JP5032407B2 - Nitrogen production method and apparatus - Google Patents

Nitrogen production method and apparatus Download PDF

Info

Publication number
JP5032407B2
JP5032407B2 JP2008190639A JP2008190639A JP5032407B2 JP 5032407 B2 JP5032407 B2 JP 5032407B2 JP 2008190639 A JP2008190639 A JP 2008190639A JP 2008190639 A JP2008190639 A JP 2008190639A JP 5032407 B2 JP5032407 B2 JP 5032407B2
Authority
JP
Japan
Prior art keywords
oxygen
enriched
fluid
gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008190639A
Other languages
Japanese (ja)
Other versions
JP2010025513A (en
Inventor
博志 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2008190639A priority Critical patent/JP5032407B2/en
Publication of JP2010025513A publication Critical patent/JP2010025513A/en
Application granted granted Critical
Publication of JP5032407B2 publication Critical patent/JP5032407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、窒素製造方法及び装置に関し、詳しくは、圧縮、精製、冷却した原料空気を深冷液化分離して製品窒素ガスを採取する窒素製造方法及び装置に関する。   The present invention relates to a nitrogen production method and apparatus, and more particularly to a nitrogen production method and apparatus for collecting product nitrogen gas by cryogenic liquefaction separation of compressed, purified and cooled raw material air.

空気を深冷分離して製品窒素ガスを製造する方法としては、基本的に単精留塔装置を用いる方法が広く行われており、近年は、製品収率や動力原単位を改善するために様々なプロセスが提案されている。その中で、2塔の精留塔を採用し、従来のプロセスでは破棄されていた廃ガスを第2の精留塔の原料とするプロセスは、第2の精留塔に原料として導入する廃ガスを圧縮したり、昇温したりすることがないので、新たな圧縮動力や昇温に必要な熱交換器も基本的に不要となるという利点を有している。   As a method of producing product nitrogen gas by cryogenic separation of air, basically, a method using a single rectifying column apparatus is widely used. In recent years, in order to improve product yield and power consumption rate. Various processes have been proposed. Among them, a process using two rectifying columns and using waste gas that was discarded in the conventional process as a raw material for the second rectifying column is a waste introduced into the second rectifying column as a raw material. Since the gas is not compressed or heated, there is an advantage that new compression power and a heat exchanger necessary for raising the temperature are basically unnecessary.

このような2塔式のプロセスでは、第2の精留塔から得られる一部の製品窒素ガスを所定圧力まで昇圧することが必要となる場合もあるが、必要エネルギーは最小限となり、従来の単精留塔のプロセスに比較して製品収率や動力原単位を大幅に改善することが可能である(例えば、特許文献1,2参照。)。
特許第3738213号公報 特開2008−164236号公報
In such a two-column process, it may be necessary to raise a part of the product nitrogen gas obtained from the second rectification column to a predetermined pressure, but the required energy is minimized and the conventional energy is minimized. Compared with the process of a single rectification column, it is possible to greatly improve the product yield and the power unit (for example, refer to Patent Documents 1 and 2).
Japanese Patent No. 3738213 JP 2008-164236 A

しかし、前述の2塔式の場合、これらのプロセスの性格上、装置運転圧力の下限が存在するため、製品窒素ガスの圧力が低い場合には、高製品収率の特徴を生かしつつ対応することは困難であった。例えば、前記特許文献1に記載されたプロセスでは、製品窒素ガスの圧力が0.80MPa程度の圧力ならば効率よく製品窒素ガスを採取することができるが、それよりも低い圧力の場合には対応が極めて困難であった。また、特許文献2に記載されたプロセスでは、製品窒素ガスの圧力が0.60MPa程度の圧力ならば効率よく製品窒素ガスを採取することができるが、それよりも低い圧力の場合、例えば製品窒素ガスの圧力が0.40MPa程度に低くなると対応が極めて困難であった。   However, in the case of the above-mentioned two-column type, there is a lower limit of the apparatus operating pressure due to the nature of these processes, so when the product nitrogen gas pressure is low, take advantage of the characteristics of high product yield. Was difficult. For example, in the process described in Patent Document 1, the product nitrogen gas can be collected efficiently if the pressure of the product nitrogen gas is about 0.80 MPa, but the case where the pressure is lower than that can be handled. Was extremely difficult. Further, in the process described in Patent Document 2, product nitrogen gas can be efficiently collected if the pressure of the product nitrogen gas is about 0.60 MPa, but in the case of a pressure lower than that, for example, product nitrogen When the gas pressure was lowered to about 0.40 MPa, it was extremely difficult to cope with it.

また、一般に酸素及び窒素製造用として用いられている複式精留プロセスにおけるプロセスを酸素及び窒素製造用から窒素製造用に変更し、低圧窒素ガスを製造するのに適したプロセスとすることにより、低圧の製品窒素ガスを得ることは可能であるが、前記各プロセスに比べて動力原単位が高くなるという問題があった。   In addition, by changing the process in the double rectification process, which is generally used for oxygen and nitrogen production, from oxygen and nitrogen production to nitrogen production, the process is suitable for producing low-pressure nitrogen gas. Although it is possible to obtain the product nitrogen gas, there has been a problem that the power unit becomes higher than that in each of the above processes.

そこで本発明は、製品窒素ガスに要求される圧力が低い場合であっても、効率よく製品窒素ガスを採取することができ、動力原単位の低減が可能な窒素製造方法及び装置を提供することを目的としている。   Therefore, the present invention provides a nitrogen production method and apparatus that can efficiently collect product nitrogen gas even when the pressure required for the product nitrogen gas is low and can reduce the power consumption. It is an object.

上記目的を達成するため、本発明の窒素製造方法は、原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した原料空気と後述の第4酸素富化液化流体とを間接熱交換させて原料空気の一部を凝縮液化して気液二相空気を得ると同時に第4酸素富化液化流体を蒸発ガス化して第4酸素富化ガス流体を得る第1間接熱交換工程と、前記気液二相空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に低温蒸留して第2窒素ガスと第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体と前記第1窒素ガスとを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2間接熱交換工程で蒸発ガス化しなかった前記第2酸素富化液化流体を液状態のまま抜き出した第3酸素富化液化流体を低温蒸留して第3酸素富化ガス流体と第4酸素富化液化流体とに分離する第3分離工程と、前記第1間接熱交換工程で蒸発ガス化しなかった前記第4酸素富化液化流体を液状態のまま第5酸素富化液化流体として抜き出し、減圧後に前記第2窒素ガスと間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に減圧後の第5酸素富化液化流体を蒸発ガス化して第5酸素富化ガス流体を得る第3間接熱交換工程と、前記第2窒素ガスの一部を熱回収後に製品窒素ガスとして採取する製品回収工程とを含むことを特徴としている。 In order to achieve the above object, the nitrogen production method of the present invention is a nitrogen production method for collecting product nitrogen by subjecting raw material air to cryogenic liquefaction separation, and the compressed, purified, cooled raw material air and the fourth oxygen enrichment described later. Indirect heat exchange with the liquefied fluid is performed to condense and liquefy a part of the raw material air to obtain gas-liquid two-phase air. At the same time, the fourth oxygen-enriched liquefied fluid is vaporized to obtain the fourth oxygen-enriched gas fluid. A first indirect heat exchange step, a first separation step in which the gas-liquid two-phase air is subjected to low-temperature distillation and separated into a first nitrogen gas and a first oxygen-enriched liquefied fluid, and the first oxygen-enriched liquefied fluid is decompressed A first separation step is performed by low-temperature distillation to separate the second nitrogen gas and the second oxygen-enriched liquefied fluid, and the second oxygen-enriched liquefied fluid and the first nitrogen gas are indirectly heat-exchanged for the first. Nitrogen gas is condensed and liquefied to obtain the first liquefied nitrogen and at the same time the second oxygen-enriched liquefied fluid is steamed. A second indirect heat exchange step to obtain a second oxygen-enriched gas stream to gasify the said second oxygen-enriched liquefied stream body unevaporated gasified in the second indirect heat exchange step was withdrawn remained liquid state A third separation step of low-temperature distillation of the 3 oxygen-enriched liquefied fluid to separate it into a third oxygen-enriched gas fluid and a 4th oxygen-enriched liquefied fluid, and the evaporative gasification in the first indirect heat exchange step withdrawing a fourth oxygen enriched liquefied stream body as a fifth oxygen-enriched liquefied fluid remains in a liquid state, the second liquefied nitrogen condensed and liquefied the second nitrogen gas indirect heat is exchanged with the second nitrogen gas after vacuum A third indirect heat exchange step for obtaining a fifth oxygen-enriched gas fluid by evaporating and gasifying the fifth oxygen-enriched liquefied fluid after decompression at the same time, and a product nitrogen gas after heat recovery of a part of the second nitrogen gas And a product recovery process to be collected.

さらに、本発明の窒素製造方法は、前記構成の窒素製造方法において、装置の運転に必要な寒冷を得るため、前記第5酸素富化ガス流体を膨張タービンに導入して膨張させる寒冷発生工程、前記原料空気の一部を膨張タービンに導入して膨張させる寒冷発生工程、系外から液化ガスを供給する液化ガス注入工程のいずれかの工程を含むことを特徴としている。   Furthermore, in the nitrogen production method of the present invention, in the nitrogen production method having the above-described configuration, a cold generation step of introducing the fifth oxygen-enriched gas fluid into an expansion turbine and expanding it in order to obtain the cold necessary for operation of the apparatus. The method includes any one of a cold generation step of introducing a part of the raw material air into an expansion turbine to expand and a liquefied gas injection step of supplying a liquefied gas from outside the system.

また、本発明の窒素製造装置は、原料空気を深冷液化分離して製品窒素を採取する窒素製造装置において、圧縮、精製、冷却した原料空気と後述の第4酸素富化液化流体とを間接熱交換させて原料空気の一部を凝縮液化して気液二相空気を得ると同時に第4酸素富化液化流体を蒸発ガス化して第4酸素富化ガス流体を得る第1間接熱交換器と、前記気液二相空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1精留塔と、前記第1酸素富化液化流体を減圧後に低温蒸留して第2窒素ガスと第2酸素富化液化流体とに分離する第2精留塔と、前記第2酸素富化液化流体と前記第1窒素ガスとを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換器と、前記第2間接熱交換器で蒸発ガス化しなかった前記第2酸素富化液化流体を前記第2精留塔の底部から液状態のまま抜き出した第3酸素富化液化流体を低温蒸留して第3酸素富化ガス流体と第4酸素富化液化流体とに分離する第3精留塔と、前記第1間接熱交換器で蒸発ガス化しなかった前記第4酸素富化液化流体を前記第3精留塔の底部から液状態のまま抜き出した第5酸素富化液化流体を減圧後に前記第2窒素ガスと間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に減圧後の第5酸素富化液化流体を蒸発ガス化して第5酸素富化ガス流体を得る第3間接熱交換器と、前記第2窒素ガスの一部を熱回収後に製品窒素ガスとして採取する製品回収経路とを含むことを特徴としている。さらに、前記第2精留塔と前記第3精留塔を、前記第2精留塔の下部に前記第3精留塔が一体化された1塔型とすることもできる。 Further, the nitrogen production apparatus of the present invention is a nitrogen production apparatus that collects product nitrogen by cryogenic liquefaction separation of raw material air, and indirectly supplies the compressed, purified, and cooled raw material air and a fourth oxygen-enriched liquefied fluid described later. A first indirect heat exchanger for obtaining a fourth oxygen-enriched gas fluid by evaporating and gasifying the fourth oxygen-enriched liquefied fluid at the same time as obtaining a gas-liquid two-phase air by condensing and liquefying part of the raw material air A first rectifying column that separates the gas-liquid two-phase air into a first nitrogen gas and a first oxygen-enriched liquefied fluid by low-temperature distillation, and the first oxygen-enriched liquefied fluid is subjected to low-temperature distillation after depressurization. The second rectification column that separates the second nitrogen gas and the second oxygen-enriched liquefied fluid, and the second oxygen-enriched liquefied fluid and the first nitrogen gas are indirectly heat-exchanged to exchange the first nitrogen gas. Condensed liquefaction to obtain first liquefied nitrogen and at the same time second oxygen-enriched liquefied fluid is evaporated and gasified to second oxygen-enriched A second indirect heat exchanger to obtain a scan fluid was withdrawn while the second oxygen-enriched liquefied stream body unevaporated gasified in the second indirect heat exchanger from the bottom of the second fractionator the liquid state A third rectification column for low-temperature distillation of the third oxygen-enriched liquefied fluid to separate it into a third oxygen-enriched gas fluid and a fourth oxygen-enriched liquefied fluid; and evaporative gasification by the first indirect heat exchanger the fourth oxygen enriched liquefied stream body the third rectification column fifth oxygen-enriched liquefied fluid second nitrogen the second nitrogen gas and allowed to indirect heat exchange after vacuum was extracted remain in the liquid state from the bottom of the A second indirect heat exchanger for condensing and liquefying gas to obtain second liquefied nitrogen and at the same time evaporating gas after depressurizing the fifth oxygen-enriched liquefied fluid to obtain a fifth oxygen-enriched gas fluid; Including a product recovery route for collecting part of the gas as product nitrogen gas after heat recovery That. Further, the second rectifying tower and the third rectifying tower may be a single tower type in which the third rectifying tower is integrated with a lower part of the second rectifying tower.

本発明によれば、製品窒素ガスの圧力が低い場合、例えば0.40MPa程度であっても、製品窒素ガスを効率よく採取することができ、動力原単位を低減することができる。   According to the present invention, when the pressure of the product nitrogen gas is low, the product nitrogen gas can be efficiently collected even when the pressure is about 0.40 MPa, for example, and the power consumption can be reduced.

図1は本発明の窒素製造方法を実施可能な窒素製造装置の第1形態例を示す系統図である。この窒素製造装置は、第1精留塔11,第2精留塔12及び第3精留塔13と、第3精留塔13の下部に設けられた第1間接熱交換器14,第2精留塔12の下部に設けられた第2間接熱交換器15及び第2精留塔12の上部に設けられた第3間接熱交換器16と、装置の運転に必要な寒冷を得るための膨張タービン17と、保冷外槽18に導入されるガス(原料空気)と保冷外槽18から導出されるガス(製品窒素ガス及び廃ガス)とを熱交換させる主熱交換器19とを備えている。   FIG. 1 is a system diagram showing a first embodiment of a nitrogen production apparatus capable of performing the nitrogen production method of the present invention. This nitrogen production apparatus includes a first rectifying column 11, a second rectifying column 12, a third rectifying column 13, a first indirect heat exchanger 14, a second rectifying column 14 provided at the lower part of the third rectifying column 13. The second indirect heat exchanger 15 provided in the lower part of the rectifying column 12 and the third indirect heat exchanger 16 provided in the upper part of the second rectifying column 12 and a cooling necessary for the operation of the apparatus are obtained. An expansion turbine 17 and a main heat exchanger 19 for exchanging heat between the gas (raw material air) introduced into the cold insulation outer tank 18 and the gas (product nitrogen gas and waste gas) led out from the cold insulation outer tank 18 are provided. Yes.

以下、原料空気を深冷液化分離して製品窒素を採取する方法に基づいて、装置構成及びプロセスを詳細に説明する。まず、原料空気(AIR)は、空気圧縮機21で所定の圧力に圧縮され、空気予冷器22で常温付近まで冷却された後、精製器23で原料空気中の水分や二酸化炭素等の不純物が吸着除去されて精製される。精製された圧縮原料空気は、経路24から保冷外槽18内に導入され、前記主熱交換器19で保冷外槽18内から導出されるガス(製品窒素ガス、廃ガス)と間接熱交換を行い、露点付近まで冷却される。   In the following, the apparatus configuration and process will be described in detail based on a method for collecting product nitrogen by cryogenic liquefaction separation of raw material air. First, the raw material air (AIR) is compressed to a predetermined pressure by the air compressor 21 and cooled to near normal temperature by the air precooler 22, and then impurities such as moisture and carbon dioxide in the raw material air are purified by the purifier 23. It is removed by adsorption and purified. The purified compressed raw material air is introduced into the cold insulation outer tub 18 from the path 24, and indirectly heat exchanged with the gas (product nitrogen gas, waste gas) derived from the cold insulation outer tub 18 by the main heat exchanger 19. And cool to near dew point.

主熱交換器19で冷却された原料空気は、経路25から前記第1間接熱交換器14に導入され、該第1間接熱交換器14で第1間接熱交換工程が行われる。この第1間接熱交換工程では、第3精留塔13の下部に分離した第4酸素富化液化流体と前記原料空気とが間接熱交換を行い、原料空気の一部が凝縮液化して気液二相空気になると同時に、第4酸素富化液化流体が蒸発ガス化して第4酸素富化ガス流体となる。   The raw air cooled by the main heat exchanger 19 is introduced into the first indirect heat exchanger 14 from the path 25, and the first indirect heat exchanger 14 performs a first indirect heat exchange process. In this first indirect heat exchange step, the fourth oxygen-enriched liquefied fluid separated in the lower part of the third rectifying column 13 and the source air perform indirect heat exchange, and a part of the source air is condensed and liquefied. Simultaneously with the liquid two-phase air, the fourth oxygen-enriched liquefied fluid is evaporated and gasified to become the fourth oxygen-enriched gas fluid.

第1間接熱交換工程で得られた気液二相空気は、第1間接熱交換器14から経路26を経て前記第1精留塔11の下部に導入され、該第1精留塔11で気液二相空気の気相部(原料空気)に対する第1分離工程が行われる。この第1分離工程では、前記気液二相空気中のガス成分が第1精留塔11の上昇ガスとなり、第1精留塔11の上部から還流液として流下する第1液化窒素との気液接触により低温蒸留され、第1精留塔11の上部に原料空気中の窒素が濃縮されて第1窒素ガスが分離するとともに、第1精留塔11の下部に原料空気中の酸素が濃縮され、気液二相空気の液相部と混合して第1酸素富化液化流体が分離する。この第1酸素富化液化流体は、第1精留塔11の下部から経路27に導出され、減圧弁28で減圧された後、経路29を経て前記第2精留塔12の中部に導入される。   The gas-liquid two-phase air obtained in the first indirect heat exchange step is introduced from the first indirect heat exchanger 14 through the path 26 to the lower portion of the first rectifying column 11, and in the first rectifying column 11. A first separation step is performed on the gas phase part (raw material air) of gas-liquid two-phase air. In this first separation step, the gas component in the gas-liquid two-phase air becomes the rising gas of the first rectifying column 11 and the gas from the first liquefied nitrogen flowing down from the upper part of the first rectifying column 11 as the reflux liquid. Low temperature distillation is performed by liquid contact, and nitrogen in the raw material air is concentrated at the upper part of the first rectifying column 11 to separate the first nitrogen gas, and oxygen in the raw material air is concentrated at the lower part of the first rectifying column 11. The first oxygen-enriched liquefied fluid is separated by mixing with the liquid phase part of the gas-liquid two-phase air. The first oxygen-enriched liquefied fluid is led out from the lower part of the first rectifying column 11 to the path 27, is decompressed by the pressure reducing valve 28, and is then introduced into the middle part of the second rectifying tower 12 via the path 29. The

また、前記第1窒素ガスは、第1精留塔11の上部から経路30に導出されて前記第2間接熱交換器15に導入され、該第2間接熱交換器15で第2間接熱交換工程が行われる。この第2間接熱交換工程では、第2精留塔12の下部に分離した第2酸素富化液化流体と前記第1窒素ガスとが間接熱交換を行い、第1窒素ガスの全量が凝縮液化して第1液化窒素になると同時に、第2酸素富化液化流体が蒸発ガス化して第2酸素富化ガス流体となる。第2間接熱交換器15から経路31に導出された第1液化窒素は、経路32と経路33とに分岐し、経路32に分岐した第1液化窒素は第1精留塔11の上部に導入され、第1精留塔11の下降液(還流液)となる。経路33に分岐した第1液化窒素は、減圧弁34で減圧された後、経路35を経て第2精留塔12の上部に導入されて第2精留塔12の還流液となる。   The first nitrogen gas is led out from the upper part of the first rectifying column 11 to the path 30 and introduced into the second indirect heat exchanger 15, and the second indirect heat exchanger 15 performs the second indirect heat exchange. A process is performed. In the second indirect heat exchange step, the second oxygen-enriched liquefied fluid separated in the lower part of the second rectifying column 12 and the first nitrogen gas exchange heat indirectly, and the entire amount of the first nitrogen gas is condensed and liquefied. At the same time as the first liquefied nitrogen, the second oxygen-enriched liquefied fluid is evaporated and gasified to become the second oxygen-enriched gas fluid. The first liquefied nitrogen led out from the second indirect heat exchanger 15 to the path 31 branches into a path 32 and a path 33, and the first liquefied nitrogen branched into the path 32 is introduced into the upper part of the first rectifying column 11. Then, it becomes the descending liquid (reflux liquid) of the first rectifying column 11. The first liquefied nitrogen branched into the path 33 is depressurized by the pressure reducing valve 34 and then introduced into the upper part of the second rectifying column 12 via the path 35 to become the reflux liquid of the second rectifying column 12.

第2精留塔12では、経路29から塔中部に導入された前記第1酸素富化液化流体に対する第2分離工程が行われる。この第2分離工程は、前記第1酸素富化液化流体と、経路35から塔上部に導入された前記第1液化窒素と、前記第2間接熱交換器15で蒸発ガス化した前記第2酸素富化ガス流体と、第2精留塔12上部の前記第3間接熱交換器16から経路36を経て導入される第2液化窒素と、第3精留塔13の上部から経路37を経て導入される第3酸素富化ガス流体との気液接触により低温蒸留が行われ、第2精留塔12の上部に第1酸素富化液化流体中の窒素成分が濃縮して第2窒素ガスが分離し、下部に第1酸素富化液化流体中の酸素成分が濃縮して前記第2酸素富化液化流体が分離する。   In the second rectification column 12, a second separation step is performed on the first oxygen-enriched liquefied fluid introduced from the path 29 into the middle of the column. In this second separation step, the first oxygen-enriched liquefied fluid, the first liquefied nitrogen introduced to the upper part of the tower from the path 35, and the second oxygen evaporated and gasified by the second indirect heat exchanger 15 are used. The enriched gas fluid, the second liquefied nitrogen introduced from the third indirect heat exchanger 16 at the upper part of the second rectifying tower 12 via the path 36, and the upper part of the third rectifying tower 13 introduced via the path 37 The low-temperature distillation is performed by gas-liquid contact with the third oxygen-enriched gas fluid, and the nitrogen component in the first oxygen-enriched liquefied fluid is concentrated on the upper part of the second rectifying column 12 to generate the second nitrogen gas. The oxygen component in the first oxygen-enriched liquefied fluid is concentrated in the lower part, and the second oxygen-enriched liquefied fluid is separated.

第2窒素ガスは、第2精留塔12の上部から経路38に導出されて経路39と経路40とに分岐する。経路39に分岐した第2窒素ガスは製品回収工程に進み、主熱交換器19で前記原料空気と熱交換を行うことにより熱回収された後、製品回収経路41を経て保冷外槽18から導出され、製品窒素ガス(GN)として採取される。   The second nitrogen gas is led out from the upper part of the second rectifying column 12 to the path 38 and branches into the path 39 and the path 40. The second nitrogen gas branched into the path 39 proceeds to the product recovery process, and is recovered from the heat by exchanging heat with the raw material air in the main heat exchanger 19, and then led out from the cold insulation outer tank 18 through the product recovery path 41. And collected as product nitrogen gas (GN).

また、前記経路40に分岐した第2窒素ガスは前記第3間接熱交換器16に導入され、該第3間接熱交換器16で第3間接熱交換工程が行われる。この第3間接熱交換工程では、前記第3精留塔13の下部から経路42に導出され、減圧弁43で減圧して経路44から第3間接熱交換器16に導入される第5酸素富化液化流体と前記第2窒素ガスとが間接熱交換を行い、第2窒素ガスの全量が凝縮液化して第2液化窒素になると同時に、第5酸素富化液化流体が蒸発ガス化して第5酸素富化ガス流体になる。第2液化窒素は、前記経路36を経て第2精留塔12の上部に導入され、第2精留塔12の還流液となる。   The second nitrogen gas branched into the path 40 is introduced into the third indirect heat exchanger 16, and a third indirect heat exchange process is performed in the third indirect heat exchanger 16. In the third indirect heat exchange step, a fifth oxygen-rich state is introduced into the path 42 from the lower part of the third rectifying column 13 and is decompressed by the pressure reducing valve 43 and introduced into the third indirect heat exchanger 16 from the path 44. The liquefied liquefied fluid and the second nitrogen gas exchange heat indirectly, and the entire amount of the second nitrogen gas is condensed and liquefied to become second liquefied nitrogen. At the same time, the fifth oxygen-enriched liquefied fluid is evaporated and gasified. Becomes an oxygen-enriched gas fluid. The second liquefied nitrogen is introduced into the upper part of the second rectifying column 12 via the path 36 and becomes the reflux liquid of the second rectifying column 12.

第2精留塔12の下部に分離した前記第2酸素富化液化流体は、その一部が経路45に導出されて第3酸素富化液化流体となり、第3精留塔13の上部に導入されて第3精留塔13の還流液となり、第3酸素富化液化流体に対する第3分離工程が行われる。この第3分離工程では、前記第1間接熱交換器14での第1間接熱交換工程で蒸発ガス化した前記第4酸素富化ガス流体が上昇ガスとなり、還流液である前記第3酸素富化液化流体とが気液接触することによって低温蒸留され、第3精留塔13の上部に第3酸素富化液化流体中の窒素分が増加した第3酸素富化ガス流体が分離し、第3精留塔13の下部に第3酸素富化液化流体中の酸素分が増加した第4酸素富化液化流体が分離する。   A part of the second oxygen-enriched liquefied fluid separated at the lower part of the second rectifying column 12 is led out to the path 45 to become a third oxygen-enriched liquefied fluid and introduced into the upper part of the third rectifying column 13. As a result, the third rectification column 13 is refluxed, and the third separation step is performed on the third oxygen-enriched liquefied fluid. In the third separation step, the fourth oxygen-enriched gas fluid evaporated and gasified in the first indirect heat exchange step in the first indirect heat exchanger 14 becomes the rising gas, and the third oxygen-enriched fluid that is a reflux liquid. The third oxygen-enriched gas fluid that has been cryogenically distilled by gas-liquid contact with the liquefied liquefied fluid, and the nitrogen content of the third oxygen-enriched liquefied fluid increased in the upper part of the third rectifying column 13 is separated, The fourth oxygen-enriched liquefied fluid in which the oxygen content in the third oxygen-enriched liquefied fluid has increased is separated at the lower part of the 3 rectifying column 13.

前記第3酸素富化ガス流体は、第3精留塔13の上部から前記経路37に導出され、前記第2精留塔12の下部に上昇ガスとして導入される。また、前記第4酸素富化液化流体の一部は、第3精留塔13の下部から前記経路42に第5酸素富化液化流体として導出され、前記減圧弁43で減圧されて前記第3間接熱交換器16に導入される。第3間接熱交換器16における前記第3間接熱交換工程で第5酸素富化液化流体の全量が蒸発ガス化して第5酸素富化ガス流体になり、第3間接熱交換器16から経路46に導出される。   The third oxygen-enriched gas fluid is led out from the upper part of the third rectifying column 13 to the path 37 and is introduced into the lower part of the second rectifying column 12 as a rising gas. In addition, a part of the fourth oxygen-enriched liquefied fluid is led out as a fifth oxygen-enriched liquefied fluid from the lower part of the third rectifying column 13 to the passage 42 and is decompressed by the pressure reducing valve 43 to be the third It is introduced into the indirect heat exchanger 16. In the third indirect heat exchange step in the third indirect heat exchanger 16, the entire amount of the fifth oxygen-enriched liquefied fluid is evaporated and gasified to become the fifth oxygen-enriched gas fluid, and the path 46 from the third indirect heat exchanger 16 To be derived.

経路46に導出された第5酸素富化ガス流体は、経路46から経路47と経路48とに分岐し、経路47に分岐した第5酸素富化ガス流体は寒冷発生工程に進み、主熱交換器19で前記原料空気と熱交換を行うことによって一部熱回収された後、主熱交換器19の中間部から経路49に導出されて前記膨張タービン17に導入され、膨張タービン17で膨張することによって装置の運転に必要な寒冷を発生し、膨張タービン17から経路50に導出される。   The fifth oxygen-enriched gas fluid led to the path 46 branches from the path 46 to the path 47 and the path 48, and the fifth oxygen-enriched gas fluid branched to the path 47 proceeds to the cold generation process, and the main heat exchange Part of the heat is recovered by exchanging heat with the raw material air in the vessel 19, and then led out to the passage 49 from the intermediate portion of the main heat exchanger 19, introduced into the expansion turbine 17, and expanded in the expansion turbine 17. As a result, the cold necessary for the operation of the apparatus is generated and led out from the expansion turbine 17 to the path 50.

前記経路48に分岐した第5酸素富化ガス流体は、減圧弁51で減圧された後、前記経路50の膨張後の第5酸素富化ガス流体と合流し、主熱交換器19で前記原料空気と熱交換を行うことによって熱回収された後、保冷外槽18から経路52を経て廃ガス(WG)として導出され、一部は精製器23の再生ガスに用いられる。   The fifth oxygen-enriched gas fluid branched into the path 48 is decompressed by the pressure reducing valve 51, and then merges with the fifth oxygen-enriched gas fluid after expansion of the path 50, and the raw heat exchanger 19 After heat is recovered by exchanging heat with air, it is led out as waste gas (WG) from the cold insulation outer tub 18 via the path 52, and a part is used as regeneration gas of the purifier 23.

図2は本発明の窒素製造方法を実施可能な窒素製造装置の第2形態例を示す系統図である。なお、以下の説明において、前記第1形態例に示した窒素製造装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 2 is a system diagram showing a second embodiment of a nitrogen production apparatus capable of performing the nitrogen production method of the present invention. In the following description, the same components as those of the nitrogen production apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例は、前記第1形態例における第2精留塔(12)と第3精留塔(13)とを一体化した精留塔(以下、便宜的に第4精留塔という)61を使用した窒素製造装置を示すもので、第4精留塔61は、前記第2精留塔(12)と同じ第2分離工程を行う第2精留塔部61aと、前記第3精留塔(13)と同じ第3分離工程を行う第3精留塔部61bとを有しており、前記第2精留塔部61aの下部に前記第3精留塔部61bを連設して一体化したものである。さらに、第3精留塔部61bの下部には、前記第1間接熱交換工程を行う第1間接熱交換器14が設けられ、第2精留塔部61aと第3精留塔部61bとの間には、前記第2間接熱交換工程を行う第2間接熱交換器15が設けられ、第2精留塔部61aの上部には、前記第3間接熱交換工程を行う第3間接熱交換器16が設けられている。   In this embodiment, a rectifying tower (hereinafter referred to as a fourth rectifying tower for convenience) 61 in which the second rectifying tower (12) and the third rectifying tower (13) in the first embodiment are integrated. The fourth rectifying column 61 includes a second rectifying column portion 61a that performs the same second separation step as the second rectifying column (12), and the third rectifying column. A third rectifying tower 61b that performs the same third separation step as the tower (13), and the third rectifying tower 61b is connected to the lower part of the second rectifying tower 61a. It is an integrated one. Furthermore, the 1st indirect heat exchanger 14 which performs the said 1st indirect heat exchange process is provided in the lower part of the 3rd rectification tower part 61b, The 2nd rectification tower part 61a, the 3rd rectification tower part 61b, Is provided with a second indirect heat exchanger 15 for performing the second indirect heat exchange step, and a third indirect heat for performing the third indirect heat exchange step is provided above the second rectifying tower 61a. An exchanger 16 is provided.

第2間接熱交換器15の部分では、第2精留塔部61aの気液接触部から流下する前記第2酸素富化液化流体と前記第1窒素ガスとが間接熱交換を行い、第1窒素ガスが凝縮液化して第1液化窒素になると同時に、第2酸素富化液化流体の一部が蒸発ガス化して第2酸素富化ガス流体となり、第2精留塔部61aの上昇ガスとなる。また、第2間接熱交換器15で蒸発ガス化しなかった第2酸素富化液化流体は、液状のまま第3酸素富化液化流体となって下方の第3精留塔部61bに向かって流下し、第3精留塔部61bの還流液となる。さらに、第3精留塔部61bの気液接触部から上昇した第3酸素富化ガス流体は、第2間接熱交換器15の部分を通過して上昇し、第2精留塔部61aの上昇ガスとなる。   In the portion of the second indirect heat exchanger 15, the second oxygen-enriched liquefied fluid flowing down from the gas-liquid contact portion of the second rectifying tower portion 61a and the first nitrogen gas perform indirect heat exchange, and the first At the same time as the nitrogen gas is condensed and liquefied to become the first liquefied nitrogen, a part of the second oxygen-enriched liquefied fluid is vaporized to become the second oxygen-enriched gas fluid, and the rising gas of the second rectifying tower 61a Become. In addition, the second oxygen-enriched liquefied fluid that has not been evaporated and gasified in the second indirect heat exchanger 15 flows into the third oxygen-enriched liquefied fluid in a liquid state toward the third rectifying tower 61b below. And becomes the reflux liquid of the third fractionator 61b. Further, the third oxygen-enriched gas fluid that has risen from the gas-liquid contact portion of the third rectifying tower 61b passes through the portion of the second indirect heat exchanger 15 and rises to the second rectifying tower 61a. Ascending gas.

この第2形態例に示す窒素製造装置においても、前記第1形態例と同様の第1分離工程、第2分離工程、第3分離工程、第1間接熱交換工程、第2間接熱交換工程、第3間接熱交換工程、製品回収工程及び寒冷発生工程がそれぞれ行われ、製品回収経路41から製品窒素ガス(GN)が採取される。   Also in the nitrogen production apparatus shown in the second embodiment, the same first separation step, second separation step, third separation step, first indirect heat exchange step, second indirect heat exchange step as in the first embodiment, A third indirect heat exchange step, a product recovery step, and a cold generation step are performed, and product nitrogen gas (GN) is collected from the product recovery path 41.

図3は本発明の窒素製造方法を実施可能な窒素製造装置の第3形態例を示す系統図である。本形態例は、寒冷発生工程で寒冷を発生する流体を前記第5酸素富化ガス流体に代えて原料空気の一部を用いたものである。   FIG. 3 is a system diagram showing a third embodiment of a nitrogen production apparatus capable of performing the nitrogen production method of the present invention. In this embodiment, a part of the raw air is used in place of the fifth oxygen-enriched gas fluid instead of the fluid that generates cold in the cold generation step.

空気圧縮機21で圧縮され、空気予冷器22を経て精製器23で精製された原料空気(AIR)は、経路24から保冷外槽18内の主熱交換器19に導入され、該主熱交換器19の中間部で一部の原料空気が経路71に分岐し、膨張タービン17に導入されて寒冷発生工程を行う。膨張タービン17で膨張した一部の原料空気は、経路72を経て第3精留塔13の中部に上昇ガスとして導入され、第3酸素富化液化流体と共に第3分離工程に供される。   The raw material air (AIR) compressed by the air compressor 21 and purified by the purifier 23 via the air precooler 22 is introduced from the path 24 to the main heat exchanger 19 in the cold insulation outer tub 18 and the main heat exchange. A part of the raw air is branched into a path 71 at an intermediate portion of the vessel 19 and is introduced into the expansion turbine 17 to perform a cold generation process. Part of the raw air expanded by the expansion turbine 17 is introduced as a rising gas into the middle part of the third rectifying column 13 via the path 72 and is supplied to the third separation step together with the third oxygen-enriched liquefied fluid.

残部の原料空気は、主熱交換器19で露点付近まで冷却された後、前記第1形態例及び前記第2形態例と同様に、経路25から前記第1間接熱交換器14に導入され、以下、前記第1形態例及び前記第2形態例と同様に第1分離工程、第2分離工程、第3分離工程、第1間接熱交換工程、第2間接熱交換工程、第3間接熱交換工程及び製品回収工程が行われ、製品回収経路41から製品窒素ガス(GN)が採取される。また、第3間接熱交換器16で蒸発ガス化した第5酸素富化ガス流体は、寒冷発生工程を行うことなく、その全量が経路46を通って主熱交換器19に導入され、熱回収された後に経路52から廃ガス(WG)として導出される。   The remaining raw material air is cooled to near the dew point in the main heat exchanger 19 and then introduced into the first indirect heat exchanger 14 from the path 25 in the same manner as in the first and second embodiments. Hereinafter, similarly to the first embodiment and the second embodiment, the first separation step, the second separation step, the third separation step, the first indirect heat exchange step, the second indirect heat exchange step, and the third indirect heat exchange. A process and a product recovery process are performed, and product nitrogen gas (GN) is collected from the product recovery path 41. Further, the fifth oxygen-enriched gas fluid evaporated and gasified in the third indirect heat exchanger 16 is entirely introduced into the main heat exchanger 19 through the path 46 without performing the cold generation process, and heat recovery is performed. After that, it is derived from the path 52 as waste gas (WG).

また、前記膨張タービン17で膨張した一部の原料空気は、前記第3精留塔13に導入するのに代えて、経路73から第2精留塔12の中部に上昇ガスとして導入することもできる。この場合も、経路29から第2精留塔12の中部に導入される第1酸素富化液化流体とともに第2分離工程が行われ、他の各工程を前記同様に行うことにより、製品回収経路41から製品窒素ガス(GN)が採取される。   In addition, a part of the raw air expanded by the expansion turbine 17 may be introduced as an ascending gas from the path 73 into the middle of the second rectifying column 12 instead of being introduced into the third rectifying column 13. it can. Also in this case, the second separation step is performed together with the first oxygen-enriched liquefied fluid introduced from the route 29 to the middle part of the second rectification column 12, and the other steps are performed in the same manner as described above, thereby the product recovery route. From 41, product nitrogen gas (GN) is collected.

図4は本発明の窒素製造方法を実施可能な窒素製造装置の第4形態例を示す系統図である。本形態例では、前記第3形態例と同様に、膨張タービン17で寒冷発生工程を行う流体を原料空気の一部にするとともに、前記第2形態例と同様に、第2分離工程を行う第2精留塔部61aと第3分離工程を行う第3精留塔部61bとを一体化した第4精留塔61を用いている。   FIG. 4 is a system diagram showing a fourth embodiment of a nitrogen production apparatus capable of performing the nitrogen production method of the present invention. In the present embodiment, as in the third embodiment, the fluid that performs the cold generation process in the expansion turbine 17 is a part of the raw material air, and the second separation process is performed in the same manner as in the second embodiment. A fourth rectifying column 61 in which a second rectifying column unit 61a and a third rectifying column unit 61b performing a third separation step are integrated is used.

主熱交換器19の中間部で経路71に分岐し、膨張タービン17で膨張して寒冷発生工程を行い、膨張タービン17から経路72に導出された一部の原料空気は、経路72から第4精留塔61の第3精留塔部61b中部に上昇ガスとして導入され、前記同様に、第3酸素富化液化流体と共に第3分離工程が行われる。あるいは、経路73から第4精留塔61の第2精留塔部61a中部に上昇ガスとして導入され、前記同様に、第1酸素富化液化流体と共に第2分離工程が行われる。   A part of the raw material air branched from the path 72 to the fourth path is branched from the path 72 to the path 71 at the middle portion of the main heat exchanger 19 and expanded by the expansion turbine 17 to perform a cold generation process. A rising gas is introduced into the middle part of the third rectifying column 61b of the rectifying column 61, and the third separation step is performed together with the third oxygen-enriched liquefied fluid in the same manner as described above. Or it introduce | transduces as rising gas to the 2nd rectification tower | column part 61a of the 4th rectification tower | column 61 from the path | route 73, and a 2nd separation process is performed with a 1st oxygen enriched liquefied fluid similarly to the above.

本形態例においても、前記各形態例と同様に、第1分離工程、第2分離工程、第3分離工程、第1間接熱交換工程、第2間接熱交換工程、第3間接熱交換工程及び製品回収工程が行われることにより、製品回収経路41から製品窒素ガス(GN)が採取される。   Also in this embodiment, the first separation step, the second separation step, the third separation step, the first indirect heat exchange step, the second indirect heat exchange step, the third indirect heat exchange step, and the respective embodiment examples, Product nitrogen gas (GN) is collected from the product collection path 41 by performing the product collection process.

以上の各形態例において、前記第1形態例及び第2形態例では、原料空気の全量が第1間接熱交換器14及び第2間接熱交換器15での間接熱交換に供されるため、第3形態例及び第4形態例に比べて第1間接熱交換器14及び第2間接熱交換器15における交換熱量が大きくなり、第2精留塔12及び第3精留塔13の上昇ガス量が増えるため、製品窒素ガスの収率を高くすることができる。   In each of the above embodiments, in the first embodiment and the second embodiment, the entire amount of the raw material air is subjected to indirect heat exchange in the first indirect heat exchanger 14 and the second indirect heat exchanger 15, Compared to the third embodiment and the fourth embodiment, the amount of exchange heat in the first indirect heat exchanger 14 and the second indirect heat exchanger 15 is increased, and the rising gas in the second rectifying column 12 and the third rectifying column 13 is increased. Since the amount increases, the yield of product nitrogen gas can be increased.

一方、第3形態例及び第4形態例では、第5酸素富化ガス流体を膨張タービン17で膨張させる必要がないため、第5酸素富化ガス流体の圧力を第1形態例及び第2形態例に比べて下げることができる。これにより、各精留塔11,12,13の運転圧力を低くすることができるため、第1形態例及び第2形態例に比べて製品窒素ガスの圧力を低くすることができる。すなわち、回収する製品窒素ガスの圧力が、例えば0.40〜0.55MPa程度の比較的低い圧力の場合は、原料空気の一部を用いて寒冷発生工程を行うことにより、原料空気の圧力を低くすることができ、空気圧縮機21の消費動力が少なくなるため、より効率的に製品窒素ガスを製造でき、動力原単位を更に低減することができる。   On the other hand, in the third embodiment and the fourth embodiment, since it is not necessary to expand the fifth oxygen-enriched gas fluid by the expansion turbine 17, the pressure of the fifth oxygen-enriched gas fluid is set to the first embodiment and the second embodiment. It can be lowered compared to the example. Thereby, since the operating pressure of each rectification column 11, 12, 13 can be made low, the pressure of product nitrogen gas can be made low compared with the 1st form example and the 2nd form example. That is, when the pressure of the product nitrogen gas to be recovered is a relatively low pressure of, for example, about 0.40 to 0.55 MPa, the pressure of the raw material air is reduced by performing a cold generation process using a part of the raw material air. Since the power consumption of the air compressor 21 can be reduced, the product nitrogen gas can be produced more efficiently, and the power consumption rate can be further reduced.

また、低温の液化ガスを利用可能な環境にある場合には、該液化ガスを、該液化ガスの組成に見合った経路に注入して液化ガス注入工程を行うことにより、装置の運転に必要な寒冷を補うことができる。この場合、原料空気の全量を第1間接熱交換器14及び第2間接熱交換器15での間接熱交換に供することができるとともに、第5酸素富化ガス流体の圧力を下げることができることから、製品窒素ガスの収率を高くでき、動力原単位の低減を図れることができるので、注入する液化ガスのコストが低廉な場合には効果的である。   Further, in an environment where a low-temperature liquefied gas can be used, the liquefied gas is injected into a path corresponding to the composition of the liquefied gas and a liquefied gas injection step is performed, which is necessary for the operation of the apparatus. Can compensate for cold. In this case, the entire amount of the raw material air can be used for indirect heat exchange in the first indirect heat exchanger 14 and the second indirect heat exchanger 15, and the pressure of the fifth oxygen-enriched gas fluid can be lowered. Since the yield of product nitrogen gas can be increased and the basic unit of power can be reduced, it is effective when the cost of the liquefied gas to be injected is low.

第1形態例で示した窒素製造装置を使用し、原料空気流量を100、製品窒素ガス圧力を0.60MPa、製品窒素ガス中の許容酸素濃度を0.1ppmとしたときの各経路におけるプロセス値をシミュレーションした。圧力1.00MPaの原料空気を、圧力0.97MPaの第1精留塔11、圧力0.61MPaの第2精留塔12及び圧力0.63MPaの第3精留塔13で各分離工程及び各間接熱交換器14,15,16で各間接熱交換工程をそれぞれ行うことにより、流量68、圧力0.60MPa、酸素濃度0.1ppmの製品窒素ガスが回収される。また、流量32、圧力0.21MPa、酸素濃度66%の第5酸素富化ガス流体は、その大部分が膨張タービン10での寒冷発生に利用され、熱回収された後に、精製器23の再生ガスとして利用される。各経路のプロセス値を表1に示す。

Figure 0005032407
Process value in each path when the nitrogen production apparatus shown in the first embodiment is used, the raw material air flow rate is 100, the product nitrogen gas pressure is 0.60 MPa, and the allowable oxygen concentration in the product nitrogen gas is 0.1 ppm. Was simulated. Raw material air having a pressure of 1.00 MPa is separated into each separation step and each of the first rectifying column 11 having a pressure of 0.97 MPa, the second rectifying column 12 having a pressure of 0.61 MPa, and the third rectifying column 13 having a pressure of 0.63 MPa. By performing each indirect heat exchange step with the indirect heat exchangers 14, 15, and 16, respectively, product nitrogen gas having a flow rate of 68, a pressure of 0.60 MPa, and an oxygen concentration of 0.1 ppm is recovered. In addition, the fifth oxygen-enriched gas fluid having a flow rate of 32, a pressure of 0.21 MPa, and an oxygen concentration of 66% is mostly used for generating cold in the expansion turbine 10 and recovered, and then regenerated in the purifier 23. Used as gas. Table 1 shows the process values for each route.
Figure 0005032407

第3形態例で示した窒素製造装置を使用し、原料空気流量を100、製品窒素ガス圧力を0.40MPa、製品窒素ガス中の許容酸素濃度を0.1ppmとしたときの各経路におけるプロセス値をシミュレーションした。   Process value in each path when the nitrogen production apparatus shown in the third embodiment is used, the raw material air flow rate is 100, the product nitrogen gas pressure is 0.40 MPa, and the allowable oxygen concentration in the product nitrogen gas is 0.1 ppm. Was simulated.

圧力0.66MPaの原料空気を、圧力0.64MPaの第1精留塔11、圧力0.41MPaの第2精留塔12及び圧力0.43MPaの第3精留塔13で各分離工程及び各間接熱交換器14,15,16で各間接熱交換工程をそれぞれ行うことにより、流量64、圧力0.40MPa、酸素濃度0.1ppmの製品窒素ガスが回収される。また、流量36、圧力0.13MPa、酸素濃度58%の第5酸素富化ガス流体は、熱回収された後に精製器23の再生ガスとして利用される。各経路のプロセス値を表2に示す。

Figure 0005032407
Raw material air having a pressure of 0.66 MPa is separated into each separation step and each of the first rectifying column 11 having a pressure of 0.64 MPa, the second rectifying column 12 having a pressure of 0.41 MPa, and the third rectifying column 13 having a pressure of 0.43 MPa. By performing each indirect heat exchange process with the indirect heat exchangers 14, 15, and 16, product nitrogen gas having a flow rate of 64, a pressure of 0.40 MPa, and an oxygen concentration of 0.1 ppm is recovered. The fifth oxygen-enriched gas fluid having a flow rate of 36, a pressure of 0.13 MPa, and an oxygen concentration of 58% is used as a regeneration gas for the purifier 23 after heat recovery. Table 2 shows the process value of each route.
Figure 0005032407

また、図5に示す前記特許文献1に記載された窒素製造装置(比較例1)、図6に示す前記特許文献2に記載された窒素製造装置(比較例2)、図7に示す複式精留プロセスを窒素製造用として膨張タービンで膨張させる流体を廃ガスの一部とした窒素製造装置(比較例3)、図8に示す複式精留プロセスを窒素製造用として膨張タービンで膨張させる流体を原料空気の一部とした窒素製造装置(比較例4)のそれぞれにおいて、製品窒素ガス圧力を0.80MPa、0.60MPa及び0.40MPa許容酸素濃度を0.1ppmとしたときの動力原単位及び原料空気圧力を算出した。   Further, the nitrogen production apparatus described in Patent Document 1 shown in FIG. 5 (Comparative Example 1), the nitrogen production apparatus described in Patent Document 2 shown in FIG. 6 (Comparative Example 2), and the double precision apparatus shown in FIG. A nitrogen production apparatus (Comparative Example 3) in which a fluid to be expanded in an expansion turbine for nitrogen production is a part of waste gas, and a fluid to be expanded in an expansion turbine for nitrogen production in FIG. In each of the nitrogen production apparatuses (Comparative Example 4) as a part of the raw material air, the power unit when the product nitrogen gas pressure is 0.80 MPa, 0.60 MPa and 0.40 MPa and the allowable oxygen concentration is 0.1 ppm, and The raw material air pressure was calculated.

図5に示す窒素製造装置は、精留塔を2塔備えた二塔型であって、第1精留塔101、第2精留塔102、第1凝縮器103、第2凝縮器104、膨張タービン105、主熱交換器106、製品窒素圧縮機107を備えている。   The nitrogen production apparatus shown in FIG. 5 is a two-column type equipped with two rectification columns, and includes a first rectification column 101, a second rectification column 102, a first condenser 103, a second condenser 104, An expansion turbine 105, a main heat exchanger 106, and a product nitrogen compressor 107 are provided.

空気圧縮機21,空気予冷器22,精製器23を経て主熱交換器106で冷却された原料空気は、第1精留塔101の下部に導入されて低温蒸留され、塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する。第1精留塔101からそれぞれ導出された前記第1窒素ガスと前記第1酸素富化液化流体とは、第1凝縮器103で間接熱交換することにより、第1窒素ガスが凝縮液化して第1液化窒素になると同時に第1酸素富化液化流体が蒸発ガス化して第1酸素富化ガス流体になる。第1液化窒素は第1精留塔101の上部に導入され、第1精留塔101の還流液となる。   The raw material air cooled by the main heat exchanger 106 through the air compressor 21, the air precooler 22, and the purifier 23 is introduced into the lower part of the first rectifying column 101 and is subjected to low-temperature distillation, and the first nitrogen in the upper part of the tower. Separation into gas and first oxygen-enriched liquefied fluid at the bottom of the tower. The first nitrogen gas and the first oxygen-enriched liquefied fluid respectively derived from the first rectifying column 101 are subjected to indirect heat exchange in the first condenser 103, whereby the first nitrogen gas is condensed and liquefied. At the same time as the first liquefied nitrogen, the first oxygen-enriched liquefied fluid is evaporated and gasified to become the first oxygen-enriched gas fluid. The first liquefied nitrogen is introduced into the upper part of the first rectifying column 101 and becomes the reflux liquid of the first rectifying column 101.

前記第1酸素富化ガス流体の一部は、第2精留塔102の下部に導入されて低温蒸留され、塔上部の第2窒素ガスと塔下部の第2酸素富化液化流体とに分離する。第2精留塔102からそれぞれ導出された前記第2窒素ガスと前記第2酸素富化液化流体とは、第2凝縮器104で間接熱交換することにより、第2窒素ガスが凝縮液化して第2液化窒素になると同時に第2酸素富化液化流体が蒸発ガス化して第2酸素富化ガス流体になる。   A part of the first oxygen-enriched gas fluid is introduced into the lower part of the second rectifying column 102 and distilled at a low temperature, and separated into a second nitrogen gas at the upper part of the tower and a second oxygen-enriched liquefied fluid at the lower part of the tower. To do. The second nitrogen gas and the second oxygen-enriched liquefied fluid respectively derived from the second rectifying column 102 are subjected to indirect heat exchange in the second condenser 104, whereby the second nitrogen gas is condensed and liquefied. Simultaneously with the second liquefied nitrogen, the second oxygen-enriched liquefied fluid is evaporated and gasified to become a second oxygen-enriched gas fluid.

第1精留塔101から導出された前記第1窒素ガスの一部は、主熱交換器106で熱回収された後に第1製品窒素ガスとして経路108に導出される。また、第2精留塔102から導出された前記第2窒素ガスの一部も、主熱交換器106で熱回収された後に第2製品窒素ガスとして経路109に導出され、製品窒素圧縮機107で前記第1製品窒素ガスと同じ圧力に昇圧される。経路108の第1製品窒素ガスと製品窒素圧縮機107で昇圧された第2製品窒素ガスとが合流し、製品窒素ガス(GN)として採取される。   A part of the first nitrogen gas led out from the first rectifying column 101 is recovered by the main heat exchanger 106 and then led out to the path 108 as the first product nitrogen gas. Further, a part of the second nitrogen gas led out from the second rectifying column 102 is also recovered by the main heat exchanger 106 and then led out to the passage 109 as the second product nitrogen gas. The pressure is increased to the same pressure as that of the first product nitrogen gas. The first product nitrogen gas in the path 108 and the second product nitrogen gas boosted by the product nitrogen compressor 107 merge and are collected as product nitrogen gas (GN).

前記第1酸素富化ガス流体の残部は、主熱交換器106で一部熱回収された後、膨張タービン105に導入され、膨張タービン105で膨張することによって装置の運転に必要な寒冷を発生する。また、前記第2酸素富化ガス流体は、膨張後の第1酸素富化ガス流体と合流して主熱交換器106で熱回収された後、廃ガス(WG)として導出される。   The remaining portion of the first oxygen-enriched gas fluid is partially recovered by the main heat exchanger 106 and then introduced into the expansion turbine 105, where it expands in the expansion turbine 105 to generate the cold necessary for the operation of the apparatus. To do. Further, the second oxygen-enriched gas fluid joins with the expanded first oxygen-enriched gas fluid and is recovered by the main heat exchanger 106, and then is discharged as waste gas (WG).

図6に示す窒素製造装置は、精留塔を3塔備えた三塔型であって、第1精留塔111,第2精留塔112、第3精留塔113、第1凝縮器114,第2凝縮器115、第3凝縮器116、膨張タービン117、主熱交換器118、製品窒素圧縮機119を備えている。   The nitrogen production apparatus shown in FIG. 6 is a three-column type including three rectifying columns, and includes a first rectifying column 111, a second rectifying column 112, a third rectifying column 113, and a first condenser 114. , Second condenser 115, third condenser 116, expansion turbine 117, main heat exchanger 118, and product nitrogen compressor 119.

空気圧縮機21,空気予冷器22,精製器23を経て主熱交換器118で冷却された原料空気は、第1精留塔111の下部に導入されて低温蒸留され、塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する。第1精留塔111の上部から導出された前記第1窒素ガスは3つの経路に分岐し、第1の経路に分岐した第1窒素ガスは、主熱交換器118で熱回収された後、第1製品窒素ガスとして経路120に導出される。   The raw material air cooled by the main heat exchanger 118 through the air compressor 21, the air precooler 22, and the purifier 23 is introduced into the lower part of the first rectifying column 111 and subjected to low-temperature distillation, and the first nitrogen in the upper part of the tower. Separation into gas and first oxygen-enriched liquefied fluid at the bottom of the tower. The first nitrogen gas derived from the upper part of the first rectifying column 111 is branched into three paths, and the first nitrogen gas branched into the first path is recovered by the main heat exchanger 118, The first product nitrogen gas is led to the path 120.

第1精留塔111から導出された前記第1酸素富化液化流体は、減圧後に第2精留塔112の上部に導入されて低温蒸留され、前記第1酸素富化液化流体よりも酸素組成が低い第2原料空気が塔上部に分離し、前記第1酸素富化液化流体よりも酸素組成が高い第2酸素富化液化流体が塔下部に分離する。第2酸素富化液化流体の一部は、第2の経路に分岐した第1窒素ガスと第1凝縮器114で間接熱交換を行い、蒸発ガス化して第2精留塔112の上昇ガスとなる。また、第1窒素ガスは液化して第1精留塔111の上部に導入され、第1精留塔111の還流液となる。   The first oxygen-enriched liquefied fluid led out from the first rectifying column 111 is introduced into the upper part of the second rectifying column 112 after decompression and distilled at a low temperature, so that the oxygen composition is higher than that of the first oxygen-enriched liquefied fluid. The second raw material air having a low oxygen content is separated in the upper part of the tower, and the second oxygen-enriched liquefied fluid having a higher oxygen composition than the first oxygen-enriched liquefied fluid is separated in the lower part of the tower. Part of the second oxygen-enriched liquefied fluid undergoes indirect heat exchange with the first nitrogen gas branched into the second path and the first condenser 114 to evaporate and gas, and the rising gas of the second rectification column 112 Become. Further, the first nitrogen gas is liquefied and introduced into the upper part of the first rectifying column 111, and becomes a reflux liquid of the first rectifying column 111.

第2精留塔112から導出された前記第2原料空気は、第3精留塔113の下部に導入されて低温蒸留され、塔上部の第2窒素ガスと塔下部の第3酸素富化液化流体とに分離する。第3精留塔113から導出された前記第2窒素ガスの一部は、前記主熱交換器118で熱回収された後、第2製品窒素ガスとして経路121に導出され、製品窒素圧縮機119で前記第1製品窒素ガスと同じ圧力に昇圧される。経路120の第1製品窒素ガスと製品窒素圧縮機119で昇圧された第2製品窒素ガスとが合流し、製品窒素ガス(GN)として採取される。   The second raw material air derived from the second rectification column 112 is introduced into the lower part of the third rectification column 113 and is distilled at a low temperature, and the second nitrogen gas at the upper part of the tower and the third oxygen-enriched liquefaction at the lower part of the tower. Separate into fluid. A part of the second nitrogen gas led out from the third rectifying column 113 is recovered by the main heat exchanger 118 and then led out as a second product nitrogen gas to the path 121, where a product nitrogen compressor 119 is obtained. The pressure is increased to the same pressure as that of the first product nitrogen gas. The first product nitrogen gas in the path 120 and the second product nitrogen gas pressurized by the product nitrogen compressor 119 are merged and collected as product nitrogen gas (GN).

第3精留塔113から導出された前記第3酸素富化液化流体は、減圧後に第2凝縮器115に導入され、前記第2窒素ガスの残部と間接熱交換を行い、第3酸素富化液化流体が蒸発ガス化して第2酸素富化ガス流体になるとともに、第2窒素ガスが液化して第2液化窒素になる。この第2液化窒素は、第3精留塔113の上部に導入され、第3精留塔13の還流液となる。   The third oxygen-enriched liquefied fluid derived from the third rectifying column 113 is introduced into the second condenser 115 after decompression, and indirect heat exchange is performed with the remainder of the second nitrogen gas. The liquefied fluid is evaporated and gasified to become a second oxygen-enriched gas fluid, and the second nitrogen gas is liquefied to become second liquefied nitrogen. This second liquefied nitrogen is introduced into the upper part of the third rectifying column 113 and becomes the reflux liquid of the third rectifying column 13.

前記第2酸素富化液化流体の残部は、第2精留塔112から導出されて第3凝縮器116に導入され、第3の経路に分岐した前記第1窒素ガスの残部と間接熱交換を行い、第2酸素富化液化流体が蒸発ガス化して第3酸素富化ガス流体になるとともに、第1窒素ガスが液化して第3液化窒素になる。この第3液化窒素は、前記第1凝縮器114で液化した前記第1液化窒素に合流し、第1精留塔111の上部に還流液として導入される。   The remaining portion of the second oxygen-enriched liquefied fluid is led out from the second rectification column 112 and introduced into the third condenser 116, and indirectly heat exchanges with the remaining portion of the first nitrogen gas branched into the third path. The second oxygen-enriched liquefied fluid is vaporized to become a third oxygen-enriched gas fluid, and the first nitrogen gas is liquefied to become third liquefied nitrogen. The third liquefied nitrogen merges with the first liquefied nitrogen liquefied by the first condenser 114 and is introduced into the upper portion of the first rectifying column 111 as a reflux liquid.

前記第3酸素富化ガス流体は、主熱交換器118で一部熱回収された後、膨張タービン117に導入され、膨張タービン117で膨張することによって装置の運転に必要な寒冷を発生する。膨張後の第3酸素富化ガス流体は、前記第2酸素富化ガス流体と合流して主熱交換器118に導入され、熱回収され後に廃ガス(WG)として導出される。   The third oxygen-enriched gas fluid is partially recovered by the main heat exchanger 118, and then introduced into the expansion turbine 117. The third oxygen-enriched gas fluid expands in the expansion turbine 117, thereby generating cold necessary for the operation of the apparatus. The expanded third oxygen-enriched gas fluid joins with the second oxygen-enriched gas fluid, is introduced into the main heat exchanger 118, is heat-recovered, and is then led out as waste gas (WG).

図7に示す複式精留プロセスからなる窒素製造装置は、第1精留塔(高圧塔)131,第2精留塔(低圧塔)132及び主凝縮蒸発器133を有する複式精留塔と、膨張する流体として廃ガスを使用した膨張タービン134、主熱交換器135、過冷器136、製品窒素圧縮機137を備えている。   The nitrogen production apparatus comprising the double rectification process shown in FIG. 7 includes a double rectification column having a first rectification column (high pressure column) 131, a second rectification column (low pressure column) 132, and a main condensing evaporator 133; An expansion turbine 134 using waste gas as an expanding fluid, a main heat exchanger 135, a supercooler 136, and a product nitrogen compressor 137 are provided.

空気圧縮機21,空気予冷器22,精製器23を経て主熱交換器135に導入された原料空気は、第1精留塔131の下部に導入されて低温蒸留され、塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する。第1酸素富化液化流体は、過冷器136で冷却された後、減圧されて第2精留塔132の中部に導入されて低温蒸留され、塔上部の第2窒素ガスと塔下部の第2酸素富化液化流体とに分離する。   The raw material air introduced into the main heat exchanger 135 through the air compressor 21, the air precooler 22, and the purifier 23 is introduced into the lower part of the first rectifying column 131 and subjected to low-temperature distillation, and the first nitrogen in the upper part of the tower. Separation into gas and first oxygen-enriched liquefied fluid at the bottom of the tower. The first oxygen-enriched liquefied fluid is cooled by the supercooler 136, then depressurized, introduced into the middle part of the second rectifying column 132, and subjected to low-temperature distillation. Separate into 2 oxygen enriched liquefied fluid.

前記第1窒素ガスは、一部が主凝縮蒸発器133に導入され、前記第2酸素富化液化流体を蒸発ガス化させるとともに凝縮液化して液化窒素となり、その一部が第2精留塔132の上部に還流液として導入され、残部は第1精留塔131の上部に還流液として導入される。主凝縮蒸発器133で蒸発ガス化した酸素富化ガス流体の一部は、第2精留塔142の上昇ガスとなる。   A part of the first nitrogen gas is introduced into the main condensing evaporator 133 to evaporate and gasify the second oxygen-enriched liquefied fluid into liquefied nitrogen, and part of the first nitrogen gas is second rectifying tower. The upper part of 132 is introduced as a reflux liquid, and the remaining part is introduced as an upper part of the first fractionator 131 as a reflux liquid. A part of the oxygen-enriched gas fluid evaporated and gasified by the main condensing evaporator 133 becomes the rising gas of the second rectifying column 142.

酸素富化ガス流体の残部は、主熱交換器135で一部熱回収された後、膨張タービン134に導入され、膨張タービン134で膨張することによって装置の運転に必要な寒冷を発生する。膨張後の酸素富化ガス流体は、主熱交換器135で熱回収された後、廃ガス(WG)として導出される。   The remainder of the oxygen-enriched gas fluid is partially recovered by the main heat exchanger 135 and then introduced into the expansion turbine 134, where it expands in the expansion turbine 134 to generate the cold necessary for the operation of the apparatus. The expanded oxygen-enriched gas fluid is recovered as heat in the main heat exchanger 135, and is then discharged as waste gas (WG).

前記第1精留塔131の上部から導出された第1窒素ガスの残部は、主熱交換器135で熱回収された後、第1製品窒素ガスとして経路138に導出される。また、前記第2精留塔132の上部から導出された第2窒素ガスは、過冷器136及び主熱交換器135で熱回収された後、第2製品窒素ガスとして経路139に導出され、製品窒素圧縮機137で前記第1製品窒素ガスと同じ圧力に昇圧される。経路138の第1製品窒素ガスと製品窒素圧縮機137で昇圧された第2製品窒素ガスとが合流し、製品窒素ガス(GN)として採取される。   The remaining portion of the first nitrogen gas led out from the upper part of the first rectifying column 131 is recovered by the main heat exchanger 135 and then led out to the path 138 as the first product nitrogen gas. The second nitrogen gas derived from the upper part of the second rectifying column 132 is recovered by the supercooler 136 and the main heat exchanger 135, and then is led to the path 139 as the second product nitrogen gas. The product nitrogen compressor 137 is pressurized to the same pressure as the first product nitrogen gas. The first product nitrogen gas in the path 138 and the second product nitrogen gas pressurized by the product nitrogen compressor 137 merge and are collected as product nitrogen gas (GN).

図8に示す複式精留プロセスからなる窒素製造装置は、第1精留塔(高圧塔)141,第2精留塔(低圧塔)142及び主凝縮蒸発器143を有する複式精留塔と、膨張する流体として原料空気の一部を使用した膨張タービン144、主熱交換器145、過冷器146、製品窒素圧縮機147を備えている。   The nitrogen production apparatus comprising the double rectification process shown in FIG. 8 includes a double rectification column having a first rectification column (high pressure column) 141, a second rectification column (low pressure column) 142, and a main condensation evaporator 143, An expansion turbine 144 using a part of the raw air as an expanding fluid, a main heat exchanger 145, a supercooler 146, and a product nitrogen compressor 147 are provided.

空気圧縮機21,空気予冷器22,精製器23を経て主熱交換器145に導入された原料空気は、一部が主熱交換器145の中間で分岐して膨張タービン144に導入され、膨張して装置の運転に必要な寒冷を発生した後に第2精留塔142の中部に導入される。残りの大部分の原料空気は、第1精留塔141の下部に導入されて低温蒸留され、塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する。第1酸素富化液化流体は、過冷器146で冷却された後、減圧されて第2精留塔142の中部に導入され、膨張後の前記原料空気の一部と共に低温蒸留され、塔上部の第2窒素ガスと塔下部の第2酸素富化液化流体とに分離する。   Part of the raw air introduced into the main heat exchanger 145 through the air compressor 21, the air precooler 22, and the purifier 23 is branched into the middle of the main heat exchanger 145 and introduced into the expansion turbine 144. Then, after generating the cold necessary for the operation of the apparatus, it is introduced into the middle of the second rectifying column 142. Most of the remaining raw material air is introduced into the lower part of the first rectifying column 141 and is distilled at a low temperature, and separated into a first nitrogen gas at the upper part of the tower and a first oxygen-enriched liquefied fluid at the lower part of the tower. The first oxygen-enriched liquefied fluid is cooled in the supercooler 146, then decompressed and introduced into the middle part of the second rectifying column 142, and is cryogenically distilled together with a part of the raw material air after expansion, The second nitrogen gas and the second oxygen-enriched liquefied fluid at the bottom of the column are separated.

前記第1窒素ガスは、一部が主凝縮蒸発器143に導入され、前記第2酸素富化液化流体を蒸発ガス化させるとともに凝縮液化して液化窒素となり、その一部が第2精留塔142の上部に還流液として導入され、残部は第1精留塔141の上部に還流液として導入される。主凝縮蒸発器143で蒸発ガス化した酸素富化ガス流体の一部は、第2精留塔142の上昇ガスとなる。酸素富化ガス流体の残部は、主熱交換器145で熱回収された後、廃ガス(WG)として導出される。   A part of the first nitrogen gas is introduced into the main condensing evaporator 143 to evaporate and gasify the second oxygen-enriched liquefied fluid and to liquefy it into liquefied nitrogen, and a part thereof is the second rectifying column. 142 is introduced as a reflux liquid in the upper part, and the remainder is introduced as a reflux liquid in the upper part of the first rectifying column 141. A part of the oxygen-enriched gas fluid evaporated and gasified by the main condensing evaporator 143 becomes the rising gas of the second rectifying column 142. The remainder of the oxygen-enriched gas fluid is recovered as heat in the main heat exchanger 145 and then discharged as waste gas (WG).

前記第1精留塔141の上部から導出された第1窒素ガスの残部は、主熱交換器145で熱回収された後、第1製品窒素ガスとして経路148に導出される。また、前記第2精留塔142の上部から導出された第2窒素ガスは、過冷器146及び主熱交換器145で熱回収された後、第2製品窒素ガスとして経路149に導出され、製品窒素圧縮機147で前記第1製品窒素ガスと同じ圧力に昇圧される。経路148の第1製品窒素ガスと製品窒素圧縮機147で昇圧された第2製品窒素ガスとが合流し、製品窒素ガス(GN)として採取される。   The remaining portion of the first nitrogen gas derived from the upper part of the first rectifying column 141 is recovered by the main heat exchanger 145 and then led to the path 148 as the first product nitrogen gas. The second nitrogen gas derived from the upper part of the second rectifying column 142 is recovered by the supercooler 146 and the main heat exchanger 145, and then is led to the path 149 as the second product nitrogen gas. The product nitrogen compressor 147 is pressurized to the same pressure as the first product nitrogen gas. The first product nitrogen gas in the path 148 and the second product nitrogen gas boosted by the product nitrogen compressor 147 merge and are collected as product nitrogen gas (GN).

表3に、各実施例及び各比較例における動力原単位を示すとともに、括弧内にそれぞれ原料空気圧力を示す。動力原単位の数値は、実施例1で製品窒素ガスを0.80MPaで採取したときの動力原単位を100とした相対値である。

Figure 0005032407
Table 3 shows the power unit in each example and each comparative example, and the raw material air pressure in parentheses. The numerical value of the power basic unit is a relative value when the power basic unit is 100 when the product nitrogen gas is sampled at 0.80 MPa in Example 1.
Figure 0005032407

表3において、比較例1の窒素製造装置では圧力が0.60MPa及び0.40MPaの製品窒素ガスを製造すること、実施例1、比較例2及び比較例3の窒素製造装置では圧力が0.40MPaの製品窒素ガスを製造することは、プロセス上、共に成立しなかった。   In Table 3, the nitrogen production apparatus of Comparative Example 1 produces product nitrogen gas having a pressure of 0.60 MPa and 0.40 MPa, and the nitrogen production apparatuses of Example 1, Comparative Example 2 and Comparative Example 3 have a pressure of 0.00. Production of 40 MPa product nitrogen gas was not achieved in the process.

また、製品窒素圧力が0.60MPa以下の場合には、本実施例1,2の窒素製造装置は、比較例2〜4の窒素製造装置に比べて、各圧力の製品窒素ガスを製造する際のいずれにおいても動力原単位を大幅に低減できることがわかる。   In addition, when the product nitrogen pressure is 0.60 MPa or less, the nitrogen production apparatuses of Examples 1 and 2 are more suitable for producing product nitrogen gas at each pressure than the nitrogen production apparatuses of Comparative Examples 2 to 4. It can be seen that the power unit can be greatly reduced in any of the cases.

さらに、いずれの場合でも、本実施例1,2における原料空気圧力が各比較例に比べて高くなっているため、精製器(23)として一般的な吸着式精製器を用いる場合は、原料空気圧力が高いことから精製器を小さくすることができ、吸着剤量も少なくすることができるため、装置コストの点でも有利であり、必要な再生ガス量も少なくすることができる。特に、比較例4の窒素製造装置で0.40MPaの製品窒素ガスを製造する際は、原料空気圧力がかなり低くなるため、精製器が大型化して吸着剤量が大幅に増加することになり、装置コストが上昇するだけでなく、再生ガスを確保するために製品窒素ガス量が犠牲になるおそれもある。   Furthermore, in any case, since the raw material air pressure in Examples 1 and 2 is higher than that in the respective comparative examples, when a general adsorption type purifier is used as the purifier (23), the raw material air is used. Since the pressure is high, the purifier can be made smaller and the amount of adsorbent can be reduced, which is advantageous in terms of apparatus cost, and the amount of necessary regenerated gas can be reduced. In particular, when producing 0.40 MPa product nitrogen gas in the nitrogen production apparatus of Comparative Example 4, since the raw material air pressure becomes considerably low, the size of the purifier increases and the amount of adsorbent increases significantly. Not only the cost of the apparatus increases, but also the amount of product nitrogen gas may be sacrificed to secure the regeneration gas.

また、両実施例では、窒素圧縮機を設ける必要はないが、各比較例では、製品窒素圧力に見合った圧力で運転される精留塔から製品窒素ガスを導出するとともに、低圧で運転される精留塔からも低圧の窒素ガスを導出し、この低圧窒素ガスを昇圧して前記製品窒素ガスに合流させるようにしているため、空気圧縮機とは別に窒素圧縮機を設ける必要もある。   Further, in both examples, it is not necessary to provide a nitrogen compressor, but in each comparative example, the product nitrogen gas is derived from a rectifying column operated at a pressure corresponding to the product nitrogen pressure and is operated at a low pressure. Since the low-pressure nitrogen gas is also derived from the rectification column, and the low-pressure nitrogen gas is pressurized and merged with the product nitrogen gas, it is necessary to provide a nitrogen compressor separately from the air compressor.

本発明の窒素製造方法を実施可能な窒素製造装置の第1形態例を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing a first embodiment of a nitrogen production apparatus capable of performing the nitrogen production method of the present invention. 本発明の窒素製造方法を実施可能な窒素製造装置の第2形態例を示す系統図である。It is a systematic diagram which shows the 2nd form example of the nitrogen manufacturing apparatus which can implement the nitrogen manufacturing method of this invention. 本発明の窒素製造方法を実施可能な窒素製造装置の第3形態例を示す系統図である。It is a systematic diagram which shows the 3rd form example of the nitrogen manufacturing apparatus which can implement the nitrogen manufacturing method of this invention. 本発明の窒素製造方法を実施可能な窒素製造装置の第4形態例を示す系統図である。It is a systematic diagram which shows the 4th example of a nitrogen manufacturing apparatus which can implement the nitrogen manufacturing method of this invention. 比較例1として使用した窒素製造装置の系統図である。2 is a system diagram of a nitrogen production apparatus used as Comparative Example 1. FIG. 比較例2として使用した窒素製造装置の系統図である。5 is a system diagram of a nitrogen production apparatus used as Comparative Example 2. FIG. 比較例3として使用した窒素製造装置の系統図である。6 is a system diagram of a nitrogen production apparatus used as Comparative Example 3. FIG. 比較例4として使用した窒素製造装置の系統図である。6 is a system diagram of a nitrogen production apparatus used as Comparative Example 4. FIG.

符号の説明Explanation of symbols

11…第1精留塔、12…第2精留塔、13…第3精留塔、14…第1間接熱交換器、15…第2間接熱交換器、16…第3間接熱交換器、17…膨張タービン、18…保冷外槽、19…主熱交換器、21…空気圧縮機、22…空気予冷器、23…精製器、28,34,43,51…減圧弁、41…製品回収経路、AIR…原料空気、GN…製品窒素ガス、WG…廃ガス   DESCRIPTION OF SYMBOLS 11 ... 1st rectification tower, 12 ... 2nd rectification tower, 13 ... 3rd rectification tower, 14 ... 1st indirect heat exchanger, 15 ... 2nd indirect heat exchanger, 16 ... 3rd indirect heat exchanger , 17 ... Expansion turbine, 18 ... Cold storage outer tank, 19 ... Main heat exchanger, 21 ... Air compressor, 22 ... Air precooler, 23 ... Purifier, 28, 34, 43, 51 ... Pressure reducing valve, 41 ... Product Recovery route, AIR ... Raw material air, GN ... Product nitrogen gas, WG ... Waste gas

Claims (6)

原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した原料空気と後述の第4酸素富化液化流体とを間接熱交換させて原料空気の一部を凝縮液化して気液二相空気を得ると同時に第4酸素富化液化流体を蒸発ガス化して第4酸素富化ガス流体を得る第1間接熱交換工程と、前記気液二相空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に低温蒸留して第2窒素ガスと第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体と前記第1窒素ガスとを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2間接熱交換工程で蒸発ガス化しなかった前記第2酸素富化液化流体を液状態のまま抜き出した第3酸素富化液化流体を低温蒸留して第3酸素富化ガス流体と第4酸素富化液化流体とに分離する第3分離工程と、前記第1間接熱交換工程で蒸発ガス化しなかった前記第4酸素富化液化流体を液状態のまま第5酸素富化液化流体として抜き出し、減圧後に前記第2窒素ガスと間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に減圧後の第5酸素富化液化流体を蒸発ガス化して第5酸素富化ガス流体を得る第3間接熱交換工程と、前記第2窒素ガスの一部を熱回収後に製品窒素ガスとして採取する製品回収工程とを含むことを特徴とする窒素製造方法。 In a nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of raw material air, indirect heat exchange is performed between the compressed, purified, and cooled raw material air and a fourth oxygen-enriched liquefied fluid, which will be described later, to obtain a part of the raw material air. A first indirect heat exchange step of condensing and liquefying to obtain gas-liquid two-phase air and simultaneously evaporating and gasifying the fourth oxygen-enriched liquefied fluid to obtain a fourth oxygen-enriched gas fluid; A first separation step of distilling to separate the first nitrogen gas and the first oxygen-enriched liquefied fluid; and the second oxygen gas and second oxygen-enriched by low-temperature distillation after depressurizing the first oxygen-enriched liquefied fluid. At the same time as obtaining a first liquefied nitrogen by condensing and liquefying the first nitrogen gas by indirect heat exchange between the second oxygen-enriched liquefied fluid and the first nitrogen gas, and a second separation step of separating into a liquefied fluid Second indirect heat for obtaining a second oxygen-enriched gas fluid by evaporating the second oxygen-enriched liquefied fluid Conversion step and the third oxygen-enriched liquefied fluid cryogenic distillation to third oxygen enriched the second oxygen-enriched liquefied stream body unevaporated gasification in the second indirect heat exchange step was withdrawn remained liquid state the third separation step and the fifth oxygen remains the fourth oxygen enriched liquefied stream body liquid state that did not first evaporation gasification in indirect heat exchange step is separated into a gaseous fluid and the fourth oxygen-enriched liquefied fluid Extracted as an enriched liquefied fluid, indirectly heat-exchanged with the second nitrogen gas after decompression to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the fifth oxygen enriched liquefied fluid after decompression And a third indirect heat exchange step for obtaining a fifth oxygen-enriched gas fluid, and a product recovery step for collecting a part of the second nitrogen gas as product nitrogen gas after heat recovery. Method. 前記第5酸素富化ガス流体を膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1の窒素製造方法。   The method for producing nitrogen according to claim 1, further comprising a cold generation step of introducing the fifth oxygen-enriched gas fluid into an expansion turbine and expanding the fluid. 前記原料空気の一部を膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1の窒素製造方法。   The method for producing nitrogen according to claim 1, further comprising a cold generation step of introducing a part of the raw material air into an expansion turbine to expand the raw material air. 系外から液化ガスを供給して装置の運転に必要な寒冷を補う液化ガス注入工程を含むことを特徴とする請求項1の窒素製造方法。   The method for producing nitrogen according to claim 1, further comprising a liquefied gas injection step of supplying liquefied gas from outside the system to compensate for the refrigeration necessary for the operation of the apparatus. 原料空気を深冷液化分離して製品窒素を採取する窒素製造装置において、圧縮、精製、冷却した原料空気と後述の第4酸素富化液化流体とを間接熱交換させて原料空気の一部を凝縮液化して気液二相空気を得ると同時に第4酸素富化液化流体を蒸発ガス化して第4酸素富化ガス流体を得る第1間接熱交換器と、前記気液二相空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1精留塔と、前記第1酸素富化液化流体を減圧後に低温蒸留して第2窒素ガスと第2酸素富化液化流体とに分離する第2精留塔と、前記第2酸素富化液化流体と前記第1窒素ガスとを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換器と、前記第2間接熱交換器で蒸発ガス化しなかった前記第2酸素富化液化流体を前記第2精留塔の底部から液状態のまま抜き出した第3酸素富化液化流体を低温蒸留して第3酸素富化ガス流体と第4酸素富化液化流体とに分離する第3精留塔と、前記第1間接熱交換器で蒸発ガス化しなかった前記第4酸素富化液化流体を前記第3精留塔の底部から液状態のまま抜き出した第5酸素富化液化流体を減圧後に前記第2窒素ガスと間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に減圧後の第5酸素富化液化流体を蒸発ガス化して第5酸素富化ガス流体を得る第3間接熱交換器と、前記第2窒素ガスの一部を熱回収後に製品窒素ガスとして採取する製品回収経路とを含むことを特徴とする窒素製造装置。 In a nitrogen production system that collects product nitrogen by cryogenic liquefaction separation of raw material air, the raw material air that has been compressed, purified, and cooled is indirectly heat-exchanged with a fourth oxygen-enriched liquefied fluid described later to obtain part of the raw material air. A first indirect heat exchanger for obtaining a fourth oxygen-enriched gas fluid by evaporating and gasifying a fourth oxygen-enriched liquefied fluid at the same time as condensing and liquefying to obtain gas-liquid two-phase air; A first rectifying column that is distilled to separate it into a first nitrogen gas and a first oxygen-enriched liquefied fluid; and a low-temperature distillation of the first oxygen-enriched liquefied fluid after depressurization and a second nitrogen gas and a second oxygen-enriched fluid. A second rectifying column that is separated into a liquefied fluid, the second oxygen-enriched liquefied fluid, and the first nitrogen gas are indirectly heat exchanged to condense and liquefy the first nitrogen gas to obtain first liquefied nitrogen. At the same time, the second indirect heat exchanger for obtaining the second oxygen-enriched gas fluid by evaporating the second oxygen-enriched liquefied fluid The third oxygen-enriched liquefied fluid extracted remain in the liquid state the second oxygen-enriched liquefied stream body unevaporated gasified in the second indirect heat exchanger from the bottom of the second rectification column by cryogenic distillation Te and a third oxygen-enriched gas stream and a third rectification column is separated into a fourth oxygen-enriched liquefied fluid, the fourth oxygen enriched liquefied stream body unevaporated gasification in a first indirect heat exchanger The fifth oxygen-enriched liquefied fluid extracted from the bottom of the third rectifying column in a liquid state is subjected to indirect heat exchange with the second nitrogen gas after depressurization to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen. A third indirect heat exchanger that obtains a fifth oxygen-enriched gas fluid by evaporating and gasifying the fifth oxygen-enriched liquefied fluid after decompression and a product nitrogen gas after recovering a part of the second nitrogen gas. And a product recovery route to be collected as a nitrogen production apparatus. 前記第2精留塔と前記第3精留塔は、前記第2精留塔の下部に前記第3精留塔が一体化されていることを特徴とする請求項5の窒素製造装置。   6. The nitrogen producing apparatus according to claim 5, wherein the second rectifying tower and the third rectifying tower are integrated with the third rectifying tower at a lower portion of the second rectifying tower.
JP2008190639A 2008-07-24 2008-07-24 Nitrogen production method and apparatus Active JP5032407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190639A JP5032407B2 (en) 2008-07-24 2008-07-24 Nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190639A JP5032407B2 (en) 2008-07-24 2008-07-24 Nitrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2010025513A JP2010025513A (en) 2010-02-04
JP5032407B2 true JP5032407B2 (en) 2012-09-26

Family

ID=41731525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190639A Active JP5032407B2 (en) 2008-07-24 2008-07-24 Nitrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP5032407B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575064B (en) * 2012-07-23 2015-10-28 中国石油化工股份有限公司 A kind of air separation oxygen nitrogen increases the device and method of pressure nitrogen gas load fast
CN104121475B (en) * 2013-04-25 2016-12-28 中国石油化工股份有限公司 A kind of circulator bath liquid nitrogen fast gasifying device and operational approach
JP6159242B2 (en) * 2013-12-13 2017-07-05 大陽日酸株式会社 Air separation method and apparatus
JP7505702B1 (en) 2023-12-06 2024-06-25 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード High-purity oxygen production method and air separation unit for producing high-purity oxygen
CN117722819B (en) * 2024-02-18 2024-05-07 浙江浙能技术研究院有限公司 Novel liquefied air energy storage system of self-balancing type coupling LNG cold energy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9325648D0 (en) * 1993-12-15 1994-02-16 Boc Group Plc Air separation
GB9326168D0 (en) * 1993-12-22 1994-02-23 Bicc Group The Plc Air separation
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
GB9500120D0 (en) * 1995-01-05 1995-03-01 Boc Group Plc Air separation
JPH10132458A (en) * 1996-10-28 1998-05-22 Nippon Sanso Kk Method and equipment for producing oxygen gas
JPH11132652A (en) * 1997-10-27 1999-05-21 Nippon Sanso Kk Method and device for manufacturing low-purity oxygen
JP4230213B2 (en) * 2002-12-24 2009-02-25 大陽日酸株式会社 Air liquefaction separation apparatus and method
JP4515225B2 (en) * 2004-11-08 2010-07-28 大陽日酸株式会社 Nitrogen production method and apparatus
JP2007147113A (en) * 2005-11-24 2007-06-14 Taiyo Nippon Sanso Corp Nitrogen manufacturing method and device

Also Published As

Publication number Publication date
JP2010025513A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5878310B2 (en) Air separation method and apparatus
JP5655104B2 (en) Air separation method and air separation device
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JP5032407B2 (en) Nitrogen production method and apparatus
JPH06257939A (en) Distilling method at low temperature of air
JP5417054B2 (en) Air separation method and apparatus
JP4401999B2 (en) Air separation method and air separation device
JP2007147113A (en) Nitrogen manufacturing method and device
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP4206083B2 (en) Argon production method using cryogenic air separator
JP2017072282A (en) Nitrogen manufacturing method and nitrogen manufacturing device
JP4519010B2 (en) Air separation device
JP6086272B1 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
JP4841591B2 (en) Nitrogen production method and apparatus
JP4787796B2 (en) Air separation method and apparatus
JP5005708B2 (en) Air separation method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP3738213B2 (en) Nitrogen production method and apparatus
JP4515225B2 (en) Nitrogen production method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP2016040494A (en) Method of manufacturing ultra high purity oxygen, and ultra high purity oxygen manufacturing device
JP6159242B2 (en) Air separation method and apparatus
JP4451438B2 (en) Nitrogen production method and apparatus
JP4698989B2 (en) Oxygen production equipment
JP6591830B2 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250