JP5005708B2 - Air separation method and apparatus - Google Patents

Air separation method and apparatus Download PDF

Info

Publication number
JP5005708B2
JP5005708B2 JP2009000776A JP2009000776A JP5005708B2 JP 5005708 B2 JP5005708 B2 JP 5005708B2 JP 2009000776 A JP2009000776 A JP 2009000776A JP 2009000776 A JP2009000776 A JP 2009000776A JP 5005708 B2 JP5005708 B2 JP 5005708B2
Authority
JP
Japan
Prior art keywords
oxygen
low
pressure
gas
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009000776A
Other languages
Japanese (ja)
Other versions
JP2010159890A (en
Inventor
博志 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009000776A priority Critical patent/JP5005708B2/en
Publication of JP2010159890A publication Critical patent/JP2010159890A/en
Application granted granted Critical
Publication of JP5005708B2 publication Critical patent/JP5005708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • F25J3/0463Simultaneously between rectifying and stripping sections, i.e. double dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/52Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気分離方法およびその装置に関し、詳しくは、圧縮、精製、冷却した原料空気を低温蒸留することにより酸素を製品として採取する空気分離方法およびその装置に関する。   The present invention relates to an air separation method and apparatus, and more particularly to an air separation method and apparatus for collecting oxygen as a product by low-temperature distillation of compressed, purified, and cooled raw material air.

空気を深冷分離して製品酸素ガスを製造する方法としては、図5に示すような複式精留プロセスが最も一般的な方法となっている(非特許文献1参照)。
図5に示す従来の複式精留プロセスの空気分離装置121は、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと酸素富化液体に分離する高圧塔109と、減圧した前記酸素富化液体を低温蒸留して低圧窒素ガスと高純液化酸素に分離する低圧塔108と、前記中圧窒素ガスと前記高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器106と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収経路L124とを主な構成要素としている。
通常、製品酸素ガスは低圧塔108塔底部から、製品窒素ガスは低圧塔108塔頂部からそれぞれ採取される。
As a method for producing product oxygen gas by cryogenic separation of air, a double rectification process as shown in FIG. 5 is the most common method (see Non-Patent Document 1).
The conventional double rectification process air separation apparatus 121 shown in FIG. 5 includes a high-pressure column 109 that separates compressed, purified, and cooled raw material air into low-pressure distilled and medium-pressure nitrogen gas and an oxygen-enriched liquid, and the reduced pressure The low pressure column 108 that separates the oxygen-enriched liquid into low-pressure nitrogen gas and high-pure liquefied oxygen by low-temperature distillation, and the medium-pressure nitrogen gas and the high-pure liquefied oxygen are indirectly heat-exchanged to condense and liquefy the medium-pressure nitrogen gas. To obtain medium pressure liquefied nitrogen and at the same time evaporate gas of high pure liquefied oxygen to obtain high pure oxygen gas, and a product that collects a part of the high pure oxygen gas as product oxygen gas after heat recovery The recovery path L124 is a main component.
Usually, the product oxygen gas is collected from the bottom of the low pressure column 108, and the product nitrogen gas is collected from the top of the low pressure column 108.

図5に示す複式精留プロセスにおいて消費動力を削減する方法の一つに、高圧塔109塔頂部から中圧窒素ガスを採取する方法がある。製品として圧力の高い窒素が必要な場合、採取した中圧窒素ガスを圧縮することにより窒素圧縮機の動力を低減したり、製品窒素の圧力が中圧窒素ガスの圧力と同程度かそれよりも低い場合は、窒素圧縮機を省略したりすることが可能となる。また、窒素が不要な場合においても採取した中圧窒素ガスを膨張タービンで膨張させて、動力を回収することができる。   One method for reducing power consumption in the double rectification process shown in FIG. 5 is to collect medium-pressure nitrogen gas from the top of the high-pressure column 109. When high-pressure nitrogen is required as a product, the power of the nitrogen compressor can be reduced by compressing the collected medium-pressure nitrogen gas, or the pressure of the product nitrogen is equal to or higher than the pressure of the medium-pressure nitrogen gas. If it is low, the nitrogen compressor can be omitted. Further, even when nitrogen is unnecessary, the collected medium pressure nitrogen gas can be expanded by an expansion turbine to recover power.

図5に示す複式精留プロセスでは、この中圧窒素ガスの採取率が原料空気量の5〜10%程度であるが、これを増やす方法として低圧塔108へ導入する液体の酸素濃度を高くする方法が考えられる。比較的高い酸素濃度の液体を低圧塔108に導入することにより、低圧塔108回収部のL/Vを大きくすることが可能となるため主凝縮器106で蒸発ガス化する酸素ガスの流量を小さくすることができ、主凝縮器106の交換熱量も小さくすることが可能になる。
したがって、高圧塔109塔頂部から導出された中圧窒素ガスのうち主凝縮器106に導入される中圧窒素ガスの流量割合を小さくすることができ、採取可能な中圧窒素ガス流量を増やすことができる。
In the double rectification process shown in FIG. 5, the sampling rate of the medium pressure nitrogen gas is about 5 to 10% of the amount of raw material air. As a method of increasing this, the oxygen concentration of the liquid introduced into the low pressure column 108 is increased. A method is conceivable. By introducing a liquid having a relatively high oxygen concentration into the low-pressure column 108, the L / V of the recovery unit of the low-pressure column 108 can be increased. It is possible to reduce the amount of heat exchanged by the main condenser 106.
Therefore, the flow rate ratio of the medium pressure nitrogen gas introduced into the main condenser 106 out of the medium pressure nitrogen gas derived from the top of the high pressure column 109 can be reduced, and the flow rate of the medium pressure nitrogen gas that can be collected is increased. Can do.

また、上述のように低圧塔108へ導入する液体の酸素濃度を高くして、低圧塔108回収部のL/Vを改善する場合において、中圧窒素ガスを採取する替わりに膨張タービンに供給するガスの流量を増やすことにより発生寒冷量を増やして液化製品の採取量を増やすことが可能となる。   Further, as described above, when the oxygen concentration of the liquid introduced into the low pressure column 108 is increased to improve the L / V of the recovery unit of the low pressure column 108, it is supplied to the expansion turbine instead of collecting the intermediate pressure nitrogen gas. By increasing the gas flow rate, it is possible to increase the amount of cold generated and increase the amount of liquefied product collected.

また、上述のように低圧塔108へ導入する液体の酸素濃度を高くして、低圧塔108回収部のL/Vを改善する場合において、中圧窒素ガスを採取する替わりに高圧塔109に導入する高圧の原料空気量を減量し、原料空気の一部を低圧で低圧塔108に供給し、空気圧縮機の消費動力を低減することが可能となる。
これらを実現するためのプロセスを図6に示す。
Further, when the oxygen concentration of the liquid introduced into the low pressure column 108 is increased as described above to improve the L / V of the recovery unit of the low pressure column 108, it is introduced into the high pressure column 109 instead of collecting the medium pressure nitrogen gas. It is possible to reduce the amount of high-pressure raw material air to be supplied and supply a part of the raw material air to the low-pressure tower 108 at a low pressure, thereby reducing the power consumption of the air compressor.
A process for realizing these is shown in FIG.

図6に示す参考プロセスは、図5に示した従来プロセスを改良したもので、この空気分離装置221は、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと酸素富化液体に分離する高圧塔209と、減圧した前記酸素富化液体を低温蒸留して低圧窒素ガスと低純液化酸素に分離する第1低圧塔281と、加圧した前記低純液化酸素を低温蒸留して低純窒素ガスと高純液化酸素に分離する第2低圧塔282と、前記中圧窒素ガスと前記高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器206と、前記低純窒素ガスと前記低純液化酸素とを間接熱交換させて低純窒素ガスを凝縮液化して低純液化窒素を得ると同時に低純液化酸素を蒸発ガス化して低純酸素ガスを得る中間凝縮器216と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスGOとして採取する製品回収経路L224と、前記中圧酸素ガスの一部を熱回収後に製品中圧窒素ガスMGNとして採取する製品回収経路L207とを主な構成要素としている。
製品酸素ガスは第2低圧塔282塔底部から、製品窒素ガスは第1低圧塔281塔頂部および高圧塔209塔頂部からそれぞれ採取される。
The reference process shown in FIG. 6 is an improvement of the conventional process shown in FIG. 5. This air separation device 221 is a medium-pressure nitrogen gas and oxygen-enriched liquid obtained by low-temperature distillation of compressed, purified, and cooled raw material air. A high pressure column 209 that separates into a low pressure, a first low pressure column 281 that separates the decompressed oxygen-enriched liquid into low-pressure nitrogen gas and low-pure liquefied oxygen, and a low-pressure distillation of the pressurized low-pure liquefied oxygen. The second low pressure column 282 that separates into low pure nitrogen gas and high pure liquefied oxygen, and the intermediate pressure nitrogen gas and the high pure liquefied oxygen are indirectly heat-exchanged to condense and liquefy the intermediate pressure nitrogen gas. At the same time as obtaining nitrogen, high purity liquefied oxygen is vaporized to obtain high purity oxygen gas, and the low purity nitrogen gas and the low purity liquefied oxygen are indirectly heat exchanged to condense the low purity nitrogen gas. Liquefied to obtain low pure liquefied nitrogen and at the same time low pure liquefied oxygen An intermediate condenser 216 for generating low purity oxygen gas by generating gas, a product recovery path L224 for collecting a part of the high purity oxygen gas as a product oxygen gas GO after heat recovery, and a part of the medium pressure oxygen gas A product recovery path L207, which is collected as product intermediate pressure nitrogen gas MGN after heat recovery, is a main component.
The product oxygen gas is collected from the bottom of the second low pressure column 282, and the product nitrogen gas is collected from the top of the first low pressure column 281 and the top of the high pressure column 209, respectively.

図5に示す従来プロセスでは低圧塔中部に酸素濃度40%程度の酸素富化液体が導入されるのに対し、図6に示す参考プロセスでは、酸素濃度40%程度の酸素富化液体が予め第1低圧塔で蒸留分離され、酸素濃度90%以上に濃縮した低純液化酸素が第2低圧塔中部に導入される。
これにより、第2低圧塔回収部の蒸留効率を改善してL/Vを大きくすることができるため、主凝縮器で蒸発ガス化する高純酸素ガスの流量を小さくすることができ、中圧窒素ガスの採取量を増やしたり、液化製品の採取量を増やしたり、原料空気の一部を低圧で供給したりすることができる。
In the conventional process shown in FIG. 5, an oxygen-enriched liquid having an oxygen concentration of about 40% is introduced into the middle portion of the low-pressure column. On the other hand, in the reference process shown in FIG. Low-pure liquefied oxygen distilled and separated in one low-pressure column and concentrated to an oxygen concentration of 90% or more is introduced into the middle of the second low-pressure column.
Thereby, since the L / V can be increased by improving the distillation efficiency of the second low-pressure column recovery section, the flow rate of the high purity oxygen gas which is evaporated and gasified in the main condenser can be reduced, and the intermediate pressure It is possible to increase the amount of nitrogen gas collected, increase the amount of liquefied product collected, or supply a part of the raw material air at a low pressure.

しかし、図6に示す参考プロセスでは、高圧塔の運転圧力が図5の従来プロセスのそれに比べて大幅に高くなり、空気圧縮機の消費動力が大幅に増加する問題がある。
この理由は、中間凝縮器216において、第1低圧塔281塔底部の低純液化酸素を第2低圧塔282塔頂部の低純窒素ガスで蒸発ガス化させなければならないプロセス上の制約により、例えば第1低圧塔281の運転圧力を0.13MPaAとした揚合に第2低圧塔282の運転圧力を0.47MPaA程度まで上げる必要があり、同様に主凝縮器206において第2低圧塔282塔底部の高純液化酸素を高圧塔209塔頂部の中圧窒素ガスで蒸発ガス化させなければならないプロセス上の制約により、高圧塔の運転圧力を1.43MPaA程度まで上げる必要があるためである。
However, the reference process shown in FIG. 6 has a problem that the operating pressure of the high-pressure tower is significantly higher than that of the conventional process of FIG. 5, and the power consumption of the air compressor is greatly increased.
The reason for this is that, in the intermediate condenser 216, low pure liquefied oxygen at the bottom of the first low-pressure column 281 is vaporized with low pure nitrogen gas at the top of the second low-pressure column 282, for example, due to a process restriction. It is necessary to increase the operating pressure of the second low-pressure column 282 to about 0.47 MPaA when the operating pressure of the first low-pressure column 281 is 0.13 MPaA. Similarly, in the main condenser 206, the bottom of the second low-pressure column 282 This is because the operating pressure of the high-pressure column needs to be increased to about 1.43 MPaA due to process restrictions that require evaporative gasification of the high-pure liquefied oxygen with medium-pressure nitrogen gas at the top of the high-pressure column 209.

辰巳 高司、橋本 秀之 「冷凍空調便覧」2巻、第6版、402〜406頁、(社)日本冷凍空調学会Takashi Tsuji, Hideyuki Hashimoto “Refrigeration and Air Conditioning Handbook” Volume 2, 6th edition, pages 402-406, Japan Society of Refrigerating and Air Conditioning Engineers

本発明の課題は、前記参考プロセスにおいて、第2低圧塔回収部を改善して中圧窒素ガスの採取量を増やしたり、液化製品の採取量を増やしたり、原料空気の1部を低圧で供給したりする場合においても、第2低圧塔の運転圧力を下げ、高圧塔の運転圧力および原料空気圧力を下げて消費動力を低減できるような空気分離方法およびその装置を提供することを目的としている。   The object of the present invention is to improve the second low-pressure column recovery unit in the above reference process to increase the amount of medium-pressure nitrogen gas collected, increase the amount of liquefied product collected, or supply one part of raw air at a low pressure It is an object of the present invention to provide an air separation method and apparatus capable of reducing power consumption by lowering the operating pressure of the second low-pressure column and lowering the operating pressure of the high-pressure column and the raw material air pressure. .

前記課題を達成するため、本発明の空気分離方法は、原料空気を深冷液化分離して製品酸素を採取する空気分離方法において、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと第1酸素富化液体とに分離する第1分離工程と、前記第1酸素富化液体を減圧後に低温蒸留して第1低圧窒素ガスと第2酸素富化液体とに分離する第2分離工程と、互いに間接熱交換可能とされた蒸発蒸留通路と凝縮蒸留通路を備えた熱交換型蒸留器の蒸発蒸留通路で前記第2酸素富化液体を凝縮蒸留通路との間接熱交換により加熱して前記第2酸素富化液体の一部を蒸発ガス化しつつ蒸留して第1酸素富化ガスと低純液化酸素とに分離する第3分離工程と、前記低純液化酸素を低温蒸留して第2酸素富化ガスと高純液化酸素とに分離する第4分離工程と、前記熱交換型蒸留器の凝縮蒸留通路で前記第2酸素富化ガスを蒸発蒸留通路との間接熱交換により冷却して前記第2酸素富化ガスの一部を凝縮液化しつつ蒸留して第2低圧窒素ガスと第3酸素富化液体とに分離する第5分離工程と、前記中圧窒素ガスと前記高純液化酸素とを間接熱交換して中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る間接熱交換工程と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収工程とを含むことを特徴としている。   In order to achieve the above object, the air separation method of the present invention is an air separation method for collecting product oxygen by cryogenic liquefaction separation of raw material air. A first separation step for separating the gas into a first oxygen-enriched liquid; and a second process for separating the first oxygen-enriched liquid into a first low-pressure nitrogen gas and a second oxygen-enriched liquid by low-temperature distillation after decompression. The second oxygen-enriched liquid is heated by indirect heat exchange with the condensation distillation passage in the separation step and the evaporation distillation passage of a heat exchange type distiller having an evaporative distillation passage and a condensation distillation passage that can exchange heat indirectly with each other. A third separation step in which a part of the second oxygen-enriched liquid is distilled while evaporating and separating it into a first oxygen-enriched gas and low-pure liquefied oxygen; and the low-pure liquefied oxygen is distilled at a low temperature To separate the second oxygen-enriched gas and the highly pure liquefied oxygen The second oxygen-enriched gas is cooled by indirect heat exchange with the evaporative distillation passage in the condensation distillation passage of the heat exchange-type distiller, and a part of the second oxygen-enriched gas is distilled while being condensed and liquefied. A fifth separation step for separating the second low-pressure nitrogen gas and the third oxygen-enriched liquid, and the intermediate-pressure nitrogen gas and the highly pure liquefied oxygen are indirectly heat exchanged to condense and liquefy the intermediate-pressure nitrogen gas. An indirect heat exchange step for obtaining high-pure oxygen gas by evaporating gas of high-pure liquefied oxygen at the same time as obtaining pressurized liquefied nitrogen; and a product recovery step for collecting a part of the high-pure oxygen gas as product oxygen gas after heat recovery; It is characterized by including.

さらに、本発明の空気分離方法は、前記構成の空気分離方法において、装置の運転に必要な寒冷を得るため、前記原料空気の一部を膨張タービンに導入して膨張させる寒冷発生工程、または前記中圧窒素ガスの一部を膨張タービンに導入して膨張させる寒冷発生工程、または前記第1低圧窒素ガスの一部または全量を膨張タービンに導入して膨張させる寒冷発生工程、または前記第2低圧窒素ガスの一部または全量を膨張タービンに導入して膨張させる寒冷発生工程のいずれかの工程を含むことを特徴としている。   Furthermore, in the air separation method of the present invention, in the air separation method of the above-described configuration, in order to obtain coldness necessary for operation of the apparatus, a cold generation step of introducing a part of the raw material air into an expansion turbine to expand, or the above A cold generating step of introducing a part of the medium-pressure nitrogen gas into the expansion turbine to expand, or a cold generating step of introducing a part or all of the first low-pressure nitrogen gas into the expansion turbine to expand, or the second low pressure It is characterized in that it includes any one of the cold generation steps in which a part or all of the nitrogen gas is introduced into the expansion turbine and expanded.

また、本発明の空気分離装置は、原料空気を深冷液化分離して製品酸素を採取する空気分離装置において、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと第1酸素富化液体とに分離する高圧塔と、前記第1酸素富化液体を減圧後に低温蒸留して第1低圧窒素ガスと第2酸素冨化液体とに分離する第1低圧塔と、互いに間接熱交換可能とされた凝縮蒸留通路および蒸発蒸留通路を備え、凝縮蒸留通路が蒸発蒸留通路との間接熱交換により前記第2酸素富化液体の一部を加熱して蒸発ガス化しつつ蒸留して第1酸素富化ガスと低純液化酸素とに分離するものであり、蒸発蒸留通路が凝縮蒸留通路との間接熱交換により後記第2酸素富化ガスの一部を冷却して凝縮液化しつつ蒸留して第2低圧窒素ガスと第3酸素富化液体とに分離するものである熱交換型蒸留器と、前記低純液化酸素を低温蒸留して第2酸素富化ガスと高純液化酸素とに分離する第2低圧塔と、前記中圧窒素ガスと高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収経路を備えたことを特徴としている。   Further, the air separation device of the present invention is an air separation device that collects product oxygen by cryogenic liquefaction separation of raw material air. The compressed, purified, and cooled raw material air is subjected to low-temperature distillation to obtain medium pressure nitrogen gas and primary oxygen. A high-pressure column that separates into an enriched liquid; a first low-pressure column that separates the first oxygen-enriched liquid into a first low-pressure nitrogen gas and a second oxygen-enriched liquid by low-temperature distillation after decompression; A condensable distillation passage and an evaporative distillation passage that are exchangeable, and the condensing distillation passage heats a part of the second oxygen-enriched liquid by indirect heat exchange with the evaporative distillation passage and distills while evaporating and gasifying it. 1 Oxygen-enriched gas and low-pure liquefied oxygen are separated, and the evaporative distillation passage cools a part of the second oxygen-enriched gas described later by indirect heat exchange with the condensation distillation passage and distills while condensing into liquid. Into a second low-pressure nitrogen gas and a third oxygen-enriched liquid. A heat-exchange distiller, a second low-pressure column that separates the low-pure liquefied oxygen into a second oxygen-enriched gas and high-pure liquefied oxygen by low-temperature distillation, and the medium-pressure nitrogen gas and high-pure liquefaction A main condenser for indirect heat exchange with oxygen to condense and liquefy medium pressure nitrogen gas to obtain medium pressure liquefied nitrogen and at the same time evaporate gas of high pure liquefied oxygen to obtain high pure oxygen gas; and the high pure oxygen gas A product recovery path for collecting a part of the product as product oxygen gas after heat recovery is provided.

本発明によれば、凝縮蒸留通路と蒸発蒸留通路とにより構成され、両通路間で熱交換させながら同時に各通路内で蒸留することが可能な熱交換型蒸留器を用いて、効率的に第1低圧塔と第2低圧塔とを熱結合することができ、従来のプロセスを用いた場合に比べて、中圧窒素ガスの採取量を増やしたり、液採取量を増やしたり、原料空気の一部を低圧で供給したりしつつ、原料空気圧力の上昇を抑えて、装置全体の消費動力を低減することができる。   According to the present invention, a heat exchange type distiller configured by a condensing distillation passage and an evaporative distillation passage, and capable of distilling in each passage at the same time while exchanging heat between both passages, is efficiently used. The low-pressure column and the second low-pressure column can be thermally coupled, and the amount of medium-pressure nitrogen gas collected, the amount of liquid collected can be increased, The supply power of the entire apparatus can be reduced by suppressing the increase of the raw material air pressure while supplying the part at a low pressure.

本発明の空気分離装置の第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the air separation apparatus of this invention. 本発明の空気分離装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the air separation apparatus of this invention. 本発明の空気分離装置の第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the air separation apparatus of this invention. 本発明の空気分離装置の第4実施形態を示す概略構成図である。It is a schematic block diagram which shows 4th Embodiment of the air separation apparatus of this invention. 従来プロセスの空気分離装置を示す概略構成図である。It is a schematic block diagram which shows the air separation apparatus of the conventional process. 参考プロセスの空気分離装置を示す概略構成図である。It is a schematic block diagram which shows the air separation apparatus of a reference process. 他の従来プロセスの空気分離装置を示す概略構成図である。It is a schematic block diagram which shows the air separation apparatus of another conventional process. 他の参考プロセスの空気分離装置を示す概略構成図である。It is a schematic block diagram which shows the air separation apparatus of another reference process.

本発明の空気分離装置の第1実施形態を図1に示す。
この例の空気分離装置21は、原料空気を圧縮する空気圧縮機1と、圧縮された原料空気の圧縮熱を取り除く空気予冷器2と、空気予冷器2を経た原料空気中の不純物(水分、二酸化炭素等)を除去する精製器3と、精製器3を経た原料空気を冷却する主熱交換器4と、主熱交換器4を経た原料空気を低温蒸留によって塔上部の中圧窒素ガスと塔底部の第1酸素富化液体とに分離する高圧塔9と、前記第1酸素富化液体を減圧後に低温蒸留して塔上部の第1低圧窒素ガスと塔底部の第2酸素富化液体とに分離する第1低圧塔81と、互いに間接熱交換可能とされた凝縮蒸留通路51および蒸発蒸留通路52を備え、凝縮蒸留通路51が蒸発蒸留通路52との間接熱交換により前記第2酸素富化液体の一部を加熱して蒸発ガス化しつつ蒸留して第1酸素富化ガスと低純液化酸素とに分離するものであり、蒸発蒸留通路52が凝縮蒸留通路51との間接熱交換により後記第2酸素富化ガスの一部を冷却して凝縮液化しつつ蒸留して第2低圧窒素ガスと第3酸素富化液体とに分離するものである熱交換型蒸留器5と、前記低純液化酸素を低温蒸留して第2酸素富化ガスと高純液化酸素とに分離する第2低圧塔82と、前記中圧窒素ガスと高純液化酸素とを間接熱交換させて中圧窒素ガスの一部を凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器6と、前記中圧窒素ガスの一部または全量を導入して装置に必要な寒冷を得る膨張タービン10と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収経路L24と、前記中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスとして採取する製品回収経路L7と、ブロワ11と、過冷器7とを主な構成要素とする。
A first embodiment of the air separation device of the present invention is shown in FIG.
The air separation device 21 in this example includes an air compressor 1 that compresses raw material air, an air precooler 2 that removes the compression heat of the compressed raw material air, and impurities (moisture, moisture) in the raw material air that has passed through the air precooler 2. Carbon dioxide and the like, a main heat exchanger 4 that cools the raw air that has passed through the purifier 3, and medium-pressure nitrogen gas at the top of the tower by low-temperature distillation of the raw air that has passed through the main heat exchanger 4 A high-pressure column 9 that separates into a first oxygen-enriched liquid at the bottom of the column, and low-temperature distillation of the first oxygen-enriched liquid after depressurization, and a first low-pressure nitrogen gas at the top of the column and a second oxygen-enriched liquid at the bottom of the column And a condensing distillation passage 51 and an evaporative distillation passage 52 that are capable of indirect heat exchange with each other, and the condensing distillation passage 51 performs the second oxygen by indirect heat exchange with the evaporative distillation passage 52. Distilling while heating a part of the enriched liquid to evaporate gas 1 The oxygen-enriched gas and the low-pure liquefied oxygen are separated, and the evaporative distillation passage 52 cools a part of the second oxygen-enriched gas described later by indirect heat exchange with the condensation distillation passage 51 to condense and liquefy. While distilling and separating into a second low-pressure nitrogen gas and a third oxygen-enriched liquid, and the low-pure liquid oxygen is subjected to low-temperature distillation to produce a second oxygen-enriched gas and a high-pure gas. At the same time as obtaining the intermediate pressure liquefied nitrogen by condensing and liquefying a part of the intermediate pressure nitrogen gas by indirect heat exchange between the second low pressure column 82 separated into liquefied oxygen and the intermediate pressure nitrogen gas and the high purity liquefied oxygen. A main condenser 6 that evaporates high-pure liquefied oxygen to obtain high-pure oxygen gas, an expansion turbine 10 that introduces a part or all of the medium-pressure nitrogen gas to obtain the cooling required for the apparatus, and the high-pure oxygen A product recovery path L24 for collecting a part of oxygen gas as product oxygen gas after heat recovery; Some of the serial in-pressure nitrogen gas product recovery path L7 harvesting as a product during pressure nitrogen gas after heat recovery, a blower 11, to a subcooler 7 and the main components.

次に、この空気分離装置21を用いた空気分離方法の第1実施形態を説明する。
原料空気が、空気圧縮機1で圧縮され、空気予冷器2で常温付近まで冷却された後、精製器3において、原料空気中の水分および二酸化炭素等の不純物が吸着除去される。精製器3を経た原料空気は、保冷外槽15に導入され、主熱交換器4において、露点付近まで冷却され、経路L5を経て、高圧塔9に導入される。
Next, a first embodiment of an air separation method using the air separation device 21 will be described.
After the raw material air is compressed by the air compressor 1 and cooled to near normal temperature by the air precooler 2, impurities such as moisture and carbon dioxide in the raw material air are adsorbed and removed in the purifier 3. The raw material air that has passed through the purifier 3 is introduced into the cold insulation outer tank 15, is cooled to near the dew point in the main heat exchanger 4, and is introduced into the high-pressure tower 9 through the path L <b> 5.

高圧塔9に導入された原料空気は、後述する中圧液化窒素との気液接触により蒸留され、塔頂に向かって窒素成分が濃縮する。高圧塔9の塔頂部から導出された中圧窒素ガスの一部は経路L6に分岐され、主熱交換器4で熱回収された後に保冷外槽15から導出され、製品中圧窒素ガスMGNとして採取される。   The raw material air introduced into the high-pressure tower 9 is distilled by gas-liquid contact with medium pressure liquefied nitrogen described later, and the nitrogen component is concentrated toward the top of the tower. Part of the medium-pressure nitrogen gas led out from the top of the high-pressure tower 9 is branched to a path L6, recovered by the main heat exchanger 4 and then led out from the cold storage outer tank 15, and as product medium-pressure nitrogen gas MGN Collected.

中圧窒素ガスの残部は、経路L8を経て主凝縮器6に導入され、後述する第2低圧塔82塔底部の高純液化酸素との間接熱交換により、高純液化酸素を蒸発させ、自らは全量凝縮して中圧液化窒素となる。凝縮した中圧液化窒素の一部は高圧塔9の還流液として経路L9を経て高圧塔9の塔頂部に導入される。
中圧液化窒素の残部は、過冷器7を経て冷却され、減圧弁V1で減圧された後に第1低圧塔81の塔頂部に導入される。
また、高圧塔9の塔底部より導出された第1酸素富化液体は、過冷器7を経て冷却され、減圧弁V2で減圧された後に第1低圧塔81の下部に導入される。
The remainder of the medium-pressure nitrogen gas is introduced into the main condenser 6 via the path L8, and the high-pure liquefied oxygen is evaporated by indirect heat exchange with the high-pure liquefied oxygen at the bottom of the second low-pressure column 82, which will be described later. Is condensed to medium pressure liquefied nitrogen. Part of the condensed medium pressure liquefied nitrogen is introduced into the top of the high pressure column 9 via the path L9 as the reflux liquid of the high pressure column 9.
The remainder of the medium pressure liquefied nitrogen is cooled through the supercooler 7, and after being decompressed by the pressure reducing valve V <b> 1, is introduced into the top of the first low pressure column 81.
In addition, the first oxygen-enriched liquid led out from the bottom of the high-pressure column 9 is cooled through the supercooler 7, depressurized by the pressure reducing valve V <b> 2, and then introduced into the lower portion of the first low-pressure column 81.

第1低圧塔81では、減圧弁V1で減圧された前記中圧液化窒素と、減圧弁V2で減圧された前記第1酸素富化液体と、後述する第1酸素富化ガスとが蒸留され、第1低圧塔81の上部に窒素成分が、下部に酸素成分が濃縮する。第1低圧塔81の塔頂部から経路L14に第1低圧窒素ガスが導出され、過冷器7、主熱交換器4を経て、熱回収された後に保冷外槽15から導出され、製品低圧窒素ガスGNとして採取される。製品低圧窒素ガスGNの一部または全量は、精製器3の再生用に用いることができる。   In the first low-pressure column 81, the medium-pressure liquefied nitrogen decompressed by the decompression valve V1, the first oxygen-enriched liquid decompressed by the decompression valve V2, and a first oxygen-enriched gas described later are distilled, The nitrogen component concentrates in the upper part of the first low-pressure column 81 and the oxygen component concentrates in the lower part. The first low-pressure nitrogen gas is led out from the top of the first low-pressure tower 81 to the path L14, is recovered from the heat through the supercooler 7 and the main heat exchanger 4, and is led out from the cold insulation outer tank 15 to produce the product low-pressure nitrogen. Collected as gas GN. Part or all of the product low-pressure nitrogen gas GN can be used for regeneration of the purifier 3.

第1低圧塔81の塔底部からは経路L16に第2酸素富化液体が導出され、熱交換型蒸留器5の蒸発蒸留通路52の上部に導入される。
熱交換型蒸留器5の蒸発蒸留通路52では、上部から導入された前記第2酸素富化液体が蒸発蒸留通路52内を下降する過程で凝縮蒸留通路51内の流体と熱交換して一部蒸発しながら蒸留され、蒸発蒸留通路52の上部に窒素成分が、下部に酸素成分が濃縮する。
From the bottom of the first low-pressure column 81, the second oxygen-enriched liquid is led out to the path L16 and introduced into the upper part of the evaporative distillation passage 52 of the heat exchange-type distiller 5.
In the evaporative distillation passage 52 of the heat exchange type distiller 5, the second oxygen-enriched liquid introduced from above is partly exchanged with the fluid in the condensation distillation passage 51 in the process of descending the evaporative distillation passage 52. While evaporating, the nitrogen component is concentrated in the upper portion of the evaporative distillation passage 52 and the oxygen component is concentrated in the lower portion.

熱交換型蒸留器5の蒸発蒸留通路52の上部から経路L17に導出された第1酸素富化ガスは、第1低圧塔81の下部に導入され、蒸発蒸留通路52の下部から経路L18に導出された低純液化酸素は第2低圧塔82の中部または上部に導入される。通常、蒸発蒸留通路52の運転圧力は、第2低圧塔82の運転圧力よりも低いが、その圧力差は比較的小さいため、経路L18における低純液化酸素の液ヘッドにより送液することが可能であるが、必要に応じて経路L18に液ポンプを設けて送液することができる。   The first oxygen-enriched gas led to the path L17 from the upper part of the evaporative distillation passage 52 of the heat exchange-type distiller 5 is introduced to the lower part of the first low-pressure column 81 and led to the path L18 from the lower part of the evaporative distillation path 52. The low purity liquefied oxygen thus introduced is introduced into the middle or upper part of the second low pressure column 82. Usually, the operating pressure of the evaporative distillation passage 52 is lower than the operating pressure of the second low-pressure column 82, but since the pressure difference is relatively small, the liquid can be fed by the liquid head of low pure liquefied oxygen in the path L18. However, if necessary, a liquid pump can be provided in the path L18 to send the liquid.

第2低圧塔82では、蒸発蒸留通路52から経路L18を経て導入された低純液化酸素と、後述する第3酸素富化液体と、主凝縮器6で蒸発した前記高純酸素ガスの一部とが蒸留され、第2低圧塔82の上部に窒素成分が、下部に酸素成分が濃縮する。
第2低圧塔82の塔頂部から経路L19に導出された第2酸素富化ガスは、熱交換型蒸留器5の凝縮蒸留通路51の下部に導入され、第2低圧塔82の塔底部から経路L23に導出された高純酸素ガスの一部は、主熱交換器4で熱回収された後に保冷外槽15から導出され、製品酸素ガスGOとして採取される。
In the second low-pressure column 82, low pure liquefied oxygen introduced from the evaporative distillation passage 52 via the path L18, a third oxygen-enriched liquid described later, and a part of the high pure oxygen gas evaporated by the main condenser 6 And the nitrogen component concentrates in the upper part of the second low-pressure column 82 and the oxygen component concentrates in the lower part.
The second oxygen-enriched gas led out from the top of the second low-pressure column 82 to the path L19 is introduced into the lower part of the condensation distillation passage 51 of the heat-exchange distiller 5, and is routed from the bottom of the second low-pressure column 82 to the path L19. A part of the high-purity oxygen gas led out to L23 is led out from the cold insulation outer tank 15 after being recovered by the main heat exchanger 4, and collected as product oxygen gas GO.

熱交換型蒸留器5の凝縮蒸留通路51では、下部から導入された前記第2酸素富化ガスが凝縮蒸留通路51内を上昇する過程で蒸発蒸留通路52の流体と熱交換して一部凝縮しながら蒸留され、凝縮蒸留通路51の上部に窒素成分が、下部に酸素成分が濃縮する。   In the condensation distillation passage 51 of the heat exchange type distiller 5, the second oxygen-enriched gas introduced from the lower part exchanges heat with the fluid in the evaporation distillation passage 52 in the process of rising in the condensation distillation passage 51, and is partially condensed. While being distilled, the nitrogen component concentrates in the upper part of the condensation distillation passage 51 and the oxygen component concentrates in the lower part.

熱交換型蒸留器5の凝縮蒸留通路51の上部から経路L21に導出された第2低圧窒素ガスは、過冷器7、主熱交換器4を経て、熱回収された後に保冷外槽15から導出され、製品低圧窒素ガスGNとして採取される。凝縮蒸留通路51の下部から経路L20に導出された第3酸素富化液体は、第2低圧塔82の上部に導入される。   The second low-pressure nitrogen gas led out from the upper part of the condensing distillation passage 51 of the heat exchange type distiller 5 to the path L21 is recovered from the heat through the supercooler 7 and the main heat exchanger 4, and then from the cold insulation outer tank 15. Derived and collected as product low-pressure nitrogen gas GN. The third oxygen-enriched liquid led out from the lower part of the condensation distillation passage 51 to the path L20 is introduced into the upper part of the second low-pressure column 82.

製品液化酸素LOを採取する場合、第2低圧塔82塔底部の前記高純液化酸素を経路L25へ導出して採取することができ、製品液化窒素LNを採取する場合、前記中圧液化窒素の一部を経路L26に分岐して採取することができる。   When collecting the product liquefied oxygen LO, the high-pure liquefied oxygen at the bottom of the second low-pressure column 82 can be led to the path L25 and collected. When collecting the product liquefied nitrogen LN, the medium-pressure liquefied nitrogen A part can be branched to the path L26 and collected.

装置の運転に必要な寒冷は、高圧塔9の塔頂部から導出、分岐され、熱回収された中圧窒素ガスの一部または全量を経路L2に分岐し、ブロワ11で昇圧した後に膨張タービン10に導入し、膨張させて得ることができる。ブロワ11で中圧窒素ガスの昇圧を行う際には、膨張タービン10と同軸とし、膨張タービン10で原料空気を断熱膨張させる際に得られる動力を利用してブロワ11を駆動するのが好ましい。   The cold necessary for the operation of the apparatus is led out from the top of the high-pressure column 9, branched, and part or all of the intermediate-pressure nitrogen gas recovered by heat is branched into the path L <b> 2. Can be introduced and expanded. When the pressure of the intermediate pressure nitrogen gas is increased by the blower 11, it is preferable that the blower 11 is driven coaxially with the expansion turbine 10 and using power obtained when the expansion air is adiabatically expanded by the expansion turbine 10.

図1に破線で示すように第2低圧窒素ガスは経路L21に導出された後に第1低圧塔81の中間部に導入することもできる。   As indicated by a broken line in FIG. 1, the second low-pressure nitrogen gas can be introduced into the intermediate portion of the first low-pressure column 81 after being led to the path L21.

また、図2に示した第2実施形態の空気分離装置22のように、装置の運転に必要な寒冷を圧縮、精製された原料空気の一部を経路L31に分岐し、ブロワ31で昇圧した後に膨張タービン30に導入し、膨張させて得ることもできる。膨張した原料空気は、経路L32を経て第1低圧塔81に導入される。   Further, as in the air separation device 22 of the second embodiment shown in FIG. 2, a part of the raw material air that has been compressed and purified for the operation of the device is branched into a path L31 and pressurized by the blower 31. It can also be obtained later by being introduced into the expansion turbine 30 and expanded. The expanded raw material air is introduced into the first low-pressure column 81 via the path L32.

また、図3に示した第3実施形態の空気分離装置23のように、装置の運転に必要な寒冷を製品低圧窒素ガスGNの一部を経路L41に分岐し、ブロワ41で昇圧した後に膨張タービン40に導入し、膨張させて得ることもできる。この場合、膨張タービン40で必要な膨張比が得られるように製品低圧窒素ガスGNの圧力を高くする必要があり、装置全体の圧力を上げて運転される。   Further, as in the air separation device 23 of the third embodiment shown in FIG. 3, a part of the product low-pressure nitrogen gas GN is branched into a path L41 for the cooling necessary for the operation of the device, and the pressure is increased by the blower 41 and then expanded. It can also be obtained by being introduced into the turbine 40 and expanded. In this case, it is necessary to increase the pressure of the product low-pressure nitrogen gas GN so that the expansion ratio required by the expansion turbine 40 can be obtained, and the operation is performed by increasing the pressure of the entire apparatus.

このように構成した空気分離装置において、従来のプロセスを用いた場合に比べて、中圧窒素ガスの採取量を増やしつつ、原料空気圧力の上昇を抑えて、装置全体の消費動力を低減することができるようになる。   In the air separation device configured in this way, compared with the case where a conventional process is used, the amount of medium-pressure nitrogen gas collected is increased and the increase in the raw material air pressure is suppressed to reduce the power consumption of the entire device. Will be able to.

次に、図5に示す従来プロセス、図6に示す参考プロセスと比較して、図1に示した第1実施形態における作用効果を説明する。
第1実施形態の構成要素と実質的に同一とみなせる従来プロセスの構成要素には100を加算した数字からなる符号を、また参考プロセスの構成要素には200を加算した数字からなる符号をそれぞれ付してある。
Next, the effects of the first embodiment shown in FIG. 1 will be described in comparison with the conventional process shown in FIG. 5 and the reference process shown in FIG.
The component of the conventional process that can be regarded as substantially the same as the component of the first embodiment is given a symbol consisting of a number added with 100, and the component of the reference process is assigned a symbol consisting of a number added with 200. It is.

図5に示す従来プロセスの空気分離装置121は、先に述べたように、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと酸素富化液体に分離する高圧塔109と、減圧した前記酸素富化液体を低温蒸留して低圧窒素ガスと高純液化酸素に分離する低圧塔108と、前記中圧窒素ガスと前記高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器106と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収経路L124とを主な構成要素としている。   As described above, the air separation device 121 of the conventional process shown in FIG. 5 is a high pressure column 109 that separates compressed, purified, and cooled raw material air into low-pressure nitrogen gas and oxygen-enriched liquid by low-temperature distillation, The low-pressure column 108 for separating the decompressed oxygen-enriched liquid at low temperature and separating it into low-pressure nitrogen gas and high-pure liquefied oxygen; and the intermediate-pressure nitrogen gas and the high-pure liquefied oxygen are indirectly heat-exchanged to obtain medium-pressure nitrogen gas. To obtain medium pressure liquefied nitrogen and at the same time, main condenser 106 to obtain high pure oxygen gas by evaporating gas of high pure liquefied oxygen, and a part of the high pure oxygen gas as product oxygen gas after heat recovery The product collection path L124 to be collected is a main component.

図5に示す従来プロセスでは、中圧窒素ガスを採取する場合、高圧塔109塔頂部から導出した中圧窒素ガスの一部を熱回収後に製品中圧窒素ガスMGNとして採取することができる。
さらに高い圧力の窒素ガスを製造する場合、製品中圧窒素ガスMGNを窒素圧縮機で昇圧したり、窒素が不要な場合においても、製品中圧窒素ガスMGNを膨張タービンで膨張させて動力を回収したりすることにより装置全体の消費動力を低減することができる。
In the conventional process shown in FIG. 5, when medium pressure nitrogen gas is collected, a part of medium pressure nitrogen gas derived from the top of the high pressure column 109 can be collected as product medium pressure nitrogen gas MGN after heat recovery.
When producing higher-pressure nitrogen gas, the product intermediate pressure nitrogen gas MGN is boosted with a nitrogen compressor, or even when nitrogen is not required, the product intermediate pressure nitrogen gas MGN is expanded with an expansion turbine to recover power. By doing so, the power consumption of the entire apparatus can be reduced.

しかしながら、製品中圧窒素ガスの採取量を増やすにつれて、主凝縮器106に導入される中圧窒素ガスが減少し、主凝縮器106の交換熱量が減少し、低圧塔108塔底部で蒸発ガス化する高純酸素ガス量が減少する。
低圧塔108回収部の上昇ガスは、低圧塔108回収部の蒸留に寄与しており、低圧塔108塔底部の酸素濃度、低圧塔108中部に導入される液体の酸素濃度、圧力等により、低圧塔108回収部に必要な上昇ガス量が決まる。
したがって、低圧塔108塔底部で蒸発ガス化する高純酸素ガス量が減少すると、低圧塔108塔底部の酸素濃度を維持するために、製品酸素ガスを減量して低圧塔108回収部の上昇ガス量を維持する必要があり、酸素回収率が低下する。
この制約により、従来プロセスにおける中圧窒素ガスの原料空気量に対する採取率は5〜10%程度が最適となる。
However, as the amount of collected intermediate-pressure nitrogen gas is increased, the intermediate-pressure nitrogen gas introduced into the main condenser 106 decreases, the amount of exchange heat of the main condenser 106 decreases, and evaporative gasification occurs at the bottom of the low-pressure column 108. The amount of high pure oxygen gas to be reduced is reduced.
The rising gas in the recovery unit of the low-pressure column 108 contributes to distillation in the recovery unit of the low-pressure column 108, and the low-pressure column 108 has a low pressure due to the oxygen concentration at the bottom of the low-pressure column 108, the oxygen concentration of the liquid introduced into the middle of the low-pressure column 108, the pressure, and the like. The amount of rising gas required for the tower 108 recovery section is determined.
Therefore, when the amount of high pure oxygen gas that evaporates at the bottom of the low pressure column 108 decreases, the product oxygen gas is reduced and the rising gas in the recovery unit of the low pressure column 108 is maintained in order to maintain the oxygen concentration at the bottom of the low pressure column 108. The amount must be maintained and the oxygen recovery rate is reduced.
Due to this restriction, the extraction rate of medium pressure nitrogen gas in the conventional process with respect to the amount of raw material air is optimally about 5 to 10%.

ところで、低圧塔回収部に必要な上昇ガス量は、低圧塔中部に導入する液体の酸素濃度を高くすることにより小さくすることができるため、酸素回収率を維持しながら、製品中圧窒素ガスの採取量を増やしたい場合、低圧塔中部に導入する液体の酸素濃度を高くすればよい。これを実現するためのプロセスが図6に示したものである。   By the way, the amount of ascending gas necessary for the low pressure column recovery section can be reduced by increasing the oxygen concentration of the liquid introduced into the middle section of the low pressure column. Therefore, while maintaining the oxygen recovery rate, In order to increase the amount to be collected, the oxygen concentration of the liquid introduced into the middle part of the low-pressure column may be increased. The process for realizing this is shown in FIG.

図6に示す参考プロセスの空気分離装置221は、先に述べたように、圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと酸素富化液体に分離する高圧塔209と、減圧した前記酸素富化液体を低温蒸留して低圧窒素ガスと低純液化酸素に分離する第1低圧塔281と、加圧した前記低純液化酸素を低温蒸留して低純窒素ガスと高純液化酸素に分離する第2低圧塔282と、前記中圧窒素ガスと前記高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器206と、前記低純窒素ガスと前記低純液化酸素とを間接熱交換させて低純窒素ガスを凝縮液化して低純液化窒素を得ると同時に低純液化酸素を蒸発ガス化して低純酸素ガスを得る中間凝縮器216と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスGOとして採取する製品回収経路L224と、前記中圧酸素ガスの一部を熱回収後に製品中圧窒素ガスMGNとして採取する製品回収経路L207とを主な構成要素としている。   As described above, the air separation device 221 of the reference process shown in FIG. 6 is a high-pressure column 209 that separates compressed, purified, and cooled raw material air into low pressure nitrogen gas and oxygen-enriched liquid by low-temperature distillation. A first low-pressure column 281 that separates the decompressed oxygen-enriched liquid at low temperature to separate it into low-pressure nitrogen gas and low-pure liquefied oxygen; and low-pressure nitrogen gas and high-pure water that are low-pressure distilled from the pressurized low-pure liquid oxygen. The second low-pressure column 282 that separates into liquefied oxygen and the intermediate-pressure nitrogen gas and the high-pure liquefied oxygen are indirectly heat-exchanged to condense and liquefy the medium-pressure nitrogen gas to obtain medium-pressure liquefied nitrogen and at the same time high-pure liquefaction. The main condenser 206 for evaporating oxygen to obtain high pure oxygen gas, and the low pure nitrogen gas and the low pure liquefied oxygen are indirectly heat exchanged to condense and liquefy the low pure nitrogen gas to produce low pure liquefied nitrogen. At the same time, low pure oxygen gas is obtained by evaporating low pure liquid oxygen. Intermediate condenser 216, product recovery path L224 for collecting a part of the high purity oxygen gas as product oxygen gas GO after heat recovery, and a part of the intermediate pressure oxygen gas as product intermediate pressure nitrogen gas MGN after heat recovery The product collection path L207 to be collected is a main component.

図5の従来プロセスでは低圧塔108に導入する酸素富化液体の酸素濃度が40%程度であるが、図6の参考プロセスでは、酸素富化液体を第1低圧塔281で予め低圧窒素ガスと酸素濃度90%以上の低純液化酸素に蒸留分離し、この低純液化酸素を第2低圧塔282中部に導入するため、第2低圧塔282回収部に必要な上昇ガス量を少なくすることができ、したがって酸素回収率を維持したままで製品中圧窒素ガスMGNの採取量を増やすことができる。   In the conventional process of FIG. 5, the oxygen concentration of the oxygen-enriched liquid introduced into the low-pressure column 108 is about 40%. However, in the reference process of FIG. Distillation and separation into low-pure liquefied oxygen having an oxygen concentration of 90% or more and introducing this low-pure liquefied oxygen into the middle part of the second low-pressure column 282 may reduce the amount of ascending gas required for the second low-pressure column 282 recovery unit. Therefore, the amount of collected medium-pressure nitrogen gas MGN can be increased while maintaining the oxygen recovery rate.

しかし、図6の参考プロセスにおいては、中間凝縮器216において、第1低圧塔281塔底部の低純液化酸素を第2低圧塔282塔頂部の低純窒素ガスで蒸発ガス化させなければならないプロセス上の制約により、例えば第1低圧塔281の運転圧力を0.13MPaAとした場合に第2低圧塔282の運転圧力を0.47MPaA程度まで上げる必要がある。
同様に主凝縮器206において、第2低圧塔282塔底部の高純液化酸素を高圧塔209塔頂部の中圧窒素ガスで蒸発ガス化させるために高圧塔209の運転圧力を1.43MPaA程度まで上げる必要があるため、原料空気圧力は1.47MPaA程度となり、空気圧縮機201の消費動力が大幅に上昇する問題がある。
However, in the reference process of FIG. 6, in the intermediate condenser 216, the low pure liquefied oxygen at the bottom of the first low pressure column 281 must be evaporated and gasified with the low pure nitrogen gas at the top of the second low pressure column 282. Due to the above restrictions, for example, when the operating pressure of the first low pressure column 281 is 0.13 MPaA, the operating pressure of the second low pressure column 282 needs to be increased to about 0.47 MPaA.
Similarly, in the main condenser 206, the operating pressure of the high pressure column 209 is reduced to about 1.43 MPaA in order to evaporate and gasify the highly pure liquefied oxygen at the bottom of the second low pressure column 282 with the medium pressure nitrogen gas at the top of the high pressure column 209. Since it is necessary to raise, the raw material air pressure becomes about 1.47 MPaA, and there is a problem that the power consumption of the air compressor 201 is significantly increased.

これに対して、本発明の第1実施形態では、第2低圧塔82回収部で必要な上昇ガス量を少なくして製品中圧窒素ガスMGNの採取量を増加させる参考プロセスと同様の工夫をした場合においても、熱交換型蒸留器5を用いて、効率的に第1低圧塔と第2低圧塔を熱統合することにより、第2低圧塔82の運転圧力上昇を抑えることができる。   On the other hand, in the first embodiment of the present invention, a device similar to the reference process for increasing the amount of collected intermediate-pressure nitrogen gas MGN by reducing the amount of ascending gas required in the second low-pressure column recovery unit is used. Even in this case, it is possible to suppress an increase in the operating pressure of the second low-pressure column 82 by efficiently heat-integrating the first low-pressure column and the second low-pressure column using the heat exchange-type distiller 5.

図6の参考プロセスでは、中間凝縮器216において低純液化酸素と低純窒素ガスとを熱交換させ、低純液化酸素を蒸発ガス化させると同時に低純窒素ガスを凝縮液化させるのに対して、本発明のプロセスでは、熱交換型蒸留器5において、蒸発蒸留通路52と凝縮蒸留通路51とを熱交換させ、蒸発蒸留通路52を下降する液体を蒸発ガス化させると同時に凝縮蒸留通路51を上昇するガスを凝縮液化させている。熱交換型蒸留器5では、熱交換と蒸留が同時に行われるため、各通路では蒸留により上部に窒素成分が濃縮し、下部に酸素成分が濃縮する。
したがって、熱交換型蒸留器5の上部では窒素富化流体どうしの熱交換となり、下部では酸素富化流体どうしの熱交換となるため、互いの通路を近い圧力で運転することが可能になる。したがって、第2低圧塔82の圧力上昇を抑え、原料空気圧力を図1の従来プロセスと同程度とすることができるため、効率的に製品中圧窒素ガスMGNを採取し、消費動力を低減することができる。
In the reference process of FIG. 6, while the low pure liquefied oxygen and the low pure nitrogen gas are subjected to heat exchange in the intermediate condenser 216, the low pure liquefied oxygen is evaporated and simultaneously the low pure nitrogen gas is condensed and liquefied. In the process of the present invention, in the heat exchange-type distiller 5, the evaporative distillation passage 52 and the condensation distillation passage 51 are subjected to heat exchange, and the liquid descending the evaporative distillation passage 52 is evaporated and gasified, and at the same time, the condensation distillation passage 51 is The rising gas is condensed and liquefied. In the heat exchange-type distiller 5, heat exchange and distillation are performed at the same time. Therefore, in each passage, the nitrogen component is concentrated in the upper part and the oxygen component is concentrated in the lower part by distillation.
Therefore, heat exchange between the nitrogen-enriched fluids is performed at the upper part of the heat exchange-type distiller 5, and heat exchange between the oxygen-enriched fluids is performed at the lower part, so that the passages can be operated at close pressures. Therefore, since the pressure rise in the second low-pressure column 82 can be suppressed and the raw material air pressure can be made to be approximately the same as that in the conventional process of FIG. 1, the product intermediate-pressure nitrogen gas MGN is efficiently collected to reduce the power consumption. be able to.

また、製品中圧窒素ガスMGNを採取する替わりに、膨張タービンへ導入する中圧窒素ガスを増量し、寒冷発生量を増やして液化製品を採取することもできる。製品液化酸素LOは第2低圧塔82塔底部から経路L25へ導出して採取され、製品液化窒素LNは主凝縮器6で凝縮液化し、第1低圧塔に導入される中圧液化窒素の一部を経路L26に導出して採取される。   Further, instead of collecting the product intermediate pressure nitrogen gas MGN, it is possible to increase the amount of medium pressure nitrogen gas introduced into the expansion turbine and increase the amount of cold generation to collect the liquefied product. The product liquefied oxygen LO is extracted from the bottom of the second low-pressure column 82 to the path L25 and collected, and the product liquefied nitrogen LN is condensed and liquefied by the main condenser 6 and is supplied to the first low-pressure column. The part is derived to the path L26 and collected.

図2に示す第2実施形態のプロセスの場合、経路L31に分岐してブロワ31、膨張タービン30に供給される原料空気の割合を増やすことにより、発生寒冷量を増やして製品液化酸素LOまたは製品液化窒素LNを採取することが可能になる。膨張タービン30の原料空気量を増やして高圧塔9に供給される原料空気量を減らした場合、主凝縮器6に導入される中圧窒素ガスが減少し、主凝縮器6の交換熱量が減少するため、第2低圧塔82回収部の上昇ガス量が減少する傾向にあるが、製品中圧窒素ガスMGNを減量することにより主凝縮器6の交換熱量を一定にすることで膨張タービン30での寒冷発生量増加による液化製品量の増量に対応可能となる。   In the case of the process of the second embodiment shown in FIG. 2, by increasing the ratio of the raw air supplied to the blower 31 and the expansion turbine 30 by branching to the path L31, the generated cold amount is increased and the product liquefied oxygen LO or the product is increased. Liquefied nitrogen LN can be collected. When the raw material air amount of the expansion turbine 30 is increased and the raw material air amount supplied to the high pressure tower 9 is decreased, the medium-pressure nitrogen gas introduced into the main condenser 6 is reduced and the exchange heat amount of the main condenser 6 is reduced. Therefore, the amount of rising gas in the second low-pressure column 82 recovery section tends to decrease, but by reducing the product intermediate-pressure nitrogen gas MGN, the exchange heat amount of the main condenser 6 is made constant so that the expansion turbine 30 It is possible to cope with an increase in the amount of liquefied product due to an increase in the amount of cold generated.

図3に示す第3実施形態のプロセスの場合、装置全体の運転圧力を上げて、膨張タービン40に供給される廃ガスの圧力を高くすることにより、発生寒冷量を増やして製品液化酸素LOまたは製品液化窒素LNを採取することが可能になる。装置の運転圧力を上げると精留塔内の蒸留効率が低下し、第2低圧塔82回収部において必要な上昇ガス量が増加する傾向にあるが、製品中圧窒素ガスMGNを減量することにより主凝縮器6の交換熱量を大きくすることで運転圧力の上昇に対応可能となる。   In the case of the process of the third embodiment shown in FIG. 3, by increasing the operating pressure of the entire apparatus and increasing the pressure of the waste gas supplied to the expansion turbine 40, the amount of generated cold is increased and the product liquefied oxygen LO or Product liquefied nitrogen LN can be collected. When the operating pressure of the apparatus is increased, the distillation efficiency in the rectification column decreases, and the amount of ascending gas required in the second low pressure column 82 recovery section tends to increase, but by reducing the product intermediate pressure nitrogen gas MGN, Increasing the amount of heat exchanged in the main condenser 6 can cope with an increase in operating pressure.

次に本発明の第4実施形態を図4に示す。この空気分離装置24は、第1実施形態の空気分離装置21に加えて原料空気の一部を圧縮する低圧空気圧縮機91と、低圧空気予冷器92と、低圧精製器93とが構成機器として追加されている。
この空気分離装置24を用いた実施形態を前述の第1の実施形態との違いを中心に説明する。
装置に必要な原料空気の一部が、空気圧縮機1で圧縮され、第1の実施形態と同様に精製された後に主熱交換器4を経て高圧塔9に供給される。一方、装置に必要な原料空気の残部は、低圧空気圧縮機91で圧縮され、保冷外槽15に導入され、主熱交換器4で冷却された後に第1低圧塔81に供給される。
保冷外槽15の内部では、第1実施形態と同様に高圧塔9、第1低圧塔81、第2低圧塔82、熱交換型蒸留器5、主凝縮器6、過冷器7などにより、蒸留、熱交換が行われ、製品酸素ガスGO、製品低圧窒素ガスGN、製品中圧窒素ガスMGN、製品液化酸素LO、製品液化窒素LNが採取される。
Next, a fourth embodiment of the present invention is shown in FIG. The air separation device 24 includes a low-pressure air compressor 91 that compresses a part of the raw material air, a low-pressure air precooler 92, and a low-pressure purifier 93 in addition to the air separation device 21 of the first embodiment. Have been added.
An embodiment using the air separation device 24 will be described focusing on the difference from the first embodiment.
Part of the raw material air necessary for the apparatus is compressed by the air compressor 1, purified in the same manner as in the first embodiment, and then supplied to the high-pressure column 9 via the main heat exchanger 4. On the other hand, the remaining raw material air necessary for the apparatus is compressed by the low-pressure air compressor 91, introduced into the cold insulation outer tank 15, cooled by the main heat exchanger 4, and then supplied to the first low-pressure column 81.
Inside the cold insulation outer tank 15, as in the first embodiment, the high pressure column 9, the first low pressure column 81, the second low pressure column 82, the heat exchange distillation unit 5, the main condenser 6, the supercooler 7, etc. Distillation and heat exchange are performed, and product oxygen gas GO, product low-pressure nitrogen gas GN, product medium-pressure nitrogen gas MGN, product liquefied oxygen LO, and product liquefied nitrogen LN are collected.

このように構成した空気分離装置において、製品中圧窒素ガスMGNを減量することにより、前述の説明の通り、従来プロセスを用いた場合に比べて、高圧塔9に供給される原料空気を減量することが可能になり、したがって装置に必要な原料空気の一部を低圧で供給することが可能となるため、装置全体の消費動力を低減することができるようになる。   In the air separation apparatus configured as described above, by reducing the product intermediate pressure nitrogen gas MGN, as described above, the amount of raw material air supplied to the high pressure column 9 is reduced as compared with the case where the conventional process is used. Therefore, part of the raw material air necessary for the apparatus can be supplied at a low pressure, so that the power consumption of the entire apparatus can be reduced.

(実施例1)
図1に示した第1実施形態の空気分離装置21を用いて、流量1000の原料空気から酸素濃度99.6%以上の製品酸素ガスと、許容酸素濃度1ppmの製品中圧窒素ガスとを採取する場合の実施例を示す。
圧縮、精製された流量1000、0.55MPaA、40℃の原料空気は、保冷外槽15に導入され、主熱交換器4において、露点付近まで冷却され、0.53MPaAで運転される高圧塔9に導入される。高圧塔9に導入された原料空気は、酸素濃度1ppmの中圧窒素ガスと酸素濃度39.7%の第1酸素富化液体とに分離され、高圧塔9の塔頂部から導出された中圧窒素ガスのうち流量280は、主熱交換器4で熱回収された後に保冷外槽15から導出される。
Example 1
Using the air separation device 21 of the first embodiment shown in FIG. 1, product oxygen gas having an oxygen concentration of 99.6% or more and product intermediate-pressure nitrogen gas having an allowable oxygen concentration of 1 ppm are sampled from the raw air having a flow rate of 1000. An example of the case will be described.
The compressed and refined raw material air having a flow rate of 1000, 0.55 MPaA and 40 ° C. is introduced into the cold insulation outer tank 15, cooled to the vicinity of the dew point in the main heat exchanger 4, and operated at 0.53 MPaA. To be introduced. The raw air introduced into the high-pressure column 9 is separated into medium-pressure nitrogen gas having an oxygen concentration of 1 ppm and a first oxygen-enriched liquid having an oxygen concentration of 39.7%, and the medium-pressure led out from the top of the high-pressure column 9 The flow rate 280 of the nitrogen gas is derived from the cold insulation outer tank 15 after being recovered by the main heat exchanger 4.

この中圧窒素ガスのうち流量200が製品中圧窒素ガスとして採取され、のこり流量80が経路L2に分岐され、ブロワ11で昇圧され、保冷外槽15に導入され、主熱交換器4において冷却され、膨張タービン10に導入される。膨張タービン10に導入された中圧窒素ガスは、膨張して装置の運転に必要な寒冷を発生させた後に経路L3を経て後述する第1低圧窒素ガスと合流し、主熱交換器4で熱回収され、製品低圧窒素ガスGNとして採取される。
高圧塔9の塔頂部から導出された中圧窒素ガスの残部は、経路L8を経て主凝縮器6に導入され、第2低圧塔82塔底部の高純液化酸素との間接熱交換により、高純液化酸素を蒸発させ、自らは全量凝縮して中圧液化窒素となる。
Of this medium pressure nitrogen gas, a flow rate 200 is taken as the product medium pressure nitrogen gas, and the remaining flow rate 80 is branched into the path L 2, boosted by the blower 11, introduced into the cold insulation outer tub 15, and cooled by the main heat exchanger 4. And introduced into the expansion turbine 10. The medium-pressure nitrogen gas introduced into the expansion turbine 10 expands to generate cold necessary for operation of the apparatus, and then merges with a first low-pressure nitrogen gas, which will be described later, via a path L3. It is recovered and collected as product low-pressure nitrogen gas GN.
The remainder of the medium-pressure nitrogen gas derived from the top of the high-pressure column 9 is introduced into the main condenser 6 via the path L8, and the indirect heat exchange with the high-purity liquefied oxygen at the bottom of the second low-pressure column 82 is high. Pure liquefied oxygen is evaporated, and the entire amount is condensed to medium pressure liquefied nitrogen.

凝縮した中圧液化窒素の一部は高圧塔9の還流液として高圧塔9の塔頂部に導入される。中圧液化窒素の残部は、過冷器7を経て冷却され、減圧弁V1で減圧された後に0.13MPaAで運転される第1低圧塔81の塔頂部に導入される。また、高圧塔9の塔底部より導出された第1酸素富化液体は、過冷器7を経て冷却され、減圧弁V2で減圧された後に第1低圧塔81の下部に導入される。
第1低圧塔81および熱交換型蒸留器5の蒸発蒸留通路52では、第1酸素富化液体が蒸留され、酸素濃度1.7%の第1低圧窒素ガスと、酸素濃度89.8%の低純液化酸素とに分離される。第1低圧塔81塔頂部から導出された第1低圧窒素ガスは、熱回収された後に保冷外槽15から導出され、製品低圧窒素ガスとして採取される。
A part of the condensed medium pressure liquefied nitrogen is introduced into the top of the high pressure column 9 as a reflux liquid of the high pressure column 9. The remainder of the medium-pressure liquefied nitrogen is cooled through the supercooler 7, and after being reduced in pressure by the pressure reducing valve V1, is introduced into the top of the first low-pressure column 81 operated at 0.13 MPaA. In addition, the first oxygen-enriched liquid led out from the bottom of the high-pressure column 9 is cooled through the supercooler 7, depressurized by the pressure reducing valve V <b> 2, and then introduced into the lower portion of the first low-pressure column 81.
In the first low-pressure column 81 and the evaporative distillation passage 52 of the heat exchange-type distiller 5, the first oxygen-enriched liquid is distilled, and the first low-pressure nitrogen gas having an oxygen concentration of 1.7% and the oxygen concentration of 89.8% are obtained. Separated into low pure liquefied oxygen. The first low-pressure nitrogen gas derived from the top of the first low-pressure column 81 is recovered from the heat and then derived from the cold insulation outer tank 15 and collected as product low-pressure nitrogen gas.

また、蒸発蒸留通路52の下部から導出された低純液化酸素は0.13MPaAで運転される第2低圧塔82の中部に導入される。第2低圧塔82および熱交換型蒸留器5の凝縮蒸留通路51では、低純液化酸素が蒸留され、酸素濃度6.1%の第2低圧窒素ガスと、酸素濃度99.6%の高純液化窒素とに分離される。
第2低圧塔82の塔底部の主凝縮器6で蒸発ガス化した高純酸素ガスのうち流量200は、第2低圧塔82の塔底部から導出され、主熱交換器4で熱回収された後に保冷外槽15から導出され、製品酸素ガスGOとして採取される。
Further, the low purity liquefied oxygen led out from the lower portion of the evaporative distillation passage 52 is introduced into the middle of the second low pressure column 82 operated at 0.13 MPaA. In the second low-pressure column 82 and the condensation distillation passage 51 of the heat exchange-type distiller 5, low-pure liquefied oxygen is distilled, and second low-pressure nitrogen gas having an oxygen concentration of 6.1% and high-pure having an oxygen concentration of 99.6%. Separated into liquefied nitrogen.
Of the high-purity oxygen gas evaporated and gasified by the main condenser 6 at the bottom of the second low-pressure column 82, the flow rate 200 is derived from the bottom of the second low-pressure column 82 and is recovered by the main heat exchanger 4. Later, it is led out from the cold insulation outer tank 15 and collected as product oxygen gas GO.

プロセスの性能を評価するため、実施例1について従来プロセスの装置121、参考プロセスの装置221との消費動力の比較を行った。
その結果を表1に示す。
製品酸素ガスは流量200、圧力0.50MPaAとし、製品窒素ガスは流量200、圧力1.50MPaAとした。保冷外槽15から採取された酸素ガスおよび窒素ガスをそれぞれ酸素圧縮機および窒素圧縮機で圧縮して製造することとし、空気圧縮機の動力に加えて、これらの圧縮機の動力も含めて比較した。動力は図1の従来プロセスの合計値を100としたときの値である。
In order to evaluate the performance of the process, the power consumption of Example 1 was compared with the apparatus 121 of the conventional process and the apparatus 221 of the reference process.
The results are shown in Table 1.
The product oxygen gas had a flow rate of 200 and a pressure of 0.50 MPaA, and the product nitrogen gas had a flow rate of 200 and a pressure of 1.50 MPaA. Oxygen gas and nitrogen gas collected from the cold insulation outer tank 15 are compressed by an oxygen compressor and a nitrogen compressor, respectively. In addition to the power of the air compressor, the power of these compressors is also compared. did. The power is a value when the total value of the conventional process in FIG.

Figure 0005005708
Figure 0005005708

図5の従来プロセスでは製品中圧窒素ガスMGNの採取量が60であるため、これを中圧窒素圧縮機で1.50MPaAまで圧縮して供給し、製品窒素ガスのうち残り140は製品低圧窒素ガスGNを低圧窒素圧縮機で1.50MPaAまで圧縮して供給する。
同様に図6の参考プロセスでは製品中圧窒素ガスMGNの採取量が80であるため、これを中圧窒素圧縮機で1.50MPaAまで圧縮して供給し、製品窒素ガスのうち残り120は製品低圧窒素ガスGNを低圧窒素圧縮機で1.50MPaAまで圧縮して供給する。
本発明のプロセスでは、製品中圧窒素ガスMGNの採取量が200であるため、これを中圧窒素圧縮機で1.50MPaAまで圧縮して供給し、低圧窒素圧縮機による低圧窒素ガスの圧縮は不要となる。
In the conventional process of FIG. 5, since the amount of product intermediate pressure nitrogen gas MGN collected is 60, this is compressed and supplied to 1.50 MPaA with a medium pressure nitrogen compressor, and the remaining 140 of the product nitrogen gas is product low pressure nitrogen. The gas GN is supplied after being compressed to 1.50 MPaA with a low-pressure nitrogen compressor.
Similarly, in the reference process of FIG. 6, since the amount of product medium pressure nitrogen gas MGN collected is 80, this is compressed and supplied to 1.50 MPaA with a medium pressure nitrogen compressor, and the remaining 120 of the product nitrogen gas is the product. The low-pressure nitrogen gas GN is supplied after being compressed to 1.50 MPaA with a low-pressure nitrogen compressor.
In the process of the present invention, since the amount of product intermediate pressure nitrogen gas MGN collected is 200, this is compressed and supplied to 1.50 MPaA with an intermediate pressure nitrogen compressor, and compression of the low pressure nitrogen gas with the low pressure nitrogen compressor is performed. It becomes unnecessary.

図6の参考プロセスは、図5の従来プロセスに比べて中圧窒素ガスMGNの採取量が増えており、窒素圧縮機の消費動力は低減されているが、空気圧縮機の消費動力が大幅に増加しているため全体としては20%以上消費動力が大きくなっている。
これに対して、本発明のプロセスは、中圧窒素ガスMGNの採取量が増えて窒素圧縮機の消費動力が低減され、なお且つ熱交換型蒸留器5を用いることにより、原料空気の圧力が従来プロセスと同程度に抑えられているため、全体の消費動力は図5の従来プロセスと比較して8%程度低減されている。
In the reference process of FIG. 6, the amount of medium-pressure nitrogen gas MGN collected is increased compared to the conventional process of FIG. 5, and the consumption power of the nitrogen compressor is reduced, but the consumption power of the air compressor is greatly increased. Since it is increasing, overall power consumption is 20% or more.
In contrast, in the process of the present invention, the amount of medium-pressure nitrogen gas MGN collected is increased, the power consumption of the nitrogen compressor is reduced, and the heat exchange type distiller 5 is used to reduce the pressure of the raw material air. Since it is suppressed to the same level as the conventional process, the overall power consumption is reduced by about 8% compared to the conventional process of FIG.

(実施例2)
次に、図1に示した第1実施形態21の空気分離装置を用いて、流量1000の原料空気から酸素濃度99.6%以上の製品酸素ガスに加えて製品液化酸素を最大量採取する場合の実施例を示す。
以下に、実施例1との主な違いを示す。
高圧塔9の塔頂部から導出、分岐され、主熱交換器4で熱回収された流量280の中圧窒素ガスは、全てブロワ11、膨張タービン10に導入され、装置の運転に必要な寒冷を発生させる。第2低圧塔82塔底部の高純液化酸素の一部は経路L25に導出され、製品液化酸素LOとして採取される。
(Example 2)
Next, in the case where the maximum amount of product liquefied oxygen is collected in addition to the product oxygen gas having an oxygen concentration of 99.6% or more from the raw air having a flow rate of 1000 using the air separation device of the first embodiment 21 shown in FIG. Examples of
The main differences from Example 1 are shown below.
The medium-pressure nitrogen gas flow 280, which is led out from the top of the high-pressure tower 9 and branched off and recovered by the main heat exchanger 4, is introduced into the blower 11 and the expansion turbine 10 for the cooling necessary for the operation of the apparatus. generate. Part of the highly pure liquefied oxygen at the bottom of the second low-pressure column 82 is led to the path L25 and collected as product liquefied oxygen LO.

プロセスの性能を評価するため、実施例2について従来プロセスの装置121、参考プロセスの装置221との消費動力および製品液化酸素採取量の比較を行った。
その結果を表2に示す。
製品酸素ガスと製品液化酸素の合計流量は200とし、製品酸素ガスの圧力は0.50MPaAとした。保冷外槽から採取された酸素ガスを酸素圧縮機で圧縮して製品酸素ガスを製造することとし、空気圧縮機の動力に加えて、これらの圧縮機の動力も含めて比較した。動力は図1の従来プロセスの合計値を100としたときの値である。
In order to evaluate the performance of the process, the power consumption and the amount of product liquefied oxygen collected in Example 2 were compared with the apparatus 121 of the conventional process and the apparatus 221 of the reference process.
The results are shown in Table 2.
The total flow rate of product oxygen gas and product liquefied oxygen was 200, and the pressure of product oxygen gas was 0.50 MPaA. Product oxygen gas was produced by compressing oxygen gas collected from the cold outer tank with an oxygen compressor, and the power of these compressors was compared with the power of the air compressor. The power is a value when the total value of the conventional process in FIG.

Figure 0005005708
Figure 0005005708

図5の従来プロセスでは、ブロワ111、膨張タービン110に供給可能な中圧窒素ガス量が140であるため、製品液化酸素LOの採取量が7であるのに対して、図6の参考プロセスでは、ブロワ211、膨張タービン210に分岐される原料空気量が250まで増量できるため、製品液化酸素の採取量が24となり大幅に増えている。しかし、図5の従来プロセスに比べて原料空気圧力が高く、装置全体の消費動力は35%程度上昇している。   In the conventional process of FIG. 5, the amount of medium-pressure nitrogen gas that can be supplied to the blower 111 and the expansion turbine 110 is 140, so the amount of product liquefied oxygen LO collected is 7, whereas in the reference process of FIG. Since the amount of raw material air branched into the blower 211 and the expansion turbine 210 can be increased to 250, the amount of product liquefied oxygen collected is 24, which is greatly increased. However, the raw material air pressure is higher than in the conventional process of FIG. 5, and the power consumption of the entire apparatus is increased by about 35%.

一方、本発明のプロセスは、ブロワ11、膨張タービン10に分岐される原料空気量が280まで増量できるため、図5の従来プロセスに比べて製品液化酸素LOの採取量が大幅に増えており、なお且つ熱交換型蒸留器を用いることにより、原料空気の圧力が従来プロセスと同程度に抑えられているため、全体の消費動力は図5の従来プロセスと同程度になっている。
このように、製品中圧窒素ガスMGNが不要な場合においても、本発明のプロセスを用いることにより、消費動力を従来プロセスと同程度に抑えながら製品液化酸素LOの採取量を増やすことが可能となる。また、製品液化窒素LNを採取する場合においても、同様に本発明のプロセスを用いることにより従来プロセスと同程度の消費動力で製品液化窒素LNの採取量を増やすことが可能となる。
On the other hand, in the process of the present invention, the amount of raw material air branched into the blower 11 and the expansion turbine 10 can be increased up to 280, so the amount of product liquefied oxygen LO collected is significantly increased compared to the conventional process of FIG. In addition, since the pressure of the raw material air is suppressed to the same level as in the conventional process by using the heat exchange type distiller, the overall power consumption is the same as that in the conventional process of FIG.
As described above, even when the product intermediate pressure nitrogen gas MGN is unnecessary, it is possible to increase the amount of collected product liquefied oxygen LO while suppressing the power consumption to the same level as the conventional process by using the process of the present invention. Become. Further, when collecting the product liquefied nitrogen LN, similarly, by using the process of the present invention, it is possible to increase the amount of collected product liquefied nitrogen LN with the same power consumption as the conventional process.

(実施例3)
次に図4に示す第4形態例の空気分離装置24を用いて、流量1000の原料空気から酸素濃度99.6%以上の製品酸素ガスを採取する場合の実施例を示す。
以下に、実施例1との主な違いを示す。
装置に必要な原料空気のうち流量800が空気圧縮機1で0.57MPaAに圧縮され、精製され、主熱交換器4で冷却され、高圧塔9に供給される。一方、装置に必要な原料空気のうち200が低圧空気圧縮機91で、0.16MPaAに圧縮され、精製、冷却された後に第1低圧塔81に供給される。高圧塔9塔頂部から導出された中圧窒素ガスのうち流量80が分岐され、主熱交換器4で熱回収され、ブロワ11、主熱交換器4を経て、膨張タービン10に導入され、膨張して装置の運転に必要な寒冷を発生させる。
(Example 3)
Next, an embodiment in which product oxygen gas having an oxygen concentration of 99.6% or more is collected from raw air having a flow rate of 1000 using the air separation device 24 of the fourth embodiment shown in FIG.
The main differences from Example 1 are shown below.
Of the raw material air necessary for the apparatus, the flow rate 800 is compressed to 0.57 MPaA by the air compressor 1, purified, cooled by the main heat exchanger 4, and supplied to the high-pressure column 9. On the other hand, 200 of the raw material air necessary for the apparatus is compressed to 0.16 MPaA by the low-pressure air compressor 91, purified and cooled, and then supplied to the first low-pressure column 81. A flow 80 of the medium-pressure nitrogen gas led out from the top of the high-pressure tower 9 is branched, recovered by the main heat exchanger 4, and introduced into the expansion turbine 10 via the blower 11 and the main heat exchanger 4, and expanded. Thus, the cold necessary to operate the device is generated.

プロセスの性能を評価するため、実施例3について、図7に示す他の従来プロセスの装置122、図8に示す他の参考プロセスの装置222との消費動力および製品液化酸素採取量の比較を行った。その結果を表3に示す。   In order to evaluate the performance of the process, the consumption power and the amount of product liquefied oxygen collected in Example 3 were compared with the apparatus 122 of another conventional process shown in FIG. 7 and the apparatus 222 of another reference process shown in FIG. It was. The results are shown in Table 3.

Figure 0005005708
Figure 0005005708

図7に示す他の従来プロセスの空気分離装置122は、装置に必要な原料空気の一部が低圧空気圧縮機191で圧縮され、精製、冷却された後に低圧塔108に供給される。
図8に示す他の参考プロセスの装置222は、装置に必要な原料空気の一部が低圧空気圧縮機291で圧縮され、精製、冷却された後に第1低圧塔281に供給される。
製品酸素ガスと製品液化酸素の合計流量は200とし、製品酸素ガスの圧力は0.50MPaAとした。保冷外槽から採取された酸素ガスを酸素圧縮機で圧縮して製品酸素ガスを製造することとし、空気圧縮機の動力に加えて、これらの圧縮機の動力も含めて比較した。動力は図7の従来プロセスの合計値を100としたときの値である。
In the air separation device 122 of another conventional process shown in FIG. 7, a part of the raw material air necessary for the device is compressed by the low-pressure air compressor 191, purified and cooled, and then supplied to the low-pressure column 108.
In the apparatus 222 of another reference process shown in FIG. 8, part of the raw material air necessary for the apparatus is compressed by the low-pressure air compressor 291, purified and cooled, and then supplied to the first low-pressure column 281.
The total flow rate of product oxygen gas and product liquefied oxygen was 200, and the pressure of product oxygen gas was 0.50 MPaA. Product oxygen gas was produced by compressing oxygen gas collected from the cold outer tank with an oxygen compressor, and the power of these compressors was compared with the power of the air compressor. The power is a value when the total value of the conventional process in FIG.

図7の従来プロセスでは、原料空気のうち流量60が低圧空気圧縮機191で0.16MPaAまで圧縮され、原料空気のうち流量940が空気圧縮機101で0.56MPaAまで圧縮される。
図8の参考プロセスでは、原料空気のうち流量80が低圧空気圧縮機291で0.16MPaAまで圧縮され、原料空気のうち流量920が空気圧縮機201で1.47MPaAまで圧縮される。
In the conventional process of FIG. 7, the flow rate 60 of the raw material air is compressed to 0.16 MPaA by the low-pressure air compressor 191, and the flow rate 940 of the raw material air is compressed to 0.56 MPaA by the air compressor 101.
In the reference process of FIG. 8, the flow rate 80 of the raw material air is compressed to 0.16 MPaA by the low-pressure air compressor 291, and the flow rate 920 of the raw material air is compressed to 1.47 MPaA by the air compressor 201.

これらに対して、本発明のプロセスでは、原料空気のうち流量200が低圧空気圧縮機91で0.16MPaAまで圧縮され、原料空気のうち流量800が空気圧縮機1で0.57MPaAまで圧縮される。
したがって、表3に示すように製品中圧窒素ガスMGNや製品液化酸素LOや製品液化窒素LNが不要な場合においても、本発明のプロセスを用いることにより、装置全体の消費動力を従来プロセスと比べて8%程度削減することが可能となる。
In contrast, in the process of the present invention, the flow rate 200 of the raw material air is compressed to 0.16 MPaA by the low-pressure air compressor 91, and the flow rate 800 of the raw material air is compressed to 0.57 MPaA by the air compressor 1. .
Therefore, as shown in Table 3, even when the product intermediate pressure nitrogen gas MGN, the product liquefied oxygen LO, and the product liquefied nitrogen LN are not required, the power consumption of the entire apparatus is compared with the conventional process by using the process of the present invention. About 8%.

1・・空気圧縮機、2・・空気予冷器、3・・精製器、4・・主熱交換器、9・・高圧塔、81・・第1低圧塔、5・・熱交換型蒸留器、51・・凝縮蒸留通路、52・・蒸発蒸留通路、82・・第2低圧塔、6・・主凝縮器、10・・膨張タービン、L24・・製品回収経路、L7・・製品回収経路、11・・ブロワ、7・・過冷器  1 .... Air compressor, 2 .... Air precooler, 3 .... Purifier, 4 .... Main heat exchanger, 9 .... High pressure column, 81 .... First low pressure column, 5 .... Heat exchange distiller , 51 .. Condensed distillation passage, 52 .. Evaporative distillation passage, 82 .. Second low pressure column, 6 .. Main condenser, 10 .. Expansion turbine, L24 ... Product recovery path, L7 ... Product recovery path, 11. Blower, 7 ... Supercooler

Claims (8)

原料空気を深冷液化分離して製品酸素を採取する空気分離方法において、
圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと第1酸素富化液体とに分離する第1分離工程と、
前記第1酸素富化液体を減圧後に低温蒸留して第1低圧窒素ガスと第2酸素富化液体とに分離する第2分離工程と、
互いに間接熱交換可能とされた蒸発蒸留通路と凝縮蒸留通路を備えた熱交換型蒸留器の蒸発蒸留通路で前記第2酸素富化液体を凝縮蒸留通路との間接熱交換により加熱して前記第2酸素富化液体の一部を蒸発ガス化しつつ蒸留して第1酸素富化ガスと低純液化酸素とに分離する第3分離工程と、
前記低純液化酸素を低温蒸留して第2酸素富化ガスと高純液化酸素とに分離する第4分離工程と、
前記熱交換型蒸留器の凝縮蒸留通路で前記第2酸素富化ガスを蒸発蒸留通路との間接熱交換により冷却して前記第2酸素冨化ガスの一部を凝縮液化しつつ蒸留して第2低圧窒素ガスと第3酸素富化液体とに分離する第5分離工程と、
前記中圧窒素ガスと前記高純液化酸素とを間接熱交換して中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る間接熱交換工程と、
前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収工程とを含むことを特徴とする空気分離方法。
In the air separation method of collecting product oxygen by cryogenic liquefaction separation of raw material air,
A first separation step of low-temperature distillation of the compressed, purified and cooled raw material air to separate it into medium-pressure nitrogen gas and a first oxygen-enriched liquid;
A second separation step of separating the first oxygen-enriched liquid into a first low-pressure nitrogen gas and a second oxygen-enriched liquid by low-temperature distillation after decompression;
The second oxygen-enriched liquid is heated by indirect heat exchange with the condensing distillation passage in the evaporative distillation passage of a heat exchange type distiller having an evaporative distillation passage and a condensing distillation passage that can exchange heat indirectly with each other. A third separation step of distilling part of the oxygen-enriched liquid while evaporating and separating it into a first oxygen-enriched gas and low-pure liquefied oxygen;
A fourth separation step in which the low-pure liquefied oxygen is distilled at a low temperature to separate it into a second oxygen-enriched gas and high-pure liquefied oxygen;
The second oxygen-enriched gas is cooled by indirect heat exchange with the evaporative distillation passage in the condensation distillation passage of the heat exchange-type distiller, and a part of the second oxygen enriched gas is distilled while being condensed and liquefied. A fifth separation step for separating the low-pressure nitrogen gas and the third oxygen-enriched liquid;
The intermediate pressure nitrogen gas and the high purity liquefied oxygen are indirectly heat-exchanged to condense and liquefy the intermediate pressure nitrogen gas to obtain intermediate pressure liquefied nitrogen, and at the same time evaporate and gasify the high purity liquefied oxygen to obtain high purity oxygen gas. An indirect heat exchange process;
A product recovery step of collecting a part of the high purity oxygen gas as product oxygen gas after heat recovery.
前記第2分離工程の替わりに、圧縮、精製、冷却した原料空気の一部と減圧された前記第1酸素富化液体とを低温蒸留して第1低圧窒素ガスと第2酸素富化液体とに分離する第6分離工程を含むことを特徴とする請求項1記載の空気分離方法。   Instead of the second separation step, the first low-pressure nitrogen gas and the second oxygen-enriched liquid are obtained by low-temperature distillation of a part of the compressed, purified and cooled raw material air and the decompressed first oxygen-enriched liquid. The air separation method according to claim 1, further comprising a sixth separation step of separating the air. 前記原料空気の一部を膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1または請求項2記載の空気分離方法。   The air separation method according to claim 1, further comprising a cold generation step in which a part of the raw material air is introduced into an expansion turbine to be expanded. 前記中圧窒素ガスの一部を熱回収後に膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1または請求項2記載の空気分離方法。   The air separation method according to claim 1, further comprising a cold generation step of introducing a part of the medium-pressure nitrogen gas into an expansion turbine after heat recovery and expanding the gas. 前記第1低圧窒素ガスを熱回収後に膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1または請求項2記載の空気分離方法。   3. The air separation method according to claim 1, further comprising a cold generation step of introducing the first low-pressure nitrogen gas into an expansion turbine after heat recovery and expanding the first low-pressure nitrogen gas. 前記第2低圧窒素ガスを熱回収後に膨張タービンに導入して膨張させる寒冷発生工程を含むことを特徴とする請求項1または請求項2記載の空気分離方法。   3. The air separation method according to claim 1, further comprising a cold generation step of introducing the second low-pressure nitrogen gas into an expansion turbine after heat recovery and expanding the second low-pressure nitrogen gas. 4. 原料空気を深冷液化分離して製品酸素を採取する空気分離装置において、
圧縮、精製、冷却した原料空気を低温蒸留して中圧窒素ガスと第1酸素富化液体とに分離する高圧塔と、前記第1酸素富化液体を減圧後に低温蒸留して第1低圧窒素ガスと第2酸素富化液体とに分離する第1低圧塔と、互いに間接熱交換可能とされた凝縮蒸留通路および蒸発蒸留通路を備え、凝縮蒸留通路が蒸発蒸留通路との間接熱交換により前記第2酸素富化液体の一部を加熱して蒸発ガス化しつつ蒸留して第1酸素富化ガスと低純液化酸素とに分離するものであり、蒸発蒸留通路が凝縮蒸留通路との間接熱交換により後記第2酸素富化ガスの一部を冷却して凝縮液化しつつ蒸留して第2低圧窒素ガスと第3酸素富化液体とに分離するものである熱交換型蒸留器と、前記低純液化酸素を低温蒸留して第2酸素富化ガスと高純液化酸素とに分離する第2低圧塔と、前記中圧窒素ガスと高純液化酸素とを間接熱交換させて中圧窒素ガスを凝縮液化して中圧液化窒素を得ると同時に高純液化酸素を蒸発ガス化して高純酸素ガスを得る主凝縮器と、前記高純酸素ガスの一部を熱回収後に製品酸素ガスとして採取する製品回収経路を備えたことを特徴とする空気分離装置。
In an air separation device that collects product oxygen by cryogenic liquefaction separation of raw material air,
A high-pressure column that separates the compressed, purified, and cooled raw material air into a low-pressure distillation by separating it into medium-pressure nitrogen gas and a first oxygen-enriched liquid; A first low pressure column that separates into a gas and a second oxygen-enriched liquid, and a condensation distillation passage and an evaporative distillation passage that are capable of indirect heat exchange with each other, wherein the condensation distillation passage is indirect heat exchange with the evaporative distillation passage. A part of the second oxygen-enriched liquid is heated and evaporated to be distilled to separate it into the first oxygen-enriched gas and low-pure liquefied oxygen, and the evaporative distillation passage is indirectly heated with the condensation distillation passage. A heat exchange-type distiller which cools a part of the second oxygen-enriched gas described later by exchange and distills while condensing it into a second low-pressure nitrogen gas and a third oxygen-enriched liquid; Low-pure liquefied oxygen is distilled at low temperature and separated into second oxygen-enriched gas and high-pure liquefied oxygen. The intermediate pressure nitrogen gas is condensed and liquefied by indirect heat exchange between the second low pressure column and the intermediate pressure nitrogen gas and the high purity liquefied oxygen to obtain medium pressure liquefied nitrogen, and at the same time, the high purity liquefied oxygen is vaporized and gasified. An air separation apparatus comprising: a main condenser for obtaining high-purity oxygen gas; and a product recovery path for collecting a part of the high-purity oxygen gas as product oxygen gas after heat recovery.
原料空気の一部を圧縮、精製、冷却して第1低圧塔に供給する原料空気導入経路を備えたことを特徴とする請求項7記載の空気分離装置。   8. The air separation apparatus according to claim 7, further comprising a raw air introduction path for compressing, refining and cooling a part of the raw air to supply to the first low pressure column.
JP2009000776A 2009-01-06 2009-01-06 Air separation method and apparatus Expired - Fee Related JP5005708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000776A JP5005708B2 (en) 2009-01-06 2009-01-06 Air separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000776A JP5005708B2 (en) 2009-01-06 2009-01-06 Air separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2010159890A JP2010159890A (en) 2010-07-22
JP5005708B2 true JP5005708B2 (en) 2012-08-22

Family

ID=42577176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000776A Expired - Fee Related JP5005708B2 (en) 2009-01-06 2009-01-06 Air separation method and apparatus

Country Status (1)

Country Link
JP (1) JP5005708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989400B1 (en) * 2013-04-25 2021-12-29 Linde GmbH Method for obtaining an air product in an air separating system with temporary storage, and air separating system
JP6155515B2 (en) * 2014-06-24 2017-07-05 大陽日酸株式会社 Air separation method and air separation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792329B2 (en) * 1987-11-04 1995-10-09 日本酸素株式会社 Air liquefaction separation method and apparatus
US6227005B1 (en) * 2000-03-01 2001-05-08 Air Products And Chemicals, Inc. Process for the production of oxygen and nitrogen
JP4447501B2 (en) * 2005-03-29 2010-04-07 大陽日酸株式会社 Air liquefaction separation method and apparatus
JP4401999B2 (en) * 2005-03-31 2010-01-20 大陽日酸株式会社 Air separation method and air separation device

Also Published As

Publication number Publication date
JP2010159890A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5878310B2 (en) Air separation method and apparatus
CN100592013C (en) Air separation method using cool extracted from liquefied natural gas for producing liquid oxygen
JPH087019B2 (en) High-pressure low-temperature distillation method for air
JP5655104B2 (en) Air separation method and air separation device
JPH06101963A (en) High-pressure low-temperature distilling method of air
CN108700373A (en) System and method for rare gas recycling
NO174684B (en) Process for the production of nitrogen by distillation of air
JP5417054B2 (en) Air separation method and apparatus
JPH06257939A (en) Distilling method at low temperature of air
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JP4401999B2 (en) Air separation method and air separation device
JP5032407B2 (en) Nitrogen production method and apparatus
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP5005708B2 (en) Air separation method and apparatus
JP4519010B2 (en) Air separation device
JP4841591B2 (en) Nitrogen production method and apparatus
JP4787796B2 (en) Air separation method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP3738213B2 (en) Nitrogen production method and apparatus
JP4230094B2 (en) Nitrogen production method and apparatus
JP4515225B2 (en) Nitrogen production method and apparatus
JP2016040494A (en) Method of manufacturing ultra high purity oxygen, and ultra high purity oxygen manufacturing device
JP5647853B2 (en) Air liquefaction separation method and apparatus
MX2014006737A (en) Air separation method and apparatus.
JP4451438B2 (en) Nitrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees