経路と、前記第一液化空気を第一圧力に減圧して前記第一蒸留塔に導入する経路と、前記第二液化空気を第二圧力に減圧して前記第二蒸留塔に導入する経路と、前記第三液化空気を中間圧力に減圧してから前記第三窒素ガスと間接熱交換させ、前記第三窒素ガスを液化して第二液化窒素にするとともに、前記第三液化空気を気化して第三原料空気にする第三間接熱交換器と、前記第二液化窒素の一部を第三液化窒素として分流する経路と、前記第三液化窒素及び前記第一液化窒素を前記第一蒸留塔にそれぞれ導入する経路と、前記第二液化窒素の残部を第二圧力に減圧して前記第二蒸留塔に導入する経路と、前記第三原料空気を膨張タービンで断熱膨張させて前記第二圧力に減圧してから前記第二蒸留塔に導入する経路と、前記酸素ガスの一部を熱回収後に製品酸素ガスとして採取する経路と、前記酸素ガスの残部を前記第二蒸留塔に導入する経路と、前記第二窒素ガスを熱回収後に導出する経路とを備えていることを特徴としている。   The air separation device of the present invention is an air separation device that collects product oxygen by subjecting compressed, refined, and cooled raw material air to cryogenic liquefaction separation. The first raw material air, the first liquefied air, and the first liquefied nitrogen And a first distillation column for low-temperature distillation of the third liquefied nitrogen at a preset first pressure to separate it into a first nitrogen gas and an oxygen-enriched liquid, a second liquefied nitrogen, a second liquefied air, and an oxygen-enriched liquid Liquid, third raw material air and oxygen gas are subjected to low-temperature distillation at a second pressure lower than the first pressure and separated into second nitrogen gas and liquefied oxygen, and compressed to a preset pressure, A path for diverting the purified and cooled source air into the first source air and the second source air, a path for introducing the first source air into the first distillation column, and the second source air as the first pressure. A cold compressor that cold compresses to a higher third pressure, and before A path for reducing the oxygen-enriched liquid to the second pressure and introducing it into the second distillation column; a path for diverting a part of the first nitrogen gas as a third nitrogen gas; the first nitrogen gas; A portion of the liquefied oxygen is indirectly heat-exchanged, and the first nitrogen gas is liquefied to be the first liquefied nitrogen and the liquefied oxygen is vaporized to be oxygen gas, and is compressed at a low temperature. A second indirect heat exchanger that indirectly heat exchanges the second raw material air and the remainder of the liquefied oxygen, liquefies the second raw material air into liquefied air, and vaporizes the liquefied oxygen into oxygen gas. A path for dividing the liquefied air into a first liquefied air, a second liquefied air, and a third liquefied air; a path for reducing the first liquefied air to a first pressure and introducing it into the first distillation column; The second liquefied air is reduced to the second pressure and introduced into the second distillation column. The third liquefied air is reduced to an intermediate pressure, and then indirectly heat exchanged with the third nitrogen gas to liquefy the third nitrogen gas into second liquefied nitrogen and to evaporate the third liquefied air. A third indirect heat exchanger that converts the second liquefied nitrogen into a third raw material air, a path for diverting a part of the second liquefied nitrogen as the third liquefied nitrogen, and the third liquefied nitrogen and the first liquefied nitrogen as the first liquefied nitrogen. A path for introducing each into the distillation tower, a path for reducing the remainder of the second liquefied nitrogen to a second pressure and introducing it into the second distillation tower, and adiabatically expanding the third source air with an expansion turbine to A path for reducing the pressure to two pressures and introducing it into the second distillation column, a path for collecting a part of the oxygen gas as product oxygen gas after heat recovery, and introducing the remainder of the oxygen gas into the second distillation column And a route for deriving the second nitrogen gas after heat recovery It is characterized by having.

さらに、本発明の空気分離装置は、前記第三間接熱交換器がドライ式又はサーモサイフォン式であることを特徴としている。   Furthermore, the air separation device of the present invention is characterized in that the third indirect heat exchanger is a dry type or a thermosiphon type.

本発明によれば、第三間接熱交換工程を実施する第三間接熱交換器で液化酸素と熱交換する温流体を、低温圧縮機で低温圧縮した第二原料空気としているので、第三間接熱交換工程における熱交換効率を向上できるとともに、第二原料空気を昇圧するために要する動力の低減や機器の小型化を図ることができる。   According to the present invention, since the warm fluid that exchanges heat with liquefied oxygen in the third indirect heat exchanger that performs the third indirect heat exchange step is the second raw material air that is cold-compressed by the low-temperature compressor, the third indirect The heat exchange efficiency in the heat exchange process can be improved, and the power required for boosting the second raw material air can be reduced and the equipment can be downsized.

本発明の空気分離方法を実施可能な空気分離装置の第1形態例を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing a first embodiment of an air separation device capable of implementing an air separation method of the present invention. 本発明の空気分離方法を実施可能な空気分離装置の第2形態例を示す系統図である。It is a systematic diagram which shows the 2nd example of an air separation apparatus which can implement the air separation method of this invention. 本発明の空気分離方法を実施可能な空気分離装置の第3形態例を示す系統図である。It is a systematic diagram which shows the 3rd example of an air separation apparatus which can implement the air separation method of this invention. 本発明の空気分離方法を実施可能な空気分離装置の第4形態例を示す系統図である。It is a systematic diagram which shows the 4th example of an air separation apparatus which can implement the air separation method of this invention. 本発明の空気分離方法を実施可能な空気分離装置の第5形態例を示す系統図である。It is a systematic diagram which shows the 5th example of an air separation apparatus which can implement the air separation method of this invention. 本発明の空気分離方法を実施可能な空気分離装置の第6形態例を示す系統図である。It is a systematic diagram which shows the 6th form example of the air separation apparatus which can implement the air separation method of this invention. 製品酸素を採取するための複精留塔を備えた空気分離装置の基本的な構成例を示す系統図である。It is a systematic diagram which shows the basic structural example of the air separation apparatus provided with the double rectification column for extract | collecting product oxygen. ABプロセスを採用した空気分離装置の基本的な構成例を示す系統図である。It is a systematic diagram which shows the basic structural example of the air separation apparatus which employ | adopted AB process.

図1は、本発明の空気分離方法を実施可能な空気分離装置の第1形態例を示す系統図である。本形態例に示す空気分離装置は、主要な機器として、あらかじめ設定された第一圧力で第一蒸留工程を行う第一蒸留塔11と、前記第一圧力より低い第二圧力で第二蒸留工程を行う第二蒸留塔12と、第二蒸留塔12の底部に設けられた第一間接熱交換工程を行う第一間接熱交換器13と、第二蒸留塔12の下方に仕切板12aを介して配置された第二間接熱交換工程を行う第二間接熱交換器14と、第二蒸留塔12の下部側方に配置された第三間接熱交換工程を行う第三間接熱交換器15と、断熱膨張工程を行う膨張タービン16及び該膨張タービン16によって駆動される低温圧縮工程を行う低温圧縮機17と、寒冷補給用の寒冷発生回路18とを備えている。   FIG. 1 is a system diagram showing a first embodiment of an air separation device capable of implementing the air separation method of the present invention. The air separation apparatus shown in the present embodiment includes, as main equipment, a first distillation column 11 that performs a first distillation step at a preset first pressure, and a second distillation step at a second pressure lower than the first pressure. The second distillation column 12 that performs the first indirect heat exchanger 13 that performs the first indirect heat exchange step provided at the bottom of the second distillation column 12, and the partition plate 12a below the second distillation column 12 A second indirect heat exchanger 14 for performing the second indirect heat exchange step disposed in the second position, and a third indirect heat exchanger 15 for performing the third indirect heat exchange step disposed at the lower side of the second distillation column 12; And an expansion turbine 16 that performs the adiabatic expansion process, a low-temperature compressor 17 that performs a low-temperature compression process driven by the expansion turbine 16, and a cold generation circuit 18 for replenishing the cold.

原料空気は、空気圧縮機20であらかじめ設定された中間圧力(中圧)の第一圧力に圧縮され、アフタークーラー20aで常温まで冷却された後、モレキュラーシーブス等を充填した精製設備21に導入され、二酸化炭素や水分等の不純物が吸着除去される。精製設備21で精製された原料空気は、経路31から主熱交換器22に導入され、この主熱交換器22で、製品酸素ガス等の低温戻りガスと熱交換して露点温度付近まで冷却され、経路32に導出される。   The raw material air is compressed to a first intermediate pressure (intermediate pressure) set in advance by the air compressor 20, cooled to room temperature by an aftercooler 20 a, and then introduced into a purification facility 21 filled with molecular sieves and the like. Impurities such as carbon dioxide and moisture are removed by adsorption. The raw material air purified by the refining equipment 21 is introduced into the main heat exchanger 22 through the path 31, and is cooled to near the dew point temperature by exchanging heat with a low-temperature return gas such as product oxygen gas. , Route 32.

経路32を流れる原料空気は、経路33の第一原料空気と経路34の第二原料空気とに分流し、経路33の第一原料空気は、前記第一蒸留塔11の下部に導入される。また、経路34の第二原料空気は、前記低温圧縮機17で前記第一圧力より高い第三圧力に圧縮された後、経路35を通って前記第二間接熱交換器14に導入される。   The raw material air flowing through the path 32 is divided into the first raw material air of the path 33 and the second raw material air of the path 34, and the first raw material air of the path 33 is introduced into the lower part of the first distillation column 11. Further, the second raw material air in the path 34 is compressed to a third pressure higher than the first pressure by the low-temperature compressor 17, and then introduced into the second indirect heat exchanger 14 through the path 35.

第一蒸留塔11では第一蒸留工程が行われ、前記第一原料空気と、後述する第一液化空気、第一液化窒素及び第三液化窒素とが低温蒸留されることにより、塔頂部に第一窒素ガスが分離し、塔底部に酸素富化液が分離する。酸素富化液は、第一蒸留塔11の底部から経路36に抜き出され、過冷器23を通り、減圧弁24で減圧された後、第二蒸留塔12の中段部に還流液として導入される。   In the first distillation column 11, a first distillation step is performed, and the first raw material air and first liquefied air, first liquefied nitrogen, and third liquefied nitrogen, which will be described later, are subjected to low temperature distillation, so that One nitrogen gas is separated and the oxygen-enriched liquid is separated at the bottom of the column. The oxygen-enriched liquid is extracted from the bottom of the first distillation column 11 to the path 36, passes through the supercooler 23, is depressurized by the pressure reducing valve 24, and is then introduced as a reflux liquid into the middle stage of the second distillation column 12. Is done.

第一蒸留塔11の塔頂部の第一窒素ガスは、経路37に抜き出された後、該第一窒素ガスの一部が経路38に第三窒素ガスとして分流し、分流した第三窒素ガスは、第三間接熱交換器15に導入され、残部の第一窒素ガスは、経路39を通って第一間接熱交換器13に導入される。第一間接熱交換器13では、第二蒸留塔12の底部に分離した液化酸素の一部(第一液化酸素)と第一窒素ガスとが第一間接熱交換工程を行い、第一窒素ガスが液化して第一液化窒素になるとともに、第一液化酸素が気化して第一酸素ガスになる。液化した第一液化窒素は、経路40を通って第一蒸留塔11の塔頂部に還流液として戻される。   After the first nitrogen gas at the top of the first distillation column 11 is extracted to the path 37, a part of the first nitrogen gas is diverted to the path 38 as the third nitrogen gas, and the divided third nitrogen gas is obtained. Is introduced into the third indirect heat exchanger 15, and the remaining first nitrogen gas is introduced into the first indirect heat exchanger 13 through the path 39. In the first indirect heat exchanger 13, a part of the liquefied oxygen (first liquefied oxygen) separated at the bottom of the second distillation column 12 and the first nitrogen gas perform the first indirect heat exchange step, and the first nitrogen gas Is liquefied to become first liquefied nitrogen, and first liquefied oxygen is vaporized to become first oxygen gas. The liquefied first liquefied nitrogen is returned as a reflux liquid to the top of the first distillation column 11 through the path 40.

また、第二蒸留塔12の底部に分離した液化酸素の残部は、第二液化酸素として経路41から気液接触部14aを還流液として通過した後、第二間接熱交換器14に導入される。この第二液化酸素の大部分は、第三圧力に圧縮された前記第二原料空気との間で第二間接熱交換工程を行い、第二原料空気を液化して液化空気にするとともに、第二液化酸素は気化して第二酸素ガスになる。この第二酸素ガスの一部は、経路42に抜き出され、主熱交換器22で原料空気を加温することによって熱回収された後、経路43から製品酸素ガスとして採取される。第二酸素ガスの残部は、気液接触部14aを上昇ガスとして通過した後、弁25を有する経路44を通って第二蒸留塔12の下部に導入され、前記第一酸素ガスと合流して第二蒸留塔12の上昇ガスとなる。また、第二液化酸素は、炭化水素の濃縮を防止するための保安液酸として少量が経路45から抜き出される。   Further, the remaining portion of the liquefied oxygen separated at the bottom of the second distillation column 12 passes through the gas-liquid contact portion 14a as the reflux liquid from the path 41 as the second liquefied oxygen, and is then introduced into the second indirect heat exchanger 14. . Most of the second liquefied oxygen is subjected to a second indirect heat exchange step with the second raw material air compressed to the third pressure, and the second raw material air is liquefied to liquefied air. The liquefied oxygen is vaporized into a second oxygen gas. A part of the second oxygen gas is extracted into the passage 42 and is recovered as heat by heating the raw air in the main heat exchanger 22 and then collected as product oxygen gas from the passage 43. The remaining portion of the second oxygen gas passes through the gas-liquid contact portion 14a as an ascending gas, and then is introduced into the lower portion of the second distillation column 12 through the path 44 having the valve 25, and merges with the first oxygen gas. It becomes the rising gas of the second distillation column 12. A small amount of the second liquefied oxygen is withdrawn from the passage 45 as a protective liquid acid for preventing the concentration of hydrocarbons.

前記液化空気は、経路46に抜き出された後、経路47の第一液化空気と、経路48の第二液化空気と、経路49の第三液化空気とに分流し、経路47の第一液化空気は、減圧弁26で減圧されて第一蒸留塔11の中段部に還流液として導入される。また、経路48の第二液化酸素は、過冷器23を通り、減圧弁27で減圧された後、第二蒸留塔12の中段上部に還流液として導入される。   The liquefied air is extracted into the path 46, and then is divided into the first liquefied air in the path 47, the second liquefied air in the path 48, and the third liquefied air in the path 49. The air is depressurized by the pressure reducing valve 26 and is introduced as a reflux liquid into the middle stage of the first distillation column 11. Further, the second liquefied oxygen in the path 48 passes through the supercooler 23, is decompressed by the pressure reducing valve 27, and is then introduced as a reflux liquid into the middle upper part of the second distillation column 12.

経路49の第三液化空気は、減圧弁28で膨張タービン16の入口圧力に減圧された後、気液分離器29で気液分離され、液相が前記第三間接熱交換器15に導入される。ドライ型熱交換器を採用した第三間接熱交換器15では、第三液化空気と経路38から導入される第三窒素ガスとが第三間接熱交換工程を行い、第三液化空気が気化して第三原料空気になるとともに、第三窒素ガスが液化して第二液化窒素になる。   The third liquefied air in the path 49 is depressurized to the inlet pressure of the expansion turbine 16 by the pressure reducing valve 28, and then gas-liquid separated by the gas-liquid separator 29, and the liquid phase is introduced into the third indirect heat exchanger 15. The In the third indirect heat exchanger 15 employing the dry heat exchanger, the third liquefied air and the third nitrogen gas introduced from the passage 38 perform the third indirect heat exchange step, and the third liquefied air is vaporized. As a result, the third raw material air is liquefied and second liquefied nitrogen is obtained.

第三原料空気は、経路50で気液分離器29の気相と合流し、主熱交換器22で中間温度まで加温された後、経路51から膨張タービン16に導入される。膨張タービン16では、第三原料空気が前記第二圧力まで膨張して寒冷を発生するとともに、膨張時のエネルギーによって前記低温圧縮機17を駆動する。膨張した第三原料空気は、経路52を通って第二蒸留塔12の中段部に上昇ガスとして導入される。   The third raw material air joins with the gas phase of the gas-liquid separator 29 in the path 50, is heated to an intermediate temperature in the main heat exchanger 22, and is then introduced into the expansion turbine 16 from the path 51. In the expansion turbine 16, the third raw material air is expanded to the second pressure to generate cold, and the low-temperature compressor 17 is driven by the energy during expansion. The expanded third raw material air is introduced as a rising gas into the middle stage of the second distillation column 12 through the path 52.

一方、第三間接熱交換器15で液化して経路53に導出した第二液化窒素は、一部が経路54に第三液化窒素として分流し、第一蒸留塔11の塔頂部に還流液として戻され、残部の第二液化窒素は、経路55を通って過冷器23を通り、減圧弁30で減圧されてから第二蒸留塔12の頂部に還流液として導入される。そして、第二蒸留塔12の頂部からは、第二窒素ガスが経路56に抜き出され、過冷器23及び主熱交換器22で熱回収された後、経路57から廃ガスとして導出される。   On the other hand, a part of the second liquefied nitrogen liquefied by the third indirect heat exchanger 15 and led to the path 53 is diverted to the path 54 as the third liquefied nitrogen, and as a reflux liquid at the top of the first distillation column 11. The remaining second liquefied nitrogen is returned through the passage 55 through the supercooler 23, decompressed by the pressure reducing valve 30, and then introduced into the top of the second distillation column 12 as a reflux liquid. Then, the second nitrogen gas is extracted from the top of the second distillation column 12 to the path 56, recovered by the supercooler 23 and the main heat exchanger 22, and then led out as a waste gas from the path 57. .

寒冷発生回路18は、従来と同様に、圧縮、精製後の原料空気の一部を経路141に分流し、ブロワ142で昇圧してアフタークーラー142aで常温まで冷却し、更に主熱交換器103で中間温度まで冷却した後、経路143から膨張タービン144に導入して第二蒸留塔105の中段部圧力まで断熱膨張させるとともに、所要量の寒冷を発生させた後、経路145から第二蒸留塔105の中段部に導入している。   The cold generation circuit 18 divides a part of the compressed and purified raw material air into the path 141 as before, pressurizes it with the blower 142, cools it to the room temperature with the aftercooler 142 a, and further with the main heat exchanger 103. After cooling to the intermediate temperature, it is introduced into the expansion turbine 144 from the path 143 to adiabatically expand to the middle pressure of the second distillation column 105, and after generating a required amount of cold, the second distillation column 105 from the path 145 is generated. It is introduced in the middle part of

図2は、本発明の空気分離方法を実施可能な空気分離装置の第2形態例を示す系統図であって、前述の第一蒸留塔11の頂部に、仕切板11aを介して、サーモサイフォン型熱交換器を採用した第三間接熱交換器15を配置した例を示している。なお、以下の説明において、前記第1形態例に示した空気分離装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 2 is a system diagram showing a second embodiment of an air separation apparatus capable of carrying out the air separation method of the present invention. The thermosiphon is connected to the top of the first distillation column 11 via a partition plate 11a. The example which has arrange | positioned the 3rd indirect heat exchanger 15 which employ | adopted the type | mold heat exchanger is shown. In the following description, the same components as those of the air separation device shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例に示す空気分離装置における第三間接熱交換器15には、第一蒸留塔11の頂部から経路37に抜き出した窒素ガスの一部(第三窒素ガス)を、経路38に分流させて導入するとともに、第二間接熱交換器14で液化して経路49に分流した液化空気の一部(第三液化空気)を減圧弁28で減圧して導入している。なお、サーモサイフォン型熱交換器の場合、気液分離器は不要である。   In the third indirect heat exchanger 15 in the air separation apparatus shown in the present embodiment, a part of the nitrogen gas extracted from the top of the first distillation column 11 to the path 37 (third nitrogen gas) is divided into the path 38. In addition, a part of the liquefied air (third liquefied air) liquefied by the second indirect heat exchanger 14 and divided into the passage 49 is decompressed by the pressure reducing valve 28 and introduced. In the case of a thermosiphon heat exchanger, a gas-liquid separator is not necessary.

第三間接熱交換器15での間接熱交換によって液化して経路53に導出された液化窒素(第二液化窒素)は、第一間接熱交換器13での間接熱交換によって液化して経路40に導出された液化窒素(第一液化窒素)と合流し、一部が経路54に分流して第一蒸留塔11の塔頂部に戻され、残部の液化窒素が、経路55から過冷器23、減圧弁30を通って第二蒸留塔12の頂部に導入される。   The liquefied nitrogen (second liquefied nitrogen) liquefied by the indirect heat exchange in the third indirect heat exchanger 15 and led to the path 53 is liquefied by the indirect heat exchange in the first indirect heat exchanger 13 and then the path 40. And the liquefied nitrogen (first liquefied nitrogen) led out to the first distillation column 11 is partly divided into the path 54 and returned to the top of the first distillation column 11, and the remaining liquefied nitrogen is passed from the path 55 to the supercooler 23. Then, it is introduced into the top of the second distillation column 12 through the pressure reducing valve 30.

また、第三間接熱交換器15で未気化の第三液化空気の一部は、経路61に抜き出され、過冷器23で冷却され、減圧弁62で減圧後に第一蒸留塔11の中段部に還流液として導入される。第三間接熱交換器15で気化した第三原料空気は、経路50から主熱交換器22を通り、経路51から膨張タービン16に導入され、膨張して寒冷を発生した後、経路52を通って第二蒸留塔12の中段部に導入される。   In addition, a part of the third liquefied air that has not been vaporized in the third indirect heat exchanger 15 is extracted to the path 61, cooled in the supercooler 23, and decompressed by the pressure reducing valve 62, and then the middle stage of the first distillation column 11. Is introduced into the part as a reflux liquid. The third raw material air vaporized in the third indirect heat exchanger 15 passes through the main heat exchanger 22 from the path 50, is introduced into the expansion turbine 16 from the path 51, expands to generate cold, and then passes through the path 52. Then, it is introduced into the middle stage of the second distillation column 12.

図3は、本発明の空気分離方法を実施可能な空気分離装置の第3形態例を示す系統図であって、第一蒸留塔11と第二蒸留塔12との間に、サーモサイフォン型熱交換器を採用した第三間接熱交換器15を配置した例を示している。   FIG. 3 is a system diagram showing a third embodiment of an air separation apparatus capable of performing the air separation method of the present invention, and a thermosiphon type heat is provided between the first distillation column 11 and the second distillation column 12. The example which has arrange | positioned the 3rd indirect heat exchanger 15 which employ | adopted the exchanger is shown.

本形態例においても、第三間接熱交換器15には、第一蒸留塔11の頂部から経路37に抜き出した窒素ガスの一部(第三窒素ガス)を、経路38に分流させて導入するとともに、第二間接熱交換器14で液化して経路49に分流した液化空気の一部(第三液化空気)を減圧弁28で減圧して導入している。   Also in this embodiment, a part of the nitrogen gas extracted from the top of the first distillation column 11 to the path 37 (third nitrogen gas) is introduced into the third indirect heat exchanger 15 by being divided into the path 38. At the same time, a part of the liquefied air (third liquefied air) that has been liquefied by the second indirect heat exchanger 14 and divided into the path 49 is decompressed by the pressure reducing valve 28 and introduced.

第三間接熱交換器15での間接熱交換によって液化して経路53に導出された液化窒素(第二液化窒素)は、第一間接熱交換器13での間接熱交換によって液化して経路40に導出された液化窒素(第一液化窒素)と合流し、一部が経路54に分流して第一蒸留塔11の塔頂部に戻され、残部の液化窒素が、経路55から過冷器23、減圧弁30を通って第二蒸留塔12の頂部に導入される。   The liquefied nitrogen (second liquefied nitrogen) liquefied by the indirect heat exchange in the third indirect heat exchanger 15 and led to the path 53 is liquefied by the indirect heat exchange in the first indirect heat exchanger 13 and then the path 40. And the liquefied nitrogen (first liquefied nitrogen) led out to the first distillation column 11 is partly divided into the path 54 and returned to the top of the first distillation column 11, and the remaining liquefied nitrogen is passed from the path 55 to the supercooler 23. Then, it is introduced into the top of the second distillation column 12 through the pressure reducing valve 30.

また、第三間接熱交換器15で未気化の第三液化空気の一部は、経路61に抜き出され、過冷器23で冷却され、減圧弁62で減圧後に第一蒸留塔11の中段部に還流液として導入される。第三間接熱交換器15で気化した第三原料空気は、経路50から主熱交換器22を通り、経路51から膨張タービン16に導入され、膨張して寒冷を発生した後、経路52を通って第二蒸留塔12の中段部に導入される。   In addition, a part of the third liquefied air that has not been vaporized in the third indirect heat exchanger 15 is extracted to the path 61, cooled in the supercooler 23, and decompressed by the pressure reducing valve 62, and then the middle stage of the first distillation column 11. Is introduced into the part as a reflux liquid. The third raw material air vaporized in the third indirect heat exchanger 15 passes through the main heat exchanger 22 from the path 50, is introduced into the expansion turbine 16 from the path 51, expands to generate cold, and then passes through the path 52. Then, it is introduced into the middle stage of the second distillation column 12.

図4は、本発明の空気分離方法を実施可能な空気分離装置の第4形態例を示す系統図であって、第1形態例〜第3形態例では、第二蒸留塔12の底部に配置していた第二間接熱交換器14を、第二蒸留塔12とは別に配置した例を示している。   FIG. 4 is a system diagram showing a fourth embodiment of an air separation device capable of performing the air separation method of the present invention, and is arranged at the bottom of the second distillation column 12 in the first to third embodiments. The example which has arrange | positioned the 2nd indirect heat exchanger 14 currently performed separately from the 2nd distillation column 12 is shown.

本形態例は、前記第1形態例と同様に、第二間接熱交換器14には、低温圧縮機17で第一圧力より高い第三圧力に圧縮された第二原料空気が経路35から導入されるとともに、第二蒸留塔12の底部から経路41を通って第二液化酸素が気液接触部14aの上方に導入される。第二間接熱交換器14で液化した液化空気は、経路46に抜き出された後、経路47の第一液化空気と、経路48の第二液化空気と、経路49の第三液化空気とに分流する。また、気化した第二酸素ガスの一部は、経路42から主熱交換器22を通って熱回収された後、経路43から製品酸素ガスとして採取される。第二酸素ガスの残部は、気液接触部14aを上昇ガスとして通過した後、弁25を有する経路44を通って第二蒸留塔12の下部に上昇ガスとして導入される。さらに、第二液化酸素は、少量が保安液酸として経路45から抜き出される。   In the present embodiment, the second raw material air compressed to the third pressure higher than the first pressure by the low-temperature compressor 17 is introduced into the second indirect heat exchanger 14 from the path 35 in the same manner as the first embodiment. At the same time, the second liquefied oxygen is introduced from the bottom of the second distillation column 12 through the path 41 to above the gas-liquid contact portion 14a. The liquefied air liquefied by the second indirect heat exchanger 14 is extracted into the path 46, and then into the first liquefied air in the path 47, the second liquefied air in the path 48, and the third liquefied air in the path 49. Divide. A part of the vaporized second oxygen gas is recovered from the passage 42 through the main heat exchanger 22 and then collected as product oxygen gas from the passage 43. The remainder of the second oxygen gas passes through the gas-liquid contact portion 14a as a rising gas, and then is introduced as a rising gas into the lower portion of the second distillation column 12 through the path 44 having the valve 25. In addition, a small amount of the second liquefied oxygen is withdrawn from the path 45 as a protective liquid acid.

図5は、本発明の空気分離方法を実施可能な空気分離装置の第5形態例を示す系統図であって、製品として、酸素ガスと窒素ガスとを採取するように構成した例を示している。   FIG. 5 is a system diagram showing a fifth embodiment of an air separation apparatus capable of performing the air separation method of the present invention, and shows an example in which oxygen gas and nitrogen gas are collected as products. Yes.

本形態例に示す第二蒸留塔は、該第二蒸留塔12の頂部から経路58に高純度の窒素ガスを導出するとともに、頂部より数段下の位置から経路59に低純度の窒素ガスを導出するように形成している。経路58に導出された高純度の窒素ガスは、過冷器23及び主熱交換器22で熱回収された後、経路60から製品窒素ガスとして導出され、経路59に導出された低純度の窒素ガスは、過冷器23及び主熱交換器22で熱回収された後、経路57から廃ガスとして導出される。   In the second distillation column shown in this embodiment, high-purity nitrogen gas is led from the top of the second distillation column 12 to the path 58 and low-purity nitrogen gas is fed to the path 59 from a position several steps below the top. It is formed to derive. The high-purity nitrogen gas led out to the path 58 is recovered by the supercooler 23 and the main heat exchanger 22, then led out as a product nitrogen gas from the path 60, and low-purity nitrogen led out to the path 59. The gas is recovered as heat by the supercooler 23 and the main heat exchanger 22, and then led out as a waste gas from the path 57.

図6は、本発明の空気分離方法を実施可能な空気分離装置の第6形態例を示す系統図であって、装置への寒冷の補給を、前記寒冷発生回路18に代えて、外部からの液体窒素の注入によって行うようにした例を示している。   FIG. 6 is a system diagram showing a sixth embodiment of an air separation apparatus capable of carrying out the air separation method of the present invention, and the replenishment of cold to the apparatus is replaced with the cold generation circuit 18 from the outside. An example is shown in which liquid nitrogen is injected.

すなわち、本形態例では、前記第一〜第5形態例で設置していた寒冷発生回路18を設けずに、第二蒸留塔12の頂部に、外部から弁61を介して液体窒素を導入する経路62を設け、該経路62から導入される液体窒素によって必要な寒冷を補給するようにしている。また、本形態例では、前記第5形態例と同様に、製品として、酸素ガスと窒素ガスとを採取するようにしている。   That is, in this embodiment, liquid nitrogen is introduced from the outside through the valve 61 to the top of the second distillation column 12 without providing the cold generation circuit 18 installed in the first to fifth embodiments. A path 62 is provided, and necessary cold is replenished by liquid nitrogen introduced from the path 62. Further, in the present embodiment, as in the fifth embodiment, oxygen gas and nitrogen gas are collected as products.

以上の各形態例に示したように、第二間接熱交換器14に温流体として導入する原料空気を、圧縮、精製、冷却した後、低温圧縮機17で圧縮した第二原料空気としているので、圧縮に要する動力を少なくすることができ、原料空気を常温で必要な圧力まで昇圧する場合に比べて、圧縮動力の低減及び圧縮機の小型化を図ることができる。また、低温圧縮する流体を原料空気としているため、例えば、窒素ガスを低温圧縮するときのようなガス置換操作が不要であり、装置の起動を短時間で行うことができる。さらに、第三原料空気を膨張させる膨張タービン16で低温圧縮機17を駆動することにより、第二原料空気を低温圧縮するためのエネルギーが不要となる。また、第一間接熱交換器13と第三間接熱交換器15とを一体的に製作することもでき、一体的に製作した間接熱交換器は、第二蒸留塔の内部又は外部に設置することが可能である。   As shown in the above embodiments, the raw material air introduced as the warm fluid into the second indirect heat exchanger 14 is the second raw material air compressed by the low-temperature compressor 17 after being compressed, purified and cooled. The power required for compression can be reduced, and the compression power can be reduced and the size of the compressor can be reduced as compared with the case where the pressure of the raw material air is increased to a required pressure at room temperature. Further, since the raw material air is used as the fluid to be compressed at a low temperature, for example, a gas replacement operation as in the case of compressing nitrogen gas at a low temperature is unnecessary, and the apparatus can be started up in a short time. Furthermore, by driving the low-temperature compressor 17 with the expansion turbine 16 that expands the third raw material air, energy for compressing the second raw material air at a low temperature becomes unnecessary. Moreover, the 1st indirect heat exchanger 13 and the 3rd indirect heat exchanger 15 can also be manufactured integrally, and the indirect heat exchanger manufactured integrally is installed in the inside or the exterior of a 2nd distillation tower. It is possible.

また、第3形態例や第4形態例に示すように、間接熱交換器の収納用器を蒸留塔とは別に形成することにより、蒸留塔の全体高さを低くすることができ、保冷外槽の高さを低くすることができる。
なお、各部の圧力や温度、流量などは、装置規模や製品採取量などの各種条件に応じて適宜最適な状態に設定されるものであり、また、第一蒸留塔と第二蒸留塔とを上下に重ねて一体化することもでき、各間接熱交換器も、適宜一体的に形成することが可能である。
In addition, as shown in the third embodiment and the fourth embodiment, by forming the storage device for the indirect heat exchanger separately from the distillation tower, the overall height of the distillation tower can be reduced, and the outside of the cold storage The height of the tank can be lowered.
The pressure, temperature, flow rate, etc. of each part are appropriately set in accordance with various conditions such as the scale of the apparatus and the amount of product collected, and the first distillation column and the second distillation column are The indirect heat exchangers can also be integrally formed as appropriate.

図1の第1形態例に示した構成の装置と、図7に示した従来の基本的な構成の装置と、図8に示したABプロセスを採用した装置とにおける運転動力を比較した。装置仕様は、酸素純度95%の製品酸素ガスを15000Nm/hで採取する仕様とした。比較結果を表1に示す。なお、[Nm]は、標準状態に換算したガスの体積[m]を表している。また、表中の運転動力は、図7の例を100としたときの相対値である。 The driving power of the apparatus having the configuration shown in the first embodiment of FIG. 1, the apparatus having the conventional basic configuration shown in FIG. 7, and the apparatus adopting the AB process shown in FIG. 8 were compared. The apparatus specifications were such that product oxygen gas with an oxygen purity of 95% was sampled at 15000 Nm 3 / h. The comparison results are shown in Table 1. [Nm 3 ] represents the gas volume [m 3 ] converted to the standard state. The driving power in the table is a relative value when the example of FIG.

Figure 2015114083
Figure 2015114083

図5の第5形態例に示した構成の装置と、図7に示した従来の基本的な構成の装置と、図8に示したABプロセスを採用した装置とにおける運転動力を比較した。装置仕様は、酸素純度95%の製品酸素ガスを15000Nm/hで採取する仕様とした。比較結果を表2に示す。 The driving power of the apparatus having the configuration shown in the fifth embodiment of FIG. 5, the apparatus having the conventional basic configuration shown in FIG. 7, and the apparatus adopting the AB process shown in FIG. 8 were compared. The apparatus specifications were such that product oxygen gas with an oxygen purity of 95% was sampled at 15000 Nm 3 / h. The comparison results are shown in Table 2.

Figure 2015114083
Figure 2015114083

図6の第6形態例に示した構成の装置と、図7に示した従来の基本的な構成の装置と、図8に示したABプロセスを採用した装置とにおける運転動力を比較した。装置仕様は、酸素純度95%の製品酸素ガスを15000Nm/hで採取する仕様とした。比較結果を表3に示す。 The driving power of the apparatus having the configuration shown in the sixth embodiment of FIG. 6, the apparatus having the conventional basic configuration shown in FIG. 7, and the apparatus adopting the AB process shown in FIG. 8 were compared. The apparatus specifications were such that product oxygen gas with an oxygen purity of 95% was sampled at 15000 Nm 3 / h. The comparison results are shown in Table 3.

Figure 2015114083
Figure 2015114083

11…第一蒸留塔、12…第二蒸留塔、13…第一間接熱交換器、14…第二間接熱交換器、15…第三間接熱交換器、16…膨張タービン、17…低温圧縮機、18…寒冷発生回路、20…空気圧縮機、21…精製設備、22…主熱交換器、23…過冷器 DESCRIPTION OF SYMBOLS 11 ... First distillation tower, 12 ... Second distillation tower, 13 ... First indirect heat exchanger, 14 ... Second indirect heat exchanger, 15 ... Third indirect heat exchanger, 16 ... Expansion turbine, 17 ... Low temperature compression 18 ... Cold generation circuit, 20 ... Air compressor, 21 ... Purification equipment, 22 ... Main heat exchanger, 23 ... Supercooler

Claims (4)

圧縮、精製、冷却した原料空気を深冷液化分離することによって製品酸素を採取する空気分離方法において、
第一原料空気、第一液化空気、第一液化窒素及び第三液化窒素をあらかじめ設定された第一圧力で低温蒸留して第一窒素ガスと酸素富化液とに分離する第一蒸留工程と、
第二液化窒素、第二液化空気、酸素富化液、第三原料空気及び酸素ガスを前記第一圧力より低い第二圧力で低温蒸留して第二窒素ガスと液化酸素とに分離する第二蒸留工程と、
あらかじめ設定された圧力に圧縮され、精製、冷却した原料空気を第一原料空気と第二原料空気とに分流する段階と、
前記第一原料空気を前記第一蒸留工程に導入する段階と、
前記第二原料空気を前記第一圧力より高い第三圧力に低温圧縮する低温圧縮工程と、
前記酸素富化液を前記第二圧力に減圧して前記第二蒸留工程に導入する段階と、
前記第一窒素ガスの一部を第三窒素ガスとして分流する段階と、
前記第一窒素ガスと前記液化酸素の一部とを間接熱交換させ、前記第一窒素ガスを液化して第一液化窒素にするとともに前記液化酸素を気化して酸素ガスにする第一間接熱交換工程と、
低温圧縮した前記第二原料空気と前記液化酸素の残部とを間接熱交換させ、前記第二原料空気を液化して液化空気にするとともに前記液化酸素を気化して酸素ガスにする第二間接熱交換工程と、
前記液化空気を第一液化空気、第二液化空気及び第三液化空気に分流する段階と、
前記第一液化空気を第一圧力に減圧して前記第一蒸留工程に導入する段階と、
前記第二液化空気を第二圧力に減圧して前記第二蒸留工程に導入する段階と、
前記第三液化空気を中間圧力に減圧してから前記第三窒素ガスと間接熱交換させ、前記第三窒素ガスを液化して第二液化窒素にするとともに、前記第三液化空気を気化して第三原料空気にする第三間接熱交換工程と、
前記第二液化窒素の一部を第三液化窒素として分流する段階と、
前記第三液化窒素及び前記第一液化窒素を前記第一蒸留工程にそれぞれ導入する段階と、
前記第二液化窒素の残部を第二圧力に減圧して前記第二蒸留工程に導入する段階と、
前記第三原料空気を断熱膨張させて前記第二圧力に減圧してから前記第二蒸留工程に導入する段階と、
前記酸素ガスの一部を熱回収後に製品酸素ガスとして採取する段階と、
前記酸素ガスの残部を前記第二蒸留工程に導入する段階と、
前記第二窒素ガスを熱回収後に導出する段階とを含むことを特徴とする空気分離方法。
In the air separation method of collecting product oxygen by cryogenic liquefaction separation of compressed, purified and cooled raw material air,
A first distillation step of separating the first raw material air, the first liquefied air, the first liquefied nitrogen and the third liquefied nitrogen into a first nitrogen gas and an oxygen-enriched liquid by low-temperature distillation at a preset first pressure; ,
A second liquefied nitrogen, a second liquefied air, an oxygen-enriched liquid, a third raw material air and an oxygen gas are subjected to low-temperature distillation at a second pressure lower than the first pressure to separate into a second nitrogen gas and liquefied oxygen. A distillation process;
Dividing the source air compressed to a preset pressure, purified and cooled into a first source air and a second source air;
Introducing the first raw material air into the first distillation step;
A low-temperature compression step of low-temperature compressing the second raw material air to a third pressure higher than the first pressure;
Reducing the oxygen-enriched liquid to the second pressure and introducing it into the second distillation step;
Branching a portion of the first nitrogen gas as third nitrogen gas;
First indirect heat in which the first nitrogen gas and a part of the liquefied oxygen are indirectly heat-exchanged to liquefy the first nitrogen gas into first liquefied nitrogen and to vaporize the liquefied oxygen into oxygen gas. An exchange process;
Second indirect heat in which the second raw material air compressed at low temperature and the remainder of the liquefied oxygen are indirectly heat-exchanged to liquefy the second raw material air into liquefied air and to vaporize the liquefied oxygen into oxygen gas. An exchange process;
Diverting the liquefied air into a first liquefied air, a second liquefied air and a third liquefied air;
Reducing the first liquefied air to a first pressure and introducing it into the first distillation step;
Reducing the second liquefied air to a second pressure and introducing it into the second distillation step;
The third liquefied air is reduced to an intermediate pressure and then indirectly exchanged with the third nitrogen gas, the third nitrogen gas is liquefied into second liquefied nitrogen, and the third liquefied air is vaporized. A third indirect heat exchange step for converting the third raw material air;
Diverting a portion of the second liquefied nitrogen as third liquefied nitrogen;
Introducing the third liquefied nitrogen and the first liquefied nitrogen into the first distillation step, respectively;
Reducing the remainder of the second liquefied nitrogen to a second pressure and introducing it into the second distillation step;
A step of adiabatically expanding the third raw material air to reduce the pressure to the second pressure and then introducing it into the second distillation step;
Collecting a portion of the oxygen gas as product oxygen gas after heat recovery;
Introducing the remainder of the oxygen gas into the second distillation step;
And a step of deriving the second nitrogen gas after heat recovery.
前記第三原料空気を断熱膨張させる際に発生するエネルギーで前記第二原料空気を前記第二圧力に昇圧することを特徴とする請求項1記載の空気分離方法。   2. The air separation method according to claim 1, wherein the second raw material air is boosted to the second pressure with energy generated when the third raw material air is adiabatically expanded. 圧縮、精製、冷却した原料空気を深冷液化分離することによって製品酸素を採取する空気分離装置において、
第一原料空気、第一液化空気、第一液化窒素及び第三液化窒素をあらかじめ設定された第一圧力で低温蒸留して第一窒素ガスと酸素富化液とに分離する第一蒸留塔と、
第二液化窒素、第二液化空気、酸素富化液、第三原料空気及び酸素ガスを前記第一圧力より低い第二圧力で低温蒸留して第二窒素ガスと液化酸素とに分離する第二蒸留塔と、
あらかじめ設定された圧力に圧縮され、精製、冷却した原料空気を第一原料空気と第二原料空気とに分流する経路と、
前記第一原料空気を前記第一蒸留塔に導入する経路と、
前記第二原料空気を前記第一圧力より高い第三圧力に低温圧縮する低温圧縮機と、
前記酸素富化液を前記第二圧力に減圧して前記第二蒸留塔に導入する経路と、
前記第一窒素ガスの一部を第三窒素ガスとして分流する経路と、
前記第一窒素ガスと前記液化酸素の一部とを間接熱交換させ、前記第一窒素ガスを液化して第一液化窒素にするとともに前記液化酸素を気化して酸素ガスにする第一間接熱交換器と、
低温圧縮した前記第二原料空気と前記液化酸素の残部とを間接熱交換させ、前記第二原料空気を液化して液化空気にするとともに前記液化酸素を気化して酸素ガスにする第二間接熱交換器と、
前記液化空気を第一液化空気、第二液化空気及び第三液化空気に分流する経路と、
前記第一液化空気を第一圧力に減圧して前記第一蒸留塔に導入する経路と、
前記第二液化空気を第二圧力に減圧して前記第二蒸留塔に導入する経路と、
前記第三液化空気を中間圧力に減圧してから前記第三窒素ガスと間接熱交換させ、前記第三窒素ガスを液化して第二液化窒素にするとともに、前記第三液化空気を気化して第三原料空気にする第三間接熱交換器と、
前記第二液化窒素の一部を第三液化窒素として分流する経路と、
前記第三液化窒素及び前記第一液化窒素を前記第一蒸留塔にそれぞれ導入する経路と、
前記第二液化窒素の残部を第二圧力に減圧して前記第二蒸留塔に導入する経路と、
前記第三原料空気を膨張タービンで断熱膨張させて前記第二圧力に減圧してから前記第二蒸留塔に導入する経路と、
前記酸素ガスの一部を熱回収後に製品酸素ガスとして採取する経路と、
前記酸素ガスの残部を前記第二蒸留塔に導入する経路と、
前記第二窒素ガスを熱回収後に導出する経路と、
を備えていることを特徴とする空気分離装置。
In an air separation device that collects product oxygen by cryogenic liquefaction separation of compressed, purified and cooled raw material air,
A first distillation column for separating the first raw material air, the first liquefied air, the first liquefied nitrogen and the third liquefied nitrogen into a first nitrogen gas and an oxygen-enriched liquid by low-temperature distillation at a preset first pressure; ,
A second liquefied nitrogen, a second liquefied air, an oxygen-enriched liquid, a third raw material air and an oxygen gas are subjected to low-temperature distillation at a second pressure lower than the first pressure to separate into a second nitrogen gas and liquefied oxygen. A distillation tower,
A path for diverting the refined and cooled raw material air compressed to a preset pressure into a first raw material air and a second raw material air;
A path for introducing the first raw material air into the first distillation column;
A low-temperature compressor for compressing the second raw material air to a third pressure higher than the first pressure;
A path for reducing the oxygen-enriched liquid to the second pressure and introducing it into the second distillation column;
A path for diverting a part of the first nitrogen gas as the third nitrogen gas;
First indirect heat in which the first nitrogen gas and a part of the liquefied oxygen are indirectly heat-exchanged to liquefy the first nitrogen gas into first liquefied nitrogen and to vaporize the liquefied oxygen into oxygen gas. An exchange,
Second indirect heat in which the second raw material air compressed at low temperature and the remainder of the liquefied oxygen are indirectly heat-exchanged to liquefy the second raw material air into liquefied air and to vaporize the liquefied oxygen into oxygen gas. An exchange,
A path for diverting the liquefied air into the first liquefied air, the second liquefied air, and the third liquefied air;
A path for reducing the first liquefied air to a first pressure and introducing it into the first distillation column;
A path for reducing the second liquefied air to a second pressure and introducing it into the second distillation column;
The third liquefied air is reduced to an intermediate pressure and then indirectly exchanged with the third nitrogen gas, the third nitrogen gas is liquefied into second liquefied nitrogen, and the third liquefied air is vaporized. A third indirect heat exchanger that converts the third raw material air,
A path for diverting a part of the second liquefied nitrogen as third liquefied nitrogen;
A path for introducing the third liquefied nitrogen and the first liquefied nitrogen into the first distillation column,
A path for reducing the remainder of the second liquefied nitrogen to a second pressure and introducing it into the second distillation column;
A path for adiabatically expanding the third raw material air with an expansion turbine and reducing the pressure to the second pressure, and then introducing it into the second distillation column;
A path for collecting a part of the oxygen gas as product oxygen gas after heat recovery;
A path for introducing the remainder of the oxygen gas into the second distillation column;
A path for deriving the second nitrogen gas after heat recovery;
An air separation device comprising:
前記第三間接熱交換器は、ドライ式又はサーモサイフォン式であることを特徴とする請求項3記載の空気分離装置。   The air separation device according to claim 3, wherein the third indirect heat exchanger is a dry type or a thermosiphon type.
JP2013258504A 2013-12-13 2013-12-13 Air separation method and apparatus Active JP6159242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258504A JP6159242B2 (en) 2013-12-13 2013-12-13 Air separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258504A JP6159242B2 (en) 2013-12-13 2013-12-13 Air separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2015114083A true JP2015114083A (en) 2015-06-22
JP6159242B2 JP6159242B2 (en) 2017-07-05

Family

ID=53528046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258504A Active JP6159242B2 (en) 2013-12-13 2013-12-13 Air separation method and apparatus

Country Status (1)

Country Link
JP (1) JP6159242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167567A (en) * 1987-12-21 1989-07-03 Nippon Sanso Kk Air liquefying separating device
JPH06101963A (en) * 1992-08-28 1994-04-12 Air Prod And Chem Inc High-pressure low-temperature distilling method of air
US5315833A (en) * 1991-10-15 1994-05-31 Liquid Air Engineering Corporation Process for the mixed production of high and low purity oxygen
JPH102664A (en) * 1996-03-01 1998-01-06 Air Prod And Chem Inc Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
JP2010025513A (en) * 2008-07-24 2010-02-04 Taiyo Nippon Sanso Corp Method and device for manufacturing nitrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167567A (en) * 1987-12-21 1989-07-03 Nippon Sanso Kk Air liquefying separating device
US5315833A (en) * 1991-10-15 1994-05-31 Liquid Air Engineering Corporation Process for the mixed production of high and low purity oxygen
JPH06101963A (en) * 1992-08-28 1994-04-12 Air Prod And Chem Inc High-pressure low-temperature distilling method of air
JPH102664A (en) * 1996-03-01 1998-01-06 Air Prod And Chem Inc Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
JP2010025513A (en) * 2008-07-24 2010-02-04 Taiyo Nippon Sanso Corp Method and device for manufacturing nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
US10866024B2 (en) 2017-08-03 2020-12-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for separating air by cryogenic distillation

Also Published As

Publication number Publication date
JP6159242B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5643491B2 (en) Air liquefaction separation method and apparatus
JP5655104B2 (en) Air separation method and air separation device
JP6092804B2 (en) Air liquefaction separation method and apparatus
JPH06257939A (en) Distilling method at low temperature of air
JP2007147113A (en) Nitrogen manufacturing method and device
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP5684058B2 (en) Air separation method and air separation device
JP4401999B2 (en) Air separation method and air separation device
JP4206083B2 (en) Argon production method using cryogenic air separator
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP5032407B2 (en) Nitrogen production method and apparatus
JP6159242B2 (en) Air separation method and apparatus
JP2017072282A (en) Nitrogen manufacturing method and nitrogen manufacturing device
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP4150107B2 (en) Nitrogen production method and apparatus
JP2001336876A (en) Method and system for producing nitrogen
JP2000130928A (en) Method and apparatus for manufacturing oxygen
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP6431828B2 (en) Air liquefaction separation method and apparatus
JP4698989B2 (en) Oxygen production equipment
JP2006132854A (en) Nitrogen manufacturing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6159242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250