JP6546504B2 - Oxygen production system and oxygen production method - Google Patents

Oxygen production system and oxygen production method Download PDF

Info

Publication number
JP6546504B2
JP6546504B2 JP2015206122A JP2015206122A JP6546504B2 JP 6546504 B2 JP6546504 B2 JP 6546504B2 JP 2015206122 A JP2015206122 A JP 2015206122A JP 2015206122 A JP2015206122 A JP 2015206122A JP 6546504 B2 JP6546504 B2 JP 6546504B2
Authority
JP
Japan
Prior art keywords
oxygen
flow path
liquid
introducing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015206122A
Other languages
Japanese (ja)
Other versions
JP2017078532A (en
Inventor
献児 廣瀬
献児 廣瀬
大祐 永田
大祐 永田
享祐 守屋
享祐 守屋
剛 梶川
剛 梶川
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority to JP2015206122A priority Critical patent/JP6546504B2/en
Priority to TW105132185A priority patent/TWI687633B/en
Priority to CN201610908706.7A priority patent/CN106595221B/en
Publication of JP2017078532A publication Critical patent/JP2017078532A/en
Application granted granted Critical
Publication of JP6546504B2 publication Critical patent/JP6546504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04963Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipment within or downstream of the fractionation unit(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、酸素製造システム及び酸素製造方法に関する。特に、窒素製造プロセスにおける排出流体を利用して酸素ガス及び液体酸素を効率的に製造するための酸素製造システム及び酸素製造方法に関する。   The present invention relates to an oxygen production system and an oxygen production method. In particular, the present invention relates to an oxygen production system and an oxygen production method for efficiently producing oxygen gas and liquid oxygen using an exhaust fluid in a nitrogen production process.

従来、酸素の製造装置の一つとして、低温空気分離プラントが広く知られている。一般に、低温空気分離プラントは、複数の蒸留塔を使用して順次分離効率を上げて、最終製品として、主として窒素、酸素及びアルゴンを製造することができる。   Conventionally, a low temperature air separation plant is widely known as one of oxygen production devices. Generally, low temperature air separation plants can use multiple distillation columns to increase separation efficiency sequentially to produce mainly nitrogen, oxygen and argon as final products.

半導体プロセスを含めた窒素の需要は、酸素などの他のガスの需要に比べて非常に大きい。そのため、市場での使用量と生産量とのバランスがとられる結果、窒素製造装置が多く用いられている。窒素製造装置は、主として空気を原料とし、圧縮・精製プロセスを経由して窒素ガス及び液体窒素を製造する。しかし、窒素製造装置では、窒素を製造する際に、酸素を多く含んだガスを、廃ガスとして排出していた。   The demand for nitrogen, including semiconductor processes, is much greater than the demand for other gases such as oxygen. Therefore, as a result of balancing the amount of use and the amount of production in the market, a nitrogen production apparatus is often used. Nitrogen production equipment mainly uses air as a raw material, and produces nitrogen gas and liquid nitrogen through compression and purification processes. However, in the nitrogen production apparatus, when producing nitrogen, a gas containing a large amount of oxygen is discharged as waste gas.

一方、窒素のみの需要が主である工場あるいは地域であっても、既存の窒素製造装置の近傍に酸素の需要が生じる場合がある。このような場合には、上記の窒素製造装置からの廃ガスを利用する酸素製造装置を設置して酸素を製造することや、新たな酸素製造装置を設置して、空気を原料として常温分離法や深冷分離法などによって酸素を製造することが行われる。   On the other hand, even in a factory or a region where the demand for nitrogen alone is main, the demand for oxygen may occur in the vicinity of the existing nitrogen production apparatus. In such a case, an oxygen production apparatus utilizing waste gas from the above-mentioned nitrogen production apparatus is installed to produce oxygen, or a new oxygen production apparatus is installed to carry out a room temperature separation method using air as a raw material. Production of oxygen is carried out by a cryogenic separation method or the like.

既存の窒素製造装置を利用した酸素の製造方法としては、例えば、特許文献1に開示されたような装置を例示することができる。係る装置は、図4に示すように、原料空気中の水分及び炭酸ガスを除去した後、その全量を窒素精留塔10に導入して冷却液化させること、窒素精留塔10から製品としての窒素を採取すること、窒素精留塔10にて得られる酸素リッチ液化空気を窒素凝縮器14の冷熱源として使用すること、成出した酸素リッチ液化空気を酸素精留塔20のリボイラ24の加熱源として使用すること、並びに、凝縮して成出した酸素リッチ液化空気を酸素精留塔20の酸素原料及び還流液として使用することを含んでおり、窒素の回収率を維持しながら酸素を製造している。   As an oxygen production method using an existing nitrogen production apparatus, for example, an apparatus as disclosed in Patent Document 1 can be exemplified. The apparatus concerned, as shown in FIG. 4, removes the moisture and carbon dioxide in the feed air, and then introduces the whole into the nitrogen rectification column 10 for cooling and liquefying, and from the nitrogen rectification column 10 as a product Collecting nitrogen, using oxygen-rich liquefied air obtained in the nitrogen rectification column 10 as a cold heat source of the nitrogen condenser 14, heating the reboiler 24 of the oxygen rectification column 20 produced oxygen-rich liquefied air Use as a source, and using condensed and produced oxygen-rich liquefied air as the oxygen source and reflux liquid of the oxygen rectification column 20, producing oxygen while maintaining the nitrogen recovery rate doing.

特許第3203181号公報Patent No. 3203181

既存の窒素製造装置の近傍にて酸素の製造を行う場合、酸素製造装置を新しく設置すると経済的な負担が大きくなる。またこの場合には、既存の窒素製造装置及び新設した酸素製造装置の両方から副生された酸素ガスあるいは窒素ガスが廃出されることになり、排ガスやエネルギーにおけるロスが大きい。そこで、既存の窒素製造装置の近傍にて酸素の製造を行う場合、特許文献1に開示されたような、窒素製造装置に付帯的に酸素製造装置を設置する方法を用いることが考えられるが、以下のような問題が懸念される。   In the case of producing oxygen in the vicinity of the existing nitrogen production apparatus, installing a new oxygen production apparatus increases the economic burden. Also, in this case, oxygen gas or nitrogen gas by-produced from both the existing nitrogen production apparatus and the newly built oxygen production apparatus is discarded, and the loss in exhaust gas and energy is large. Therefore, when oxygen is produced in the vicinity of the existing nitrogen production apparatus, it is conceivable to use a method of additionally installing an oxygen production apparatus on the nitrogen production apparatus as disclosed in Patent Document 1, The following issues are of concern.

すなわち、特許文献1に開示された方法では、窒素製造装置の下部にある空間に溜まった酸素リッチ液化空気が、膨張弁を介して第二精留塔の精留部の上部に供給される。そして、下方から上昇する気体とこれに向流する液体とが気液接触することにより、下降する
液体から低沸点成分(特に酸素)が放出される。これにより、酸素の濃度が高まった状態で第二精留塔の下部にある空間に溜まることになる。そして第二精留塔の下部にある空間に溜まった酸素リッチなガスは製品酸素ガスとして払いだされる。
That is, in the method disclosed in Patent Document 1, the oxygen-rich liquefied air accumulated in the space in the lower part of the nitrogen production apparatus is supplied to the upper part of the rectification section of the second rectification column via the expansion valve. Then, when the gas rising from the lower side and the liquid countercurrently come into gas-liquid contact, the low boiling point component (especially oxygen) is released from the descending liquid. As a result, the oxygen concentration will be accumulated in the space in the lower part of the second rectification column in a state where the concentration is increased. The oxygen rich gas accumulated in the space at the bottom of the second rectification column is discharged as product oxygen gas.

ところが、当該酸素中には、原料空気中に含まれているメタン等の高温沸点成分が残留しているという問題があった。つまり、特許文献1に記載の方法では、高純度の酸素、具体的には純度99.9999%程度の酸素を得ることができない。したがって、特許文献1に記載の方法によって高純度の酸素を製造する場合には、高温下における貴金属触媒反応を利用してメタン等の高沸点成分を水分、二酸化炭素に転化し、さらに合成ゼオライト等を吸着材とする圧力式変動装置によって酸素ガスを精製する必要があった。そのため、設備投資や、触媒反応に必要な温度を得るための熱源、及び不純物を吸着したゼオライト等の再生のために電力を要するという問題があった。   However, there is a problem that high-temperature boiling components such as methane contained in the feed air remain in the oxygen. That is, the method described in Patent Document 1 can not obtain highly pure oxygen, specifically, about 99.9999% pure oxygen. Therefore, in the case of producing high purity oxygen by the method described in Patent Document 1, high-boiling components such as methane are converted to moisture and carbon dioxide by using a noble metal catalyzed reaction under high temperature, and synthetic zeolite etc. It is necessary to purify oxygen gas by a pressure type fluctuation device which uses as an adsorbent. Therefore, there has been a problem that it requires power for equipment investment, a heat source for obtaining a temperature necessary for the catalytic reaction, and regeneration of zeolite or the like having adsorbed impurities.

また、酸素リッチ液化空気を酸素製造装置の原料として利用するだけでは、全体としての製造の効率は必ずしも十分とは言えなかった。すなわち、窒素製造装置及び酸素製造装置の両者を組み合わせて効率よく窒素、酸素を製造する場合には、エネルギー及び排出ガス等の全体の収支をさらに考慮する必要がある。   In addition, it was not possible to say that the efficiency of production as a whole was sufficient only by utilizing oxygen-rich liquefied air as a raw material of the oxygen production apparatus. That is, when nitrogen and oxygen are efficiently produced by combining both the nitrogen production apparatus and the oxygen production apparatus, it is necessary to further consider the overall balance of energy and exhaust gas.

従って、本発明の幾つかの態様に係る目的の一つは、既存の窒素製造プロセスへの影響を小さく抑え、高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を効率的に製造することのできる酸素製造システム及び酸素製造方法を提供することにある。   Therefore, one of the objects according to some aspects of the present invention is to efficiently produce at least one of high purity oxygen gas and high purity liquid oxygen while minimizing the influence on the existing nitrogen production process. An oxygen production system and an oxygen production method that can

本発明は、上記課題の少なくとも一部を解決するために為されたものであり、以下の態様又は適用例として実現することができる。   The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following aspects or application examples.

本発明に係る酸素製造システムの一態様は、
窒素製造装置及び酸素製造装置を組み合わせた酸素製造システムであって、
前記酸素製造装置は、
冷却された加圧空気が導入される容器(A)と、
下部に凝縮−蒸発器(B)を有する精留塔(C)と、
を備えており、
前記容器(A)底部に貯液された液体を導出する第1流路と、
前記第1流路から導出された前記液体の一部を前記精留塔(C)上部に導入するための第2流路と、
前記窒素製造装置から酸素リッチ液化空気の少なくとも一部を導出し前記精留塔(C)中間段に導入するための第3流路と、
前記第1流路から分岐した、前記液体の少なくとも一部を前記窒素製造装置に寒冷源として導入するための第4流路と、
前記精留塔(C)底部側からの理論段数が5〜10段の範囲内の位置から、前記凝縮−蒸発器(B)において液化空気の凝縮熱により気化した酸素ガスを導出する第5流路と、を備える。
One aspect of the oxygen production system according to the present invention is
An oxygen production system combining nitrogen production equipment and oxygen production equipment, comprising:
The oxygen production device
A container (A) into which cooled pressurized air is introduced;
A rectification column (C) having a condensation-evaporator (B) in the lower part,
Equipped with
A first flow path for discharging the liquid stored in the bottom of the container (A);
A second flow path for introducing a part of the liquid derived from the first flow path into the upper part of the rectification column (C);
A third flow path for leading out at least a part of oxygen-rich liquefied air from the nitrogen production apparatus and introducing it into the middle stage of the rectification column (C);
A fourth flow path branched from the first flow path for introducing at least a part of the liquid into the nitrogen production apparatus as a cold source;
A fifth flow for deriving oxygen gas vaporized by condensation heat of the liquefied air in the condensation-evaporator (B) from the position where the number of theoretical plates from the bottom side of the rectification column (C) is in the range of 5 to 10 And a road.

このような酸素製造システムによれば、既存の窒素製造プロセスへの影響を小さく抑え、高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を効率的に製造することができる。   According to such an oxygen production system, the influence on the existing nitrogen production process can be minimized, and at least one of high purity oxygen gas and high purity liquid oxygen can be efficiently produced.

単独の窒素製造装置では、典型的には約30%以上の酸素を含む酸素リッチ液化空気が余剰となり得る。本発明に係る酸素製造システムでは、係る酸素リッチ液化空気を酸素製造装置の原料として利用する。すなわち、本発明に係る酸素製造システムでは、係る原料
を酸素製造装置に供給して高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を製品として得ることができる。さらに、本発明に係る酸素製造システムでは、酸素製造装置で余剰となった液化空気を窒素製造装置に寒冷源として供給する。これにより、窒素製造装置のパフォーマンスの低下を抑え、エネルギー及び排出ガスの無駄を小さく抑えて高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を効率的に製造することができる。
In a single nitrogen production system, oxygen-rich liquefied air, which typically contains about 30% or more oxygen, can be surplus. In the oxygen production system according to the present invention, the oxygen-rich liquefied air is used as a raw material of the oxygen production apparatus. That is, in the oxygen production system according to the present invention, the raw material can be supplied to the oxygen production apparatus to obtain at least one of high purity oxygen gas and high purity liquid oxygen as a product. Furthermore, in the oxygen production system according to the present invention, liquefied air surplus in the oxygen production apparatus is supplied to the nitrogen production apparatus as a cold source. As a result, it is possible to suppress deterioration of the performance of the nitrogen production apparatus and to minimize waste of energy and exhaust gas, thereby efficiently producing at least one of high purity oxygen gas and high purity liquid oxygen.

本発明に係る酸素製造システムにおいて、
前記気化した酸素ガスが液化される酸素液化部(D)と、
前記第1流路から分岐した、前記液体の少なくとも一部を前記酸素液化部(D)に寒冷源として導入するための第6流路と、
前記酸素液化部(D)の内部に配設され、前記気化した酸素ガスが前記第5流路を介して導入される酸素凝縮器(E)と、
前記酸素凝縮器(E)内において生成した液体酸素を導出するための第7流路と、
を備えてもよい。
In the oxygen production system according to the present invention,
An oxygen liquefying unit (D) in which the vaporized oxygen gas is liquefied;
A sixth flow path for introducing at least a part of the liquid branched from the first flow path to the oxygen liquefying unit (D) as a cold source;
An oxygen condenser (E) disposed inside the oxygen liquefying unit (D), wherein the vaporized oxygen gas is introduced through the fifth flow path;
A seventh flow path for discharging liquid oxygen generated in the oxygen condenser (E);
May be provided.

このような酸素製造システムによれば、酸素製造装置において余剰となる低温の液体の一部を、酸素を液化するための寒冷源として利用することができる。これにより、酸素を液化するための寒冷を発生させるためのエネルギーを削減することができる。そのため、例えば、従来では液体窒素等の冷媒を供給していたところ、これを不要とすることができる。   According to such an oxygen production system, a part of the low temperature liquid which becomes surplus in the oxygen production apparatus can be used as a cold source for liquefying oxygen. Thereby, the energy for generating the refrigeration for liquefying oxygen can be reduced. Therefore, for example, when a refrigerant such as liquid nitrogen is conventionally supplied, this can be made unnecessary.

本発明に係る酸素製造システムにおいて、
前記精留塔(C)上段から廃ガスが導出される第8流路と、
前記酸素液化部(D)上段からガス化した前記液体が導出される第9流路と、
を備えてもよい。
In the oxygen production system according to the present invention,
An eighth flow path through which waste gas is derived from the upper portion of the rectification column (C);
A ninth flow path through which the gasified gas is derived from the oxygen liquefier (D) upper stage;
May be provided.

このような酸素製造システムによれば、第8流路により、精留塔(C)内で発生した廃ガスを精留塔(C)外に導出することができ、精留塔(C)内の圧力を適切に保つことができる。また同様に第9流路により、酸素液化部(D)内で熱交換によりガス化した液体を系外に放出することができ、酸素液化部(D)内の圧力を適切に保つことができる。   According to such an oxygen production system, the waste gas generated in the rectification column (C) can be led out of the rectification column (C) by the eighth flow path, and the inside of the rectification column (C) Pressure can be kept properly. Similarly, by the ninth flow path, the liquid gasified by heat exchange in the oxygen liquefying part (D) can be discharged out of the system, and the pressure in the oxygen liquefying part (D) can be appropriately maintained. .

本発明に係る酸素製造システムにおいて、
前記第8流路と、前記第9流路とが合流することにより形成される第10流路と、
前記第10流路を流れる前記廃ガス及び前記ガス化した前記液体の混合ガスが加熱される熱交換器(G)と、
前記加熱された混合ガスが前記第10流路を介して導入される第1加圧手段と、
を備えてもよい。
In the oxygen production system according to the present invention,
A tenth flow path formed by joining the eighth flow path and the ninth flow path;
A heat exchanger (G) in which a mixed gas of the waste gas flowing through the tenth flow path and the gasified liquid is heated;
First pressurizing means for introducing the heated mixed gas through the tenth flow path;
May be provided.

このような酸素製造システムによれば、第10流路を流れる混合ガスが熱交換器(G)にて加熱された後に第1加圧手段に導入される。これにより、廃ガス及びガス化した液体に対して、第1加圧手段をそれぞれ設ける必要がない。また、係る第1加圧手段は、低温仕様の圧縮機等ではなく常温仕様の圧縮機等を用いれば足りるので、例えば、設備コストを小さく抑えることができる。   According to such an oxygen production system, the mixed gas flowing in the tenth flow path is introduced into the first pressurizing means after being heated in the heat exchanger (G). Thus, it is not necessary to provide the first pressurizing means for the waste gas and the gasified liquid, respectively. In addition, since it is sufficient if the first pressure means to be used is not a low temperature specification compressor or the like but a normal temperature specification compressor or the like, equipment cost can be reduced, for example.

本発明に係る酸素製造システムにおいて、
前記第1加圧手段により加圧された前記混合ガスを前記熱交換器(G)に導入する第11流路と、
前記熱交換器(G)内にて冷却された前記混合ガスを前記容器(A)に導入する第12流路と、
を備えてもよい。
In the oxygen production system according to the present invention,
An eleventh flow path for introducing the mixed gas pressurized by the first pressurizing means into the heat exchanger (G);
A twelfth flow path for introducing the mixed gas cooled in the heat exchanger (G) into the container (A);
May be provided.

このような酸素製造システムによれば、第1加圧手段により加圧された混合ガスが熱交換器(G)内にて冷却され、容器(A)に導入される。これにより、製品酸素(高純度の酸素ガス及び高純度の液体酸素の少なくとも一方)の回収率の向上を図ることができる。   According to such an oxygen production system, the mixed gas pressurized by the first pressurizing means is cooled in the heat exchanger (G) and introduced into the container (A). Thereby, the recovery rate of product oxygen (at least one of high purity oxygen gas and high purity liquid oxygen) can be improved.

本発明に係る酸素製造システムにおいて、
前記第7流路を介して前記液体酸素が導入される第2加圧手段と、
前記第2加圧手段により加圧された前記液体酸素を前記熱交換器(G)に導入する第13流路と、
前記熱交換器(G)内にて加熱され、ガス化された酸素を導出する第15流路と、
を備えてもよい。
In the oxygen production system according to the present invention,
A second pressurizing unit through which the liquid oxygen is introduced through the seventh flow path;
A thirteenth flow path for introducing the liquid oxygen pressurized by the second pressure means into the heat exchanger (G);
A fifteenth flow path which is heated in the heat exchanger (G) to lead out gasified oxygen;
May be provided.

このような酸素製造システムによれば、液体酸素が第2加圧手段によって加圧された後に、熱交換器(G)内にて加熱される。これにより、加圧された酸素ガスを得ることができる。また、加圧された液体酸素が熱交換器内で加熱されて蒸発するが、本発明に係る酸素製造システムでは、得られる液体酸素におけるメタン等の炭化水素の濃度が非常に低く抑えられる。そのため、熱交換器(G)内にて炭化水素類が固化しにくく、熱交換器(G)内にメタン等の炭化水素類が蓄積しにくいため、より安全に高純度の酸素ガスを製造することができる。   According to such an oxygen production system, after the liquid oxygen is pressurized by the second pressurizing means, it is heated in the heat exchanger (G). Thereby, pressurized oxygen gas can be obtained. Further, although pressurized liquid oxygen is heated and evaporated in the heat exchanger, the concentration of hydrocarbons such as methane in the obtained liquid oxygen can be suppressed to a very low level in the oxygen production system according to the present invention. Therefore, it is difficult to solidify the hydrocarbons in the heat exchanger (G), and it is difficult to accumulate hydrocarbons such as methane in the heat exchanger (G), and therefore, the oxygen gas of high purity can be manufactured more safely. be able to.

本発明に係る酸素製造方法の一態様は、
冷却された加圧空気が導入される容器(A)と、下部に凝縮−蒸発器(B)を有する精留塔(C)と、を備えている酸素製造装置を、窒素製造装置に組み合わせて用いる酸素製造方法であって、
前記容器(A)底部に貯液された液体を第1流路を介して導出する工程と、
前記導出された液体の一部を、前記精留塔(C)上部に第2流路を介して導入する工程と、
前記窒素製造装置から酸素リッチ液化空気の少なくとも一部を導出し、第3流路を介して前記精留塔(C)中間段に導入する工程と、
第4流路を介して、前記液体の少なくとも一部を前記窒素製造装置に寒冷源として導入する工程と、
前記精留塔(C)底部側からの理論段数が5〜10段の範囲内の位置から、前記凝縮−蒸発器(B)において液化空気の凝縮熱により気化した酸素ガスを第5流路を介して導出する工程と、
を有する。
One aspect of the method for producing oxygen according to the present invention is
In combination with a nitrogen production system, an oxygen production system comprising a vessel (A) into which cooled pressurized air is introduced and a rectification column (C) having a condensation-evaporator (B) at the bottom thereof A method of producing oxygen to be used,
Discharging the liquid stored in the bottom of the container (A) through the first flow path;
Introducing a part of the derived liquid into the upper part of the rectification column (C) via a second flow path;
Drawing out at least a part of oxygen-rich liquefied air from the nitrogen production apparatus and introducing it into the intermediate stage of the rectification column (C) through a third flow path;
Introducing at least a portion of the liquid into the nitrogen production apparatus as a cold source via a fourth flow path;
From the position where the theoretical plate number from the bottom side of the rectification column (C) is in the range of 5 to 10, the oxygen gas vaporized by the condensation heat of the liquefied air in the condensation-evaporator (B) is taken as the fifth flow path Deriving through
Have.

このような酸素製造方法によれば、既存の窒素製造プロセスへの影響を小さく抑え、高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を効率的に製造することができる。   According to such an oxygen production method, at least one of high purity oxygen gas and high purity liquid oxygen can be efficiently produced while minimizing the influence on the existing nitrogen production process.

本発明に係る酸素製造方法において、
前記酸素製造装置は、酸素液化部(D)と、酸素凝縮器(E)と、を備え、
第6流路を介して前記液体の少なくとも一部を前記酸素液化部(D)に寒冷源として導入する工程と、
前記気化した酸素ガスを、前記第5流路を介して前記酸素凝縮器(E)に導入する工程と、
前記酸素凝縮器(E)内において生成した液体酸素を、第7流路を介して導出する工程と、
を有してもよい。
In the method for producing oxygen according to the present invention,
The oxygen production apparatus includes an oxygen liquefying unit (D) and an oxygen condenser (E),
Introducing at least a portion of the liquid into the oxygen liquefying unit (D) as a cold source via a sixth flow path;
Introducing the vaporized oxygen gas into the oxygen condenser (E) through the fifth flow path;
Discharging the liquid oxygen generated in the oxygen condenser (E) through a seventh flow path;
May be included.

このようにすれば、酸素製造装置において余剰となる低温の液体の一部を、酸素を液化するための寒冷源として利用することができる。これにより、酸素を液化するための寒冷を発生させるためのエネルギーを削減することができる。そのため、例えば、従来では液体窒素等の冷媒を供給していたところ、これを不要とすることができる。   In this way, a part of the low temperature liquid which becomes excessive in the oxygen production apparatus can be used as a cold source for liquefying oxygen. Thereby, the energy for generating the refrigeration for liquefying oxygen can be reduced. Therefore, for example, when a refrigerant such as liquid nitrogen is conventionally supplied, this can be made unnecessary.

本発明に係る酸素製造方法において、
前記精留塔(C)上段から第8流路を介して廃ガスを導出する工程と、
前記酸素液化部(D)上段から第9流路を介してガス化した前記液体を導出する工程と、
を有してもよい。
In the method for producing oxygen according to the present invention,
Discharging the waste gas from the upper portion of the rectification column (C) through the eighth flow path;
Discharging the gasified liquid from the upper stage of the oxygen liquefying unit (D) through a ninth flow path;
May be included.

このようにすれば、第8流路により、精留塔(C)内で発生した廃ガスを精留塔(C)外に導出することができ、精留塔(C)内の圧力を適切に保つことができる。また同様に第9流路により、酸素液化部(D)内で熱交換によりガス化した液体を系外に放出することができ、酸素液化部(D)内の圧力を適切に保つことができる。   In this way, the waste gas generated in the rectification column (C) can be led out of the rectification column (C) by the eighth flow path, and the pressure in the rectification column (C) is appropriate. You can keep Similarly, by the ninth flow path, the liquid gasified by heat exchange in the oxygen liquefying part (D) can be discharged out of the system, and the pressure in the oxygen liquefying part (D) can be appropriately maintained. .

本発明に係る酸素製造方法において、
前記酸素製造装置は、熱交換器(G)と、第1加圧手段と、を備え、
前記第8流路と、前記第9流路とを合流させる第10流路を流れる前記廃ガス及び前記ガス化した前記液体の混合ガスを、前記熱交換器(G)において加熱する工程と、
前記加熱された混合ガスを前記第10流路を介して前記第1加圧手段に導入する工程と、
を有してもよい。
In the method for producing oxygen according to the present invention,
The oxygen production apparatus includes a heat exchanger (G) and a first pressurizing unit.
Heating, in the heat exchanger (G), a mixed gas of the waste gas and the gasified liquid flowing in a tenth flow path that combines the eighth flow path and the ninth flow path;
Introducing the heated mixed gas into the first pressurizing means via the tenth flow path;
May be included.

このようにすれば、第10流路を流れる混合ガスが熱交換器(G)にて加熱された後に第1加圧手段に導入される。これにより、廃ガス及びガス化した液体に対して、第1加圧手段をそれぞれ設ける必要がない。また、係る第1加圧手段は、低温仕様の圧縮機等ではなく常温仕様の圧縮機等を用いれば足り、例えば、設備コストを小さく抑えることができる。   According to this, the mixed gas flowing in the tenth flow passage is introduced into the first pressurizing means after being heated by the heat exchanger (G). Thus, it is not necessary to provide the first pressurizing means for the waste gas and the gasified liquid, respectively. Further, it is sufficient for the first pressurizing means to be used if it is not a low temperature specification compressor or the like but a normal temperature specification compressor or the like. For example, the equipment cost can be reduced.

本発明に係る酸素製造方法において、
前記第1加圧手段により加圧された前記混合ガスを、第11流路を介して前記熱交換器(G)に導入し、前記熱交換器(G)内にて冷却する工程と、
前記冷却された混合ガスを、第12流路を介して前記容器(A)に導入する工程と、
を有してもよい。
In the method for producing oxygen according to the present invention,
Introducing the mixed gas pressurized by the first pressurizing unit into the heat exchanger (G) through an eleventh flow path, and cooling the mixed gas in the heat exchanger (G);
Introducing the cooled mixed gas into the container (A) via a twelfth flow path;
May be included.

このようにすれば、第1加圧手段により加圧された混合ガスが熱交換器(G)内にて冷却され、容器(A)に導入される。これにより、製品酸素(高純度の酸素ガス及び高純度の液体酸素の少なくとも一方)の回収率の向上を図ることができる。   In this way, the mixed gas pressurized by the first pressurizing means is cooled in the heat exchanger (G) and introduced into the container (A). Thereby, the recovery rate of product oxygen (at least one of high purity oxygen gas and high purity liquid oxygen) can be improved.

本発明に係る酸素製造方法において、
前記酸素製造装置は、第2加圧手段を備え、
前記液体酸素を、前記第7流路を介して前記第2加圧手段に導入する工程と、
前記第2加圧手段により加圧された前記液体酸素を、第13流路を介して前記熱交換器(G)に導入する工程と、
前記熱交換器(G)内にて加熱されガス化された酸素を、第15流路を介して導出する工程と、
を有してもよい。
In the method for producing oxygen according to the present invention,
The oxygen production apparatus includes a second pressurizing unit.
Introducing the liquid oxygen into the second pressurizing means via the seventh flow path;
Introducing the liquid oxygen pressurized by the second pressurizing unit into the heat exchanger (G) via a thirteenth flow path;
Discharging the oxygen heated and gasified in the heat exchanger (G) through a fifteenth flow path;
May be included.

このようにすれば、液体酸素が第2加圧手段によって加圧された後に、熱交換器(G)
内にて加熱される。これにより、加圧された酸素ガスを得ることができる。また、加圧された液体酸素が熱交換器内で加熱されて蒸発するが、本発明に係る酸素製造方法では、得られる液体酸素におけるメタン等の炭化水素の濃度が非常に低く抑えられる。そのため、熱交換器(G)内にて炭化水素類が固化しにくく、熱交換器(G)内にメタン等の炭化水素類が蓄積しにくいため、より安全に高純度の酸素ガスを製造することができる。
In this way, after the liquid oxygen is pressurized by the second pressurizing means, the heat exchanger (G) is
It is heated inside. Thereby, pressurized oxygen gas can be obtained. Further, although pressurized liquid oxygen is heated and evaporated in the heat exchanger, the concentration of hydrocarbons such as methane in the obtained liquid oxygen can be suppressed to a very low level by the method for producing oxygen according to the present invention. Therefore, it is difficult to solidify the hydrocarbons in the heat exchanger (G), and it is difficult to accumulate hydrocarbons such as methane in the heat exchanger (G), and therefore, the oxygen gas of high purity can be manufactured more safely. be able to.

本発明に係る酸素製造システム又は酸素製造方法によれば、窒素製造装置から排出される酸素リッチ液化空気を酸素製造装置の原料として利用し、かつ、酸素製造装置で余剰となった液化空気を窒素製造装置に寒冷源として供給する。これにより、窒素製造装置のパフォーマンスを低下させずに、エネルギー及び排出ガスの無駄を小さく抑えて高純度の酸素ガス及び高純度の液体酸素の少なくとも一方を効率的に製造することができる。   According to the oxygen production system or the oxygen production method of the present invention, the oxygen-rich liquefied air discharged from the nitrogen production apparatus is used as a raw material of the oxygen production apparatus, and the liquefied air surplus in the oxygen production apparatus is nitrogen Supply to manufacturing equipment as a cold source. As a result, waste of energy and exhaust gas can be reduced and at least one of high purity oxygen gas and high purity liquid oxygen can be efficiently produced without reducing the performance of the nitrogen production apparatus.

本発明に係る窒素製造装置と酸素製造装置の関係性の概念を示す概略図。Schematic which shows the concept of the relationship between the nitrogen production apparatus which concerns on this invention, and an oxygen production apparatus. 本発明に係る酸素製造装置の供給装置の第1構成例を示す概略図。Schematic which shows the 1st structural example of the supply apparatus of the oxygen production apparatus which concerns on this invention. 本発明に係る窒素製造装置の具体例を記した、第1構成例における詳細を例示する概略図。The schematic diagram which illustrates the detail in the 1st structural example which described the specific example of the nitrogen production apparatus based on this invention. 従来の窒素製造装置に併設される酸素製造装置の構成例を示す概略図。Schematic which shows the structural example of the oxygen production apparatus put side by side with the conventional nitrogen production apparatus.

以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Note that the embodiments described below do not unduly limit the contents of the present invention described in the claims. Further, not all of the configurations described below are necessarily essential configuration requirements of the present invention.

本発明に係る酸素製造システムは、窒素製造装置及び酸素製造装置を組み合わせた酸素製造システムである。そして、酸素製造装置は、容器(A)と、精留塔(C)と、を備えている。また、酸素製造装置は、第1流路と、第2流路と、第3流路と、第4流路と、第5流路と、を備えている。   An oxygen production system according to the present invention is an oxygen production system combining a nitrogen production apparatus and an oxygen production apparatus. And an oxygen production apparatus is equipped with a container (A) and a rectification column (C). In addition, the oxygen production device includes a first flow path, a second flow path, a third flow path, a fourth flow path, and a fifth flow path.

1.酸素製造装置の概要
図1は、酸素製造システムの概念を示した図である。図1に示すように、本実施形態に係る酸素製造システムは窒素製造装置と酸素製造装置とが、少なくとも窒素製造装置からの酸素リッチ液化空気供給路と酸素製造装置からの液化空気供給によって結合された構成である。
1. Overview of Oxygen Production Apparatus FIG. 1 is a view showing the concept of an oxygen production system. As shown in FIG. 1, in the oxygen production system according to the present embodiment, the nitrogen production apparatus and the oxygen production apparatus are combined by at least an oxygen-rich liquefied air supply path from the nitrogen production apparatus and liquefied air supply from the oxygen production apparatus. Configuration.

本実施形態の酸素製造システムは、加圧空気を供給するための圧縮機1と、加圧空気に含有される水分及び二酸化炭素を除去するための空気精製システムと、水分及び二酸化炭素が除去された空気が導入され、精留されることにより窒素ガスが生成される窒素製造装置と、窒素製造装置から酸素リッチ液化空気が導入され、精留されることにより酸素が生成される酸素製造装置と、を備えている。   In the oxygen production system of the present embodiment, a compressor 1 for supplying pressurized air, an air purification system for removing moisture and carbon dioxide contained in the pressurized air, moisture and carbon dioxide are removed. Air is introduced and rectified to produce nitrogen gas, and oxygen-rich liquefied air is introduced from the nitrogen production device, and oxygen is produced by rectification to produce oxygen And.

また、本実施形態の酸素製造システムでは、窒素製造装置の廃ガスは、熱交換手段(図示せず)に導入され常温に戻された後、空気精製システムに戻されるように構成されている。そして、窒素製造装置と酸素製造装置とは、窒素製造装置からの酸素リッチ液化空気及び液化空気の流れにより熱的に接続されており、窒素製造装置から酸素製造装置へと供給された酸素リッチ液化空気とほぼ同量の液化空気が酸素製造装置から窒素製造装置へと供給されるようになっている。   Moreover, in the oxygen production system of the present embodiment, the waste gas of the nitrogen production apparatus is configured to be returned to the air purification system after being introduced into the heat exchange means (not shown) and returned to the normal temperature. The nitrogen production apparatus and the oxygen production apparatus are thermally connected by the flow of oxygen rich liquefied air and liquefied air from the nitrogen production apparatus, and the oxygen rich liquefaction supplied from the nitrogen production apparatus to the oxygen production apparatus Almost the same amount of liquefied air as air is supplied from the oxygen producing device to the nitrogen producing device.

本実施形態の酸素製造システムに含まれる酸素製造装置においては、空気精製システムを介して空気の一部を更に圧縮する圧縮機2と、酸素製造装置から導出されるリサイクル空気を圧縮するための圧縮機3とを備えている。圧縮機2で圧縮された加圧空気及び圧縮機3により圧縮されたリサイクル空気は、酸素製造装置に導入され、凝縮−蒸発器(図示せず)に導入されて間接熱交換されることにより、液化空気を生成し、凝縮−蒸発器の底部に液体として貯液される。余剰の液化空気は、寒冷源として窒素製造装置及び酸素液化部(図示せず)に供給される。酸素製造装置で発生した廃ガスの一部は、廃ガスパージとして窒素製造装置で生成した廃ガスと合流して空気精製システムの再生に用いられる。   In the oxygen production apparatus included in the oxygen production system of the present embodiment, the compressor 2 which further compresses a part of air via the air purification system, and the compression for compressing the recycled air drawn from the oxygen production apparatus The machine 3 is provided. The compressed air compressed by the compressor 2 and the recycled air compressed by the compressor 3 are introduced into an oxygen producing apparatus, introduced into a condensation-evaporator (not shown) and subjected to indirect heat exchange, Liquefied air is produced and stored as liquid in the bottom of the condensation-evaporator. The surplus liquefied air is supplied to a nitrogen producing apparatus and an oxygen liquefying unit (not shown) as a cold source. A part of the waste gas generated in the oxygen production apparatus joins with the waste gas generated in the nitrogen production apparatus as a waste gas purge and is used for the regeneration of the air purification system.

以上のように、本実施形態に係る酸素製造システムによれば、窒素製造装置と酸素製造装置の両方に対して、同時補完的に原料や副生物の利用を図ることができる。   As mentioned above, according to the oxygen production system concerning this embodiment, utilization of materials and by-products can be simultaneously carried out complementarily to both a nitrogen production device and an oxygen production device.

2.酸素製造装置の詳細
図2は、本実施形態に係る酸素製造システムのより具体的な例としての酸素製造システム1000を示す。図2の酸素製造装置は、本実施形態の酸素製造システムに使用可能な装置の一例を示している。図2に示すように、酸素製造システム1000は、窒素製造装置(F)から、酸素リッチ液化空気が酸素原料として第3流路32を介して精留塔(C)の中間段に導入される。ここで酸素リッチ液化空気とは、原料空気(大気)に比較して酸素濃度の高い空気(酸素が富化された空気)が液化したものを指し、例えば酸素濃度が30%以上である液化空気をいう。
2. Details of Oxygen Production Apparatus FIG. 2 shows an oxygen production system 1000 as a more specific example of the oxygen production system according to the present embodiment. The oxygen production apparatus of FIG. 2 shows an example of an apparatus that can be used for the oxygen production system of the present embodiment. As shown in FIG. 2, in the oxygen production system 1000, oxygen-rich liquefied air is introduced as an oxygen source from the nitrogen production apparatus (F) to the intermediate stage of the rectification column (C) via the third flow path 32. . Here, oxygen-rich liquefied air refers to liquefaction of air (oxygen-enriched air) having a higher oxygen concentration than that of the feed air (atmosphere), for example, liquefied air having an oxygen concentration of 30% or more Say

酸素製造システム1000は、精留塔(C)を有している。精留塔(C)の下部には、凝縮−蒸発器(B)が設置されている。また、精留塔(C)の底部には、容器(A)が設けられ、容器(A)の頂部は、凝縮−蒸発器(B)を介して精留塔(C)に熱的にリンクしている。   The oxygen production system 1000 has a rectification column (C). At the lower part of the rectification column (C), a condensation-evaporator (B) is installed. In addition, a vessel (A) is provided at the bottom of the rectification column (C), and the top of the vessel (A) is thermally linked to the rectification column (C) via a condensation-evaporator (B) doing.

容器(A)には、圧縮機200によって加圧された加圧空気及びリサイクル圧縮機300(第1加圧手段)によって加圧された加圧リサイクル空気の少なくとも一方が導入される。加圧空気は、膨張弁(H)で自由膨張にて減圧冷却された後、第14流路21を介して容器(A)に導入される。また、加圧空気及び加圧リサイクル空気は、熱交換器(G)において向流する他の流体と間接熱交換をすることによって、液化温度付近まで冷却された後、容器(A)に導入される。なお、加圧リサイクル空気は第12流路31を介して容器(A)に導入される
加圧空気及び加圧リサイクル空気は、容器(A)に導入され、凝縮−蒸発器(B)に導入される。そして、加圧空気及び加圧リサイクル空気は、凝縮−蒸発器(B)において、精留塔(C)の塔底に貯液される液体酸素を蒸発させるために使われる。すなわち、加圧空気及び加圧リサイクル空気は、一部が液化して、液化空気となり、容器(A)の底部に液体として貯液される。
In the container (A), at least one of pressurized air pressurized by the compressor 200 and pressurized recycle air pressurized by the recycling compressor 300 (first pressurizing unit) is introduced. The pressurized air is decompressed and cooled by free expansion by the expansion valve (H), and then introduced into the container (A) through the fourteenth flow path 21. In addition, the pressurized air and the pressurized recycle air are introduced into the vessel (A) after being cooled to around the liquefaction temperature by performing indirect heat exchange with another fluid countercurrently flowing in the heat exchanger (G). Ru. The pressurized recycle air is introduced into the container (A) through the twelfth flow path 31. The pressurized air and the pressurized recycle air are introduced into the container (A) and introduced into the condensation-evaporator (B) Be done. And pressurized air and pressurized recycle air are used in the condensation-evaporator (B) to evaporate the liquid oxygen stored in the bottom of the rectification column (C). That is, the pressurized air and the pressurized recycle air are partially liquefied to be liquefied air and stored as liquid in the bottom of the container (A).

容器(A)の底部に貯液されている液体(液化空気)は、容器(A)の下部に接続された第1流路22を介して導出され、少なくとも一部は第2流路24を介して精留塔(C)の上部に供給される。また、容器(A)の底部に貯液されている液体(液化空気)は、一部、具体的には窒素製造装置から酸素製造装置に供給される酸素リッチ液化空気と同量の液化空気は、第4流路23を介して窒素製造装置に寒冷源として導入され、少なくとも一部は第6流路25を介して酸素液化部(D)へ寒冷源として供給される。   The liquid (liquefied air) stored in the bottom of the container (A) is drawn out through the first flow passage 22 connected to the lower portion of the container (A), and at least a portion of the liquid is It is supplied to the upper part of the rectification column (C) via In addition, the liquid (liquefied air) stored in the bottom of the container (A) is, in part, specifically the same liquefied oxygen-rich liquefied air supplied from the nitrogen producing device to the oxygen producing device. It is introduced as a cold source into the nitrogen production apparatus through the fourth flow path 23, and at least a part is supplied as a cold source to the oxygen liquefying unit (D) through the sixth flow path 25.

精留塔(C)では、精留塔(C)の上部に供給される還流液(液化空気)及び窒素製造装置から精留塔(C)の中間段に導入された酸素リッチ液化空気は、塔内を流下し、精留塔(C)の底部から上昇する蒸気と気液接触する。これにより精留され塔底に液体酸素が生成される。   In the rectification column (C), the reflux liquid (liquefied air) supplied to the upper part of the rectification column (C) and the oxygen-rich liquefied air introduced from the nitrogen producing apparatus to the middle stage of the rectification column (C) It flows down in the column and comes in gas-liquid contact with the vapor rising from the bottom of the rectification column (C). As a result, rectification is performed to generate liquid oxygen at the bottom of the column.

このとき、精留塔(C)の底部側からの理論段数が5〜10段の範囲内の位置から、メタン濃度が25ppm以下である酸素ガスが第5流路33を介して導出される。また、精留塔(C)の塔底部からは、炭化水素等の濃縮防止用の液体が取り出される(図示せず)。また、精留塔(C)の塔頂部からは組成が空気に近い廃ガスが第8流路27を介して導出される。   At this time, oxygen gas having a methane concentration of 25 ppm or less is derived through the fifth flow path 33 from the position where the number of theoretical plates from the bottom side of the rectification column (C) is in the range of 5 to 10 steps. Further, from the bottom of the rectification column (C), a liquid for preventing concentration such as hydrocarbon is taken out (not shown). Further, from the top of the rectification column (C), waste gas having a composition close to that of air is drawn out through the eighth flow path 27.

酸素製造システム1000は、酸素液化部(D)を有している。精留塔(C)の底部側からの理論段数が5〜10段の範囲内の位置から取り出された酸素ガスは、第5流路33を介して酸素液化部(D)内に配設される酸素凝縮器(E)に導入される。   The oxygen production system 1000 includes an oxygen liquefying unit (D). The oxygen gas taken out from the position in the range of 5 to 10 theoretical plates from the bottom side of the rectification column (C) is disposed in the oxygen liquefying unit (D) through the fifth flow path 33 To the oxygen condenser (E).

酸素液化部(D)では、容器(A)に溜まった液化空気が、第6流路25を介して導入され、酸素ガスと間接的な熱交換が行われる。これによって、酸素ガスは液化され、第7流路34を介して液体酸素が導出される。係る液体酸素は、メタン濃度が25ppm以下であって高純度となっている。   In the oxygen liquefying unit (D), the liquefied air accumulated in the container (A) is introduced through the sixth flow passage 25 to perform an indirect heat exchange with the oxygen gas. As a result, the oxygen gas is liquefied and liquid oxygen is derived through the seventh flow path 34. The liquid oxygen concerned has a methane concentration of 25 ppm or less and has high purity.

一方、酸素液化部(D)で熱交換される液化空気は、酸素ガスの凝縮熱により気化し、酸素液化部(D)の塔頂部から、第9流路26を介して廃ガスとして取り出される。   On the other hand, liquefied air heat-exchanged in the oxygen liquefying part (D) is vaporized by condensation heat of oxygen gas and taken out as waste gas from the top of the oxygen liquefying part (D) through the ninth flow path 26 .

酸素製造システム1000は、熱交換器(G)を有している。精留塔(C)の塔頂部から取り出された廃ガスと、酸素液化部(D)の塔頂部から取り出された廃ガスは合流され、リサイクル空気流を形成した後、熱交換器(G)に導入される。   The oxygen production system 1000 has a heat exchanger (G). The waste gas taken out from the top of the rectification column (C) and the waste gas taken out from the top of the oxygen liquefying part (D) are merged to form a recycle air stream, and then the heat exchanger (G) Introduced to

熱交換器(G)では、リサイクル空気流が、向流する他の流体によって常温付近まで加熱される。リサイクル空気流は、第10流路28を介して導出され、リサイクル圧縮機300(第1加圧手段)によって加圧される。そして昇圧された後に第11流路30を介して熱交換器(G)に導入され、向流する他の流体により液化温度付近まで冷却される。なお、リサイクル空気流は、必要に応じて一部が配管29を介して系外に排出される。   In the heat exchanger (G), the recycle air stream is heated to around normal temperature by another fluid countercurrently flowing. The recycle air flow is led out through the tenth flow passage 28 and pressurized by the recycle compressor 300 (first pressurizing means). Then, the pressure is increased and then introduced into the heat exchanger (G) through the eleventh flow path 30 and cooled to near the liquefaction temperature by the other fluid flowing countercurrently. A part of the recycled air flow is discharged out of the system through the pipe 29 as necessary.

酸素液化部(D)にて生成した高純度の液体酸素は、第7流路34を介して導出され、低温ポンプ350(第2加圧手段)で加圧された後、第13流路35を介して熱交換器(G)に導入される。そして向流する他の流体により常温まで加熱された後、第15流路36を介して酸素ガス(高純度の製品)として導出される。なお、酸素製造システム1000から、酸素を、液体酸素(高純度の製品)として導出する場合には、低温ポンプ350(第2加圧手段)に導入する前で第7流路34を分岐させ、液体酸素を取り出してもよい。また、係る液体酸素は、タンク等の貯蔵手段に送ってもよい。   The high purity liquid oxygen generated in the oxygen liquefying unit (D) is drawn out through the seventh flow passage 34 and pressurized by the low temperature pump 350 (second pressurizing means), and then the thirteenth flow passage 35 Are introduced into the heat exchanger (G). Then, after being heated to normal temperature by another fluid countercurrently flowing, the oxygen gas (high purity product) is led out through the fifteenth flow path 36. In the case where oxygen is derived from the oxygen production system 1000 as liquid oxygen (product of high purity), the seventh flow path 34 is branched before being introduced into the low temperature pump 350 (second pressurizing unit), Liquid oxygen may be taken out. Also, such liquid oxygen may be sent to storage means such as a tank.

酸素製造システム1000では、冷却された加圧空気は、容器(A)に送られる。容器(A)の上部と精留塔(C)とは凝縮−蒸発器(B)を介して熱的にリンクしており、加圧空気の一部は、凝縮−蒸発器(B)に導入されて精留塔(C)塔底に貯液されている液体酸素と間接熱交換される。これにより液化空気となった後、凝縮−蒸発器(B)から導出され、容器(A)の底部に液体として貯液される。   In the oxygen production system 1000, cooled pressurized air is sent to the vessel (A). The top of the vessel (A) and the rectification column (C) are thermally linked via the condensation-evaporator (B), and part of the pressurized air is introduced into the condensation-evaporator (B) It is indirectly heat-exchanged with liquid oxygen stored in the bottom of the rectification column (C). After becoming a liquefied air by this, it is derived | led-out from a condensation-evaporator (B), and is stored as a liquid by the bottom part of a container (A).

そして、容器(A)の下部に設けられた第1流路22を介して導出され、第1流路22から分岐した第2流路25を介して導出された液体の一部が精留塔(C)上部に還流液として導入される。   And a part of the liquid which is derived via the 1st channel 22 provided in the lower part of a container (A), and is led via the 2nd channel 25 branched from the 1st channel 22 is a fractionating column. (C) It is introduced into the upper part as a reflux solution.

窒素製造装置からは、その副生物である酸素リッチ液化空気(窒素製造装置にとっては、低濃度成分)の少なくとも一部を導出し、酸素製造装置に高純度酸素の原料として精留塔(C)の中間段に第3流路32を介して供給する。また、第1流路22から分岐した第
4流路23を介して液体(酸素リッチ液化空気と比較して、窒素分を多く含んでいる)の少なくとも一部が、窒素製造装置に寒冷源として供給される。従って、窒素製造装置の窒素製造プロセスに与える影響を小さく抑え、窒素製造装置から酸素製造装置へと高純度酸素の原料となる酸素リッチ液化空気の供給が可能となる。このように、本実施形態の酸素製造システム1000によれば、窒素の製造と酸素の製造との両方のプロセスに対して同時補完的に原料、副生物、エネルギーなどの利用を図ることができる。
At least a portion of the by-product oxygen-rich liquefied air (low concentration component for nitrogen production equipment) is derived from the nitrogen production equipment, and the oxygen production equipment is used as a raw material for high purity oxygen in the rectification column (C) The second stage 32 is supplied to the second stage via the third channel 32. In addition, at least a portion of the liquid (which contains a larger amount of nitrogen compared to oxygen-rich liquefied air) through the fourth flow path 23 branched from the first flow path 22 serves as a cold source in the nitrogen producing apparatus Supplied. Therefore, the influence of the nitrogen production apparatus on the nitrogen production process can be minimized, and the supply of oxygen-rich liquefied air, which is a raw material of high purity oxygen, from the nitrogen production apparatus to the oxygen production apparatus becomes possible. As described above, according to the oxygen production system 1000 of the present embodiment, it is possible to simultaneously utilize the raw materials, by-products, energy, and the like for the processes of both production of nitrogen and production of oxygen.

これに加えて、本実施形態の酸素製造システム1000によれば、精留塔(C)の底部側からの理論段数が5〜10段の範囲内の位置から、凝縮−蒸発器(B)において加圧空気と熱交換することにより発生する酸素ガスが、第5流路33を介して導出される。そして、メタン等の高沸点の成分が精留塔(C)の上部から下降する酸素リッチ液化空気と気液接触させることにより、メタン等の炭化水素濃度が非常に低い酸素ガス(製品)を製造することができる。さらに、酸素製造システム1000では、窒素製造装置及び酸素製造装置の運転に適した各成分の気液の状態あるいは温度及び/又は圧力を合致させることができる。   In addition to this, according to the oxygen production system 1000 of the present embodiment, in the condensation-evaporator (B) from the position where the number of theoretical plates from the bottom side of the rectification column (C) is in the range of 5-10. An oxygen gas generated by heat exchange with the pressurized air is drawn out through the fifth flow path 33. And, by making high boiling point components such as methane come in gas-liquid contact with oxygen rich liquefied air which descends from the upper part of the rectification column (C), oxygen gas (product) with very low concentration of hydrocarbons such as methane is produced. can do. Furthermore, in the oxygen production system 1000, the state or temperature and / or pressure of the gas and liquid of each component suitable for the operation of the nitrogen production apparatus and the oxygen production apparatus can be matched.

以上の説明の通り、本実施形態の酸素製造システム1000は、既設の窒素製造装置と非常に効率よく機能する組合せにより形成されている。   As described above, the oxygen production system 1000 of the present embodiment is formed by a combination that works very efficiently with the existing nitrogen production apparatus.

なお、酸素製造システム1000を用いることにより製造した高純度の酸素ガス中のメタン濃度を試算したところ、25ppm以下であり、半導体工業等の分野において必要とされる高純度の酸素を製造することができることが分かった。   In addition, when the methane concentration in the high purity oxygen gas produced by using the oxygen production system 1000 is estimated, it is 25 ppm or less, and it is possible to produce the high purity oxygen required in the field of semiconductor industry etc. It turned out that it can be done.

3.窒素製造装置の詳細
次に図3を用いて、酸素製造システム1000の窒素製造装置の詳細を説明する。図2の窒素製造装置は、本実施形態の酸素製造システムに使用可能な装置の一例を示している。窒素製造装置は、例えば高純度の窒素の生産量が、17,000Nm/hr,8.8BarAである。また、これに併設される酸素製造装置は、例えば高純度の酸素の生産量が、500Nm/hr,9.6BarAである。なお以下の項では、各工程のガス、液体の温度、圧力、量等の具体的数値を一例として記載する。しかし、係る値は説明のために記載するものであって、本発明の酸素製造システム、酸素製造方法を何ら限定するものではない。
3. Details of Nitrogen Production Apparatus Next, details of the nitrogen production apparatus of the oxygen production system 1000 will be described with reference to FIG. The nitrogen production apparatus of FIG. 2 shows an example of an apparatus that can be used for the oxygen production system of the present embodiment. In the nitrogen production apparatus, for example, the production amount of high purity nitrogen is 17,000 Nm 3 / hr, 8.8 BarA. In addition, in the oxygen producing apparatus provided in parallel with this, for example, the production amount of high purity oxygen is 500 Nm 3 / hr, 9.6 Bar A. In the following sections, specific numerical values such as the temperature and pressure of gas and liquid in each process, and the amount are described as an example. However, such values are described for the purpose of explanation and do not limit the oxygen production system and the oxygen production method of the present invention.

一例として、原料とする空気は、約29164Nm/hrであり、フィルター(図示せず)で除塵後、供給手段198によって約9.2BarAの圧力まで加圧される。次に、空気精製システム199により水分や二酸化炭素等の不純物が除去される。得られる加圧空気のうち、約704Nm/hrは分岐(T)を経て空気圧縮手段200に導入され、残りの約28910Nm/hrの加圧空気は配管1を介して熱交換器40に導入される。 As one example, the raw air is about 29164 Nm 3 / hr, and after removing dust with a filter (not shown), it is pressurized by the supply means 198 to a pressure of about 9.2 BarA. Next, the air purification system 199 removes impurities such as water and carbon dioxide. Of the obtained pressurized air, about 704 Nm 3 / hr is introduced into the air compression means 200 via the branch (T), and the remaining about 28910 Nm 3 / hr of pressurized air is supplied to the heat exchanger 40 through the pipe 1. be introduced.

加圧空気は、熱交換器内40内で向流する他の流体との間接的な熱交換により約−165℃まで冷却され、冷却状態の加圧空気となり、配管2を介して窒素製造装置(F)の中圧精留塔100の下部へ供給される。   The pressurized air is cooled to about -165 ° C. by indirect heat exchange with another fluid countercurrently flowing in the heat exchanger 40 and becomes pressurized air in a cooled state, and the nitrogen producing apparatus via the pipe 2 It is supplied to the lower part of the medium pressure rectification column 100 of (F).

中圧精留塔100へ供給された加圧空気は、中圧精留塔100の中を上昇して、上方から流下する液体窒素を主成分とする還流液と向流し気液接触状態となる。これによって、気相中の酸素が還流液の中に溶け込み、他方、還流液中の窒素が気化して気相中に放出される。この結果、中圧精留塔100の上部には、窒素ガスが溜まり、下部には酸素リッチ液化空気が溜まる。中圧精留塔100の下部から、約−168℃の酸素リッチ液化空気が、約25056Nm/hrの量で配管3を介して導出され、第1凝縮−蒸発器50を内
部に配設する第1凝縮−蒸発器セクション101へと供給される。
The pressurized air supplied to the medium pressure rectification column 100 ascends in the medium pressure rectification column 100, and is brought into countercurrent flow with the liquid nitrogen-based reflux liquid flowing downward from above. . As a result, oxygen in the gas phase dissolves in the reflux liquid, while nitrogen in the reflux liquid is vaporized and released into the gas phase. As a result, nitrogen gas is accumulated in the upper part of the medium pressure rectification column 100, and oxygen-rich liquefied air is accumulated in the lower part. From the lower part of the medium pressure rectification column 100, oxygen-rich liquefied air of about -168 ° C is derived through the pipe 3 in an amount of about 25056 Nm 3 / hr, and the first condensation-evaporator 50 is disposed inside It is supplied to the first condensation-evaporator section 101.

中圧精留塔100の上部に溜まった窒素ガスは、第1凝縮−蒸発器50に温熱源として供給される。圧力が約8.96BarAの窒素ガス、約13200Nm/hrは、第1凝縮−蒸発器50に導入され、第1凝縮−蒸発器セクション101に貯液されている酸素リッチ液化空気が蒸発し、第1凝縮−蒸発器セクション101内に廃ガスを形成し、窒素ガス自らは液化して約13200Nm/hrの液体窒素となり、中圧精留塔100上部に導入された後、還流液として中圧精留塔100の上方から流下する。 The nitrogen gas accumulated in the upper part of the medium pressure rectification column 100 is supplied to the first condensation-evaporator 50 as a heat source. Nitrogen gas with a pressure of about 8.96 BarA, about 13200 Nm 3 / hr, is introduced into the first condenser-evaporator 50 and the oxygen-rich liquefied air stored in the first condenser-evaporator section 101 evaporates, The waste gas is formed in the first condensation-evaporator section 101, and the nitrogen gas itself is liquefied to be liquid nitrogen of about 13200 Nm 3 / hr and introduced into the upper part of the medium pressure rectification column 100, and then as a reflux liquid. It flows down from above the pressure rectification column 100.

第1凝縮−蒸発器セクション101の上部から酸素濃度が約28%、温度が約−172℃、圧力が約5.46BarAの廃ガス、約13149Nm/hrが配管9を介して導出された後、昇圧機80に導入される。廃ガスは、昇圧機80にて約9.11BarAまで昇圧されて高圧の廃ガスとなった後、配管10を介して熱交換器40に導入され、向流する他の流体との間接熱交換することにより、約−165℃まで冷却され、冷却状態の廃ガスとなる。そして、配管11を介して中圧精留塔100下部に導入される。冷却状態の廃ガス中の酸素濃度は、加圧空気の酸素濃度と比較して高いので、配管11は、配管2が中圧精留塔100に接続される部位よりも下部に接続されることが好ましい。 After the waste gas of about 28% at a temperature of about -172 ° C and a pressure of about 5.46 BarA at a pressure of about 13149 Nm 3 / hr is drawn from the top of the first condensation-evaporator section 101 through a pipe 9 , Introduced into the booster 80. The waste gas is pressurized to about 9.11 BarA in the booster 80 to become a high pressure waste gas, and then introduced into the heat exchanger 40 through the pipe 10 for indirect heat exchange with another fluid flowing countercurrently. The solution is cooled to about -165.degree. C., resulting in cooled waste gas. Then, it is introduced to the lower part of the medium pressure rectification column 100 through the pipe 11. Since the oxygen concentration in the cooled waste gas is higher than the oxygen concentration in the pressurized air, the piping 11 is connected to the lower part of the portion where the piping 2 is connected to the medium pressure rectification column 100 Is preferred.

第1凝縮−蒸発器セクション101に貯液される酸素リッチ液化空気の一部が、第1凝縮−蒸発器セクション101から導出され、温度が約−172℃、圧力が約4.3BarAまで減圧され、約12817Nm/hrが配管4を介して第2凝縮−蒸発器セクション102へと導入される。 A portion of the oxygen-rich liquefied air stored in the first condensing-evaporator section 101 is withdrawn from the first condensing-evaporator section 101, the temperature is reduced to about -172 ° C, and the pressure is reduced to about 4.3 BarA. , Approximately 12817 Nm 3 / hr are introduced into the second condenser-evaporator section 102 via line 4.

中圧精留塔100の上部に溜まった窒素ガスは、第2凝縮−蒸発器60の温熱源として供給される。例えば、圧力が約8.96BarAの窒素ガス、約15100Nm/hrは、第2凝縮−蒸発器60に導入され、第2凝縮−蒸発器セクション102に貯液されている酸素リッチ液化空気を蒸発させ、第2凝縮−蒸発器セクション102内に酸素リッチ廃ガスを形成し、窒素ガス自らは液化して液体窒素となり、還流液として中圧精留塔100の上方から流下する。 The nitrogen gas accumulated in the upper part of the medium pressure rectification column 100 is supplied as a heat source of the second condenser-evaporator 60. For example, nitrogen gas at a pressure of about 8.96 BarA, about 15100 Nm 3 / hr, is introduced into the second condenser-evaporator 60 to evaporate the oxygen-rich liquefied air stored in the second condenser-evaporator section 102 Oxygen-rich waste gas is formed in the second condensation-evaporator section 102, and the nitrogen gas is liquefied to become liquid nitrogen and flows down from above the medium pressure rectification column 100 as a reflux liquid.

温度が約−172.3℃、圧力が約4.3BarAの酸素リッチ廃ガス、約11907Nm/hrが、第2凝縮−蒸発器セクション102の上部から配管5を介して熱交換器40に導入される。そして、向流する他の流体との間接熱交換することにより、約−143℃まで加熱され、酸素リッチ廃ガスとなる。酸素リッチ廃ガスは、更に配管6を介して膨張タービン70に導入され断熱膨張することにより、圧力が約1.24BarAまで減圧されると共に、約−178℃まで冷却された酸素リッチ廃ガスが形成される。 Oxygen-rich waste gas with a temperature of about -172.3 ° C and a pressure of about 4.3 BarA, about 11907 Nm 3 / hr, is introduced into the heat exchanger 40 from the top of the second condensation-evaporator section 102 through the pipe 5 Be done. Then, by indirect heat exchange with another fluid flowing countercurrently, it is heated to about -143 ° C. to become an oxygen-rich waste gas. The oxygen rich waste gas is further introduced into the expansion turbine 70 through the pipe 6 and adiabatically expanded, whereby the pressure is reduced to about 1.24 BarA and the oxygen rich waste gas cooled to about -178 ° C is formed. Be done.

酸素リッチ廃ガスは、配管7を介して再度熱交換器40に導入され、向流する他の流体との間接的な熱交換により、約52℃まで加熱された酸素リッチ廃ガスとなり、配管8を介して空気精製システム199に導入され、空気精製システム199の再生に用いられる。   The oxygen rich waste gas is again introduced into the heat exchanger 40 through the pipe 7 and becomes an oxygen rich waste gas heated to about 52 ° C. by indirect heat exchange with another fluid flowing countercurrently. , And is used to regenerate the air purification system 199.

圧力が約9.0BarAの窒素ガス、約17000Nm/hrは、中圧精留塔100の上部から配管12を介して導出された後に熱交換器40に導入され、向流する他の流体により約52℃まで加熱され、製品窒素ガスとして配管13を介して導出される。 Nitrogen gas with a pressure of about 9.0 Bar A, about 17000 Nm 3 / hr, is led out from the upper part of the medium pressure rectification column 100 through the pipe 12 and then introduced into the heat exchanger 40, and by the other countercurrent flow It is heated to about 52 ° C. and is led out through a pipe 13 as product nitrogen gas.

第2凝縮−蒸発器セクション102から、圧力約4.3BarA、温度約−172℃の酸素リッチ液化空気、約910Nm/hrが、配管(第3流路32)を介して酸素製造装置の精留塔(C)中段へと原料として導出される。 From the second condensation-evaporator section 102, oxygen-rich liquefied air with a pressure of about 4.3 BarA and a temperature of about -172 ° C, about 910 Nm 3 / hr is passed through the piping (third flow path 32). It is led as a raw material to the distillation column (C) middle stage.

ここで、第2凝縮−蒸発器セクション102に貯液されている液体は高濃度のハイドロカーボン(メタン等)を含有しており、仮に窒素製造装置のみで稼働させた場合、第2凝縮−蒸発器セクション102から、圧力が約4.3BarA、温度が約−172℃の酸素リッチ液化空気、約60Nm/hrを外部へパージすることとなる。本実施形態の酸素製造システム1000においては、本来外部にパージされる酸素リッチ液化空気のうち、約60Nm/hrを外部へパージすることなく、酸素製造のために用いることができる。また、系から寒冷を放出することなく窒素製造を行うことができる。 Here, the liquid stored in the second condensation-evaporator section 102 contains a high concentration of hydrocarbon (such as methane), and if it is operated only with a nitrogen production apparatus, the second condensation-evaporation from vessel section 102, a pressure of about 4.3BarA, the purging of oxygen-rich liquefied air temperature of about -172 ° C., about 60 Nm 3 / hr to the outside. The oxygen production system 1000 of the present embodiment can be used for oxygen production without purging about 60 Nm 3 / hr out of the oxygen-rich liquefied air that is originally purged to the outside. Also, nitrogen production can be performed without releasing cold from the system.

4.酸素製造システムによる酸素の製造
以下、上述の酸素製造システム1000による酸素の製造方法をより具体的に説明する。
4. Production of Oxygen by Oxygen Production System Hereinafter, a method of producing oxygen by the above-described oxygen production system 1000 will be more specifically described.

空気供給手段(空気圧縮機198、空気精製システム199)で昇圧された原料としての空気の一部、約704Nm/hrは、分岐(T)を経て配管20を介して空気圧縮手段200に導入される。空気圧縮手段200によって、約23BarAまで加圧されて加圧空気となった後に、熱交換器(G)へと導入され、向流する他の流体との間接的な熱交換が行われる。これにより約−163℃まで冷却され、バルブ(H)を介して約9.363BarAまで自由膨張される。これにより温度が約−168℃まで冷却された加圧空気となり、配管(第14流路21)を介して容器(A)に導入される。 A portion of air as a raw material pressurized by the air supply means (air compressor 198, air purification system 199), about 704 Nm 3 / hr, is introduced into the air compression means 200 via the pipe 20 via the branch (T) Be done. After being pressurized to about 23 BarA into compressed air by the air compression means 200, it is introduced into the heat exchanger (G) and indirect heat exchange with other countercurrent fluid is performed. This cools to about -163 ° C. and is free expanded to about 9.363 BarA via valve (H). As a result, the pressured air is cooled to a temperature of about -168 ° C and introduced into the container (A) through the pipe (fourteenth flow path 21).

リサイクル空気圧縮機300(第1加圧手段)から導出された圧力が約9.4BarAのリサイクル空気、約2718Nm/hrが、第11流路30を介して熱交換器(G)へと導入され、向流する他の流体との間接熱交換することにより、約−163℃まで冷却される。これにより冷却されたリサイクル空気となり、配管(第12流路31)を介して容器(A)に導入される。 A pressure of about 9.4 Bar A, about 2718 Nm 3 / hr, of pressure derived from the recycle air compressor 300 (first pressurizing means) is introduced into the heat exchanger (G) through the eleventh flow passage 30. And cooled to about -163.degree. C. by indirect heat exchange with other countercurrent fluids. It becomes the recycled air cooled by this, and is introduce | transduced into a container (A) via piping (12th flow path 31).

窒素製造装置の第2凝縮−蒸発器セクション102から、圧力が約4.3BarA、温度が約−172℃の酸素リッチ液化空気、約910Nm/hrが配管(第3流路32)を介して酸素製造装置の精留塔(C)の中段へと導入される。 From the second condenser-evaporator section 102 of the nitrogen production unit, oxygen-rich liquefied air with a pressure of about 4.3 BarA and a temperature of about -172 ° C, about 910 Nm 3 / hr via piping (third flow path 32) It is introduced into the middle stage of the rectification column (C) of the oxygen production apparatus.

精留塔(C)の底部は、容器(A)の頂部と凝縮−蒸発器(B)によって熱的にリンクしており容器(A)の頂部のガスと精留塔(C)の塔底部の液体酸素とが熱交換する。具体的には、既に述べたように、加圧空気、約704Nm/hr及びリサイクル空気、約2718Nm/hrが、凝縮−蒸発器(B)の温熱源として供給される。これらのガスは、凝縮−蒸発器(B)において、塔底部の液体(液体酸素)の蒸発に使われ、自らは液化し、高圧の液化空気、約3422Nm/hrが生成する。 The bottom of the rectification column (C) is thermally linked to the top of the vessel (A) by the condensation-evaporator (B), and the gas at the top of the vessel (A) and the bottom of the rectification column (C) Heat exchange with liquid oxygen. Specifically, as already mentioned, pressurized air, about 704 Nm 3 / hr and recycle air, about 2718 Nm 3 / hr are supplied as a heat source of the condensation-evaporator (B). These gases are used in the condensation-evaporator (B) to evaporate the liquid at the bottom of the column (liquid oxygen), liquefy itself, and generate high-pressure liquefied air, about 3422 Nm 3 / hr.

該高圧の液化空気、約3422Nm/hrは、容器(A)の下部より配管(第1流路22)を介して導出された後、うち約986Nm/hrは、還流液として配管(第2流路24)を介して精留塔(C)の上部に供給され、うち約910Nm/hrは、窒素製造装置から酸素製造装置に供給された酸素リッチ液化空気に相当する寒冷源として、配管(第4流路23)を介して窒素製造装置の第1凝縮−蒸発器セクション101に導入され、残りの液化空気、約1,526Nm/hrは、配管(第6流路25)を介して酸素液化部(D)へ寒冷源として供給される。 The high pressure of the liquefied air, about 3422Nm 3 / hr, after being led through a pipe from the bottom of the container (A) (the first flow path 22), of which approximately 986Nm 3 / hr, the pipe as a reflux liquid (second As a refrigeration source corresponding to oxygen-rich liquefied air supplied from the nitrogen producing apparatus to the oxygen producing apparatus, about 910 Nm 3 / hr is supplied to the upper part of the rectification column (C) via 2 flow paths 24) The remaining liquefied air, about 1,526 Nm 3 / hr, is introduced into the first condensing-evaporator section 101 of the nitrogen production apparatus via the pipe (the fourth flow path 23), and the pipe (the sixth flow path 25) is It is supplied as a cold source to the oxygen liquefaction unit (D) via

精留塔(C)では、配管(第2流路24)を介して供給された還流液、及び、配管(第3流路32)を介して導入された酸素リッチ液化空気は、精留塔内を流下し、塔底部からの上昇蒸気と気液接触することにより精留され、塔底には液体酸素が生成される。このとき、精留塔(C)の底部側からの理論段数が5〜10段の範囲内の位置から、圧力が約3.1BarAの、メタン濃度が25ppm以下である酸素ガス、約500Nm/hrが
配管(第5流路33)を介して導出され、精留塔(C)の塔底部からは約60Nm/hrの炭化水素等の濃縮防止用液が取り出される(図示せず)。また、精留塔(C)の塔頂部からは、圧力が約3.1BarA、温度が約−179.4℃のリサイクル空気、約2,076Nm/hrが配管(第8流路27)を介して導出される。
In the rectification column (C), the reflux liquid supplied via the pipe (second flow path 24) and the oxygen-rich liquefied air introduced via the pipe (third flow path 32) It flows down and is rectified by gas-liquid contact with the rising vapor from the bottom of the column, and liquid oxygen is produced at the bottom of the column. At this time, oxygen gas with a pressure of about 3.1 BarA and a methane concentration of 25 ppm or less, about 500 Nm 3 /, from the position where the number of theoretical plates from the bottom side of the rectification column (C) is in the range of 5-10. hr is drawn out through a pipe (fifth flow path 33), and a concentration preventing liquid such as about 60 Nm 3 / hr of hydrocarbon is taken out from the bottom of the rectification column (C) (not shown). In addition, from the top of the rectification column (C), recycled air with a pressure of about 3.1 BarA, a temperature of about -179.4 ° C, and a pipe of about 2,076 Nm 3 / hr (the eighth flow path 27) Derived through.

酸素液化部(D)では、酸素ガス、約500Nm/hrが酸素液化部(D)内に配設された酸素凝縮器(E)に導入され、液化空気と間接熱交換されることにより、圧力が約3.1BarAの高純度の液体酸素、約500Nm/hrが生成され、配管(第7流路34)を介して導出される。また、酸素液化部(D)の塔頂部からは、圧力が約5.7BarAの空気廃ガス、約787Nm/hrが配管(第9流路26)を介して取り出される。 In the oxygen liquefying unit (D), about 500 Nm 3 / hr of oxygen gas is introduced into the oxygen condenser (E) disposed in the oxygen liquefying unit (D) and is indirectly heat-exchanged with the liquefied air. A high purity liquid oxygen having a pressure of about 3.1 BarA, about 500 Nm 3 / hr, is generated and led out through a pipe (seventh flow path 34). Further, from the top of the oxygen liquefying unit (D), an air waste gas with a pressure of about 5.7 BarA and about 787 Nm 3 / hr are taken out through a pipe (the ninth flow passage 26).

精留塔(C)の塔頂部から導出される配管(第8流路27)と、酸素液化部(D)の塔頂部から取り出される配管(第9流路26)は合流され、圧力が約3.1BarA、温度が約−175℃の低温のリサイクル空気、約2,863Nm/hrの流れが形成される。当該低温のリサイクル空気は、熱交換器(G)において向流する加圧空気及び圧縮後のリサイクル空気によって常温まで加熱されたリサイクル空気流を形成し、配管(第10流路28)を介して熱交換器(G)より導出され、加熱されたリサイクル空気、約145Nm/hrが配管(排ガスパージライン29)を介して系外に排出された後、既述の通り圧縮及び冷却に供される。 The pipe (eighth channel 27) drawn out from the column top of the rectification column (C) and the pipe (9th channel 26) taken out from the column top in the oxygen liquefying part (D) are joined together and the pressure is about 3.1 Bar A, cold recycle air with a temperature of about -175 ° C, a flow of about 2,863 Nm 3 / hr is formed. The low temperature recycle air forms a recycle air flow heated to normal temperature by the compressed air countercurrently flowing in the heat exchanger (G) and the compressed recycle air, and the pipe (10th flow path 28) After being discharged from the heat exchanger (G) and heated recycle air, about 145 Nm 3 / hr, is discharged out of the system through the pipe (exhaust gas purge line 29), it is subjected to compression and cooling as described above. Ru.

生成した高純度の液体酸素、約500Nm/hrは、配管(第7流路34)を介して導出された後、低温ポンプ等の低温ポンプ350(第2加圧手段)で例えば圧力が5.0〜9.8BarAまで加圧された後、配管(第13流路35)を介して熱交換器(G)へと導入され、向流する他の流体との間接熱交換して常温まで加熱され、配管(第15流路36)を介して製品酸素ガスとして導出される。 The generated high purity liquid oxygen, about 500 Nm 3 / hr, is led out through a pipe (seventh flow path 34), and then the pressure is, for example, 5 with a low temperature pump 350 (second pressure means) such as a low temperature pump. After being pressurized to 0 to 9.8 Bar A, it is introduced to the heat exchanger (G) through piping (13th flow path 35), and indirect heat exchange with another fluid flowing countercurrently to room temperature It is heated and drawn out as a product oxygen gas through piping (fifteenth flow path 36).

液体酸素で貯蔵することが所望であれば、高純度液体酸素の一部を第2加圧手段350で昇圧する前に、タンク等の貯蔵手段に移送してもよい。   If it is desired to store in liquid oxygen, part of the high purity liquid oxygen may be transferred to storage means such as a tank before being pressurized by the second pressurizing means 350.

以上のように、本実施形態の酸素製造システム1000は、既設の窒素製造装置と非常に効率よく機能するように、酸素製造装置を組合せることができる。   As described above, the oxygen production system 1000 of the present embodiment can be combined with an existing nitrogen production system so as to function very efficiently.

なお、例示した数値をもとに、本システムにより生成した高純度の酸素中のメタン濃度を試算したところ、25ppm以下であり、半導体工業等の分野において必要とされる高純度酸素を製造することが可能であることがわかった。   In addition, when the concentration of methane in high purity oxygen generated by this system is calculated based on the exemplified values, it is 25 ppm or less, and it is necessary to produce high purity oxygen required in the field of semiconductor industry etc. Was found to be possible.

本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。   The present invention is not limited to the embodiments described above, and various modifications are possible. For example, the present invention includes configurations substantially the same as the configurations described in the embodiments (for example, configurations having the same function, method, and result, or configurations having the same purpose and effect). The present invention also includes configurations in which nonessential parts of the configurations described in the embodiments are replaced. The present invention also includes configurations that can achieve the same effects or the same objects as the configurations described in the embodiments. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

21 第14流路
22 第1流路
23 第4流路
24 第2流路
25 第6流路
26 第9流路
27 第8流路
28 第10流路
29 廃ガスパージライン
30 第11流路
31 第12流路
32 第3流路
33 第5流路
34 第7流路
35 第13流路
198 空気圧縮機
199 空気精製システム
200 空気圧縮機
300 リサイクル空気圧縮機(第1加圧手段)
350 低温ポンプ(第2加圧手段)
A 容器
B 凝縮−蒸発器
C 精留塔
D 酸素液化部
E 酸素凝縮器
F 窒素製造装置
G 熱交換器
H 膨張弁
21 14th passage 22 first passage 23 fourth passage 24 second passage 25 sixth passage 26 ninth passage 27 eighth passage 28 tenth passage 29 waste gas purge line 30 eleventh passage 31 Twelfth flow path 32 third flow path 33 fifth flow path 34 seventh flow path 35 thirteenth flow path 198 air compressor 199 air purification system 200 air compressor 300 air compressor 300 recycle air compressor (first pressurizing means)
350 Low temperature pump (second pressurizing means)
A container B condensation-evaporator C rectification column D oxygen liquefaction unit E oxygen condenser F nitrogen production unit G heat exchanger H expansion valve

Claims (12)

窒素製造装置及び酸素製造装置を組み合わせた酸素製造システムであって、
前記酸素製造装置は、
冷却された加圧空気が導入される容器(A)と、
下部に凝縮−蒸発器(B)を有する精留塔(C)と、
を備えており、
前記容器(A)底部に貯液された液体を導出する第1流路と、
前記第1流路から導出された前記液体の一部を前記精留塔(C)上部に導入するための第2流路と、
前記窒素製造装置から酸素リッチ液化空気の少なくとも一部を導出し前記精留塔(C)中間段に導入するための第3流路と、
前記第1流路から分岐した、前記液体の少なくとも一部を前記窒素製造装置に寒冷源として導入するための第4流路と、
前記精留塔(C)底部側からの理論段数が5〜10段の範囲内の位置から、前記凝縮−蒸発器(B)において液化空気の凝縮熱により気化した酸素ガスを導出する第5流路と、を備えた、酸素製造システム。
An oxygen production system combining nitrogen production equipment and oxygen production equipment, comprising:
The oxygen production device
A container (A) into which cooled pressurized air is introduced;
A rectification column (C) having a condensation-evaporator (B) in the lower part,
Equipped with
A first flow path for discharging the liquid stored in the bottom of the container (A);
A second flow path for introducing a part of the liquid derived from the first flow path into the upper part of the rectification column (C);
A third flow path for leading out at least a part of oxygen-rich liquefied air from the nitrogen production apparatus and introducing it into the middle stage of the rectification column (C);
A fourth flow path branched from the first flow path for introducing at least a part of the liquid into the nitrogen production apparatus as a cold source;
A fifth flow for deriving oxygen gas vaporized by condensation heat of the liquefied air in the condensation-evaporator (B) from the position where the number of theoretical plates from the bottom side of the rectification column (C) is in the range of 5 to 10 An oxygen production system equipped with a passage.
前記気化した酸素ガスが液化される酸素液化部(D)と、
前記第1流路から分岐した、前記液体の少なくとも一部を前記酸素液化部(D)に寒冷源として導入するための第6流路と、
前記酸素液化部(D)の内部に配設され、前記気化した酸素ガスが前記第5流路を介して導入される酸素凝縮器(E)と、
前記酸素凝縮器(E)内において生成した液体酸素を導出するための第7流路と、
を備えた請求項1に記載の酸素製造システム。
An oxygen liquefying unit (D) in which the vaporized oxygen gas is liquefied;
A sixth flow path for introducing at least a part of the liquid branched from the first flow path to the oxygen liquefying unit (D) as a cold source;
An oxygen condenser (E) disposed inside the oxygen liquefying unit (D), wherein the vaporized oxygen gas is introduced through the fifth flow path;
A seventh flow path for discharging liquid oxygen generated in the oxygen condenser (E);
The oxygen production system according to claim 1, comprising:
前記精留塔(C)上段から廃ガスが導出される第8流路と、
前記酸素液化部(D)上段からガス化した前記液体が導出される第9流路と、
を備えた請求項2記載の酸素製造システム。
An eighth flow path through which waste gas is derived from the upper portion of the rectification column (C);
A ninth flow path through which the gasified gas is derived from the oxygen liquefier (D) upper stage;
The oxygen production system according to claim 2, comprising
前記第8流路と、前記第9流路とが合流することにより形成される第10流路と、
前記第10流路を流れる前記廃ガス及び前記ガス化した前記液体の混合ガスが加熱される熱交換器(G)と、
前記加熱された混合ガスが前記第10流路を介して導入される第1加圧手段と、
を備えた請求項3に記載の酸素製造システム。
A tenth flow path formed by joining the eighth flow path and the ninth flow path;
A heat exchanger (G) in which a mixed gas of the waste gas flowing through the tenth flow path and the gasified liquid is heated;
First pressurizing means for introducing the heated mixed gas through the tenth flow path;
The oxygen production system according to claim 3, comprising
前記第1加圧手段により加圧された前記混合ガスを前記熱交換器(G)に導入する第11流路と、
前記熱交換器(G)内にて冷却された前記混合ガスを前記容器(A)に導入する第12流路と、
を備えた請求項4に記載の酸素製造システム。
An eleventh flow path for introducing the mixed gas pressurized by the first pressurizing means into the heat exchanger (G);
A twelfth flow path for introducing the mixed gas cooled in the heat exchanger (G) into the container (A);
The oxygen production system according to claim 4, comprising
前記第7流路を介して前記液体酸素が導入される第2加圧手段と、
前記第2加圧手段により加圧された前記液体酸素を前記熱交換器(G)に導入する第13流路と、
前記熱交換器(G)内にて加熱され、ガス化された酸素を導出する第15流路と、
を備えた請求項4又は5に記載の酸素製造システム。
A second pressurizing unit through which the liquid oxygen is introduced through the seventh flow path;
A thirteenth flow path for introducing the liquid oxygen pressurized by the second pressure means into the heat exchanger (G);
A fifteenth flow path which is heated in the heat exchanger (G) to lead out gasified oxygen;
The oxygen production system according to claim 4 or 5, comprising
冷却された加圧空気が導入される容器(A)と、下部に凝縮−蒸発器(B)を有する精留塔(C)と、を備えている酸素製造装置を、窒素製造装置に組み合わせて用いる酸素製
造方法であって、
前記容器(A)底部に貯液された液体を第1流路を介して導出する工程と、
前記導出された液体の一部を、前記精留塔(C)上部に第2流路を介して導入する工程と、
前記窒素製造装置から酸素リッチ液化空気の少なくとも一部を導出し、第3流路を介して前記精留塔(C)中間段に導入する工程と、
第4流路を介して、前記液体の少なくとも一部を前記窒素製造装置に寒冷源として導入する工程と、
前記精留塔(C)底部側からの理論段数が5〜10段の範囲内の位置から、前記凝縮−蒸発器(B)において液化空気の凝縮熱により気化した酸素ガスを第5流路を介して導出する工程と、
を有する酸素製造方法。
In combination with a nitrogen production system, an oxygen production system comprising a vessel (A) into which cooled pressurized air is introduced and a rectification column (C) having a condensation-evaporator (B) at the bottom thereof A method of producing oxygen to be used,
Discharging the liquid stored in the bottom of the container (A) through the first flow path;
Introducing a part of the derived liquid into the upper part of the rectification column (C) via a second flow path;
Drawing out at least a part of oxygen-rich liquefied air from the nitrogen production apparatus and introducing it into the intermediate stage of the rectification column (C) through a third flow path;
Introducing at least a portion of the liquid into the nitrogen production apparatus as a cold source via a fourth flow path;
From the position where the theoretical plate number from the bottom side of the rectification column (C) is in the range of 5 to 10, the oxygen gas vaporized by the condensation heat of the liquefied air in the condensation-evaporator (B) is taken as the fifth flow path Deriving through
A method of producing oxygen.
前記酸素製造装置は、酸素液化部(D)と、酸素凝縮器(E)と、を備え、
第6流路を介して前記液体の少なくとも一部を前記酸素液化部(D)に寒冷源として導入する工程と、
前記気化した酸素ガスを、前記第5流路を介して前記酸素凝縮器(E)に導入する工程と、
前記酸素凝縮器(E)内において生成した液体酸素を、第7流路を介して導出する工程と、
を有する請求項7に記載の酸素製造方法。
The oxygen production apparatus includes an oxygen liquefying unit (D) and an oxygen condenser (E),
Introducing at least a portion of the liquid into the oxygen liquefying unit (D) as a cold source via a sixth flow path;
Introducing the vaporized oxygen gas into the oxygen condenser (E) through the fifth flow path;
Discharging the liquid oxygen generated in the oxygen condenser (E) through a seventh flow path;
The method for producing oxygen according to claim 7, comprising
前記精留塔(C)上段から第8流路を介して廃ガスを導出する工程と、
前記酸素液化部(D)上段から第9流路を介してガス化した前記液体を導出する工程と、
を有する請求項8に記載の酸素製造方法。
Discharging the waste gas from the upper portion of the rectification column (C) through the eighth flow path;
Discharging the gasified liquid from the upper stage of the oxygen liquefying unit (D) through a ninth flow path;
The method for producing oxygen according to claim 8, comprising
前記酸素製造装置は、熱交換器(G)と、第1加圧手段と、を備え、
前記第8流路と、前記第9流路とを合流させる第10流路を流れる前記廃ガス及び前記ガス化した前記液体の混合ガスを、前記熱交換器(G)において加熱する工程と、
前記加熱された混合ガスを前記第10流路を介して前記第1加圧手段に導入する工程と、
を有する請求項9に記載の酸素製造方法。
The oxygen production apparatus includes a heat exchanger (G) and a first pressurizing unit.
Heating, in the heat exchanger (G), a mixed gas of the waste gas and the gasified liquid flowing in a tenth flow path that combines the eighth flow path and the ninth flow path;
Introducing the heated mixed gas into the first pressurizing means via the tenth flow path;
The method for producing oxygen according to claim 9, comprising
前記第1加圧手段により加圧された前記混合ガスを、第11流路を介して前記熱交換器(G)に導入し、前記熱交換器(G)内にて冷却する工程と、
前記冷却された混合ガスを、第12流路を介して前記容器(A)に導入する工程と、
を有する請求項10に記載の酸素製造方法。
Introducing the mixed gas pressurized by the first pressurizing unit into the heat exchanger (G) through an eleventh flow path, and cooling the mixed gas in the heat exchanger (G);
Introducing the cooled mixed gas into the container (A) via a twelfth flow path;
The method for producing oxygen according to claim 10, comprising
前記酸素製造装置は、第2加圧手段を備え、
前記液体酸素を、前記第7流路を介して前記第2加圧手段に導入する工程と、
前記第2加圧手段により加圧された前記液体酸素を、第13流路を介して前記熱交換器(G)に導入する工程と、
前記熱交換器(G)内にて加熱されガス化された酸素を、第15流路を介して導出する工程と、
を有する請求項10又は11に記載の酸素製造方法。
The oxygen production apparatus includes a second pressurizing unit.
Introducing the liquid oxygen into the second pressurizing means via the seventh flow path;
Introducing the liquid oxygen pressurized by the second pressurizing unit into the heat exchanger (G) via a thirteenth flow path;
Discharging the oxygen heated and gasified in the heat exchanger (G) through a fifteenth flow path;
The method for producing oxygen according to claim 10 or 11, comprising
JP2015206122A 2015-10-20 2015-10-20 Oxygen production system and oxygen production method Active JP6546504B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015206122A JP6546504B2 (en) 2015-10-20 2015-10-20 Oxygen production system and oxygen production method
TW105132185A TWI687633B (en) 2015-10-20 2016-10-05 Oxygen production system and oxygen production method
CN201610908706.7A CN106595221B (en) 2015-10-20 2016-10-18 Oxygen generation system and oxygen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206122A JP6546504B2 (en) 2015-10-20 2015-10-20 Oxygen production system and oxygen production method

Publications (2)

Publication Number Publication Date
JP2017078532A JP2017078532A (en) 2017-04-27
JP6546504B2 true JP6546504B2 (en) 2019-07-17

Family

ID=58556187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206122A Active JP6546504B2 (en) 2015-10-20 2015-10-20 Oxygen production system and oxygen production method

Country Status (3)

Country Link
JP (1) JP6546504B2 (en)
CN (1) CN106595221B (en)
TW (1) TWI687633B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560318A (en) * 2017-09-22 2018-01-09 杭州杭氧股份有限公司 A kind of cryogenic rectification method nitrogen purification device and method of purification
US10343139B2 (en) * 2017-09-28 2019-07-09 Air Products And Chemicals, Inc. Processes using improved RHO adsorbent compositions
JP6351895B1 (en) * 2018-03-20 2018-07-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Nitrogen production method and nitrogen production apparatus
JP7291472B2 (en) * 2018-11-06 2023-06-15 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Nitrogen gas production equipment
JP7313608B2 (en) * 2019-04-08 2023-07-25 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード High purity oxygen and nitrogen production system
CN110207458B (en) * 2019-07-10 2024-04-02 上海联风气体有限公司 High-purity oxygen production device taking air as raw material and production method thereof
CN113432481B (en) * 2021-07-19 2023-03-31 合肥丰蓝电器有限公司 Heat exchanger deposition liquid oxygen eliminating device and liquid oxygen eliminating method based on device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1275076B (en) * 1965-07-20 1968-08-14 Linde Ag Process for carrying out the heat exchange in the low-temperature decomposition of gas mixtures
US4957524A (en) * 1989-05-15 1990-09-18 Union Carbide Corporation Air separation process with improved reboiler liquid cleaning circuit
US5363657A (en) * 1993-05-13 1994-11-15 The Boc Group, Inc. Single column process and apparatus for producing oxygen at above-atmospheric pressure
FR2709537B1 (en) * 1993-09-01 1995-10-13 Air Liquide Process and installation for producing oxygen and / or nitrogen gas under pressure.
JPH09264667A (en) * 1996-03-27 1997-10-07 Teisan Kk Manufacturing device for extra-high purity nitrogen and oxygen
JP3203181B2 (en) * 1996-05-14 2001-08-27 日本エア・リキード株式会社 Oxygen production method associated with nitrogen production equipment
US6227005B1 (en) * 2000-03-01 2001-05-08 Air Products And Chemicals, Inc. Process for the production of oxygen and nitrogen
DE102007051183A1 (en) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft Method for cryogenic air separation
JP5307055B2 (en) * 2010-03-04 2013-10-02 大陽日酸株式会社 Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
KR20130002811U (en) * 2011-10-28 2013-05-09 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Apparatus for the production of pressurized purified air and a liquid product by cryogenic distillation of air
CN103196278B (en) * 2012-01-06 2015-06-10 苏州制氧机有限责任公司 Air separation device
CN102538397A (en) * 2012-01-18 2012-07-04 开封黄河空分集团有限公司 Process for making nitrogen by air separation or making nitrogen and simultaneously producing oxygen in attached manner
CN102620520B (en) * 2012-04-09 2014-09-17 开封黄河空分集团有限公司 Process for preparing pressure oxygen and pressure nitrogen as well as by-product liquid argon through air separation
JP5655104B2 (en) * 2013-02-26 2015-01-14 大陽日酸株式会社 Air separation method and air separation device
CN103438663A (en) * 2013-07-11 2013-12-11 开封黄河空分集团有限公司 Device and process for preparing high-purity oxygen and nitrogen under ultra-low pressure
CN204006965U (en) * 2014-07-07 2014-12-10 开封空分集团有限公司 A kind of liquid oxygen and liquid nitrogen device for making
CN204128276U (en) * 2014-09-11 2015-01-28 济南鲍德气体有限公司 A kind of oxygenerator fast heating device
CN204513906U (en) * 2015-03-12 2015-07-29 开封东京空分集团有限公司 A kind of empty point fractionating column system
CN204648831U (en) * 2015-03-24 2015-09-16 杭州锦华气体设备有限公司 Compression oxygenerator in a kind of single tower

Also Published As

Publication number Publication date
TW201732210A (en) 2017-09-16
JP2017078532A (en) 2017-04-27
CN106595221A (en) 2017-04-26
TWI687633B (en) 2020-03-11
CN106595221B (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP6546504B2 (en) Oxygen production system and oxygen production method
JP4927749B2 (en) Method and apparatus for combined hydrogen and carbon dioxide production
US4372764A (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed
US11578916B2 (en) Method and device for producing air product based on cryogenic rectification
CN108645118B (en) Device and method for improving argon recovery rate
CN111602020A (en) Process and plant for the cryogenic separation of synthesis gas comprising a nitrogen separation step
JP7451532B2 (en) Apparatus and method for separating air by cryogenic distillation
US20110138856A1 (en) Separation method and apparatus
JP6092804B2 (en) Air liquefaction separation method and apparatus
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP2013511697A (en) A method for separating nitrogen and carbon monoxide mixtures at cryogenic temperatures.
JP2007504433A (en) Method and facility for supplying gaseous mixture containing gaseous carbon monoxide and / or at least 10% carbon monoxide
JP2007147113A (en) Nitrogen manufacturing method and device
JP4708017B2 (en) Plant unit and method for fractionating and purifying synthesis gas
JP2017536523A (en) Method and apparatus for variably obtaining argon by cryogenic separation
JPH11325717A (en) Separation of air
JP2010025513A (en) Method and device for manufacturing nitrogen
Emrani et al. A Decision Tree for Technology Selection of Nitrogen Production Plants
JP2007502398A (en) Method and apparatus for providing a fluid mixture containing at least 10% carbon monoxide
JP3959168B2 (en) Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air
WO2013078606A1 (en) Process and apparatus for the purification of hydrogen by cryogenic nitrogen wash and co-production of liquid methane
RU2647297C2 (en) Method and plant for producing liquid and gaseous oxygenates by low-temperature air separation
WO2012175635A2 (en) Process and installation for supplying gaseous carbon monoxide by cryogenic distillation
JP2008057804A (en) Manufacturing method of refined argon
RU2689252C2 (en) Method of producing helium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250