JP4451438B2 - Nitrogen production method and apparatus - Google Patents

Nitrogen production method and apparatus Download PDF

Info

Publication number
JP4451438B2
JP4451438B2 JP2006355080A JP2006355080A JP4451438B2 JP 4451438 B2 JP4451438 B2 JP 4451438B2 JP 2006355080 A JP2006355080 A JP 2006355080A JP 2006355080 A JP2006355080 A JP 2006355080A JP 4451438 B2 JP4451438 B2 JP 4451438B2
Authority
JP
Japan
Prior art keywords
oxygen
enriched
fluid
nitrogen gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006355080A
Other languages
Japanese (ja)
Other versions
JP2008164236A (en
Inventor
真 入澤
博志 橘
俊幸 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006355080A priority Critical patent/JP4451438B2/en
Publication of JP2008164236A publication Critical patent/JP2008164236A/en
Application granted granted Critical
Publication of JP4451438B2 publication Critical patent/JP4451438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、窒素製造方法及び装置に関し、詳しくは、空気を深冷分離法により分離して製品窒素(窒素ガス、液体窒素)を採取する方法及び装置に関する。   The present invention relates to a method and apparatus for producing nitrogen, and more particularly to a method and apparatus for collecting product nitrogen (nitrogen gas, liquid nitrogen) by separating air by a cryogenic separation method.

空気を深冷分離して製品窒素を製造する方法としては、基本的に単精留塔装置を用いる方法が広く行われており、近年は、製品収率や動力原単位を改善するために様々なプロセスが提案されている。その中で、二塔の精留塔を採用し、従来のプロセスでは破棄されていた廃ガスを第二の精留塔の原料とするプロセスは、第二の精留塔に原料として導入する廃ガスを圧縮したり、昇温したりすることがないので、新たな圧縮動力や昇温に必要な熱交換器も基本的に不要となるという利点を有している。このプロセスでは、第二の精留塔から得られる一部の製品窒素ガスを所定圧力まで昇圧することが必要となる場合もあるが、必要エネルギーは最小限となり、従来のプロセスに比較して製品収率や動力原単位を大幅に改善することが可能である(例えば、特許文献1参照。)。
特許第3738213号公報
As a method for producing product nitrogen by cryogenic separation of air, basically, a method using a single fractionator is widely used. In recent years, various methods have been used to improve product yield and power consumption. Process has been proposed. Among them, a process using two rectification towers and using waste gas that was discarded in the conventional process as a raw material for the second rectification tower is a waste that is introduced into the second rectification tower as a raw material. Since the gas is not compressed or heated, there is an advantage that new compression power and a heat exchanger necessary for raising the temperature are basically unnecessary. In this process, it may be necessary to boost some product nitrogen gas obtained from the second rectification column to a predetermined pressure, but the required energy is minimized and the product is compared with the conventional process. It is possible to greatly improve the yield and power consumption (for example, see Patent Document 1).
Japanese Patent No. 3738213

しかし、上述のプロセスは、プロセスの性格上、装置運転圧力の下限が存在するため、製品窒素圧力が約0.8MPa以上で効率的な装置であり、低い動力原単位が期待できる。しかし、製品圧力が0.8MPaあるいはそれより低い場合には、高製品収率の特徴を生かしつつ対応することは困難であった。なお、本明細書では、圧力{MPa}は絶対圧力を示している。   However, since the above process has a lower limit of the apparatus operating pressure due to the nature of the process, it is an efficient apparatus when the product nitrogen pressure is about 0.8 MPa or more, and a low power unit can be expected. However, when the product pressure is 0.8 MPa or lower, it is difficult to cope with the feature of high product yield. In the present specification, the pressure {MPa} indicates an absolute pressure.

そこで本発明は、製品窒素圧力が比較的低い場合であっても、高い製品収率を維持できる窒素製造方法及び装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a nitrogen production method and apparatus capable of maintaining a high product yield even when the product nitrogen pressure is relatively low.

上記目的を達成するため、本発明の原料空気を深冷液化分離して製品窒素を採取する第1の窒素製造方法は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2酸素富化液化流体の残部を減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とし、さらに、前記第2分離工程と第1間接熱交換工程とを内部熱交換型精留塔で行うこと、前記第2分離工程の低温蒸留を1回の気液平衡のみで行うことを特徴としている。 In order to achieve the above object, the first nitrogen production method of collecting the product nitrogen by cryogenic liquefaction separation of the raw material air of the present invention is the first nitrogen by low-temperature distillation of the compressed, purified and cooled first raw material air A first separation step of separating the gas into a first oxygen-enriched liquefied fluid and a second raw material by low-temperature distillation of the first oxygen-enriched liquefied fluid after depressurizing the first oxygen-enriched gas fluid described later A second separation step of separating the air into a second oxygen-enriched liquefied fluid, and a first nitrogen gas by indirectly exchanging a part of the second oxygen-enriched liquefied fluid and a part of the first nitrogen gas. A first indirect heat exchange step of obtaining a first oxygen-enriched gas fluid by evaporating and gasifying a part of the second oxygen-enriched liquefied fluid at the same time as obtaining the first liquefied nitrogen by condensing liquid, and the second raw material air A third separation step of low-temperature distillation to separate the second nitrogen gas and the third oxygen-enriched liquefied fluid; A part of the second nitrogen gas and the third oxygen-enriched liquefied fluid after decompression are indirectly heat-exchanged to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen, and at the same time, the third oxygen-enriched liquefied fluid A second indirect heat exchange step of evaporating the gas to obtain a second oxygen-enriched gas fluid, and the remaining portion of the second oxygen-enriched liquefied fluid is indirectly heat-exchanged with a part of the remaining portion of the first nitrogen gas after depressurization. A third indirect heat exchange step of condensing and liquefying the first nitrogen gas to obtain third liquefied nitrogen and simultaneously evaporating and gasifying the entire amount of the second oxygen-enriched liquefied fluid to obtain a third oxygen-enriched gas fluid; A first product recovery step for deriving the remainder of the first nitrogen gas as a first product nitrogen gas after heat recovery; and a second product recovery step for deriving the remainder of the second nitrogen gas as a second product nitrogen gas after heat recovery; In addition, the second separation step and the first indirect heat exchange To perform a process in a heat integrated rectification column, it is characterized by performing the cryogenic distillation of the second separation step in only one vapor-liquid equilibrium.

また、本発明の第2の窒素製造方法は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1窒素ガスの一部と減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程と、前記第1酸素富化気液混相流体を1回の気液平衡のみで第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴としている。 Moreover, the second nitrogen production method of the present invention includes a first separation step in which the compressed, purified, and cooled first raw material air is subjected to low-temperature distillation to separate the first nitrogen gas and the first oxygen-enriched liquefied fluid; A part of the first nitrogen gas and the first oxygen-enriched liquefied fluid after depressurization are indirectly heat exchanged to condense and liquefy the first nitrogen gas to obtain first liquefied nitrogen, and at the same time, the first oxygen-enriched liquefied A first indirect heat exchange step for obtaining a first oxygen-enriched gas-liquid mixed phase fluid by evaporating part of the fluid, and the second raw material by only one gas-liquid equilibrium for the first oxygen-enriched gas-liquid mixed phase fluid. A second separation step of separating the air into a second oxygen-enriched liquefied fluid, and a third separation step of separating the second raw material air into a second nitrogen gas and a third oxygen-enriched liquefied fluid by low-temperature distillation. The second nitrogen gas is condensed with the second nitrogen gas through indirect heat exchange between a part of the second nitrogen gas and the third oxygen-enriched liquefied fluid after decompression. The second indirect heat exchange step of obtaining the second oxygen-enriched gas fluid by evaporating and gasifying the third oxygen-enriched liquefied fluid at the same time as obtaining the second liquefied nitrogen, and the second oxygen-enriched liquefied fluid after decompression And the remaining part of the first nitrogen gas are indirectly heat-exchanged to condense and liquefy the first nitrogen gas to obtain third liquefied nitrogen, and at the same time evaporate and gasify the entire amount of the second oxygen-enriched liquefied fluid. 3 a third indirect heat exchange step for obtaining an oxygen-enriched gas fluid, a first product recovery step for deriving the remainder of the first nitrogen gas as a first product nitrogen gas after heat recovery, and a remainder of the second nitrogen gas. And a second product recovery step of deriving as second product nitrogen gas after heat recovery.

また、第1の製造方法を実施する本発明の第1の窒素製造装置は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1酸素富化液化流体を減圧手段で減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う精留塔と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程を行う凝縮器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、前記第2酸素富化液化流体の残部を減圧手段で減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とし、さらに、前記第2分離工程行う精留塔と前記第1間接熱交換工程を行う凝縮器とが内部熱交換型精留塔であること、前記第2分離工程を行う精留塔は、前記第1間接熱交換工程を行う凝縮器を内蔵した気液分離器であることを特徴としている。 In addition, the first nitrogen production apparatus of the present invention that implements the first production method low-temperature distills the compressed, purified, and cooled first raw material air into the first nitrogen gas and the first oxygen-enriched liquefied fluid. a rectification column to carry out the first separation step of separating, the first oxygen-enriched liquefied fluid after decompression in decompression means, second feed air by cryogenic distillation with the total amount of the first oxygen-enriched gas stream below the A rectifying column that performs a second separation step for separating the oxygen-enriched liquefied fluid into a first fraction, and a part of the second oxygen-enriched liquefied fluid and a part of the first nitrogen gas are indirectly heat-exchanged to form a first A condenser for performing a first indirect heat exchange step of condensing and liquefying nitrogen gas to obtain first liquefied nitrogen and at the same time evaporating and gasifying a part of the second oxygen enriched liquefied fluid to obtain a first oxygen enriched gas fluid; the third separation engineering for separating the second feed air into a cryogenic distillation second nitrogen gas was a third oxygen-enriched liquefied fluid A rectification column to conduct, the third oxygen-enriched liquefied fluid and a second liquefied nitrogen condensed and liquefied the second nitrogen gas by indirect heat exchange after decompression part and pressure reducing means of the second nitrogen gas A condenser for performing a second indirect heat exchange step for obtaining a second oxygen-enriched gas fluid by evaporating and gasifying the third oxygen-enriched liquefied fluid at the same time, and reducing the remaining portion of the second oxygen-enriched liquefied fluid with a decompression means After decompression, the first nitrogen gas is indirectly heat exchanged with the remaining part of the first nitrogen gas to condense and liquefy the first nitrogen gas to obtain third liquefied nitrogen. At the same time, the entire amount of the second oxygen-enriched liquefied fluid is vaporized and gasified. A condenser for performing a third indirect heat exchange step for obtaining three oxygen-enriched gas fluids, a first product recovery path for deriving the remainder of the first nitrogen gas as a first product nitrogen gas after heat recovery by a heat recovery means, The remainder of the second nitrogen gas is introduced as second product nitrogen gas after heat recovery by the heat recovery means. A second product recovery path, that is provided with a characterized, furthermore, a condenser for performing the second separation step wherein the rectification column to carry out the first indirect heat exchange step is in heat integrated rectification column to The rectifying column that performs the second separation step is a gas-liquid separator that includes a condenser that performs the first indirect heat exchange step .

また、第2の製造方法を実施する本発明の第2の窒素製造装置は、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1窒素ガスの一部と減圧手段で減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程を行う凝縮器と、前記第1酸素富化気液混相流体を気液分離して第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う気液分離器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程を行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、減圧手段で減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴としている。 In addition, the second nitrogen production apparatus of the present invention that implements the second production method low-temperature distills the compressed, purified, and cooled first raw material air into the first nitrogen gas and the first oxygen-enriched liquefied fluid. The first nitrogen gas is condensed and liquefied by indirect heat exchange between the rectifying column for performing the first separation step to be separated, and a part of the first nitrogen gas and the first oxygen-enriched liquefied fluid after being depressurized by the decompression means. And a condenser for performing a first indirect heat exchange step for obtaining a first oxygen-enriched gas-liquid mixed phase fluid by evaporating and gasifying a part of the first oxygen-enriched liquefied fluid simultaneously with obtaining the first liquefied nitrogen, 1. A gas-liquid separator that performs a second separation step of gas-liquid separation of an oxygen-enriched gas-liquid mixed phase fluid into a second raw material air and a second oxygen-enriched liquefied fluid; and low-temperature distillation of the second raw material air a rectification column to carry out and the second nitrogen gas a third separation step of separating into a third oxygen-enriched liquefied fluid, the second nitrogen gas And the third oxygen-enriched liquefied fluid after being depressurized by the pressure reducing means are indirectly heat exchanged to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the third oxygen-enriched liquefied fluid A condenser that performs a second indirect heat exchange step to obtain a second oxygen-enriched gas fluid, and a second oxygen-enriched liquefied fluid that has been depressurized by a depressurizing means and a part of the remainder of the first nitrogen gas. third indirect heat exchanger to obtain a third oxygen-enriched gas stream is evaporated gasifying the total amount of condensed and liquefied the first nitrogen gas by indirect heat exchange third obtains a liquefied nitrogen simultaneously the second oxygen-enriched liquefied fluid A condenser for performing the process, a first product recovery path for deriving the remainder of the first nitrogen gas as the first product nitrogen gas after heat recovery by the heat recovery means, and a heat recovery means for heating the remainder of the second nitrogen gas And a second product recovery path that leads out as second product nitrogen gas after recovery. It is characterized by a door.

本発明によれば、比較的低い圧力、例えば0.6MPa程度の製品窒素を高収率、低動力原単位で得ることができる。   According to the present invention, product nitrogen having a relatively low pressure, for example, about 0.6 MPa can be obtained with a high yield and a low power unit.

図1は本発明の第1形態例を示す窒素製造装置の系統図である。この窒素製造装置は、精留塔として、第1精留塔11,第2精留塔12及び第3精留塔13の3塔を備えるとともに、凝縮器も、第1凝縮器14,第2凝縮器15及び第3凝縮器16の3基を備えている。   FIG. 1 is a system diagram of a nitrogen production apparatus showing a first embodiment of the present invention. This nitrogen production apparatus includes three towers, ie, a first rectification tower 11, a second rectification tower 12, and a third rectification tower 13, as rectification towers. Three units of a condenser 15 and a third condenser 16 are provided.

以下、気液の流れに基づいてプロセスを詳細に説明する。フィルター20から吸い込まれ、原料空気圧縮機21で圧縮され、アフタークーラー22で圧縮熱を除去され、精製器23で含有する水蒸気、二酸化炭素を精製除去された第1原料空気は、保冷外槽内の主熱交換器24で所定温度に冷却された後、経路25を通って前記第1精留塔11の下部に導入される。この第1精留塔11では、第1原料空気が低温蒸留されて塔上部の第1窒素ガスと塔下部の第1酸素富化液化流体とに分離する(第1分離工程)。   Hereinafter, the process will be described in detail based on the gas-liquid flow. The first raw material air sucked from the filter 20, compressed by the raw material air compressor 21, removed from the compression heat by the after cooler 22, and purified and removed the water vapor and carbon dioxide contained in the purifier 23 is stored in the cold insulation outer tank. After being cooled to a predetermined temperature by the main heat exchanger 24, it is introduced into the lower part of the first rectifying column 11 through the path 25. In the first rectifying column 11, the first raw material air is distilled at a low temperature and separated into a first nitrogen gas at the upper part of the tower and a first oxygen-enriched liquefied fluid at the lower part of the tower (first separation step).

第1精留塔11の上部から経路26に抜き出された第1窒素ガスの一部は、経路27に分岐して前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温し、第1製品回収経路28から第1製品窒素ガスとして導出される(第1製品回収工程)。   A part of the first nitrogen gas extracted from the upper part of the first rectifying column 11 to the path 26 is branched into the path 27 and indirectly heat-exchanged with the first raw material air by the main heat exchanger 24. The temperature is raised and the first product nitrogen gas is led out from the first product recovery path 28 (first product recovery step).

また、第1精留塔11の下部から経路29に導出された前記第1酸素富化液化流体は、減圧弁30で所定の圧力に減圧された後、第2精留塔12の上部に導入される。この第2精留塔12は下部に前記第1凝縮器14を備えた精留塔である。第2精留塔12を下降する第1酸素富化液化流体は、第1凝縮器14で発生した上昇ガス(後述の第1酸素富化ガス流体)との間で低温蒸留が進み、第1酸素富化液化流体は酸素組成が高くなって第2酸素富化液化流体となり、第2精留塔12の下方に流下するとともに、上昇ガスは第1酸素富化液化流体よりも酸素組成が低い第2原料空気となって第2精留塔12の上部に上昇する(第2分離工程)。第2精留塔12の下方に流下した第2酸素富化液化流体は、第2精留塔12の底部に備えられた第1凝縮器14を浸漬し、第1凝縮器14の冷流体として供される。   The first oxygen-enriched liquefied fluid led out from the lower part of the first rectifying column 11 to the path 29 is reduced to a predetermined pressure by the pressure reducing valve 30 and then introduced into the upper part of the second rectifying column 12. Is done. The second rectifying column 12 is a rectifying column provided with the first condenser 14 in the lower part. The first oxygen-enriched liquefied fluid descending the second rectifying column 12 undergoes low-temperature distillation with the ascending gas (first oxygen-enriched gas fluid described later) generated in the first condenser 14, and the first The oxygen-enriched liquefied fluid has a higher oxygen composition and becomes a second oxygen-enriched liquefied fluid that flows down below the second rectifying column 12, and the rising gas has a lower oxygen composition than the first oxygen-enriched liquefied fluid. It becomes 2nd raw material air, and raises to the upper part of the 2nd fractionator 12 (2nd separation process). The second oxygen-enriched liquefied fluid flowing down below the second rectifying column 12 immerses the first condenser 14 provided at the bottom of the second rectifying column 12 and serves as a cold fluid for the first condenser 14. Provided.

前記第1凝縮器14では、前記第2酸素富化液化流体と、前記経路26から経路31に分岐した前記第1窒素ガスの一部とが間接熱交換を行い、第1窒素ガスが液化して第1液化窒素となると同時に、第2酸素富化液化流体は、その一部が気化して塔内を上昇する第1酸素富化ガス流体となる(第1間接熱交換工程)。第1液化窒素は経路32を通って第1精留塔11の上部に下降液として導入され、また、第1酸素富化ガス流体は第2精留塔12を上昇して前記第1酸素富化液化流体との間で低温蒸留を行う。第1凝縮器14で気化しなかった第2酸素富化液化流体の残部である滞留液(後述の第4酸素富化液化流体)は経路33に導出される。なお、本形態例では第1酸素富化ガス流体と第2酸素富化液化流体の残部である滞留液とは気液平衡状態であるので、第2分離工程で流下する第2酸素富化液化流体の組成と第2酸素富化液化流体の残部である滞留液の組成とは基本的に異なり、第2酸素富化液化流体の酸素組成よりも第2酸素富化液化流体の残部である滞留液の酸素組成が高くなっている。   In the first condenser 14, the second oxygen-enriched liquefied fluid and a part of the first nitrogen gas branched from the path 26 to the path 31 perform indirect heat exchange, and the first nitrogen gas is liquefied. At the same time as the first liquefied nitrogen, the second oxygen-enriched liquefied fluid becomes a first oxygen-enriched gas fluid that partially vaporizes and rises in the tower (first indirect heat exchange step). The first liquefied nitrogen is introduced as a descending liquid into the upper portion of the first rectifying column 11 through the path 32, and the first oxygen-enriched gas fluid rises up the second rectifying column 12 to enrich the first oxygen. Perform low-temperature distillation with the liquefied fluid. The remaining liquid (the fourth oxygen-enriched liquefied fluid described later) that is the remainder of the second oxygen-enriched liquefied fluid that has not been vaporized by the first condenser 14 is led to the path 33. In the present embodiment, the first oxygen-enriched gas fluid and the remaining liquid that is the remainder of the second oxygen-enriched liquefied fluid are in a gas-liquid equilibrium state, and therefore the second oxygen-enriched liquefaction flowing down in the second separation step. The composition of the fluid is fundamentally different from the composition of the staying liquid that is the remainder of the second oxygen-enriched liquefied fluid, and the staying that is the remainder of the second oxygen-enriched liquefied fluid rather than the oxygen composition of the second oxygen-enriched liquefied fluid The oxygen composition of the liquid is high.

前記第2精留塔12の上部に分離した第2原料空気は、塔上部から経路34に抜き出されて前記第3精留塔13の下部に導入される。この第3精留塔13では、第2原料空気が低温蒸留されて塔上部の第2窒素ガスと塔下部の第3酸素富化液化流体とに分離される(第3分離工程)。第3精留塔13の上部から経路35に抜き出された第2窒素ガスの一部は、経路36に分岐して前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温し、第2製品回収経路37から第2製品窒素ガスとして導出される(第2製品回収工程)。この第2製品窒素ガスは、導出した圧力のままで供給先に供給することもできるが、前記第1製品窒素ガスに合流させて供給する際には、窒素圧縮機38で昇圧し、アフタークーラー39で冷却してから第1製品窒素ガスに合流させ、製品供給経路40から製品窒素ガス(GN2)として供給先に供給すればよい。   The second raw material air separated at the upper part of the second rectifying column 12 is extracted from the upper part of the tower to the path 34 and introduced into the lower part of the third rectifying tower 13. In the third fractionator 13, the second raw material air is distilled at a low temperature and separated into a second nitrogen gas at the top of the tower and a third oxygen-enriched liquefied fluid at the bottom of the tower (third separation step). A part of the second nitrogen gas extracted from the upper part of the third rectifying column 13 to the path 35 is branched to the path 36 and indirectly heat-exchanged with the first raw material air by the main heat exchanger 24. The temperature is raised and the second product nitrogen gas is led out from the second product recovery path 37 (second product recovery step). The second product nitrogen gas can be supplied to the supply destination at the derived pressure. However, when the second product nitrogen gas is joined to the first product nitrogen gas and supplied, the pressure is increased by the nitrogen compressor 38 and the aftercooler. What is necessary is just to make it merge with 1st product nitrogen gas after cooling by 39, and to supply to a supply destination as product nitrogen gas (GN2) from the product supply path 40.

第3精留塔13の下部から経路41に導出された前記第3酸素富化液化流体は、減圧弁42で所定の圧力に減圧された後、前記第2凝縮器15に導入される。この第2凝縮器15には、前記経路35から経路43に分岐した第2窒素ガスの残部が導入され、第2窒素ガスと第3酸素富化液化流体とが間接熱交換することにより、第3酸素富化液化流体が気化して第2酸素富化ガス流体になるとともに、第2窒素ガスが液化して第2液化窒素となる(第2間接熱交換工程)。この第2液化窒素は、経路44を通って第精留塔13の上部に下降液として導入される。 The third oxygen-enriched liquefied fluid led out from the lower part of the third rectifying column 13 to the path 41 is depressurized to a predetermined pressure by the pressure reducing valve 42 and then introduced into the second condenser 15. The remaining portion of the second nitrogen gas branched from the path 35 to the path 43 is introduced into the second condenser 15, and the second nitrogen gas and the third oxygen-enriched liquefied fluid exchange heat indirectly, thereby 3 The oxygen-enriched liquefied fluid is vaporized to become a second oxygen-enriched gas fluid, and the second nitrogen gas is liquefied to become second liquefied nitrogen (second indirect heat exchange step). This second liquefied nitrogen is introduced as a descending liquid into the upper part of the third fractionator 13 through the path 44.

前記第2酸素富化ガス流体は、第2凝縮器15から経路45に導出され、前記主熱交換器24で第1原料空気と間接熱交換を行うことにより昇温して経路46に導出され、必要に応じて前記精製器23の再生に用いられる。   The second oxygen-enriched gas fluid is led out from the second condenser 15 to the path 45, and is heated up by indirect heat exchange with the first raw material air in the main heat exchanger 24 and led out to the path 46. The refining device 23 is used for regeneration as necessary.

一方、前記第2酸素富化液化流体の残部である滞留液は、経路33に第4酸素富化液化流体として導出され、減圧弁47で所定圧力に減圧された後、前記第3凝縮器16に導入される。この第3凝縮器16には、前記経路26から経路48に分岐した前記第1窒素ガスの残部が導入され、第1窒素ガスと第4酸素富化液化流体とが間接熱交換を行い、第4酸素富化液化流体が気化して第3酸素富化ガス流体になるとともに、第1窒素ガスが液化して第3液化窒素となる(第3間接熱交換工程)。この第3液化窒素は、経路49に導出されて前記経路32を流れる第1液化窒素に合流し、第1精留塔11の上部に下降液として導入される。   On the other hand, the remaining liquid that is the remainder of the second oxygen-enriched liquefied fluid is led out to the passage 33 as the fourth oxygen-enriched liquefied fluid, and is reduced to a predetermined pressure by the pressure reducing valve 47, and then the third condenser 16 To be introduced. The remaining portion of the first nitrogen gas branched from the path 26 to the path 48 is introduced into the third condenser 16, and the first nitrogen gas and the fourth oxygen-enriched liquefied fluid perform indirect heat exchange, 4 The oxygen-enriched liquefied fluid is vaporized to become a third oxygen-enriched gas fluid, and the first nitrogen gas is liquefied to become third liquefied nitrogen (third indirect heat exchange step). The third liquefied nitrogen is led to the path 49 and merges with the first liquefied nitrogen flowing through the path 32, and is introduced into the upper portion of the first fractionator 11 as a descending liquid.

前記第3酸素富化ガス流体は、第3凝縮器16から経路50に導出されて前記主熱交換器24に導入される。第3酸素富化ガス流体の一部は、中間温度で経路51にタービン流体として分岐し、膨張タービン52に導入されて膨張し、装置の運転に必要な寒冷を発生し、経路53を経て前記経路45の第2酸素富化ガス流体と合流し、再び主熱交換器24に導入される。主熱交換器24から経路54に導出された第3酸素富化ガス流体の残部は、減圧弁55で減圧された後、前記経路46の第2酸素富化ガス流体に合流する。   The third oxygen-enriched gas fluid is led from the third condenser 16 to the path 50 and introduced into the main heat exchanger 24. A part of the third oxygen-enriched gas fluid branches as a turbine fluid into the passage 51 at an intermediate temperature, is introduced into the expansion turbine 52 and expands, generates cold necessary for operation of the apparatus, and passes through the passage 53 to It joins with the second oxygen-enriched gas fluid in the path 45 and is again introduced into the main heat exchanger 24. The remainder of the third oxygen-enriched gas fluid led out from the main heat exchanger 24 to the path 54 is decompressed by the pressure reducing valve 55 and then merges with the second oxygen-enriched gas fluid in the path 46.

また、第1精留塔11と第3精留塔13との間には、減圧弁56を備えた寒冷補給経路57が設けられており、第1精留塔11内の液流体を減圧弁56で減圧してから寒冷補給流体として第3精留塔13に導入することにより、第3精留塔13の運転に必要な寒冷を補給している。   Further, a cold replenishment path 57 having a pressure reducing valve 56 is provided between the first rectifying column 11 and the third rectifying column 13, and the liquid fluid in the first rectifying column 11 is supplied with a pressure reducing valve. The pressure necessary for operation of the third rectifying column 13 is replenished by reducing the pressure at 56 and then introducing it into the third rectifying column 13 as a cold replenishing fluid.

さらに、図1に破線で示すように、装置外部からの液化窒素を、経路58から前記経路32を介して第1精留塔11に、経路59から前記経路44を介して第3精留塔13に寒冷源として導入することにより、あるいは、装置外部からの液化空気を、経路60から前記経路29に、経路61から前記経路41に寒冷源として導入することにより、前記膨張タービン52を省略することができる。なお、寒冷源として導入する流体の種類は特に限定されるものではなく、導入位置は流体の組成や圧力に応じて適宜設定することができる。また、寒冷源として外部からの流体の導入と膨張タービンとを併用することも可能である。   Further, as indicated by a broken line in FIG. 1, liquefied nitrogen from the outside of the apparatus is transferred from the path 58 to the first rectifying column 11 via the path 32, and from the path 59 to the third rectifying tower via the path 44. 13 is introduced as a cold source, or liquefied air from outside the apparatus is introduced as a cold source from the path 60 to the path 29 and from the path 61 to the path 41, thereby omitting the expansion turbine 52. be able to. In addition, the kind of fluid introduce | transduced as a cold source is not specifically limited, The introduction position can be suitably set according to the composition and pressure of a fluid. It is also possible to use an external fluid introduction and an expansion turbine together as a cold source.

寒冷源として膨張タービン52を使用している場合で、第2製品回収経路37の第2製品窒素ガスを昇圧する必要があるときには、前記膨張タービン52を制動ブロワ式とし、制動ブロワを窒素圧縮機として利用することも可能である。   When the expansion turbine 52 is used as a cold source and the second product nitrogen gas in the second product recovery path 37 needs to be pressurized, the expansion turbine 52 is a brake blower type and the brake blower is a nitrogen compressor. It is also possible to use as.

このように構成した窒素製造装置において、第2精留塔12の第2分離工程で低温蒸留を行うことと、第1凝縮器14の第1間接熱交換工程で全量を気化させずに一部を酸素組成が高い状態の液で抜き出すことにより、従来と比較して、第2原料空気の酸素組成を低くすることと第1精留塔の運転圧力を低くすることができるので、製品窒素収率の向上と、従来は効率的な運転が困難であった製品窒素圧力範囲でも効率的な運転が可能となった。   In the nitrogen production apparatus configured as described above, low-temperature distillation is performed in the second separation step of the second rectifying column 12, and part of the first condenser 14 is not vaporized in the first indirect heat exchange step. Is extracted with a liquid having a high oxygen composition, so that the oxygen composition of the second raw material air can be lowered and the operating pressure of the first fractionator can be lowered compared to the conventional case. The efficiency has improved, and efficient operation has become possible even in the product nitrogen pressure range where efficient operation has been difficult in the past.

ここで、図1に示す本形態例のプロセス(以下、本形態例という)と、図6に示す前記特許文献1記載の従来のプロセス(以下、従来例という)とを比較して本形態例における作用効果を詳細に説明する。なお、図6に示す従来例の構成は、本形態例との比較を容易にするために特許文献1記載の構成と若干異なるが、基本的に特許文献1記載のものと同一である。また、従来例の説明中、本形態例の構成要素と実質的に同一と見なされる構成要素には百を加算した数字からなる符号を付してある。   Here, the process of the present embodiment shown in FIG. 1 (hereinafter referred to as the present embodiment) is compared with the conventional process described in Patent Document 1 (hereinafter referred to as the conventional example) illustrated in FIG. The operational effects of will be described in detail. The configuration of the conventional example shown in FIG. 6 is basically the same as that described in Patent Document 1 although it is slightly different from the configuration described in Patent Document 1 in order to facilitate comparison with this embodiment. Further, in the description of the conventional example, constituent elements regarded as substantially the same as the constituent elements of the present embodiment example are denoted by reference numerals made up of numbers added with one hundred.

まず、本形態例及び従来例において、装置運転圧力の下限は、第2凝縮器15,115における第2酸素富化ガス流体(経路45,145)の気化温度、気化圧力により支配される。すなわち、本形態例及び従来例では、第2凝縮器15,115で気化して経路45,145に導出された第2酸素富化ガス流体は、主熱交換器24,124等での圧力損失を含めて精製器23,123を再生した後に大気に放出できる圧力を有していなければならない。   First, in this embodiment and the conventional example, the lower limit of the apparatus operating pressure is governed by the vaporization temperature and vaporization pressure of the second oxygen-enriched gas fluid (paths 45 and 145) in the second condensers 15 and 115. That is, in the present embodiment and the conventional example, the second oxygen-enriched gas fluid vaporized by the second condensers 15 and 115 and led to the paths 45 and 145 is lost in the pressure loss in the main heat exchangers 24 and 124 and the like. It must have a pressure that can be released to the atmosphere after regenerating the purifiers 23 and 123.

本形態例における第2凝縮器15では、第3酸素富化液化流体と第2窒素ガスとを間接熱交換させることで第3酸素富化液化流体を気化させるので、第2窒素ガスの露点と第2酸素富化ガス流体の気化温度に所定の温度差が必要であり、その温度差を決めると、必要とされる第2酸素富化ガス流体の圧力から第2窒素ガス圧力、即ち第3精留塔13の最低運転圧力が決まる。さらに、第3精留塔13の運転圧力は、第2精留塔12の運転圧力となる。同様に第1凝縮器14における間接熱交換に必要な温度差から第1精留塔11の最低運転圧力が決まる。したがって、第2酸素富化ガス流体の酸素組成を低くできれば、第2窒素ガスの圧力、すなわち、第1精留塔11の圧力を低下することができる。   In the second condenser 15 in the present embodiment, the third oxygen-enriched liquefied fluid is vaporized by indirect heat exchange between the third oxygen-enriched liquefied fluid and the second nitrogen gas, so the dew point of the second nitrogen gas A predetermined temperature difference is required for the vaporization temperature of the second oxygen-enriched gas fluid, and when the temperature difference is determined, the second nitrogen gas pressure, i.e., the third, is determined from the required pressure of the second oxygen-enriched gas fluid. The minimum operating pressure of the rectifying column 13 is determined. Further, the operating pressure of the third rectifying column 13 becomes the operating pressure of the second rectifying column 12. Similarly, the minimum operating pressure of the first fractionator 11 is determined from the temperature difference required for indirect heat exchange in the first condenser 14. Therefore, if the oxygen composition of the second oxygen-enriched gas fluid can be lowered, the pressure of the second nitrogen gas, that is, the pressure of the first rectifying column 11 can be reduced.

従来例では製品窒素の製造を第1分離工程(第1精留塔111)及び第2分離工程(第3精留塔113)の2段階で行っていたのに対し、本形態例では、従来例の第1分離工程と第2分離工程の間に新たに分離工程(本発明における第2精留塔12での第2分離工程)を設け、分離工程を3段階で行うので、第3分離工程からの第3酸素富化液化流体(経路41)の酸素組成を、従来例の酸素富化液化流体(経路141)よりも低くすることができる。   In the conventional example, the production of product nitrogen was performed in two stages of the first separation step (first rectification column 111) and the second separation step (third rectification column 113), whereas in the present embodiment, A new separation step (second separation step in the second rectifying column 12 in the present invention) is newly provided between the first separation step and the second separation step in the example, and the separation step is performed in three stages. The oxygen composition of the third oxygen-enriched liquefied fluid (path 41) from the process can be made lower than that of the conventional oxygen-enriched liquefied fluid (path 141).

すなわち、従来例では、原料ガス(経路125)を第1分離工程(精留塔111)で第1の製品窒素ガス(経路126)と第1酸素富化液化流体(経路129)とに分離し、この第1酸素富化液化流体の全量を凝縮器114で気化させた後、その一部を第2分離工程の原料ガス(経路134)として第2分離工程(精留塔113)に導入していた。したがって、第1酸素富化液化流体(経路129)の酸素組成と第2分離工程(精留塔113)の原料ガスの酸素組成とは同じであった。   That is, in the conventional example, the source gas (path 125) is separated into the first product nitrogen gas (path 126) and the first oxygen-enriched liquefied fluid (path 129) in the first separation step (rectification column 111). After the entire amount of the first oxygen-enriched liquefied fluid is vaporized by the condenser 114, a part of the first oxygen-enriched liquefied fluid is introduced into the second separation step (rectifying column 113) as the raw material gas (path 134) of the second separation step It was. Therefore, the oxygen composition of the first oxygen-enriched liquefied fluid (path 129) and the oxygen composition of the raw material gas of the second separation step (rectification tower 113) were the same.

例えば、従来例では、第1分離工程からの第1酸素富化液化流体及び第2分離工程の原料ガスの酸素組成は、共に38%程度である。その結果、第2分離工程からの第2酸素富化液化流体(経路141)の酸素組成は55%程度となる。一方、本形態例では、第1分離工程からの第1酸素富化液化流体(経路29)は、第2分離工程に導入され、そこから酸素組成の少ない流体(第2原料空気:経路34)が取り出され、第2原料ガスとして第3分離工程に導入される。   For example, in the conventional example, the oxygen composition of the first oxygen-enriched liquefied fluid from the first separation step and the raw material gas in the second separation step are both about 38%. As a result, the oxygen composition of the second oxygen-enriched liquefied fluid (path 141) from the second separation step is about 55%. On the other hand, in the present embodiment, the first oxygen-enriched liquefied fluid (path 29) from the first separation step is introduced into the second separation step, from which a fluid with a low oxygen composition (second raw material air: path 34). Is taken out and introduced into the third separation step as the second source gas.

したがって、本形態例では、第1分離工程からの第1酸素富化液化流体の酸素組成が38%程度であっても、第2分離工程から取り出される第2原料空気の酸素組成は、例えば20%程度にできる。その結果、第3分離工程からの第3酸素富化液化流体41の酸素組成は36%程度となる。   Therefore, in this embodiment, even if the oxygen composition of the first oxygen-enriched liquefied fluid from the first separation step is about 38%, the oxygen composition of the second raw material air taken out from the second separation step is, for example, 20 %. As a result, the oxygen composition of the third oxygen-enriched liquefied fluid 41 from the third separation step is about 36%.

このとき、第2凝縮器15における第2酸素富化ガス流体の蒸発圧力が従来例と同じ場合でも、本形態例では第3酸素富化液化流体中の酸素組成が低い分だけ蒸発温度が低くなっている。このため、第2凝縮器15,115における第2窒素ガスと第2酸素富化ガス流体の温度差が同じであっても、従来例に比較して第3精留塔13の運転圧力を下げることができる。さらに、第3精留塔13の運転圧力が下がることから、第1精留塔11の運転圧力も下げることが可能となる。   At this time, even when the evaporation pressure of the second oxygen-enriched gas fluid in the second condenser 15 is the same as that in the conventional example, in this embodiment, the evaporation temperature is lowered by an amount corresponding to the lower oxygen composition in the third oxygen-enriched liquefied fluid. It has become. For this reason, even if the temperature difference between the second nitrogen gas and the second oxygen-enriched gas fluid in the second condensers 15 and 115 is the same, the operating pressure of the third rectifying column 13 is lowered as compared with the conventional example. be able to. Furthermore, since the operating pressure of the third rectifying column 13 is lowered, the operating pressure of the first rectifying column 11 can be lowered.

つまり本形態例では、第2凝縮器15に導入する第3酸素富化液化流体の酸素組成を低くすることにより、第3精留塔13をはじめとして装置全体の運転圧力を下げることが可能となる。これにより、従来例より低い圧力で製品窒素ガスを低原単位で供給することが可能となる。   That is, in this embodiment, it is possible to lower the operating pressure of the entire apparatus including the third fractionator 13 by lowering the oxygen composition of the third oxygen-enriched liquefied fluid introduced into the second condenser 15. Become. As a result, it is possible to supply the product nitrogen gas in a low unit by a lower pressure than the conventional example.

さらに、本形態例では、第1凝縮器14で気化しなかった第2酸素富化液化流体の残部を第4酸素富化液化流体(経路33)として抜き出すことにより、第1凝縮器14の冷流体である第2酸素富化液化流体の蒸発温度を低くでき、従来は効率的な運転が困難であった製品窒素圧力範囲でも効率的な運転が可能となる。   Further, in the present embodiment, the remaining portion of the second oxygen-enriched liquefied fluid that has not been vaporized by the first condenser 14 is extracted as the fourth oxygen-enriched liquefied fluid (path 33), whereby the first condenser 14 is cooled. The evaporation temperature of the second oxygen-enriched liquefied fluid, which is a fluid, can be lowered, and efficient operation is possible even in the product nitrogen pressure range, which has been difficult to operate efficiently in the past.

すなわち、図2(a)に示すように、第2酸素富化液化流体の残部を経路33から酸素組成55%の液体で抜き出し、その他を第1凝縮器で気化させた場合の第2酸素富化液化流体の気化温度は、図2(b)に示すように、第2酸素富化液化流体を全量気化させた後、その一部を経路33aから酸素組成55%のガスで抜き出した場合に比べて低くなることを利用している。これは、前者の場合、第2酸素富化液化流体の気化温度は、液相酸素組成55%(気相酸素組成は例えば29%)の流体の気液平衡温度となるが、後者の場合の気化温度は気相酸素組成55%(液相酸素組成は55%より多い)の流体の気液平衡温度となるからである。   That is, as shown in FIG. 2 (a), the second oxygen-enriched liquefied fluid is extracted from the passage 33 with a liquid having an oxygen composition of 55% and the other oxygen-enriched liquid is vaporized by the first condenser. As shown in FIG. 2 (b), the vaporization temperature of the liquefied fluid is obtained when the second oxygen-enriched liquefied fluid is completely vaporized and then a part thereof is extracted from the passage 33a with a gas having an oxygen composition of 55%. We are taking advantage of being lower than that. In the former case, the vaporization temperature of the second oxygen-enriched liquefied fluid is the vapor-liquid equilibrium temperature of a fluid having a liquid-phase oxygen composition of 55% (gas-phase oxygen composition is 29%, for example). This is because the vaporization temperature is the vapor-liquid equilibrium temperature of a fluid having a gas phase oxygen composition of 55% (liquid phase oxygen composition is more than 55%).

したがって、図2(a)に示すように、第2酸素富化液化流体の一部を液で抜き出すことにより、第1凝縮器14の気化温度が下がり、その結果、従来例と比較して第1精留塔11,111に必要な運転圧力を下げることができる。なお、上記比較において、同じ酸素組成55%の液体あるいはガスを抜出すのは、第2精留塔12の上部から導出する第2原料空気の酸素組成を同じとするためである。   Therefore, as shown in FIG. 2A, by extracting a part of the second oxygen-enriched liquefied fluid with the liquid, the vaporization temperature of the first condenser 14 is lowered, and as a result, the first condenser 14 is compared with the conventional example. The operating pressure required for one rectification column 11, 111 can be lowered. In the above comparison, the liquid or gas having the same oxygen composition of 55% is extracted because the oxygen composition of the second raw material air derived from the upper part of the second fractionator 12 is the same.

つまり、本形態例は、第2凝縮器15の冷流体である第2酸素富化ガス流体の酸素組成を低くすることによって、第3精留塔13の運転圧力を下げることと、第2酸素富化液化流体の残部を液として抜き出し、結果的に第1精留塔11の運転圧力を下げることにより、従来例では対応できなかった比較的圧力の低い製品窒素の製造に対応が可能なプロセスとなっている。   That is, the present embodiment reduces the operating pressure of the third rectifying column 13 by reducing the oxygen composition of the second oxygen-enriched gas fluid that is the cold fluid of the second condenser 15, and the second oxygen A process capable of dealing with the production of product nitrogen having a relatively low pressure, which was not possible with the conventional example, by extracting the remainder of the enriched liquefied fluid as a liquid and consequently lowering the operating pressure of the first fractionator 11 It has become.

図3は本発明の第2形態例を示す窒素製造装置の系統図である。なお、以下の説明において、前記第1形態例に示した各構成要素と同一の構成要素には、それぞれ同一符号を付して詳細な説明は省略する。   FIG. 3 is a system diagram of a nitrogen production apparatus showing a second embodiment of the present invention. In the following description, the same components as those shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例に示す窒素製造装置は、前記第1形態例における第2精留塔12及び第1凝縮器14に代えて、内部熱交換型精留塔(Heat Integrated Distillation Column:以下HIDiCと言う。)17を用いた例を示している。第1精留塔11の上部から経路26に導出され、経路31に分岐した第1窒素ガスの一部は、HIDiC17の温流体通路17aの上部に導入され、第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、HIDiC17の冷流体通路17bの上部に導入される。   The nitrogen production apparatus shown in the present embodiment is called an internal heat exchange rectification column (hereinafter referred to as HIDiC) instead of the second rectification column 12 and the first condenser 14 in the first embodiment. ) 17 is shown. Part of the first nitrogen gas led out from the upper part of the first rectifying column 11 to the path 26 and branched into the path 31 is introduced into the upper part of the warm fluid passage 17a of the HIDiC 17 and from the lower part of the first rectifying column 11 The first oxygen-enriched liquefied fluid led to the path 29 and decompressed by the pressure reducing valve 30 is introduced into the upper part of the cold fluid passage 17b of the HIDiC 17.

温流体通路17aを下降する第1窒素ガスは、冷流体通路17bを下降する第1酸素富化液化流体との間接熱交換で一部が液化して第1液化窒素となり、温流体通路17aの下部から経路32に導出されて第1精留塔11の上部に導入される。また、液化しなかった第1窒素ガスは、温流体通路17aの下部から経路27に導出され、前記主熱交換器24で常温まで昇温した後、第1製品回収経路28から第1製品窒素ガスとして導出される。 First nitrogen gas to lower the temperature the fluid passage 17 a is a part in indirect heat exchange with the first oxygen-enriched liquefied fluid down the cold fluid passage 17b is a first liquefied nitrogen and liquefied, hot fluid passage 17 It is led out from the lower part of a to the path 32 and introduced into the upper part of the first rectifying column 11. The first nitrogen gas not liquefied is the temperature derived from the lower portion of the fluid passage 17 a to the path 27, after raising the temperature to room temperature in the main heat exchanger 24, the first product from the first product recovery path 28 Derived as nitrogen gas.

冷流体通路17bを下降する第1酸素富化液化流体は、前記第1窒素ガスとの間接熱交換により、一部の流体の気化と低温精留とが行われ、冷流体通路17bの下部からは酸素組成が高くなった、例えば酸素組成55%の第2酸素富化液化流体が経路33に抜き出され、減圧弁47で減圧された後、第3凝縮器16に導入され、前記経路26から経路48に分岐した第1窒素ガスとの熱交換によって全量が気化し、主熱交換器24に導入される。一方、冷流体通路17bの上部からは、酸素組成が第1酸素富化液化流体よりも低く、例えば大気組成と同程度にまで低くなった第2原料空気が経路34に導出され、第3精留塔13の下部に導入される。   The first oxygen-enriched liquefied fluid descending the cold fluid passage 17b undergoes partial heat vaporization and low temperature rectification by indirect heat exchange with the first nitrogen gas, and from the lower portion of the cold fluid passage 17b. , The second oxygen-enriched liquefied fluid having an oxygen composition of 55%, for example, is withdrawn into the passage 33 and decompressed by the pressure reducing valve 47 and then introduced into the third condenser 16. The entire amount is vaporized by heat exchange with the first nitrogen gas branched from the first to the channel 48 and introduced into the main heat exchanger 24. On the other hand, from the upper part of the cold fluid passage 17b, the second raw material air whose oxygen composition is lower than that of the first oxygen-enriched liquefied fluid, for example, as low as the atmospheric composition, is led out to the passage 34, where It is introduced into the lower part of the distillation column 13.

このように、第1形態例における第2精留塔12及び第1凝縮器14を、内部熱交換型精留塔(HIDiC)17に置き換えても前記第1形態例と同様の作用効果が得られる。また、第3凝縮器16をHIDiC17に一体に組み込むことも可能である。   As described above, even if the second rectifying column 12 and the first condenser 14 in the first embodiment are replaced with the internal heat exchange rectifying column (HIDiC) 17, the same effects as those in the first embodiment can be obtained. It is done. It is also possible to incorporate the third condenser 16 into the HIDiC 17 integrally.

図4は本発明の第3形態例を示す窒素製造装置の要部の系統図である。本形態例は、前記第1形態例における第2精留塔12及び第1凝縮器14を、第1凝縮器14を内蔵した気液分離器18に置き換えた例を示している。   FIG. 4 is a system diagram of a main part of a nitrogen production apparatus showing a third embodiment of the present invention. The present embodiment shows an example in which the second rectifying column 12 and the first condenser 14 in the first embodiment are replaced with a gas-liquid separator 18 incorporating the first condenser 14.

第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、下部に第1凝縮器14を備えた気液分離器18に導入され1段の気液分離によって、気液分離器18の上部から酸素組成が低くなった第2原料空気を得ることができる。このように、第2分離工程を1回の気液平衡で行うことによって、従来例に比べて酸素組成の低い第2原料空気を経路34に導出して第3精留塔に導入することができる。また、第2酸素富化液化流体は、気液分離器18の下部から経路33に抜き出され、減圧弁47で減圧されてから第3凝縮器16に導入される。   The first oxygen-enriched liquefied fluid led out from the lower part of the first rectifying column 11 to the path 29 and decompressed by the pressure reducing valve 30 is introduced into the gas-liquid separator 18 having the first condenser 14 at the lower part. By the gas-liquid separation in the stage, the second raw material air having a low oxygen composition can be obtained from the upper part of the gas-liquid separator 18. In this way, by performing the second separation step in one vapor-liquid equilibrium, the second raw material air having a lower oxygen composition than in the conventional example can be led out to the path 34 and introduced into the third rectification column. it can. In addition, the second oxygen-enriched liquefied fluid is extracted from the lower part of the gas-liquid separator 18 to the path 33, decompressed by the decompression valve 47, and then introduced into the third condenser 16.

図5は本発明の第4形態例を示す窒素製造装置の要部の系統図である。本形態例は、前記第1形態例における第2精留塔12を気液分離器19に置き換えた例を示している。   FIG. 5 is a system diagram of a main part of a nitrogen production apparatus showing a fourth embodiment of the present invention. The present embodiment shows an example in which the second rectifying column 12 in the first embodiment is replaced with a gas-liquid separator 19.

第1精留塔11の下部から経路29に導出され、減圧弁30で減圧された第1酸素富化液化流体は、第1凝縮器14に導入されて第1窒素ガスとの間接熱交換により一部が気化し、気液混合状態の第1酸素富化気液混相流体となり気液分離器19に導入される。気液分離器19では、気液平衡に基づいて気相には酸素組成が第1酸素富化液化流体よりも低い第2原料空気が分離し、液相には第1酸素富化液化流体よりも酸素組成が高い第2酸素富化液化流体が分離する。また、第2原料空気は、気液分離器19の上部から経路34に導出されて第3精留塔13の下部に導入され、第2酸素富化液化流体は、気液分離器19の下部から経路33に抜き出され、減圧弁47で減圧されてから第3凝縮器16に導入される。   The first oxygen-enriched liquefied fluid led out from the lower part of the first rectifying column 11 to the passage 29 and decompressed by the pressure reducing valve 30 is introduced into the first condenser 14 and indirectly heat exchanged with the first nitrogen gas. A part of the gas is vaporized to become a first oxygen-enriched gas-liquid mixed phase fluid in a gas-liquid mixed state, and is introduced into the gas-liquid separator 19. In the gas-liquid separator 19, the second raw material air having an oxygen composition lower than that of the first oxygen-enriched liquefied fluid is separated into the gas phase based on the gas-liquid equilibrium, and the liquid phase is separated from the first oxygen-enriched liquefied fluid. The second oxygen-enriched liquefied fluid having a high oxygen composition is separated. Further, the second raw material air is led out from the upper part of the gas-liquid separator 19 to the path 34 and introduced into the lower part of the third rectification column 13, and the second oxygen-enriched liquefied fluid is To the path 33, the pressure is reduced by the pressure reducing valve 47, and then introduced into the third condenser 16.

図1の第1形態例に示した構成の窒素製造装置において、製品窒素ガスの圧力を0.6MPa、製品窒素ガス中の許容酸素組成を0.1ppmとしてシミュレーションを行った。   In the nitrogen production apparatus having the configuration shown in the first embodiment of FIG. 1, the simulation was performed by setting the product nitrogen gas pressure to 0.6 MPa and the allowable oxygen composition in the product nitrogen gas to 0.1 ppm.

原料空気は、0.63MPa、40℃で主熱交換器24に導入されて露点付近まで冷却された後、経路25から第1精留塔11に導入されて上部の第1窒素ガスと、下部の酸素組成が38%の第1酸素富化液化流体とに分離する。この第1精留塔11の製品収率は約44%である。第1精留塔11の下部から導出された第1酸素富化液化流体は、第2精留塔12の上部に導入され、第2精留塔12及び第1凝縮器14の作用で酸素組成19%の第2原料空気と、酸素組成55%の第4酸素富化液化流体とが得られる。第2原料空気は、第3精留塔13に導入されて上部の第2窒素ガスと、下部の酸素組成が36%の第3酸素富化液化流体とに分離する。第3精留塔13の製品収率は約50%であり、第1窒素ガスを合わせると、プロセス全体の製品収率は57%となる。   The raw material air is introduced into the main heat exchanger 24 at 0.63 MPa and 40 ° C. and cooled to the vicinity of the dew point, and then introduced into the first rectifying column 11 from the path 25, and the upper first nitrogen gas and the lower part Is separated into a first oxygen-enriched liquefied fluid having an oxygen composition of 38%. The product yield of the first rectifying column 11 is about 44%. The first oxygen-enriched liquefied fluid derived from the lower part of the first rectifying column 11 is introduced into the upper part of the second rectifying column 12, and the oxygen composition is obtained by the action of the second rectifying column 12 and the first condenser 14. A 19% second feed air and a fourth oxygen-enriched liquefied fluid with an oxygen composition of 55% are obtained. The second raw material air is introduced into the third fractionator 13 and separated into the upper second nitrogen gas and the lower oxygen enriched liquefied fluid having a lower oxygen composition of 36%. The product yield of the third rectification column 13 is about 50%, and when the first nitrogen gas is combined, the product yield of the entire process is 57%.

原料空気の流量を100としたときの各経路のプロセス値を表1に示す。なお、第1精留塔11,第2精留塔12,第3精留塔13は棚段式の精留塔を想定したが、不規則充填材又は規則充填材を使用した充填塔等を用いると、精留塔の圧力損失が低減されることで、動力費の改善が可能となる。

Figure 0004451438
Table 1 shows the process value of each path when the flow rate of the raw material air is 100. The first rectifying column 11, the second rectifying column 12, and the third rectifying column 13 are assumed to be shelf-type rectifying columns. However, a packed column using an irregular packing material or a regular packing material is used. When used, the pressure loss of the rectifying column is reduced, so that the power cost can be improved.
Figure 0004451438

図3の第2形態例に示した構成の窒素製造装置において、同じ製品仕様の条件でシミュレーションを行った。原料空気の流量を100としたときの各経路のプロセス値を表2に示す。

Figure 0004451438
In the nitrogen production apparatus having the configuration shown in the second embodiment of FIG. 3, simulation was performed under the conditions of the same product specifications. Table 2 shows the process value of each path when the flow rate of the raw material air is 100.
Figure 0004451438

実施例1と実施例2とを比較すると、実施例2における第3精留塔13の運転圧力が約0.04MPa高いことがわかる。これは、実施例1では第1凝縮器14で所定の温度差(数℃)を確保する必要があるのに対し、実施例2で採用したHIDiC17は、より小さい温度差でも運転が可能であることに起因している。このため、実施例1に比較して実施例2では約0.04MPa高い圧力の第2製品窒素ガスを採取することができ、第2製品窒素ガスを昇圧する必要がある場合には、窒素圧縮機38の動力削減が期待できる。   When Example 1 and Example 2 are compared, it turns out that the operating pressure of the 3rd fractionator 13 in Example 2 is about 0.04 MPa high. This is because the first condenser 14 needs to secure a predetermined temperature difference (several degrees Celsius) in the first embodiment, whereas the HIDiC17 employed in the second embodiment can be operated even with a smaller temperature difference. It is due to that. For this reason, in Example 2, the second product nitrogen gas having a pressure higher by about 0.04 MPa than in Example 1 can be collected, and when it is necessary to increase the pressure of the second product nitrogen gas, nitrogen compression is performed. Reduction of power of the machine 38 can be expected.

また、第2酸素富化気化流体の運転圧力を更に下げることも可能であり、実施例2では更に低い圧力の製品窒素ガスの採取にも対応が可能となる。実施例1の動力原単位を100としたときの実施例2と従来例との比較を表3に示す。なお、今回の比較の条件下では製品圧力が0.6MPaの場合、従来例では成立しなかった。

Figure 0004451438
In addition, it is possible to further reduce the operating pressure of the second oxygen-enriched vaporized fluid, and in Example 2, it is possible to cope with sampling of product nitrogen gas at a lower pressure. Table 3 shows a comparison between Example 2 and the conventional example when the power unit of Example 1 is 100. Note that, under the conditions of this comparison, when the product pressure was 0.6 MPa, the conventional example did not hold.
Figure 0004451438

さらに、実施例2に用いたHIDiCは、軸方向長さが1000〜2000mm程度で所定の性能が得られることが確認できた。これにより、精留段式又は規則充填式の第2精留塔12及びプレートフィン式熱交換器の第1凝縮器14を用いる場合に比べて装置の小型化が可能であり、配管も簡素化することができる。   Furthermore, it was confirmed that the HIDiC used in Example 2 has a predetermined performance with an axial length of about 1000 to 2000 mm. As a result, the apparatus can be reduced in size and piping can be simplified as compared with the case where the rectifying stage type or regular packed type second rectifying column 12 and the first condenser 14 of the plate fin type heat exchanger are used. can do.

本発明の第1形態例を示す窒素製造装置の系統図である。1 is a system diagram of a nitrogen production apparatus showing a first embodiment of the present invention. 第1凝縮器を備えた第2精留塔部分の説明図である。It is explanatory drawing of the 2nd fractionator part provided with the 1st condenser. 本発明の第2形態例を示す窒素製造装置の系統図である。It is a systematic diagram of the nitrogen manufacturing apparatus which shows the 2nd form example of this invention. 本発明の第3形態例を示す窒素製造装置の要部の系統図である。It is a systematic diagram of the principal part of the nitrogen manufacturing apparatus which shows the 3rd form example of this invention. 本発明の第4形態例を示す窒素製造装置の要部の系統図である。It is a systematic diagram of the principal part of the nitrogen manufacturing apparatus which shows the 4th example of this invention. 従来プロセスの一例を示す窒素製造装置の系統図である。It is a systematic diagram of the nitrogen manufacturing apparatus which shows an example of a conventional process.

符号の説明Explanation of symbols

11…第1精留塔、12…第2精留塔、13…第3精留塔、14…第1凝縮器、15…第2凝縮器、16…第3凝縮器、17…内部熱交換型精留塔(HIDiC)、18…第1凝縮器を内蔵した気液分離器、19…気液分離器、20…フィルター、21…原料空気圧縮機、22…アフタークーラー、23…精製器、24…主熱交換器、28…第1製品回収経路、30…減圧弁、37…第2製品回収経路、38…窒素圧縮機、39…アフタークーラー、40…製品供給経路、42…減圧弁、47…減圧弁、52…膨張タービン、55…減圧弁、56…減圧弁、57…寒冷補給経路   DESCRIPTION OF SYMBOLS 11 ... 1st rectification tower, 12 ... 2nd rectification tower, 13 ... 3rd rectification tower, 14 ... 1st condenser, 15 ... 2nd condenser, 16 ... 3rd condenser, 17 ... Internal heat exchange Type rectification column (HIDiC), 18 ... gas-liquid separator with built-in first condenser, 19 ... gas-liquid separator, 20 ... filter, 21 ... feed air compressor, 22 ... after cooler, 23 ... purifier, 24 ... main heat exchanger, 28 ... first product recovery path, 30 ... pressure reducing valve, 37 ... second product recovery path, 38 ... nitrogen compressor, 39 ... after cooler, 40 ... product supply path, 42 ... pressure reducing valve, 47 ... Pressure reducing valve, 52 ... Expansion turbine, 55 ... Pressure reducing valve, 56 ... Pressure reducing valve, 57 ... Cold supply route

Claims (8)

原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1酸素富化液化流体を減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、前記第2酸素富化液化流体の残部を減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とする窒素製造方法。 In a nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of raw material air, the first raw material air that has been compressed, purified and cooled is subjected to low-temperature distillation to be separated into a first nitrogen gas and a first oxygen-enriched liquefied fluid. After depressurizing the first separation step and the first oxygen-enriched liquefied fluid, it is separated into the second raw material air and the second oxygen-enriched liquefied fluid by low-temperature distillation with the whole amount of the first oxygen-enriched gas fluid described later. At the same time as the second separation step, the first nitrogen gas is condensed and liquefied by indirect heat exchange between a part of the second oxygen-enriched liquefied fluid and a part of the first nitrogen gas to obtain first liquefied nitrogen. A first indirect heat exchange step of evaporating part of the second oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; and low-temperature distillation of the second source air to produce second nitrogen gas and third oxygen A third separation step for separating into an enriched liquefied fluid, a part of the second nitrogen gas, and before decompression Indirect heat exchange with the third oxygen-enriched liquefied fluid to condense and liquefy the second nitrogen gas to obtain second liquefied nitrogen, and simultaneously evaporate and gasify the third oxygen-enriched liquefied fluid to obtain the second oxygen-enriched gas fluid. A second indirect heat exchanging step for obtaining the second oxygen-enriched liquefied fluid, and a second portion of the second oxygen-enriched liquefied fluid is subjected to indirect heat exchange with a part of the remaining portion of the first nitrogen gas after depressurization to condense and liquefy the first nitrogen gas. A third indirect heat exchange step for obtaining a third oxygen-enriched gas fluid by evaporating and gasifying the entire amount of the second oxygen-enriched liquefied fluid at the same time as obtaining liquefied nitrogen, and a first after the heat recovery of the remainder of the first nitrogen gas A method for producing nitrogen, comprising: a first product recovery step derived as product nitrogen gas; and a second product recovery step wherein the remainder of the second nitrogen gas is derived as a second product nitrogen gas after heat recovery. 前記第2分離工程と第1間接熱交換工程とは、内部熱交換型精留塔で行うことを特徴とする請求項1記載の窒素製造方法。 The method for producing nitrogen according to claim 1, wherein the second separation step and the first indirect heat exchange step are performed in an internal heat exchange rectification column. 前記第2分離工程の低温蒸留は、1回の気液平衡のみで行うことを特徴とする請求項1記載の窒素製造方法。 The method for producing nitrogen according to claim 1, wherein the low-temperature distillation in the second separation step is performed only by one vapor-liquid equilibrium. 原料空気を深冷液化分離して製品窒素を採取する窒素製造方法において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程と、前記第1窒素ガスの一部と減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程と、前記第1酸素富化気液混相流体を1回の気液平衡のみで第2原料空気と第2酸素富化液化流体とに分離する第2分離工程と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程と、前記第2窒素ガスの一部と減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程と、減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程と、前記第1窒素ガスの残部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガスの残部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、を含むことを特徴とする窒素製造方法。 In a nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of raw material air, the first raw material air that has been compressed, purified and cooled is subjected to low-temperature distillation to be separated into a first nitrogen gas and a first oxygen-enriched liquefied fluid. Simultaneously obtaining a first liquefied nitrogen by condensing and liquefying the first nitrogen gas by indirect heat exchange between the first separation step and a part of the first nitrogen gas and the first oxygen-enriched liquefied fluid after decompression A first indirect heat exchange step of evaporating and gasifying a part of the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas-liquid mixed phase fluid; A second separation step for separating the second raw material air and the second oxygen-enriched liquefied fluid only by equilibrium, and the second raw material air is subjected to low-temperature distillation to separate into a second nitrogen gas and a third oxygen-enriched liquefied fluid. Indirect heat of the third separation step, a part of the second nitrogen gas and the third oxygen-enriched liquefied fluid after decompression A second indirect heat exchange step of condensing and liquefying the second nitrogen gas to obtain second liquefied nitrogen and simultaneously evaporating and gasifying the third oxygen enriched liquefied fluid to obtain a second oxygen enriched gas fluid; The second oxygen-enriched liquefied fluid and the remaining portion of the first nitrogen gas are indirectly heat-exchanged to condense and liquefy the first nitrogen gas to obtain third liquefied nitrogen, and at the same time, the second oxygen-enriched A third indirect heat exchange step for evaporating and gasifying the entire amount of the liquefied fluid to obtain a third oxygen-enriched gas fluid; and a first product recovery step for deriving the remainder of the first nitrogen gas as the first product nitrogen gas after heat recovery And a second product recovery step of deriving the remainder of the second nitrogen gas as a second product nitrogen gas after heat recovery. 請求項1の原料空気を深冷液化分離して製品窒素を採取する方法を実施する窒素製造装置において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1酸素富化液化流体を減圧手段で減圧後に、後述の第1酸素富化ガス流体の全量との低温蒸留によって第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う精留塔と、前記第2酸素富化液化流体の一部と前記第1窒素ガスの一部とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第2酸素富化液化流体の一部を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程を行う凝縮器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、前記第2酸素富化液化流体の残部を減圧手段で減圧後に前記第1窒素ガスの残部の一部と間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とする窒素製造装置。 A nitrogen production apparatus for carrying out a method for collecting product nitrogen by cryogenic liquefaction separation of raw material air according to claim 1, wherein the first raw material air that has been compressed, purified and cooled is subjected to low temperature distillation to produce first nitrogen gas and first oxygen. A rectifying column that performs a first separation step for separating the enriched liquefied fluid into the liquefied fluid, and after depressurizing the first oxygen enriched liquefied fluid by a decompression means, by low-temperature distillation with the total amount of the first oxygen enriched gas fluid described later A rectifying column that performs a second separation step for separating the second raw material air and the second oxygen-enriched liquefied fluid, and indirectly a part of the second oxygen-enriched liquefied fluid and a part of the first nitrogen gas. 1st indirect heat exchange which heat-exchanges and liquefies 1st nitrogen gas to obtain 1st liquefied nitrogen, and at the same time evaporates and gasifies a part of 2nd oxygen enriched liquefied fluid, and obtains 1st oxygen enriched gas fluid a condenser for performing step, the second feed air to cryogenic distillation to second nitrogen gas and the third oxygen-enriched Third and rectification column to carry out the separation step, the third oxygen-enriched liquefied fluid and allowed to indirect heat exchange with the second nitrogen gas after depressurization part and pressure reducing means of the second nitrogen gas is separated into a fluids A condenser for performing a second indirect heat exchange step for obtaining a second oxygen-enriched gas fluid by evaporating and gasifying the third oxygen-enriched liquefied fluid at the same time to obtain second liquefied nitrogen by condensing and liquefying the second oxygen The remainder of the enriched liquefied fluid is decompressed by the decompression means and indirectly heat exchanged with a part of the remainder of the first nitrogen gas to condense and liquefy the first nitrogen gas to obtain third liquefied nitrogen, and at the same time, the second oxygen enrichment A condenser for performing a third indirect heat exchange step for evaporating and gasifying the entire amount of the liquefied fluid to obtain a third oxygen-enriched gas fluid, and a first product nitrogen gas after heat recovery of the remainder of the first nitrogen gas by a heat recovery means The first product recovery path derived as the second nitrogen gas and the remaining portion of the second nitrogen gas are heated by the heat recovery means. After a second product recovery path for deriving a second product nitrogen gas, and a thing nitrogen producing apparatus according to claim. 前記第2分離工程行う精留塔と前記第1間接熱交換工程を行う凝縮器とが内部熱交換型精留塔であることを特徴とする請求項5記載の窒素製造装置。 6. The nitrogen production apparatus according to claim 5, wherein the rectifying column for performing the second separation step and the condenser for performing the first indirect heat exchange step are internal heat exchange rectifying columns. 前記第2分離工程を行う精留塔は、前記第1間接熱交換工程を行う凝縮器を内蔵した気液分離器であることを特徴とする請求項5記載の窒素製造装置。 6. The nitrogen production apparatus according to claim 5 , wherein the rectification column that performs the second separation step is a gas-liquid separator that includes a condenser that performs the first indirect heat exchange step . 請求項4の原料空気を深冷液化分離して製品窒素を採取する方法を実施する窒素製造装置において、圧縮、精製、冷却した第1原料空気を低温蒸留して第1窒素ガスと第1酸素富化液化流体とに分離する第1分離工程を行う精留塔と、前記第1窒素ガスの一部と減圧手段で減圧後の前記第1酸素富化液化流体とを間接熱交換させて第1窒素ガスを凝縮液化して第1液化窒素を得ると同時に第1酸素富化液化流体の一部を蒸発ガス化して第1酸素富化気液混相流体を得る第1間接熱交換工程を行う凝縮器と、前記第1酸素富化気液混相流体を気液分離して第2原料空気と第2酸素富化液化流体とに分離する第2分離工程を行う気液分離器と、前記第2原料空気を低温蒸留して第2窒素ガスと第3酸素富化液化流体とに分離する第3分離工程を行う精留塔と、前記第2窒素ガスの一部と減圧手段で減圧後の前記第3酸素富化液化流体とを間接熱交換させて第2窒素ガスを凝縮液化して第2液化窒素を得ると同時に第3酸素富化液化流体を蒸発ガス化して第2酸素富化ガス流体を得る第2間接熱交換工程を行う凝縮器と、減圧手段で減圧後の前記第2酸素富化液化流体と前記第1窒素ガスの残部の一部とを間接熱交換させて第1窒素ガスを凝縮液化して第3液化窒素を得ると同時に第2酸素富化液化流体の全量を蒸発ガス化して第3酸素富化ガス流体を得る第3間接熱交換工程を行う凝縮器と、前記第1窒素ガスの残部を熱回収手段で熱回収後に第1製品窒素ガスとして導出する第1製品回収経路と、前記第2窒素ガスの残部を熱回収手段で熱回収後に第2製品窒素ガスとして導出する第2製品回収経路と、を備えていることを特徴とする窒素製造装置。 5. A nitrogen production apparatus for carrying out the method for collecting product nitrogen by cryogenic liquefaction separation of the raw material air of claim 4, wherein the first raw material air that has been compressed, purified and cooled is subjected to low temperature distillation to produce a first nitrogen gas and a first oxygen. A rectifying column for performing a first separation step to separate the enriched liquefied fluid, a part of the first nitrogen gas and the first oxygen enriched liquefied fluid after being decompressed by the decompression means to indirectly heat-exchange performing a first indirect heat exchanger to obtain a first oxygen-enriched gas-liquid mixed phase fluid one nitrogen gas evaporated gasifying a portion of the condensed and liquefied by the first liquefied nitrogen obtained at the same time the first oxygen-enriched liquefied fluid A gas-liquid separator for performing a second separation step of separating the first oxygen-enriched gas-liquid mixed phase fluid into a second raw material air and a second oxygen-enriched liquefied fluid by separating the first oxygen-enriched gas-liquid mixed phase fluid into the second source air and the second oxygen-enriched liquefied fluid; line a third separation step of separating the 2 feed air to cryogenic distillation to second nitrogen gas and the third oxygen-enriched liquefied fluid Obtaining a rectification column, the third oxygen-enriched liquefied fluid and a second liquefied nitrogen condensed and liquefied the second nitrogen gas by indirect heat exchange after decompression part and pressure reducing means of the second nitrogen gas At the same time , a condenser that performs a second indirect heat exchange step for evaporating and gasifying the third oxygen-enriched liquefied fluid to obtain a second oxygen-enriched gas fluid, and the second oxygen-enriched liquefied fluid that has been depressurized by the depressurizing means, The remaining part of the first nitrogen gas is indirectly heat-exchanged to condense and liquefy the first nitrogen gas to obtain third liquefied nitrogen, and at the same time evaporate and gasify the entire amount of the second oxygen-enriched liquefied fluid. A condenser for performing a third indirect heat exchange step for obtaining an oxygen-enriched gas fluid, a first product recovery path for deriving the remainder of the first nitrogen gas as a first product nitrogen gas after heat recovery by a heat recovery means, The remainder of the second nitrogen gas is extracted as second product nitrogen gas after heat recovery by the heat recovery means. Nitrogen producing apparatus characterized in that it comprises a product recovery path, the.
JP2006355080A 2006-12-28 2006-12-28 Nitrogen production method and apparatus Active JP4451438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355080A JP4451438B2 (en) 2006-12-28 2006-12-28 Nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355080A JP4451438B2 (en) 2006-12-28 2006-12-28 Nitrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2008164236A JP2008164236A (en) 2008-07-17
JP4451438B2 true JP4451438B2 (en) 2010-04-14

Family

ID=39693958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355080A Active JP4451438B2 (en) 2006-12-28 2006-12-28 Nitrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4451438B2 (en)

Also Published As

Publication number Publication date
JP2008164236A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5878310B2 (en) Air separation method and apparatus
JP5655104B2 (en) Air separation method and air separation device
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JP5417054B2 (en) Air separation method and apparatus
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP4401999B2 (en) Air separation method and air separation device
JP5032407B2 (en) Nitrogen production method and apparatus
JP2007147113A (en) Nitrogen manufacturing method and device
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP2006349322A (en) Method of manufacturing argon by low-temperature air separator
JP4519010B2 (en) Air separation device
JP2017072282A (en) Nitrogen manufacturing method and nitrogen manufacturing device
JP6086272B1 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
JP4230213B2 (en) Air liquefaction separation apparatus and method
JP2016188751A (en) Nitrogen and oxygen manufacturing method, and nitrogen and oxygen manufacturing device
JP4451438B2 (en) Nitrogen production method and apparatus
JP5005708B2 (en) Air separation method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP3738213B2 (en) Nitrogen production method and apparatus
JP4515225B2 (en) Nitrogen production method and apparatus
JP6159242B2 (en) Air separation method and apparatus
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP2000018813A (en) Method and device for producing nitrogen
JP4698989B2 (en) Oxygen production equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250