JP5307055B2 - Nitrogen and oxygen production method and nitrogen and oxygen production apparatus. - Google Patents

Nitrogen and oxygen production method and nitrogen and oxygen production apparatus. Download PDF

Info

Publication number
JP5307055B2
JP5307055B2 JP2010047867A JP2010047867A JP5307055B2 JP 5307055 B2 JP5307055 B2 JP 5307055B2 JP 2010047867 A JP2010047867 A JP 2010047867A JP 2010047867 A JP2010047867 A JP 2010047867A JP 5307055 B2 JP5307055 B2 JP 5307055B2
Authority
JP
Japan
Prior art keywords
oxygen
fluid
nitrogen
enriched
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010047867A
Other languages
Japanese (ja)
Other versions
JP2011185448A (en
Inventor
伸一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2010047867A priority Critical patent/JP5307055B2/en
Publication of JP2011185448A publication Critical patent/JP2011185448A/en
Application granted granted Critical
Publication of JP5307055B2 publication Critical patent/JP5307055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、窒素及び酸素の製造方法並びに窒素及び酸素を製造する装置に関し、詳しくは、深冷式空気分離方法並びに深冷式空気分離装置であって、窒素ガスと共に少量の中圧酸素を製造する方法並びに装置に関する。   The present invention relates to a method for producing nitrogen and oxygen and an apparatus for producing nitrogen and oxygen, and more particularly, to a cryogenic air separation method and a cryogenic air separation device, which produce a small amount of medium-pressure oxygen together with nitrogen gas. The present invention relates to a method and an apparatus.

半導体産業では、多量の高純度窒素ガスと同時に、少量の高純度酸素ガスを必要とする場合も多い。高純度の窒素および酸素を生産する方法としては、空気を深冷分離する方法が一般的であり、高純度窒素ガスと、同時に少量の高純度酸素ガスを製造する多くのプロセスが開示されている。   In the semiconductor industry, a small amount of high-purity oxygen gas is often required simultaneously with a large amount of high-purity nitrogen gas. As a method for producing high-purity nitrogen and oxygen, a method of cryogenic separation of air is common, and many processes for producing high-purity nitrogen gas and a small amount of high-purity oxygen gas at the same time are disclosed. .

基本的には、高純度窒素ガスの製造を主目的とする単精留窒素製造装置に、新たに精留塔を追加し、単精留窒素製造装置の単精留塔底部の液化空気もしくは酸素富化流体を、追加した精留塔に導入し、少量の酸素ガスを製造するプロセスが多く開示されている。例えば、特許文献1には、単精留塔底部の酸素富化流体及び凝縮器からの流体を原料流体として補助搭に導入し、補助搭底部から高純度酸素を製造するプロセスが開示されている。   Basically, a new rectification column is added to the single rectification nitrogen production system, which mainly produces high-purity nitrogen gas, and liquefied air or oxygen at the bottom of the single rectification column of the single rectification nitrogen production system is added. Many processes for introducing a rich fluid into an additional rectification column to produce a small amount of oxygen gas have been disclosed. For example, Patent Literature 1 discloses a process for producing high-purity oxygen from the auxiliary tower bottom by introducing the oxygen-enriched fluid at the bottom of the single fractionator and the fluid from the condenser into the auxiliary tower as a raw fluid. .

特許文献2ないし特許文献6には、単精留塔底部から数段上の棚段から、酸素富化流体が原料流体として抜き出し、補助搭に導入することが開示されている。このようなプロセスを採用すると、原料空気に含まれる炭化水素等の高沸点成分の製品酸素ガス/液への混入量を削減することができる。   Patent Documents 2 to 6 disclose that an oxygen-enriched fluid is extracted as a raw material fluid from a shelf several stages above the bottom of a single rectifying column and introduced into an auxiliary tower. By adopting such a process, it is possible to reduce the amount of high boiling point components such as hydrocarbons contained in the raw air into the product oxygen gas / liquid.

特許文献7には、単精留塔底部の酸素富化流体を搭頂凝縮器に導入し、そこから液流体を抜き出し、原料ガスとして補助搭に導入するプロセスが開示されている。   Patent Document 7 discloses a process in which an oxygen-enriched fluid at the bottom of a single rectification column is introduced into a top condenser, a liquid fluid is extracted therefrom, and introduced into an auxiliary tower as a raw material gas.

特許第3203181号公報Japanese Patent No. 3203181 特許第3719832号公報Japanese Patent No. 3719832 特開平10−122740号公報JP-A-10-122740 特開平9−303957号公報JP-A-9-303957 特開平9−264667号公報Japanese Patent Laid-Open No. 9-264667 特開平9−184681号公報JP-A-9-184681 特開2004−020158号公報JP 2004-020158 A 特許第3545629号公報Japanese Patent No. 3545629 特開2006−284075号公報JP 2006-284075 A 特開2005−274008号公報JP 2005-274008 A

しかしながら、上記特許文献1ないし特許文献6で開示された単精留塔窒素製造装置では、製品窒素の収率は40%程度である。その結果、搭底の液化空気、つまり、少量の酸素を製造する為の原料ガス中の酸素濃度は最大35%前後となる(=21/(100−40))。
従って、35%程度の酸素を含む流体を原料として99.5%の製品酸素を製造するためには、所定の段数を有する追加精留塔が必要となる。
However, in the single rectification column nitrogen production apparatus disclosed in Patent Documents 1 to 6, the yield of product nitrogen is about 40%. As a result, the liquefied air at the bottom of the tower, that is, the oxygen concentration in the raw material gas for producing a small amount of oxygen is about 35% at maximum (= 21 / (100-40)).
Therefore, in order to produce 99.5% product oxygen using a fluid containing about 35% oxygen as a raw material, an additional rectification column having a predetermined number of stages is required.

また、特許文献7に記載されたプロセスでは、原料ガスとして酸素搭に供給される流体は、搭底の酸素富化流体よりも酸素組成が多くなるが、一回の気液平衡分のみ酸素濃度が増加するだけである。   In the process described in Patent Document 7, the fluid supplied to the oxygen tower as the source gas has a higher oxygen composition than the oxygen-enriched fluid at the bottom of the tower. Only increase.

一方、特許文献8には、2搭式窒素製造装置に酸素搭を追加し、少量の製品酸素を製造するプロセスが開示されている。しかし、特許文献8に記載された装置は、原料空気が各精留塔に供給される窒素製造装置である。つまり、製品酸素を製造するための原料空気の酸素組成については、前述した単精留窒素製造装置から大きく改善されていない。   On the other hand, Patent Document 8 discloses a process for producing a small amount of product oxygen by adding an oxygen tower to a two-column nitrogen production apparatus. However, the apparatus described in Patent Document 8 is a nitrogen production apparatus in which raw air is supplied to each rectification column. That is, the oxygen composition of the raw material air for producing product oxygen is not greatly improved from the above-described single rectified nitrogen production apparatus.

また、酸素搭下部の蒸化器の加熱源を第一の精留塔からの酸素富化流体として、第二の精留塔によって精留している。つまり、この酸素富化流体は第二の精留塔の窒素製造に関与しないので、製品酸素製造に伴って、第二の精留塔の装置全体では製品窒素収率が低下するプロセスとなっている。   In addition, the heating source of the evaporator at the lower part of the oxygen tower is rectified by the second rectifying column as the oxygen-enriched fluid from the first rectifying column. In other words, since this oxygen-enriched fluid does not participate in the production of nitrogen in the second rectification column, the product nitrogen yield decreases in the entire apparatus of the second rectification column as the product oxygen is produced. Yes.

特許文献9には、単精留塔窒素製造装置に追加精留塔、酸素搭を用いた高純度酸素製造装置プロセスが開示されている。これは、単精留塔底の液化空気を追加精留塔の塔頂部に導入し、その塔頂部からの空気組成の廃ガスを抜き出し、常温で昇圧後、酸素搭に導入して製品酸素を製造するプロセスである。この発明では、昇圧機の吐出圧力を自由に設定できるので、任意の圧力の製品酸素製造が可能、圧縮機は空気圧縮機の採用が可能となるメリットがあるが、「酸素組成が21%の擬空気」からの酸素製造であり、新たに圧縮機、所定段数の追加精留塔が必要となる。   Patent Document 9 discloses a high-purity oxygen production apparatus process using an additional rectification tower and an oxygen tower in a single rectification tower nitrogen production apparatus. This is because the liquefied air at the bottom of the single rectification column is introduced into the top of the additional rectification column, the waste gas of the air composition from the top of the rectification column is withdrawn, the pressure is increased at room temperature, and then introduced into the oxygen tower to supply product oxygen. It is a manufacturing process. In this invention, since the discharge pressure of the booster can be set freely, it is possible to produce product oxygen at an arbitrary pressure, and the compressor has the advantage of being able to adopt an air compressor. However, “the oxygen composition is 21%. This is oxygen production from “pseudo-air” and requires a new compressor and an additional rectification column with a predetermined number of stages.

特許文献10には、単精留塔窒素製造装置に上部塔を用いた高純度酸素製造装置プロセスが開示されている。この発明では、単精留塔底部の酸素富化流体は分割され、一方は製品酸素の製造に用いられ、他方は凝縮器で気化した後、寒冷発生に用いられている。従って、膨張タービンの運転圧力に関係なく、上部塔の運転圧力を下げ、分離効率を改善することが可能である。しかし、酸素製造に用いる原料流体中の酸素濃度は35%であり、上部塔には比較的多くの段数を設置しなければならない。   Patent Document 10 discloses a high-purity oxygen production apparatus process using an upper column in a single rectification column nitrogen production apparatus. In the present invention, the oxygen-enriched fluid at the bottom of the single rectification column is divided, one is used for production of product oxygen, and the other is used for generating cold after being vaporized in a condenser. Therefore, regardless of the operating pressure of the expansion turbine, it is possible to reduce the operating pressure of the upper tower and improve the separation efficiency. However, the oxygen concentration in the raw material fluid used for oxygen production is 35%, and a relatively large number of stages must be installed in the upper column.

このような背景の下、窒素及び酸素の製造方法において、比較的段数が少ない、または充填高さの短い精留塔を用いた酸素の製造方法が要望されていたが、有効適切なものが提供されていないのが実情であった。   Against this background, there has been a demand for a method for producing oxygen using a rectification column having a relatively small number of stages or a short packing height in a method for producing nitrogen and oxygen. The fact was not.

上記課題を解決するため、請求項1に係る発明は、深冷分離法により、空気から窒素及び酸素を製造する方法であって、圧縮、精製、冷却した原料空気を蒸留により第1窒素ガス流体と第1酸素富化液化流体とに分離する第1分離工程と、前記第1窒素ガス流体と減圧後の前記第1酸素富化液化流体とを間接熱交換し、前記第1窒素ガス流体を凝縮液化して第1液化窒素を得るとともに、前記第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、前記第1酸素富化ガス流体の一部を低温蒸留して、第2窒素ガス流体と第2酸素富化液化流体とに分離する第2分離工程と、減圧後の前記第2酸素富化液化流体を低温蒸留して、第2酸素富化ガス流体と高純酸素液化流体とに精留分離する第3分離工程と、前記第2窒素ガス流体と前記高純酸素液化流体の一部を間接熱交換し、前記第2窒素ガス流体を凝縮液化して第2液化窒素を得るとともに、前記高純酸素液化流体の一部を蒸発ガス化して高純酸素ガス流体を得る第2間接熱交換工程と、前記第1窒素ガス流体の一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、前記第2窒素ガス流体の一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、前記高純酸素液化流体の一部を液状態で加圧して液体酸素とする液酸圧縮工程と、加圧された前記液体酸素を熱回収後に製品酸素ガスとして導出する第3製品回収工程と、を含むことを特徴とする窒素及び酸素の製造方法である。   In order to solve the above-mentioned problem, the invention according to claim 1 is a method for producing nitrogen and oxygen from air by a cryogenic separation method, and the first nitrogen gas fluid is obtained by distillation of compressed, purified and cooled raw material air A first separation step of separating the first nitrogen-enriched liquefied fluid, the first nitrogen gas fluid and the first oxygen-enriched liquefied fluid after decompression are indirectly heat-exchanged, and the first nitrogen gas fluid is A first indirect heat exchange step of condensing and liquefying to obtain first liquefied nitrogen and evaporating and gasifying the first oxygen enriched liquefied fluid to obtain a first oxygen enriched gas fluid; and the first oxygen enriched gas fluid. A second separation step in which a part of the second oxygen-enriched liquefied fluid is separated into a second nitrogen gas fluid and a second oxygen-enriched liquefied fluid; A third separation step for rectifying and separating into two oxygen-enriched gas fluid and high purity oxygen liquefied fluid; The second nitrogen gas fluid and a part of the high purity oxygen liquefied fluid are indirectly heat-exchanged to condense and liquefy the second nitrogen gas fluid to obtain second liquefied nitrogen, and a part of the high purity oxygen liquefied fluid A second indirect heat exchange step for evaporating gas to obtain a high purity oxygen gas fluid, a first product recovery step for deriving a part of the first nitrogen gas fluid as a first product nitrogen gas after heat recovery, 2 A second product recovery step for deriving a part of the nitrogen gas fluid as a second product nitrogen gas after heat recovery, and a liquid acid compression step for pressurizing a part of the high purity oxygen liquefied fluid in a liquid state to form liquid oxygen And a third product recovery step of deriving the pressurized liquid oxygen as product oxygen gas after heat recovery, and a method for producing nitrogen and oxygen.

請求項2に係る発明は、前記第2分離工程を第2精留塔で実施し、前記第3分離工程で低温蒸留する前記第2酸素富化液化流体が、前記第2精留塔の塔底よりも上の位置から導出したものであることを特徴とする請求項1に記載の窒素及び酸素の製造方法である。   According to a second aspect of the present invention, the second oxygen-enriched liquefied fluid that performs the second separation step in the second rectification column and is subjected to low-temperature distillation in the third separation step is a column of the second rectification column. 2. The method for producing nitrogen and oxygen according to claim 1, wherein the method is derived from a position above the bottom.

請求項3に係る発明は、前記第1分離工程を第1精留塔で実施し、前記第2分離工程で低温蒸留する前記第1酸素富化液化流体が、前記第1精留塔の塔底よりも上の位置から導出したものであることを特徴とする請求項1に記載の窒素及び酸素の製造方法である。   According to a third aspect of the present invention, the first oxygen-enriched liquefied fluid that is subjected to the first separation step in the first rectification column and is subjected to low-temperature distillation in the second separation step is the tower of the first rectification column. 2. The method for producing nitrogen and oxygen according to claim 1, wherein the method is derived from a position above the bottom.

請求項4に係る発明は、前記第1酸素富化ガス流体の一部を膨張タービンに導入して寒冷を発生させる寒冷発生工程を含むことを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒素及び酸素の製造方法である。   The invention according to claim 4 includes a cold generation step of generating a cold by introducing a part of the first oxygen-enriched gas fluid into the expansion turbine. 2. A method for producing nitrogen and oxygen according to item 1.

請求項5に係る発明は、前記原料空気の一部を膨張タービンに導入して寒冷を発生させる寒冷発生工程を含むことを特徴とする請求項1または請求項2に記載の窒素及び酸素の製造方法である。   The invention according to claim 5 includes a cold generation step of generating a cold by introducing a part of the raw material air into the expansion turbine, and producing nitrogen and oxygen according to claim 1 or claim 2 Is the method.

請求項6に係る発明は、深冷分離法によって原料空気から窒素及び酸素を製造する装置であって、圧縮、精製、冷却された原料空気を低温蒸留して塔頂部の第1窒素ガス流体と塔底部の第1酸素富化液化流体とに精留分離する第1精留塔と、前記第1窒素ガス流体と減圧弁で減圧した前記第1酸素富化液化流体とを間接熱交換させて、前記第1窒素ガス流体を凝縮液化して第1液化窒素を得るとともに、前記第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1凝縮器と、前記第1酸素富化ガス流体の一部を低温蒸留して、塔頂部の第2窒素ガス流体と塔底部の第2酸素富化液化流体とに精留分離する第2精留塔と、減圧後の前記第2酸素富化液化流体を低温蒸留して、塔頂部の第2酸素富化ガス流体と塔底部の高純酸素液化流体とに精留分離する第3精留塔と、前記第2窒素ガス流体と前記高純酸素液化流体の一部を間接熱交換させて、前記第2窒素ガス流体を凝縮液化して第2液化窒素を得るとともに、前記高純酸素液化流体の一部を蒸発ガス化して高純酸素ガス流体を得る第2凝縮器と、本装置に必要な寒冷を発生させる膨張タービンと、前記高純酸素液化流体の一部を液状態で加圧して液体酸素とするポンプと、前記第1窒素ガスの一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収管路と、前記第2窒素ガスの一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収管路と、加圧された前記高純酸素液流体を熱回収後に製品酸素ガスとして導出する第3製品回収管路と、を有することを特徴とする窒素及び酸素の製造装置である。   The invention according to claim 6 is an apparatus for producing nitrogen and oxygen from raw material air by a cryogenic separation method, wherein the raw material air that has been compressed, purified, and cooled is subjected to low-temperature distillation to obtain a first nitrogen gas fluid at the top of the tower. Indirect heat exchange is performed between the first rectifying column for rectifying and separating the first oxygen-enriched liquefied fluid at the bottom of the column, and the first oxygen-enriched liquefied fluid depressurized by the pressure reducing valve. A first condenser for condensing and liquefying the first nitrogen gas fluid to obtain first liquefied nitrogen, and evaporating and gasifying the first oxygen enriched liquefied fluid to obtain a first oxygen enriched gas fluid; A second rectifying column for subjecting a part of the oxygen-enriched gas fluid to low-temperature distillation to perform rectification separation into a second nitrogen gas fluid at the top of the column and a second oxygen-enriched liquefied fluid at the bottom of the column; The second oxygen-enriched liquefied fluid is subjected to low-temperature distillation to obtain a second oxygen-enriched gas fluid at the top of the column and high pure oxygen at the bottom of the column. A third rectifying column that rectifies and separates into a liquefied fluid; and a part of the second nitrogen gas fluid and the high pure oxygen liquefied fluid is indirectly heat-exchanged to condense and liquefy the second nitrogen gas fluid. A second condenser for obtaining two-liquefied nitrogen and evaporating and gasifying a part of the high-purity oxygen liquefied fluid to obtain a high-purity oxygen gas fluid, an expansion turbine for generating the cold necessary for the apparatus, and the high-purity nitrogen A pump that pressurizes a part of the oxygen liquefied fluid in a liquid state to form liquid oxygen, a first product recovery line that extracts a part of the first nitrogen gas as a first product nitrogen gas after heat recovery, and the first 2) A second product recovery line for deriving a part of the nitrogen gas as a second product nitrogen gas after heat recovery; and a third product recovery for deriving the pressurized high-purity oxygen liquid fluid as product oxygen gas after heat recovery And an apparatus for producing nitrogen and oxygen, characterized by comprising:

請求項7に係る発明は、前記第3精留塔に導入する前記第2酸素富化液化流体を導出する管路が、前記第2精留塔の塔底よりも上の位置に接続されていることを特徴とする請求項6に記載の窒素及び酸素の製造装置である。   The invention according to claim 7 is characterized in that a pipe for leading the second oxygen-enriched liquefied fluid introduced into the third rectifying column is connected to a position above the bottom of the second rectifying column. The apparatus for producing nitrogen and oxygen according to claim 6.

請求項8に係る発明は、前記第1凝縮器に導入する前記第1酸素富化液化流体を導出する管路が、前記第1精留塔の塔底よりも上の位置に接続されていることを特徴とする請求項6に記載の窒素及び酸素の製造装置である。   According to an eighth aspect of the present invention, a conduit for leading out the first oxygen-enriched liquefied fluid introduced into the first condenser is connected to a position above the bottom of the first rectification column. The apparatus for producing nitrogen and oxygen according to claim 6.

本発明の深冷空気分離法による窒素及び酸素の製造方法を用いた結果、比較的段数が少ない、または充填高さの短い精留塔を用いて酸素を製造することができる。   As a result of using the method for producing nitrogen and oxygen by the cryogenic air separation method of the present invention, oxygen can be produced using a rectification tower having a relatively small number of stages or a short packing height.

図1は、本発明の第1の実施形態に係る空気分離装置の系統図である。FIG. 1 is a system diagram of an air separation device according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る空気分離装置の系統図である。FIG. 2 is a system diagram of an air separation device according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る空気分離装置の系統図である。FIG. 3 is a system diagram of an air separation device according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る空気分離装置の系統図である。FIG. 4 is a system diagram of an air separation device according to the fourth embodiment of the present invention. 図5は、比較例として示した空気分離装置の系統図である。FIG. 5 is a system diagram of an air separation device shown as a comparative example. 図6は、主熱交換器内の流体温度を示すグラフである。FIG. 6 is a graph showing the fluid temperature in the main heat exchanger.

以下、本発明を適用した実施形態である窒素及び酸素の製造方法並びに窒素及び酸素の製造装置について、図面を用いて説明する。   Hereinafter, a nitrogen and oxygen production method and a nitrogen and oxygen production apparatus according to embodiments to which the present invention is applied will be described with reference to the drawings.

[第1の実施形態]
本発明を適用した第1の実施形態に係る窒素及び酸素の製造装置1は、図1に示すように、第1精留塔2と、第2精留塔3と、第3精留塔4と、第1凝縮器5と、第2凝縮器6と、膨張タービン7と、ポンプ8と、第1製品回収管路9と、第2製品回収管路10と、第3製品回収管路11とを有した構成となっている。この製造装置1を用いた深冷分離法により、窒素及び酸素を製造する方法は、以下の通りである。
[First Embodiment]
A nitrogen and oxygen production apparatus 1 according to a first embodiment to which the present invention is applied includes a first rectifying column 2, a second rectifying column 3, and a third rectifying column 4 as shown in FIG. The first condenser 5, the second condenser 6, the expansion turbine 7, the pump 8, the first product recovery line 9, the second product recovery line 10, and the third product recovery line 11. It has the composition which has. A method for producing nitrogen and oxygen by a cryogenic separation method using the production apparatus 1 is as follows.

まず、大気からフィルター21を通して吸入した原料空気は、原料空気圧縮機22で所定の圧力まで昇圧し、アフタークーラー23で圧縮熱を除去した後、精製器24に導入される。精製器24では、原料空気中に含有される水蒸気、二酸化炭素等の不純物が除去される。   First, the raw material air sucked from the atmosphere through the filter 21 is pressurized to a predetermined pressure by the raw material air compressor 22, removed from the compression heat by the after cooler 23, and then introduced into the purifier 24. In the purifier 24, impurities such as water vapor and carbon dioxide contained in the raw material air are removed.

不純物が除去された原料空気は、保冷外槽内の主熱交換器25に導入され、所定温度(例えば、液化点付近)に冷却される。
冷却された原料空気は、原料空気導入管路26を経て、第1精留塔2の下部に導入される。なお、第1精留塔2、及び後述する第2精留塔3と第3精留塔4内には、精留段(棚)、規則充填材、または不規則充填材等が設けられている。
The raw material air from which impurities have been removed is introduced into the main heat exchanger 25 in the cold insulation outer tub and cooled to a predetermined temperature (for example, near the liquefaction point).
The cooled raw material air is introduced into the lower part of the first fractionator 2 via the raw material air introduction pipe 26. A rectification stage (shelf), a regular packing material, an irregular packing material, or the like is provided in the first rectifying column 2 and the second and third rectifying columns 3 and 4 described later. Yes.

第1精留塔2では、原料空気が低温蒸留され、塔頂部の第1窒素ガス流体と塔底部の第1酸素富化液化流体とに分離される(第1分離工程)。すなわち、第1精留塔に導入された原料空気は、第1精留塔内を上昇する際に、後述する還流液である第1液化窒素と向流接触を行うことで、低沸点成分の組成が増加する。また、還流液である第1液化窒素は、第1精留塔内を下降する際に、上昇ガスである原料空気と向流接触を行うことで、高沸点成分の組成が増加する。   In the first rectifying column 2, the raw air is distilled at a low temperature and separated into a first nitrogen gas fluid at the top of the column and a first oxygen-enriched liquefied fluid at the bottom of the column (first separation step). That is, when the raw material air introduced into the first rectification column rises in the first rectification column, it is countercurrently contacted with the first liquefied nitrogen, which is a reflux liquid described later, so that the low-boiling component The composition increases. Moreover, when the 1st liquefied nitrogen which is a recirculation | reflux liquid descend | falls the inside of a 1st rectification tower, the composition of a high boiling point component increases by making countercurrent contact with the raw material air which is a rising gas.

これにより、第1精留塔2の塔頂部には、原料空気よりも窒素濃度が高く、酸素濃度の低い第1窒素ガス流体が精製され、塔底部には、原料空気よりも窒素濃度が低く、酸素濃度の高い第1酸素富化液化流体が生成される。   As a result, the first nitrogen gas fluid having a higher nitrogen concentration than the raw air and a lower oxygen concentration is purified at the top of the first fractionator 2 and the lower nitrogen concentration is lower than the raw air at the bottom of the tower. A first oxygen-enriched liquefied fluid having a high oxygen concentration is generated.

第1精留塔2の塔頂部から管路27に抜き出された第1窒素ガス流体の一部は、管路28に分岐して主熱交換器25で原料空気と間接熱交換を行うことによって昇温され、第1製品回収管路9から第1製品窒素ガスとして導出される(第1製品回収工程)。   A part of the first nitrogen gas fluid extracted from the top of the first rectifying column 2 to the pipe 27 is branched to the pipe 28 to perform indirect heat exchange with the raw air in the main heat exchanger 25. And is led out as first product nitrogen gas from the first product recovery line 9 (first product recovery step).

第1精留塔2の塔頂部から管路27に抜き出された第1窒素ガス流体の残部は、管路29に分岐して第1凝縮器5に導入される。
また、第1精留塔2の塔底部に精製した第1酸素富化液化流体は、管路30から導出され、一部は、管路41に分岐して、減圧弁42で所定の圧力に減圧された後、第1凝縮器5に導入される。また、残部は、管路43に分岐して、減圧弁44で所定の圧力に減圧された後、寒冷として第2精留塔3に導入される。
The remaining portion of the first nitrogen gas fluid extracted from the top of the first rectifying column 2 to the pipe 27 is branched into the pipe 29 and introduced into the first condenser 5.
Further, the first oxygen-enriched liquefied fluid purified at the bottom of the first rectifying column 2 is led out from the pipe line 30, and partly branches to the pipe line 41, and is adjusted to a predetermined pressure by the pressure reducing valve 42. After being depressurized, it is introduced into the first condenser 5. Further, the remaining portion branches to the pipe line 43, is decompressed to a predetermined pressure by the decompression valve 44, and is then introduced into the second rectifying column 3 as cold.

第1凝縮器5では、第1窒素ガス流体と、第1酸素富化液化流体との間接熱交換が行われ、第1窒素ガス流体は凝縮液化して第1液化窒素になり、第1酸素富化液化流体は蒸発ガス化して第1酸素富化ガス流体になる(第1間接熱交換工程)。そして、第1液化窒素は、管路45から第1精留塔2内に導入され、還流液となる。   In the first condenser 5, indirect heat exchange between the first nitrogen gas fluid and the first oxygen-enriched liquefied fluid is performed, and the first nitrogen gas fluid is condensed and liquefied to become first liquefied nitrogen. The enriched liquefied fluid is evaporated and gasified to become the first oxygen enriched gas fluid (first indirect heat exchange step). Then, the first liquefied nitrogen is introduced into the first rectifying column 2 from the pipe 45 and becomes a reflux liquid.

第1凝縮器5から管路46に導出された第1酸素富化ガス流体の大部分は、管路47に分岐して、第2精留塔3の下部に導入される。第2精留塔3では、第1酸素富化ガス流体が低温蒸留され、塔頂部の第2窒素ガス流体と、塔底部の第2酸素富化液化流体とに分離される(第2分離工程)。すなわち、第2精留塔3に導入された第1酸素富化ガス流体は、第2精留塔3内を上昇する際に、後述する還流液である第2液化窒素と向流接触を行うことで、低沸点成分の組成が増加する。また、還流液である第2液化窒素は、第2精留塔3内を下降する際に、上昇ガスである第1酸素富化ガス流体と向流接触を行うことで、高沸点成分の組成が増加する。   Most of the first oxygen-enriched gas fluid led out from the first condenser 5 to the pipe 46 is branched into the pipe 47 and introduced into the lower part of the second rectification column 3. In the second rectifying column 3, the first oxygen-enriched gas fluid is subjected to low-temperature distillation and separated into a second nitrogen gas fluid at the top of the column and a second oxygen-enriched liquefied fluid at the bottom (second separation step). ). That is, the first oxygen-enriched gas fluid introduced into the second rectification column 3 makes a countercurrent contact with second liquefied nitrogen, which is a reflux liquid described later, when rising in the second rectification column 3. This increases the composition of the low boiling point component. In addition, the second liquefied nitrogen as the reflux liquid is counter-contacted with the first oxygen-enriched gas fluid as the rising gas when descending the second rectifying column 3, so that the composition of the high boiling point component is obtained. Will increase.

これにより、第2精留塔3の塔頂部には、第1酸素富化ガス流体よりも窒素濃度が高く、酸素濃度の低い第2窒素ガス流体が生成され、塔底部には、第1酸素富化ガス流体よりも窒素濃度が低く、酸素濃度の高い第2酸素富化液化流体が生成される。   As a result, a second nitrogen gas fluid having a higher nitrogen concentration and a lower oxygen concentration than the first oxygen-enriched gas fluid is generated at the top of the second rectifying column 3, and the first oxygen is generated at the bottom of the column. A second oxygen-enriched liquefied fluid having a lower nitrogen concentration and a higher oxygen concentration than the enriched gas fluid is generated.

第1酸素富化ガス流体の残部は、管路48に分岐して、主熱交換器25を経て膨張タービン7に導入され、装置に必要な寒冷発生に用いられる(寒冷発生工程)。そして、第1酸素富化ガス流体は、膨張タービン7を経由した後、後述する管路68を経由して導出される高純酸素ガス流体と共に、精製器24の再生に用いられる。   The remainder of the first oxygen-enriched gas fluid is branched into the pipe 48 and introduced into the expansion turbine 7 via the main heat exchanger 25 and used for generating the cold necessary for the apparatus (cold generation step). Then, the first oxygen-enriched gas fluid is used for regeneration of the purifier 24 together with the high-purity oxygen gas fluid that is led out via the pipe 68 described later after passing through the expansion turbine 7.

第2精留塔3の塔頂部から管路49に抜き出された第2窒素ガス流体の一部は、管路50に分岐して主熱交換器25に導入され、原料空気と間接熱交換を行うことにより昇温され、第2製品回収管路10から第2製品窒素ガスとして導出される(第2製品回収工程)。   Part of the second nitrogen gas fluid extracted from the top of the second rectifying column 3 to the pipe 49 is branched into the pipe 50 and introduced into the main heat exchanger 25 to indirectly exchange heat with the raw air. The temperature is raised by performing the above, and it is led out as the second product nitrogen gas from the second product recovery conduit 10 (second product recovery step).

なお、第2製品窒素ガス流体は、導出した圧力のままで供給先に供給することもできるが、第1製品窒素ガス流体に合流させて供給する際には、窒素圧縮機61で昇圧し、アフタークーラー62で冷却してから、第1製品窒素ガスに合流させ、製品供給管路63から製品窒素ガスとして供給先に供給すればよい。   Note that the second product nitrogen gas fluid can be supplied to the supply destination with the derived pressure as it is, but when joining and supplying the first product nitrogen gas fluid, the pressure is increased by the nitrogen compressor 61, After cooling with the aftercooler 62, the first product nitrogen gas may be merged and supplied to the supply destination as product nitrogen gas from the product supply line 63.

第2精留塔3の塔頂部から管路49に抜き出された第2窒素ガス流体の残部は、管路64に分岐して第2凝縮器6に導入される。第2凝縮器6では、第2窒素ガス流体と後述する高純酸素液化流体との間接熱交換が行われ、第2窒素ガス流体は凝縮液化して第2液化窒素になり、高純酸素液化流体の一部は、蒸発ガス化して高純酸素ガス流体になる(第2間接熱交換工程)。
そして、第2液化窒素は、管路65から抜き出され、第2精留塔3の塔頂部に還流液として導入される。
The remaining portion of the second nitrogen gas fluid extracted from the top of the second rectifying column 3 to the pipe 49 is branched into the pipe 64 and introduced into the second condenser 6. In the second condenser 6, indirect heat exchange is performed between the second nitrogen gas fluid and a high-purity oxygen liquefied fluid described later, and the second nitrogen gas fluid is condensed and liquefied to become second liquefied nitrogen. A part of the fluid is evaporated and turned into a high purity oxygen gas fluid (second indirect heat exchange step).
Then, the second liquefied nitrogen is extracted from the pipe 65 and introduced into the top of the second rectifying column 3 as a reflux liquid.

第2精留塔3の塔底部に生成した第2酸素富化液化流体は、管路66から導出され、減圧弁67で所定の圧力に減圧された後、還流液として第3精留塔4の塔頂部に導入される。第3精留塔4は、塔底部に第2凝縮器6をもつ精留塔で、第3精留塔4内では、第2酸素富化液化流体が低温蒸留され、塔頂部の高純酸素ガス化流体と、塔底部の高純酸素液化流体とに分離される(第3分離工程)。   The second oxygen-enriched liquefied fluid generated at the bottom of the second rectifying column 3 is led out from the pipe 66 and depressurized to a predetermined pressure by the pressure reducing valve 67, and then the third rectifying column 4 as a reflux liquid. It is introduced at the top of the tower. The third rectification column 4 is a rectification column having a second condenser 6 at the bottom of the column. In the third rectification column 4, the second oxygen-enriched liquefied fluid is distilled at a low temperature, and high purity oxygen at the top of the column is obtained. Separated into a gasification fluid and a high purity oxygen liquefied fluid at the bottom of the column (third separation step).

すなわち、還流液として導入された第2酸素富化液化流体は、第3精留塔4内を下降する際に、第2凝縮器6によって蒸発ガス化した高純酸素ガス流体と向流接触を行うことで、低沸点成分の組成が増加する。また、第2凝縮器6によって蒸発ガス化した高純酸素ガス流体は、第3精留塔4内を上昇する際に、還流液である第2酸素富化液化流体と向流接触を行うことで、高沸点成分の組成が増加する。   That is, the second oxygen-enriched liquefied fluid introduced as the reflux liquid has a countercurrent contact with the high-purity oxygen gas fluid evaporated and gasified by the second condenser 6 when descending the third rectifying column 4. By doing so, the composition of the low boiling point component increases. The high purity oxygen gas fluid evaporated and gasified by the second condenser 6 is in countercurrent contact with the second oxygen-enriched liquefied fluid that is the reflux liquid when rising in the third fractionator 4. Thus, the composition of the high boiling point component increases.

これにより、第3精留塔4内の塔頂部には、第2酸素富化液化流体よりも酸素濃度の低い高純酸素富化ガス流体が生成され、塔底部には、第2酸素富化液化流体よりも酸素濃度の高い高純酸素富化液化流体が生成される。   As a result, a high-purity oxygen-enriched gas fluid having a lower oxygen concentration than the second oxygen-enriched liquefied fluid is generated at the top of the third fractionator 4 and the second oxygen-enriched gas is produced at the bottom of the tower. A highly pure oxygen-enriched liquefied fluid having a higher oxygen concentration than the liquefied fluid is produced.

第3精留塔4の塔頂部に生成された高純酸素ガス流体は、管路68に抜き出され、膨張タービン7で減圧された第1酸素富化ガス流体と共に、管路69から主熱交換器25に導入され、常温まで昇温された後、精製器24の再生に用いられる。   The high-purity oxygen gas fluid generated at the top of the third rectifying column 4 is extracted to the main line 68 from the line 69 together with the first oxygen-enriched gas fluid extracted from the line 68 and decompressed by the expansion turbine 7. After being introduced into the exchanger 25 and heated to room temperature, it is used to regenerate the purifier 24.

第3精留塔4の塔底部の高純酸素液化流体は、管路70から抜き出され、液酸ポンプ8に導入される。液酸ポンプ8では、高純酸素液化流体は、所定の圧力まで昇圧され、中圧液酸素となる(液酸圧縮工程)。その後、中圧液酸素は、主熱交換器25で常温まで昇温され、中圧の製品酸素ガスとなって管路12を経て、製品回収管路11から導出される(第3製品回収工程)。なお、本実施形態では、中圧液酸素を気化させる熱源として原料酸素を用いるので、中圧液酸素を気化させる新たな熱源を準備する必要がない。   The high purity oxygen liquefied fluid at the bottom of the third rectifying column 4 is extracted from the pipe 70 and introduced into the liquid acid pump 8. In the liquid acid pump 8, the high-purity oxygen liquefied fluid is pressurized to a predetermined pressure and becomes medium-pressure liquid oxygen (liquid acid compression step). Thereafter, the medium-pressure liquid oxygen is heated to room temperature in the main heat exchanger 25, becomes medium-pressure product oxygen gas, and is led out from the product recovery pipe 11 through the pipe 12 (third product recovery step). ). In this embodiment, since raw material oxygen is used as a heat source for vaporizing medium pressure liquid oxygen, it is not necessary to prepare a new heat source for vaporizing medium pressure liquid oxygen.

本実施形態の窒素及び酸素の製造方法では、製品酸素を生成する第3精留塔4に導入される原料の第2酸素富化液化流体に含まれる酸素濃度が、従来と比較して高くなっている。すなわち、第1分離工程及び第2分離工程の両工程を経た結果、酸素濃度が高くなっている第2酸素富化液化流体を原料として、製品酸素を生成する第3分離工程が行われている。これにより、従来と比較して、第3精留塔4には比較的段数の少ない、または充填高さの短い精留塔を用いることが可能となる。   In the method for producing nitrogen and oxygen according to the present embodiment, the oxygen concentration contained in the second oxygen-enriched liquefied fluid of the raw material introduced into the third rectifying column 4 that produces product oxygen is higher than the conventional one. ing. That is, as a result of passing through both the first separation step and the second separation step, a third separation step for generating product oxygen is performed using the second oxygen-enriched liquefied fluid having a high oxygen concentration as a raw material. . As a result, it is possible to use a rectifying column having a relatively small number of stages or a short packing height as compared with the prior art.

また、従来と比較して、第3精留塔4の運転圧力を低くすることができるので、各成分組成間の比揮発度が大きくなり、分離効率が良くなる。すなわち、第3精留塔4に原料として導入される第2酸素富化液化流体は、第1精留塔2に導入される原料空気と比較すると減圧弁42と減圧弁67で減圧された流体であり、第3精留塔4の運転圧力は必然的に小さくなるように設計されている。逆に述べると、第3精留塔4の塔頂部から導出される高純酸素ガス流体が、精製器25を再生することが可能な圧力であるように第3精留塔4の運転圧力を設定し、それに応じて2段階高くなるように、原料空気を原料空気圧縮機22で圧縮すればよい。このように第3精留塔4の運転圧力を従来よりも小さくすることができ、これにより分離効率が良くなるので、第3精留塔4には、比較的段数の少ない、または充填高さの短い精留塔を用いることが可能となる。   In addition, since the operating pressure of the third rectifying column 4 can be lowered as compared with the conventional case, the relative volatility between the component compositions is increased, and the separation efficiency is improved. That is, the second oxygen-enriched liquefied fluid introduced as a raw material into the third rectifying column 4 is a fluid depressurized by the pressure reducing valve 42 and the pressure reducing valve 67 as compared with the raw material air introduced into the first rectifying column 2. The operating pressure of the third rectifying column 4 is designed to be inevitably small. In other words, the operating pressure of the third rectifying column 4 is set so that the high-purity oxygen gas fluid led out from the top of the third rectifying column 4 is a pressure at which the purifier 25 can be regenerated. The raw material air may be compressed by the raw material air compressor 22 so as to be set and increased by two steps accordingly. As described above, the operating pressure of the third rectifying column 4 can be reduced as compared with the conventional one, and the separation efficiency is thereby improved. Therefore, the third rectifying column 4 has a relatively small number of stages or a packing height. It is possible to use a short rectification column.

また、第3精留塔4から製品酸素を導出する際、液相の高純酸素液化流体を抜き出し、液酸ポンプ8に導入するので、気相の高純酸素ガス流体を抜き出す場合よりも、下部から抜き出すことになり、より酸素濃度が高い状態の流体を抜き出すことができる。これにより、第3精留塔4の段数を少なくする、または充填高さを短くすることができる。   Further, when the product oxygen is derived from the third rectifying column 4, the liquid high purity oxygen liquefied fluid is extracted and introduced into the liquid acid pump 8. Therefore, compared with the case where the gas phase high pure oxygen gas fluid is extracted, As a result, the fluid having a higher oxygen concentration can be extracted. Thereby, the number of stages of the third fractionator 4 can be reduced, or the packing height can be shortened.

また、製造装置に必要な寒冷を発生させる膨張タービン7には、第1酸素富化ガス流体が導入されているため、従来と比較して第3精留塔4の運転圧力を低くすることができる。すなわち、寒冷を発生させるために膨張タービン7に導入する流体は、一定以上の圧力を有する必要があるところ、従来は第3精留塔4から導出された流体を膨張タービン7に導入していたため、第3精留塔4の運転圧力も一定以上にせざるを得なかった。これに対し、本実施形態では、膨張タービン7に、第3精留塔4とは無関係に導出された第1酸素富化ガス流体を導入させるので、第3精留塔4の運転圧力に制限がかからなくなった。これにより、運転圧力を低くすることができるので、分離効率が良くなり、第3精留塔4には、比較的段数の少ない、または充填高さの短い精留塔を用いることができる。
また、本実施形態では、中圧液酸素を気化させる熱源として原料酸素を用いるので、中圧液酸素を気化させる新たな熱源を準備する必要がない。
In addition, since the first oxygen-enriched gas fluid is introduced into the expansion turbine 7 that generates the cold necessary for the production apparatus, the operating pressure of the third rectifying column 4 can be lowered as compared with the conventional case. it can. That is, the fluid introduced into the expansion turbine 7 to generate cold needs to have a pressure higher than a certain level, but conventionally, the fluid derived from the third rectifying column 4 has been introduced into the expansion turbine 7. The operating pressure of the third rectifying column 4 was inevitably set to a certain level. On the other hand, in this embodiment, since the first oxygen-enriched gas fluid derived independently of the third rectifying column 4 is introduced into the expansion turbine 7, the operating pressure of the third rectifying column 4 is limited. I was not able to take it. Thereby, since the operating pressure can be lowered, the separation efficiency is improved, and a rectification column having a relatively small number of stages or a short packing height can be used as the third rectification column 4.
In this embodiment, since raw material oxygen is used as a heat source for vaporizing medium pressure liquid oxygen, it is not necessary to prepare a new heat source for vaporizing medium pressure liquid oxygen.

[第2の実施形態]
次に、本発明を適用した第2の実施形態に係る窒素及び酸素の製造装置並びに窒素及び酸素の製造方法について説明する。なお、本実施形態は、第1の実施形態の変形例であり、同様の部分については説明を省略する。
[Second Embodiment]
Next, a nitrogen and oxygen production apparatus and a nitrogen and oxygen production method according to a second embodiment to which the present invention is applied will be described. In addition, this embodiment is a modification of 1st Embodiment, and abbreviate | omits description about the same part.

図2に示すように、本実施形態では、製造装置80に必要な寒冷を、原料空気を用いて発生させている点が第1の実施形態と異なる。
すなわち、原料空気の一部が、主熱交換器25の途中から管路81に分岐して抜き出され、膨張タービン7に導入され、管路82を経て寒冷として第2精留塔3に導入されている。
As shown in FIG. 2, the present embodiment is different from the first embodiment in that the cold necessary for the manufacturing apparatus 80 is generated by using raw material air.
That is, a part of the raw material air is branched and extracted from the middle of the main heat exchanger 25 to the pipe 81, introduced into the expansion turbine 7, and introduced into the second rectification tower 3 as cold through the pipe 82. Has been.

本実施形態でも第1の実施形態と同様の効果を得ることができ、第3精留塔4の段数を少なくする、または充填高さを短くすることができる。
また、膨張タービン7に導入する流体として、第3精留塔4とは無関係な原料空気を用いるので、第3精留塔4の運転圧力に制限がかからなくなる。これにより、運転圧力を低くすることができ、分離効率が良くなり、第3精留塔4には、比較的段数の少ない、または充填高さの短い精留塔を用いることができる。
Also in this embodiment, the same effect as that of the first embodiment can be obtained, and the number of stages of the third rectifying column 4 can be reduced or the packing height can be shortened.
Moreover, since the raw material air unrelated to the third rectifying column 4 is used as the fluid introduced into the expansion turbine 7, the operating pressure of the third rectifying column 4 is not limited. As a result, the operating pressure can be lowered, the separation efficiency can be improved, and a rectifying column having a relatively small number of stages or a short packing height can be used as the third rectifying column 4.

[第3の実施形態]
次に、本発明を適用した第3の実施形態に係る窒素及び酸素の製造装置並びに窒素及び酸素の製造方法について説明する。なお、本実施形態も第1の実施形態の変形例であり、同様の部分については説明を省略する。
[Third Embodiment]
Next, a nitrogen and oxygen production apparatus and a nitrogen and oxygen production method according to a third embodiment to which the present invention is applied will be described. Note that this embodiment is also a modification of the first embodiment, and description of similar parts is omitted.

図3に示すように、本実施形態の製造装置90では、第1の実施形態とは異なり、第2精留塔3に導入される流体が異なる。すなわち、第1精留塔2の塔底からから抜き出された塔底液は、管路91から導出され、減圧弁92を介して第1凝縮器5bに導入され、間接熱交換を行って気化した後、膨張タービン7に導入し、管路69を経て精製器の再生に用いられる。そして、第1精留塔2の塔底よりも上の位置から管路93を経て導出された第1酸素富化液化流体を第2精留塔3に導入する。具体的には、管路93から導出された第1酸素富化液化流体の一部は、管路94に分岐して減圧弁95で所定の圧力に圧縮し、第1凝縮器5aで気化した後に管路96を経て第2精留塔3に導入される。管路93から導出された第1酸素富化液化流体の残部は、管路97に分岐し、減圧弁98で所定の圧力に圧縮した後、直接寒冷として、第2精留塔4に導入される。   As shown in FIG. 3, in the manufacturing apparatus 90 of the present embodiment, the fluid introduced into the second rectifying column 3 is different from the first embodiment. That is, the column bottom liquid extracted from the column bottom of the first rectifying column 2 is led out from the conduit 91 and introduced into the first condenser 5b through the pressure reducing valve 92 to perform indirect heat exchange. After being vaporized, it is introduced into the expansion turbine 7 and used for regeneration of the purifier through the pipe 69. Then, the first oxygen-enriched liquefied fluid led out from the position above the bottom of the first rectifying column 2 via the conduit 93 is introduced into the second rectifying column 3. Specifically, a part of the first oxygen-enriched liquefied fluid led out from the pipe 93 is branched to the pipe 94, compressed to a predetermined pressure by the pressure reducing valve 95, and vaporized by the first condenser 5a. Later, it is introduced into the second rectification tower 3 via a pipe 96. The remainder of the first oxygen-enriched liquefied fluid led out from the pipe 93 is branched into the pipe 97, compressed to a predetermined pressure by the pressure reducing valve 98, and then introduced directly into the second rectifying column 4 as cold. The

本実施形態でも第1の実施形態と同様の効果を得ることができ、第3精留塔4の段数を少なくする、または充填高さを短くすることができる。
また、第1精留塔2の塔底よりも上の位置から導出された第1酸素富化液化流体を原料として、第2分離工程以降が行われるので、製品酸素の酸素濃度が向上する。すなわち、原料空気には、微量の炭化水素等の高沸点成分も含まれているが、この高沸点成分は、第1分離工程において、第1精留塔の塔底に濃縮されている。したがって、塔底からではなく、塔底よりも上の位置から導出した第1酸素富化液化流体には、ほとんど高沸点成分は含有されておらず、結果として製品酸素に含まれる不純物を抑制することができる。
Also in this embodiment, the same effect as that of the first embodiment can be obtained, and the number of stages of the third rectifying column 4 can be reduced or the packing height can be shortened.
In addition, since the second separation step and subsequent steps are performed using the first oxygen-enriched liquefied fluid derived from the position above the bottom of the first fractionator 2 as a raw material, the oxygen concentration of product oxygen is improved. That is, the raw air also contains high-boiling components such as trace amounts of hydrocarbons, but these high-boiling components are concentrated at the bottom of the first rectifying column in the first separation step. Therefore, the first oxygen-enriched liquefied fluid derived not from the tower bottom but from a position above the tower bottom contains almost no high-boiling component, and as a result, suppresses impurities contained in the product oxygen. be able to.

[第4の実施形態]
次に、本発明を適用した第4の実施形態に係る窒素及び酸素の製造装置並びに窒素及び酸素の製造方法について説明する。なお、本実施形態も第1の実施形態の変形例であり、同様の部分については説明を省略する。
[Fourth Embodiment]
Next, a nitrogen and oxygen production apparatus and a nitrogen and oxygen production method according to a fourth embodiment to which the present invention is applied will be described. Note that this embodiment is also a modification of the first embodiment, and description of similar parts is omitted.

図4に示すように、本実施形態の製造装置100では、第1の実施形態とは異なり、第3精留塔4に導入される流体が異なる。すなわち、第2精留塔3の塔底から管路101に抜き出された塔底液は、減圧弁102に導入され、所定の圧力に圧縮された後、第2凝縮器6bで間接熱交換を行って気化し、管路103を経て精製器24の再生に用いられる。そして、第2精留塔3の塔底よりも上の位置から管路105を経て導出された第2酸素富化液化流体は、減圧弁106で所定の圧力に圧縮された後に、第3精留塔4に導入される。   As shown in FIG. 4, in the manufacturing apparatus 100 of the present embodiment, the fluid introduced into the third rectifying column 4 is different from that of the first embodiment. That is, the bottom liquid extracted from the bottom of the second fractionator 3 to the pipe 101 is introduced into the pressure reducing valve 102 and compressed to a predetermined pressure, and then indirectly heat exchanged by the second condenser 6b. And is vaporized and used for regeneration of the purifier 24 through the pipe 103. Then, the second oxygen-enriched liquefied fluid led out from the position above the bottom of the second rectifying column 3 via the pipe line 105 is compressed to a predetermined pressure by the pressure reducing valve 106, and then the third refined liquid. It is introduced into the distillation column 4.

第2精留塔3の塔頂部から管路49に抜き出され、管路64に分岐した第2窒素ガス流体は、第2凝縮器6aに導入される。第2凝縮器6aでは、第2窒素ガス流体と、高純酸素液化流体との間接熱交換が行われる。   The second nitrogen gas fluid extracted from the top of the second rectification tower 3 to the pipe 49 and branched to the pipe 64 is introduced into the second condenser 6a. In the second condenser 6a, indirect heat exchange between the second nitrogen gas fluid and the high purity oxygen liquefied fluid is performed.

本実施形態でも第1の実施形態と同様の効果を得ることができ、第3精留塔4の段数を少なくする、または充填高さを短くすることができる。
また、第2精留塔3の塔底よりも上の位置から導出された第2酸素富化液化流体を原料として、第3分離工程が行われるので、第3の実施形態と同様に製品酸素の酸素濃度が向上する。すなわち、原料空気には、高沸点成分も含まれるところ、この高沸点成分は第2分離工程において、第2精留塔3の塔底に濃縮され、塔底からではなく、塔底よりも上の位置から導出した第2酸素富化液化流体には、ほとんど高沸点成分が含有されていない。これにより、製品酸素に含まれる不純物を抑制することができる。
Also in this embodiment, the same effect as that of the first embodiment can be obtained, and the number of stages of the third rectifying column 4 can be reduced or the packing height can be shortened.
In addition, since the third separation step is performed using the second oxygen-enriched liquefied fluid derived from the position above the bottom of the second rectification column 3 as a raw material, the product oxygen is the same as in the third embodiment. Improves oxygen concentration. That is, the raw air contains a high-boiling component. In the second separation step, the high-boiling component is concentrated on the bottom of the second rectifying column 3 and is not above the bottom but above the bottom. The second oxygen-enriched liquefied fluid derived from the position of FIG. Thereby, impurities contained in product oxygen can be suppressed.

以上、本発明を実施形態に基づき説明したが、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、第4の実施形態と第2の実施形態とを組み合わせても構わない。   As mentioned above, although this invention was demonstrated based on embodiment, it cannot be overemphasized that this invention can be variously changed in the range which is not limited to the said embodiment and does not deviate from the summary. For example, the fourth embodiment and the second embodiment may be combined.

以下、実施例により、本発明を更に詳しく説明するが、本発明は下記実施例に何ら制限されるものではない。
実施例1として、図1に示した窒素及び酸素の製造装置を用いて、製品窒素ガスと製品酸素ガスを製造するシミュレーションを行った。製品窒素流量を100とした場合の各管路の流量、圧力、酸素組成を表1に示す。
また、実施例2として、図2に示した窒素及び酸素の製造装置を用いて、製品窒素ガスと製品酸素ガスを製造するシミュレーションを行った。製品窒素流量を100とした場合の各管路の流量、圧力、酸素組成を表2に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited to the following Example at all.
As Example 1, a simulation for producing product nitrogen gas and product oxygen gas was performed using the nitrogen and oxygen production apparatus shown in FIG. Table 1 shows the flow rate, pressure, and oxygen composition of each pipe line when the product nitrogen flow rate is 100.
Further, as Example 2, a simulation for producing product nitrogen gas and product oxygen gas was performed using the nitrogen and oxygen production apparatus shown in FIG. Table 2 shows the flow rate, pressure, and oxygen composition of each pipe line when the product nitrogen flow rate is 100.

また、図6に主熱交換器内の流体温度を示す。図中、温度変化の無い箇所、すなわち横軸に対し水平となっている箇所の温度は、原料空気が液化している空気の露点、および昇圧液体酸素が気化している酸素の沸点である。
実施例1または実施例2では、製造する製品酸素の流量が原料空気流量に対して少量であるために、昇圧液体酸素を気化させるための潜熱が小さくてすむので、製品酸素圧力が8.4bar(G)の場合、原料空気が比較的低い圧力(9.3bar(G))であっても、熱交換が成立する。このとき、原料空気の露点は、昇圧液体酸素の沸点より低い。
FIG. 6 shows the fluid temperature in the main heat exchanger. In the figure, the temperature at a location where there is no temperature change, that is, a location horizontal to the horizontal axis is the dew point of the air where the raw material air is liquefied and the boiling point of oxygen where the pressurized liquid oxygen is vaporized.
In Example 1 or Example 2, since the flow rate of the product oxygen to be produced is small relative to the raw material air flow rate, the latent heat for vaporizing the pressurized liquid oxygen is small, so the product oxygen pressure is 8.4 bar. In the case of (G), heat exchange is established even when the raw air is at a relatively low pressure (9.3 bar (G)). At this time, the dew point of the raw material air is lower than the boiling point of the pressurized liquid oxygen.

一方、実施例1または実施例2より製造する製品酸素が多くなる通常の窒素・酸素製造装置では、主熱交換器での交換熱量が増えるので、原料空気と昇圧液体酸素の温度を表す線が交差しないように圧力を設定する必要がある。このときの原料空気の圧力は、約20barとなり、実施例1または実施例2の2倍以上の圧力を要することになる。   On the other hand, in the normal nitrogen / oxygen production apparatus in which the product oxygen produced from Example 1 or Example 2 increases, the amount of heat exchanged in the main heat exchanger increases, so a line representing the temperature of the raw air and the pressurized liquid oxygen is displayed. It is necessary to set the pressure so that it does not intersect. The pressure of the raw material air at this time is about 20 bar, which requires a pressure twice or more that of Example 1 or Example 2.

Figure 0005307055
Figure 0005307055

Figure 0005307055
Figure 0005307055

上記表1及び表2に示すように、管路66の酸素組成は0.54(54%),0.52(52%)となっており、製品酸素を生成する第3精留塔に導入される原料の第2酸素富化液化流体に含まれる酸素濃度が、高いことが認められる。また、管路68の圧力は0.4bar(G)となっており、第3精留塔の運転圧力が低いことも認められる。   As shown in Tables 1 and 2 above, the oxygen composition of the pipe 66 is 0.54 (54%) and 0.52 (52%), and is introduced into the third rectification column that produces product oxygen. It can be seen that the oxygen concentration contained in the second oxygen-enriched liquefied fluid of the starting material is high. Further, the pressure in the pipe 68 is 0.4 bar (G), and it is recognized that the operating pressure of the third rectifying column is low.

次に、実施例1の消費動力を比較例と比較して説明する。比較例では、図5に示した窒素の製造装置を用いて、製品窒素ガスを製造するシミュレーションを行った。なお、実施例1における窒素・酸素製造装置は、少量の酸素を生産する装置であるため、比較例は、単に製品窒素ガスを製造する製造装置110に、別置きの液体酸素貯槽(図示せず)から、少量の酸素を送る構成とした。製造装置110は、製品酸素ガスを製造するための精留塔が設けられておらず、第2精留塔3の塔底部から導出した第2酸素富化液化流体は、第2凝縮器111において間接熱交換し、蒸発ガス化して精製器24の再生に用いられている。
実施例と比較例の消費動力について、表3に示す。なお、比較例では、窒素ガス製造装置110の動力に加え、別置きの液体貯槽から酸素を送ガスすることを想定し、その酸素の製造にかかる動力を加味している。
Next, the power consumption of Example 1 will be described in comparison with a comparative example. In the comparative example, a simulation for producing product nitrogen gas was performed using the nitrogen production apparatus shown in FIG. Since the nitrogen / oxygen production apparatus in Example 1 is an apparatus that produces a small amount of oxygen, the comparative example is a separate liquid oxygen storage tank (not shown) in the production apparatus 110 that simply produces product nitrogen gas. ) To send a small amount of oxygen. The production apparatus 110 is not provided with a rectification tower for producing product oxygen gas, and the second oxygen-enriched liquefied fluid led out from the bottom of the second rectification tower 3 is supplied to the second condenser 111. Indirect heat exchange and evaporative gasification are used to regenerate the purifier 24.
It shows in Table 3 about the power consumption of an Example and a comparative example. In the comparative example, in addition to the power of the nitrogen gas production apparatus 110, it is assumed that oxygen is sent from a separate liquid storage tank, and power for production of the oxygen is taken into account.

Figure 0005307055
Figure 0005307055

上記表3に示すように、実施例では、比較例と比べると製品(酸素・窒素)あたりの消費動力が減少することが認められる。   As shown in Table 3 above, in the example, it is recognized that the power consumption per product (oxygen / nitrogen) decreases compared to the comparative example.

1,80,90,100・・・製造装置、2・・第1精留塔、3・・・第2精留塔、4・・・第3精留塔、5,5a,5b・・・第1凝縮器、6,6a,6b・・・第2凝縮器、7・・・膨張タービン、8・・・ポンプ、9・・・第1製品回収管路、10・・・第2製品回収管路、11・・・第3製品回収管路、21・・・フィルター、22・・・原料空気圧縮器、23・・・アフタークーラー、24・・・精製器、25・・・主熱交換器 DESCRIPTION OF SYMBOLS 1,80,90,100 ... Manufacturing apparatus, 2 ... 1st rectification tower, 3 ... 2nd rectification tower, 4 ... 3rd rectification tower, 5, 5a, 5b ... 1st condenser, 6, 6a, 6b ... 2nd condenser, 7 ... Expansion turbine, 8 ... Pump, 9 ... 1st product recovery line, 10 ... 2nd product recovery Pipe 11, third product recovery pipe 21, filter 22, raw material air compressor 23, after cooler 24, purifier 25, main heat exchange vessel

Claims (8)

深冷分離法により、空気から窒素及び酸素を製造する方法であって、
圧縮、精製、冷却した原料空気を蒸留により第1窒素ガス流体と第1酸素富化液化流体とに分離する第1分離工程と、
前記第1窒素ガス流体と減圧後の前記第1酸素富化液化流体とを間接熱交換し、前記第1窒素ガス流体を凝縮液化して第1液化窒素を得るとともに、前記第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1間接熱交換工程と、
前記第1酸素富化ガス流体の一部を低温蒸留して、第2窒素ガス流体と第2酸素富化液化流体とに分離する第2分離工程と、
減圧後の前記第2酸素富化液化流体を低温蒸留して、第2酸素富化ガス流体と高純酸素液化流体とに精留分離する第3分離工程と、
前記第2窒素ガス流体と前記高純酸素液化流体の一部を間接熱交換し、前記第2窒素ガス流体を凝縮液化して第2液化窒素を得るとともに、前記高純酸素液化流体の一部を蒸発ガス化して高純酸素ガス流体を得る第2間接熱交換工程と、
前記第1窒素ガス流体の一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収工程と、
前記第2窒素ガス流体の一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収工程と、
前記高純酸素液化流体の一部を液状態で加圧して液体酸素とする液酸圧縮工程と、
加圧された前記液体酸素を熱回収後に製品酸素ガスとして導出する第3製品回収工程と、
を含むことを特徴とする窒素及び酸素の製造方法。
A method for producing nitrogen and oxygen from air by a cryogenic separation method,
A first separation step of separating the compressed, purified and cooled raw material air into a first nitrogen gas fluid and a first oxygen-enriched liquefied fluid by distillation;
Indirect heat exchange is performed between the first nitrogen gas fluid and the first oxygen-enriched liquefied fluid after decompression to condense and liquefy the first nitrogen gas fluid to obtain first liquefied nitrogen, and the first oxygen-enriched fluid A first indirect heat exchange step of evaporating and gasifying the liquefied fluid to obtain a first oxygen-enriched gas fluid;
A second separation step of cryogenic distillation of a portion of the first oxygen-enriched gas fluid to separate it into a second nitrogen gas fluid and a second oxygen-enriched liquefied fluid;
A third separation step of low-temperature distillation of the second oxygen-enriched liquefied fluid after decompression to rectify and separate into a second oxygen-enriched gas fluid and a high-purity oxygen liquefied fluid;
A portion of the second nitrogen gas fluid and the high purity oxygen liquefied fluid are indirectly heat exchanged to condense and liquefy the second nitrogen gas fluid to obtain second liquefied nitrogen, and a portion of the high purity oxygen liquefied fluid A second indirect heat exchange step for obtaining a high purity oxygen gas fluid by evaporating the gas;
A first product recovery step of deriving a part of the first nitrogen gas fluid as first product nitrogen gas after heat recovery;
A second product recovery step of deriving a part of the second nitrogen gas fluid as second product nitrogen gas after heat recovery;
A liquid acid compression step in which a portion of the high purity oxygen liquefied fluid is pressurized in a liquid state to form liquid oxygen;
A third product recovery step of deriving the pressurized liquid oxygen as product oxygen gas after heat recovery;
A process for producing nitrogen and oxygen.
前記第2分離工程を第2精留塔で実施し、
前記第3分離工程で低温蒸留する前記第2酸素富化液化流体が、前記第2精留塔の塔底よりも上の位置から導出したものであることを特徴とする請求項1に記載の窒素及び酸素の製造方法。
Performing the second separation step in a second rectification column;
The second oxygen-enriched liquefied fluid that is subjected to low-temperature distillation in the third separation step is derived from a position above the bottom of the second rectification column. A method for producing nitrogen and oxygen.
前記第1分離工程を第1精留塔で実施し、
前記第2分離工程で低温蒸留する前記第1酸素富化液化流体が、前記第1精留塔の塔底よりも上の位置から導出したものであることを特徴とする請求項1に記載の窒素及び酸素の製造方法。
Carrying out the first separation step in a first rectification column;
The first oxygen-enriched liquefied fluid that is subjected to low-temperature distillation in the second separation step is derived from a position above the bottom of the first rectifying column. A method for producing nitrogen and oxygen.
前記第1酸素富化ガス流体の一部を膨張タービンに導入して寒冷を発生させる寒冷発生工程を含むことを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒素及び酸素の製造方法。   The nitrogen and oxygen according to any one of claims 1 to 3, further comprising a cold generating step of generating a cold by introducing a part of the first oxygen-enriched gas fluid into an expansion turbine. Manufacturing method. 前記原料空気の一部を膨張タービンに導入して寒冷を発生させる寒冷発生工程を含むことを特徴とする請求項1または請求項2に記載の窒素及び酸素の製造方法。   The method for producing nitrogen and oxygen according to claim 1 or 2, further comprising a cold generation step of generating a cold by introducing a part of the raw material air into an expansion turbine. 深冷分離法によって原料空気から窒素及び酸素を製造する装置であって、
圧縮、精製、冷却された原料空気を低温蒸留して塔頂部の第1窒素ガス流体と塔底部の第1酸素富化液化流体とに精留分離する第1精留塔と、
前記第1窒素ガス流体と減圧弁で減圧した前記第1酸素富化液化流体とを間接熱交換させて、前記第1窒素ガス流体を凝縮液化して第1液化窒素を得るとともに、前記第1酸素富化液化流体を蒸発ガス化して第1酸素富化ガス流体を得る第1凝縮器と、
前記第1酸素富化ガス流体の一部を低温蒸留して、塔頂部の第2窒素ガス流体と塔底部の第2酸素富化液化流体とに精留分離する第2精留塔と、
減圧後の前記第2酸素富化液化流体を低温蒸留して、塔頂部の第2酸素富化ガス流体と塔底部の高純酸素液化流体とに精留分離する第3精留塔と、
前記第2窒素ガス流体と前記高純酸素液化流体の一部を間接熱交換させて、前記第2窒素ガス流体を凝縮液化して第2液化窒素を得るとともに、前記高純酸素液化流体の一部を蒸発ガス化して高純酸素ガス流体を得る第2凝縮器と、
本装置に必要な寒冷を発生させる膨張タービンと、
前記高純酸素液化流体の一部を液状態で加圧して液体酸素とするポンプと、
前記第1窒素ガスの一部を熱回収後に第1製品窒素ガスとして導出する第1製品回収管路と、
前記第2窒素ガスの一部を熱回収後に第2製品窒素ガスとして導出する第2製品回収管路と、
加圧された前記高純酸素液流体を熱回収後に製品酸素ガスとして導出する第3製品回収管路と、
を有することを特徴とする窒素及び酸素の製造装置。
An apparatus for producing nitrogen and oxygen from raw air by a cryogenic separation method,
A first rectifying column for subjecting the compressed, purified and cooled raw material air to low temperature distillation to rectify and separate into a first nitrogen gas fluid at the top of the column and a first oxygen-enriched liquefied fluid at the bottom of the column;
Indirect heat exchange is performed between the first nitrogen gas fluid and the first oxygen-enriched liquefied fluid decompressed by a pressure reducing valve to condense and liquefy the first nitrogen gas fluid to obtain first liquefied nitrogen, and the first A first condenser for evaporating and gasifying the oxygen enriched liquefied fluid to obtain a first oxygen enriched gas fluid;
A second rectifying column for subjecting a part of the first oxygen-enriched gas fluid to low-temperature distillation to rectify and separate into a second nitrogen gas fluid at the top of the column and a second oxygen-enriched liquefied fluid at the bottom of the column;
A third rectifying column for subjecting the second oxygen-enriched liquefied fluid after decompression to low-temperature distillation to rectify and separate into a second oxygen-enriched gas fluid at the top of the column and a high-purity oxygen liquefied fluid at the bottom of the column;
The second nitrogen gas fluid and a part of the high pure oxygen liquefied fluid are indirectly heat exchanged to condense and liquefy the second nitrogen gas fluid to obtain second liquefied nitrogen, and one of the high pure oxygen liquefied fluids. A second condenser for evaporating the gas to obtain a high purity oxygen gas fluid;
An expansion turbine that generates the cold necessary for the device;
A pump that pressurizes a portion of the high purity oxygen liquefied fluid in a liquid state to form liquid oxygen;
A first product recovery line for deriving a part of the first nitrogen gas as a first product nitrogen gas after heat recovery;
A second product recovery line for deriving a part of the second nitrogen gas as a second product nitrogen gas after heat recovery;
A third product recovery line for deriving the pressurized high pure oxygen liquid fluid as product oxygen gas after heat recovery;
An apparatus for producing nitrogen and oxygen, comprising:
前記第3精留塔に導入する前記第2酸素富化液化流体を導出する管路が、前記第2精留塔の塔底よりも上の位置に接続されていることを特徴とする請求項6に記載の窒素及び酸素の製造装置。   The pipe line for leading out the second oxygen-enriched liquefied fluid introduced into the third rectifying column is connected to a position above the bottom of the second rectifying column. 6. The apparatus for producing nitrogen and oxygen according to 6. 前記第1凝縮器に導入する前記第1酸素富化液化流体を導出する管路が、前記第1精留塔の塔底よりも上の位置に接続されていることを特徴とする請求項6に記載の窒素及び酸素の製造装置。   The pipe line for leading out the first oxygen-enriched liquefied fluid introduced into the first condenser is connected to a position above the bottom of the first rectification tower. 2. The apparatus for producing nitrogen and oxygen according to 1.
JP2010047867A 2010-03-04 2010-03-04 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus. Expired - Fee Related JP5307055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047867A JP5307055B2 (en) 2010-03-04 2010-03-04 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047867A JP5307055B2 (en) 2010-03-04 2010-03-04 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.

Publications (2)

Publication Number Publication Date
JP2011185448A JP2011185448A (en) 2011-09-22
JP5307055B2 true JP5307055B2 (en) 2013-10-02

Family

ID=44791963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047867A Expired - Fee Related JP5307055B2 (en) 2010-03-04 2010-03-04 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.

Country Status (1)

Country Link
JP (1) JP5307055B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776685A (en) * 2014-03-19 2015-07-15 摩尔动力(北京)技术股份有限公司 Method and system for preparing low-oxygen liquid nitrogen
JP6738126B2 (en) * 2015-02-03 2020-08-12 エア・ウォーター・クライオプラント株式会社 Air separation device
JP2016188751A (en) * 2015-03-30 2016-11-04 大陽日酸株式会社 Nitrogen and oxygen manufacturing method, and nitrogen and oxygen manufacturing device
JP6591830B2 (en) * 2015-08-20 2019-10-16 大陽日酸株式会社 Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
JP6546504B2 (en) * 2015-10-20 2019-07-17 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Oxygen production system and oxygen production method
JP6086272B1 (en) * 2016-02-23 2017-03-01 大陽日酸株式会社 Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
CN113790575A (en) * 2021-09-17 2021-12-14 东台宏仁气体有限公司 High-purity oxygen manufacturing device and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633934B2 (en) * 1985-04-02 1994-05-02 大同ほくさん株式会社 Air separation device
US5337570A (en) * 1993-07-22 1994-08-16 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen
GB9325648D0 (en) * 1993-12-15 1994-02-16 Boc Group Plc Air separation
US5402647A (en) * 1994-03-25 1995-04-04 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure nitrogen
US5934104A (en) * 1998-06-02 1999-08-10 Air Products And Chemicals, Inc. Multiple column nitrogen generators with oxygen coproduction
DE10045128A1 (en) * 2000-09-13 2002-03-21 Linde Ag Method and device for producing high-purity nitrogen by low-temperature air separation
JP4401999B2 (en) * 2005-03-31 2010-01-20 大陽日酸株式会社 Air separation method and air separation device

Also Published As

Publication number Publication date
JP2011185448A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JP5655104B2 (en) Air separation method and air separation device
JP6440232B1 (en) Product nitrogen gas and product argon production method and production apparatus thereof
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JP5417054B2 (en) Air separation method and apparatus
US9625209B2 (en) Method for cryogenically separating a mixture of nitrogen and carbon monoxide
JP5032407B2 (en) Nitrogen production method and apparatus
JP4401999B2 (en) Air separation method and air separation device
US20130086941A1 (en) Air separation method and apparatus
JP4206083B2 (en) Argon production method using cryogenic air separator
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JP6086272B1 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
JP2016188751A (en) Nitrogen and oxygen manufacturing method, and nitrogen and oxygen manufacturing device
JP5642923B2 (en) Air separation method
JP2017072282A (en) Nitrogen manufacturing method and nitrogen manufacturing device
JP5997105B2 (en) Air separation method
JP5027173B2 (en) Argon production method and apparatus thereof
JP5005708B2 (en) Air separation method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4782077B2 (en) Air separation method and apparatus
US10018414B2 (en) Method for the production of low pressure gaseous oxygen
JP6591830B2 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
CN103917284A (en) Process and apparatus for separating a gas rich in carbon dioxide by distillation
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP4451438B2 (en) Nitrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees