JP6431828B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus Download PDF

Info

Publication number
JP6431828B2
JP6431828B2 JP2015154839A JP2015154839A JP6431828B2 JP 6431828 B2 JP6431828 B2 JP 6431828B2 JP 2015154839 A JP2015154839 A JP 2015154839A JP 2015154839 A JP2015154839 A JP 2015154839A JP 6431828 B2 JP6431828 B2 JP 6431828B2
Authority
JP
Japan
Prior art keywords
oxygen
component
liquid component
air
enriched liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015154839A
Other languages
Japanese (ja)
Other versions
JP2017032242A (en
Inventor
博志 橘
博志 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2015154839A priority Critical patent/JP6431828B2/en
Publication of JP2017032242A publication Critical patent/JP2017032242A/en
Application granted granted Critical
Publication of JP6431828B2 publication Critical patent/JP6431828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気液化分離方法及び装置に関し、詳しくは、中程度の圧力を有する酸素ガスを製造するための空気液化分離方法及び装置に関する。   The present invention relates to an air liquefaction separation method and apparatus, and more particularly to an air liquefaction separation method and apparatus for producing oxygen gas having a medium pressure.

中程度の圧力、例えば、270〜500kPa(絶対圧、以下同様)の酸素ガスを製品として採取するための空気液化分離プロセスとして、従来から各種構成のプロセスが提案されており、例えば、一つの中圧塔と、二つの低圧塔と、一つの混合塔との4塔を組み合わせたものが知られている(例えば、特許文献1参照。)。   As an air liquefaction separation process for collecting oxygen gas having a medium pressure, for example, 270 to 500 kPa (absolute pressure, the same applies hereinafter) as a product, various processes have been proposed. A combination of four towers including a pressure tower, two low-pressure towers, and one mixing tower is known (see, for example, Patent Document 1).

特開平9−79744号公報(第7図)Japanese Patent Laid-Open No. 9-79744 (FIG. 7)

前記特許文献1に記載されたプロセスは、一つの中圧塔と二つの低圧塔との3塔を組み合わせた従来の3塔式のプロセスに比べて原料空気圧力を低くすることができ、原単位を低減することが可能である。しかし、原料空気圧力は低減できるが、原料空気の一部を昇圧するための空気ブロワが必要となり、装置コストの上昇を招くという問題があった。また、空気ブロワを用いない場合は、酸素ガスの発生圧力がおよそ200kPaとなるため、中程度の圧力の酸素ガスを得るためには、酸素圧縮機が必要となり、この場合も装置コストの上昇を招く。すなわち、従来の各種プロセスでは、原料空気圧縮機やタービンブロワなどの最小限の圧縮機に加えて、追加の圧縮機を必要とするため、イニシャルコストの増加、メンテナンスコストの増加、設置面積の増加を引き起こすという不都合があった。   The process described in Patent Document 1 can lower the raw material air pressure as compared with the conventional three-column process in which three columns of one medium-pressure column and two low-pressure columns are combined. Can be reduced. However, although the raw material air pressure can be reduced, there is a problem that an air blower for boosting a part of the raw material air is required, resulting in an increase in apparatus cost. In addition, when no air blower is used, the oxygen gas generation pressure is approximately 200 kPa, so an oxygen compressor is required to obtain a medium pressure oxygen gas. Invite. In other words, various conventional processes require additional compressors in addition to the minimum compressors such as raw air compressors and turbine blowers, increasing initial costs, increasing maintenance costs, and increasing the installation area. There was a disadvantage of causing.

そこで本発明は、中程度の圧力の酸素ガスを効率よく製造することができる空気液化分離方法及び装置を提供することを目的としている。   Therefore, an object of the present invention is to provide an air liquefaction separation method and apparatus capable of efficiently producing medium pressure oxygen gas.

上記目的を達成するため、本発明の空気液化分離方法は、圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離方法において、圧縮,精製,冷却した第1原料空気を蒸留することによって第1窒素ガス成分と第1酸素富化液成分とに分離する第1蒸留工程と、該第1蒸留工程で分離した第1酸素富化液成分を減圧してから蒸留することによって第2窒素ガス成分と第2酸素富化液成分とに分離する第2蒸留工程と、該第2蒸留工程で分離した第2酸素富化液成分を蒸留することによって第1酸素ガス成分と第3酸素富化液成分とに分離する第3蒸留工程と、該第3蒸留工程で分離した第3酸素富化液成分を昇圧し、圧縮,精製,冷却した第2原料空気と蒸留することによって第2酸素ガス成分と第4酸素富化液成分とに分離する第4蒸留工程と、前記第1窒素ガス成分と前記第2酸素富化液成分とを間接熱交換させて第1窒素ガス成分を凝縮させると同時に第2酸素富化液成分を蒸発させる第1間接熱交換工程と、圧縮、精製、冷却した第3原料空気と前記第3酸素富化液成分とを間接熱交換させて第3原料空気を凝縮させると同時に第3酸素富化液成分を蒸発させる第2間接熱交換工程と、前記第4蒸留工程で分離した第2酸素ガス成分を各原料空気の冷却源として使用した後に製品酸素ガスとして採取する製品採取工程とを含むことを特徴としている。   In order to achieve the above object, the air liquefaction separation method of the present invention is compressed, purified and cooled in the air liquefaction separation method of collecting at least oxygen gas as a product by distilling the compressed, purified and cooled raw material air. A first distillation step for separating the first raw material air into a first nitrogen gas component and a first oxygen-enriched liquid component by distilling, and depressurizing the first oxygen-enriched liquid component separated in the first distillation step A second distillation step of separating the second nitrogen gas component and the second oxygen-enriched liquid component by distillation, and a second oxygen-enriched liquid component separated in the second distillation step by distilling the second oxygen-enriched liquid component. A third distillation step that separates into one oxygen gas component and a third oxygen-enriched liquid component, and a second raw material that is compressed, refined, and cooled by pressurizing the third oxygen-enriched liquid component separated in the third distillation step Secondary oxygen by distilling with air A fourth distillation step for separating the first nitrogen gas component and the fourth oxygen-enriched liquid component, and the first nitrogen gas component and the second oxygen-enriched liquid component are indirectly heat exchanged to condense the first nitrogen gas component. At the same time, a first indirect heat exchange step for evaporating the second oxygen-enriched liquid component, and a third raw material air by indirectly heat-exchanging the compressed, purified and cooled third source air and the third oxygen-enriched liquid component. Product oxygen gas after using the second oxygen gas component separated in the second indirect heat exchange step for condensing the third oxygen-enriched liquid component and evaporating the third oxygen-enriched liquid component and the fourth distillation step as a cooling source for each raw material air And a product collecting step of collecting as a feature.

さらに、本発明の空気液化分離方法は、前記製品酸素ガスの酸素濃度が36〜98vol%、好ましくは、70〜98vol%であることを特徴とし、前記製品酸素ガスの圧力が270〜500kPaであること、前記製品酸素ガスが、酸素濃度Z[vol%]のときに圧力P[kPa]が、270≦P≦4×Z+125であることを特徴としている。   Furthermore, the air liquefaction separation method of the present invention is characterized in that the oxygen concentration of the product oxygen gas is 36 to 98 vol%, preferably 70 to 98 vol%, and the pressure of the product oxygen gas is 270 to 500 kPa. In addition, when the product oxygen gas has an oxygen concentration Z [vol%], the pressure P [kPa] is 270 ≦ P ≦ 4 × Z + 125.

また、本発明の空気液化分離装置は、圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離装置において、圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離装置において、圧縮,精製,冷却した第1原料空気を蒸留することによって第1窒素ガス成分と第1酸素富化液成分とに分離する第1蒸留塔と、該第1蒸留塔で分離した第1酸素富化液成分を減圧してから蒸留することによって第2窒素ガス成分と第2酸素富化液成分とに分離する第2蒸留塔と、該第2蒸留塔で分離した第2酸素富化液成分を蒸留することによって第1酸素ガス成分と第3酸素富化液成分とに分離する第3蒸留塔と、該第3蒸留工程で分離した第3酸素富化液成分を昇圧し、圧縮,精製,冷却した第2原料空気と蒸留することによって第2酸素ガス成分と第4酸素富化液成分とに分離する第4蒸留塔と、前記第1窒素ガス成分と前記第2酸素富化液成分とを間接熱交換させて第1窒素ガス成分を凝縮させると同時に第2酸素富化液成分を蒸発させる主凝縮器と、圧縮、精製、冷却した第3原料空気と第3酸素富化液成分とを間接熱交換させて第3原料空気を凝縮させると同時に第3酸素富化液成分を蒸発させる副凝縮器と、前記第4蒸留塔で分離した第2酸素ガス成分を各原料空気の冷却源として使用した後に製品酸素ガスとして採取する製品採取経路とを含むことを特徴としている。   The air liquefaction separation apparatus of the present invention distills compressed, purified, and cooled raw material air in an air liquefaction separation apparatus that collects at least oxygen gas as a product by distilling the compressed, purified, and cooled raw material air. Thus, in the air liquefaction separation apparatus that collects at least oxygen gas as a product, the first raw material air that has been compressed, purified, and cooled is distilled into a first nitrogen gas component and a first oxygen-enriched liquid component. A first distillation column and a second distillation column separated into a second nitrogen gas component and a second oxygen-enriched liquid component by depressurizing and then distilling the first oxygen-enriched liquid component separated in the first distillation column A third distillation column that separates the second oxygen-enriched liquid component separated in the second distillation column into a first oxygen gas component and a third oxygen-enriched liquid component by distilling, and the third distillation step 3rd separated by A fourth distillation column that separates the oxygen-enriched liquid component into a second oxygen gas component and a fourth oxygen-enriched liquid component by pressurizing and distilling the compressed, refined, and cooled second raw material air; A main condenser for condensing the first nitrogen gas component by condensing the nitrogen gas component and the second oxygen-enriched liquid component indirectly, and at the same time evaporating the second oxygen-enriched liquid component, and compression, purification, and cooling The third raw material air and the third oxygen-enriched liquid component are indirectly heat-exchanged to condense the third raw material air, and at the same time the third oxygen-enriched liquid component is evaporated and separated by the fourth distillation column. And a product collection path for collecting product oxygen gas after using the second oxygen gas component as a cooling source for each raw material air.

さらに、本発明の空気液化分離装置は、前記製品酸素ガスの酸素濃度が36〜98vol%、好ましくは、70〜98vol%であること、前記製品酸素ガスの圧力が270〜500kPaであること、前記製品酸素ガスが、酸素濃度Z[vol%]のときに圧力P[kPa]が、270≦P≦4×Z+125であることを特徴としている。   Furthermore, in the air liquefaction separation apparatus of the present invention, the oxygen concentration of the product oxygen gas is 36 to 98 vol%, preferably 70 to 98 vol%, the pressure of the product oxygen gas is 270 to 500 kPa, When the product oxygen gas has an oxygen concentration Z [vol%], the pressure P [kPa] is 270 ≦ P ≦ 4 × Z + 125.

本発明によれば、中程度の圧力、例えば、270〜500kPaの圧力で、低純度の酸素ガスを製造する際に、酸素圧縮機や空気ブロワを追加することなく、製品酸素ガスを効率よく製造することができる。   According to the present invention, when producing low-purity oxygen gas at a medium pressure, for example, a pressure of 270 to 500 kPa, the product oxygen gas is efficiently produced without adding an oxygen compressor or an air blower. can do.

本発明の空気液化分離方法を実施するための空気液化分離装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of an air liquefaction separation apparatus for enforcing the air liquefaction separation method of this invention.

図1は、本発明の空気液化分離装置の一形態例を示す系統図である。本形態例に示す空気液化分離装置は、圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離方法を実施するためのものであって、第1蒸留工程を行う第1蒸留塔11と、第2蒸留工程を行う第2蒸留塔12と、第3蒸留工程を行う第3蒸留塔13と、第4蒸留工程を行う第4蒸留塔14と、第2蒸留塔12の下部に設けられた主凝縮器15と、第3蒸留塔13の下部に設けられた副凝縮器16と、第3蒸留塔13の下部から導出した液化酸素を第4蒸留塔14に送出するための液化酸素ポンプ17とを備えている。   FIG. 1 is a system diagram showing an embodiment of the air liquefaction separation apparatus of the present invention. The air liquefaction separation apparatus shown in the present embodiment is for carrying out an air liquefaction separation method for collecting at least oxygen gas as a product by distilling compressed, refined, and cooled raw material air. A first distillation column 11 for performing the step, a second distillation column 12 for performing the second distillation step, a third distillation column 13 for performing the third distillation step, a fourth distillation column 14 for performing the fourth distillation step, The main condenser 15 provided at the lower part of the second distillation column 12, the sub-condenser 16 provided at the lower part of the third distillation column 13, and the liquefied oxygen derived from the lower part of the third distillation column 13 are converted into the fourth distillation column. 14 is provided with a liquefied oxygen pump 17 for delivery to the vehicle 14.

空気圧縮機21であらかじめ設定された圧力に圧縮され、アフタークーラ21aで圧縮熱を除去された後、精製器22で水分や二酸化炭素などの不純物を除去された原料空気は、大部分が経路23を通って主熱交換器24に導入され、製品酸素ガスなどの帰還ガスによってあらかじめ設定された低温状態に冷却される。   Most of the raw material air that has been compressed to a preset pressure by the air compressor 21, removed heat of compression by the aftercooler 21 a, and then removed impurities such as moisture and carbon dioxide by the purifier 22 is mostly in the path 23. And is introduced into the main heat exchanger 24 and cooled to a preset low temperature state by a return gas such as product oxygen gas.

所定圧力に圧縮され、精製された後に所定温度に冷却された原料空気は、第1原料空気、第2原料空気、第3原料空気の3系統に分流し、第1原料空気は、経路25を通って前記第1蒸留塔11の下部に上昇ガスとして導入される。この第1蒸留塔11は、第1原料空気の圧力に対応した圧力(以下、中圧という)で第1蒸留工程が行われ、第1蒸留塔11の上部に第1窒素ガス成分(中圧窒素ガス)が濃縮分離し、第1蒸留塔11の下部に第1酸素富化液成分が濃縮分離する。第1蒸留塔上部の第1窒素ガス成分は、経路26から前記主凝縮器15に導入されて凝縮し、全量が液化窒素となり、一部が経路27に分流して第1蒸留塔11の上部に下降液として導入される。   The raw material air that has been compressed to a predetermined pressure, purified and then cooled to a predetermined temperature is divided into three systems of a first raw material air, a second raw material air, and a third raw material air. Then, it is introduced into the lower part of the first distillation column 11 as a rising gas. The first distillation column 11 is subjected to a first distillation step at a pressure corresponding to the pressure of the first raw material air (hereinafter referred to as an intermediate pressure), and a first nitrogen gas component (intermediate pressure) is placed above the first distillation column 11. Nitrogen gas) is concentrated and separated, and the first oxygen-enriched liquid component is concentrated and separated in the lower part of the first distillation column 11. The first nitrogen gas component at the upper part of the first distillation column is introduced into the main condenser 15 through the path 26 and condensed, and the entire amount becomes liquefied nitrogen, and a part of the first nitrogen gas component is shunted into the path 27 to be the upper part of the first distillation column 11. Is introduced as a descending liquid.

前記液化窒素の残部は、経路28に分流し、第1過冷器29で冷却され、第1減圧弁30で大気圧付近(以下、低圧という)に減圧された後、第2蒸留塔12の上部に下降液として導入される。また、前記第1酸素富化液成分は、塔底から経路31に抜き出され、第1過冷器29で冷却された後、第2減圧弁32で減圧されて低圧となり、第2蒸留塔12の中段部に下降液として導入される。さらに、第1蒸留塔11の中段を流下する下降液成分の一部が経路33に抜き出され、第1過冷器29で冷却された後、第3減圧弁34で減圧されて低圧となり、第2蒸留塔12の中段上部に下降液として導入される。   The remainder of the liquefied nitrogen is diverted to the path 28, cooled by the first supercooler 29, depressurized to near atmospheric pressure (hereinafter referred to as “low pressure”) by the first pressure reducing valve 30, and then the second distillation column 12 It is introduced into the upper part as a descending liquid. In addition, the first oxygen-enriched liquid component is extracted from the bottom of the column to the path 31 and cooled by the first supercooler 29, and then depressurized by the second pressure reducing valve 32 to become a low pressure. 12 is introduced as a descending liquid into the middle stage. Furthermore, after a part of the descending liquid component flowing down the middle stage of the first distillation column 11 is extracted to the path 33 and cooled by the first supercooler 29, the pressure is reduced by the third pressure reducing valve 34 to become a low pressure, It is introduced into the upper middle part of the second distillation column 12 as a descending liquid.

第2蒸留塔12には、前記経路28からの液化窒素、前記経路31からの第1酸素富化液成分、前記経路33からの下降液成分などが導入されて低圧で第2蒸留工程が行われ、第2蒸留塔12の上部に第2窒素ガス成分(低圧窒素ガス)が濃縮分離し、第2蒸留塔12の下部に第2酸素富化液成分が濃縮分離する。第2蒸留塔上部の第2窒素ガス成分は、経路35に抜き出され、第1過冷器29及び主熱交換器24で原料空気などを冷却する冷却源となって昇温し、経路36から低圧窒素ガスとして回収される。   Into the second distillation column 12, liquefied nitrogen from the path 28, the first oxygen-enriched liquid component from the path 31, the descending liquid component from the path 33, and the like are introduced, and the second distillation step is performed at a low pressure. The second nitrogen gas component (low-pressure nitrogen gas) is concentrated and separated at the upper part of the second distillation column 12, and the second oxygen-enriched liquid component is concentrated and separated at the lower part of the second distillation column 12. The second nitrogen gas component in the upper part of the second distillation column is extracted to the path 35, and the temperature rises as a cooling source for cooling the raw air and the like in the first supercooler 29 and the main heat exchanger 24, and the path 36 Is recovered as low-pressure nitrogen gas.

また、第2蒸留塔下部の第2酸素富化液成分は、前記主凝縮器15で前記第1窒素ガス成分と間接熱交換を行い、第1窒素ガス成分を凝縮させるとともに、第2酸素富化液成分の一部が蒸発して第2蒸留塔12の上昇ガスとなる。第2酸素富化液成分の残部は、経路37を流下して第3蒸留塔13の上部に下降液として導入される。   In addition, the second oxygen-enriched liquid component at the lower part of the second distillation column performs indirect heat exchange with the first nitrogen gas component in the main condenser 15 to condense the first nitrogen gas component, and to enrich the second oxygen-rich component. A part of the chemical liquid component evaporates and becomes the rising gas of the second distillation column 12. The remainder of the second oxygen-enriched liquid component flows down the path 37 and is introduced as a descending liquid into the upper part of the third distillation column 13.

第3蒸留塔13では、前記第2酸素富化液成分に対して低圧で第3蒸留工程を行うことにより、第3蒸留塔13の上部に第1酸素ガス成分が濃縮分離し、第3蒸留塔13の下部に第3酸素富化液成分(高純度液化酸素)が濃縮分離する。第3蒸留塔上部の第1酸素ガス成分は、経路38を経由して第2蒸留塔12の下部に上昇ガスとして導入される。   In the third distillation column 13, by performing a third distillation step at a low pressure on the second oxygen-enriched liquid component, the first oxygen gas component is concentrated and separated on the upper portion of the third distillation column 13, and the third distillation is performed. The third oxygen-enriched liquid component (high purity liquefied oxygen) is concentrated and separated at the bottom of the column 13. The first oxygen gas component in the upper part of the third distillation column is introduced as a rising gas into the lower part of the second distillation column 12 via the path 38.

第3蒸留塔13の下部に設けた前記副凝縮器16には、経路39に分流した前記第3原料空気が導入され、第3蒸留塔下部の第3酸素富化液成分と間接熱交換を行い、第3原料空気が凝縮して中圧の液化空気となり、経路40を通って第1蒸留塔11の中段下部に下降液として導入されるとともに、第3酸素富化液成分の一部が蒸発して第3蒸留塔13の上昇ガスになる。第3酸素富化液成分の残部は、経路41に抜き出され、前記液化酸素ポンプ17によってあらかじめ設定された圧力に昇圧され、第2過冷器42を通って第4蒸留塔14の上部に下降液として導入される。   The sub-condenser 16 provided at the lower part of the third distillation column 13 is supplied with the third raw material air that has been diverted to the path 39, and performs indirect heat exchange with the third oxygen-enriched liquid component at the lower part of the third distillation column. And the third raw material air is condensed to form liquefied air of medium pressure, and is introduced as a descending liquid into the lower middle stage of the first distillation column 11 through the path 40, and a part of the third oxygen-enriched liquid component is It evaporates and becomes the rising gas of the third distillation column 13. The remaining portion of the third oxygen-enriched liquid component is withdrawn into the passage 41, is pressurized to a preset pressure by the liquefied oxygen pump 17, passes through the second subcooler 42, and enters the upper portion of the fourth distillation column 14. Introduced as descending liquid.

第4蒸留塔14の下部には、経路43に分流した前記第2原料空気が上昇ガスとして導入され、前記第3酸素富化液成分の残部からなる下降液とによって中圧での第4蒸留工程が行われ、第4蒸留塔14の上部に、あらかじめ設定された純度(酸素濃度)及び圧力の第2酸素ガス成分が濃縮分離し、第4蒸留塔14の下部に第4酸素富化液成分が濃縮分離する。   In the lower part of the fourth distillation column 14, the second raw material air divided into the path 43 is introduced as an ascending gas, and the fourth distillation at a medium pressure is performed by the descending liquid composed of the remainder of the third oxygen-enriched liquid component. The second oxygen gas component having a preset purity (oxygen concentration) and pressure is concentrated and separated in the upper part of the fourth distillation column 14, and the fourth oxygen enriched liquid is formed in the lower part of the fourth distillation column 14. The components are concentrated and separated.

第4蒸留塔下部の第4酸素富化液成分は、経路44に抜き出されて第2過冷器42で冷却され、第4減圧弁45で減圧されて低圧となり、第2蒸留塔12の中段下部に下降液として導入される。また、第4蒸留塔14の中段部から経路46に下降液成分の一部が抜き出され、第2過冷器42で冷却されてから第5減圧弁47で減圧された後、該下降液成分の組成に応じて第2蒸留塔12の下部乃至第3蒸留塔13の上部に導入される。   The fourth oxygen-enriched liquid component at the lower part of the fourth distillation column is withdrawn into the path 44 and cooled by the second supercooler 42, and the pressure is reduced by the fourth pressure reducing valve 45 to become a low pressure. It is introduced into the lower part of the middle stage as a descending liquid. Further, a part of the descending liquid component is extracted from the middle stage of the fourth distillation column 14 to the path 46, cooled by the second supercooler 42, and then depressurized by the fifth pressure reducing valve 47. Depending on the composition of the components, it is introduced from the lower part of the second distillation column 12 to the upper part of the third distillation column 13.

そして、第4蒸留塔上部の第2酸素ガス成分は、経路48に抜き出されて主熱交換器24で原料空気の冷却源となり、常温に昇温して製品採取経路49から製品酸素ガスとして採取される。この製品酸素ガスは、第4蒸留塔14における第4蒸留工程の操作条件に応じた圧力及び酸素濃度を有しており、例えば、圧力は、前記第2原料空気の圧力に応じて270〜500kPaの中圧にすることができ、酸素濃度は、上昇ガスとなる第2原料空気の導入量と下降液となる第3酸素富化液成分の導入量、第4蒸留塔14の理論段数、経路46への下降液成分の抜き出し量を適宜設定することにより、酸素濃度を36〜98%の範囲、好ましくは、70〜98%の範囲にすることができる。   Then, the second oxygen gas component in the upper part of the fourth distillation column is extracted to the path 48 and becomes a cooling source for the raw air in the main heat exchanger 24, and is heated to room temperature to be converted into product oxygen gas from the product sampling path 49. Collected. This product oxygen gas has a pressure and an oxygen concentration according to the operating conditions of the fourth distillation step in the fourth distillation column 14. For example, the pressure is 270 to 500 kPa according to the pressure of the second raw material air. The oxygen concentration is the amount of introduction of the second raw material air that becomes the rising gas and the amount of introduction of the third oxygen-enriched liquid component that becomes the descending liquid, the number of theoretical plates of the fourth distillation column 14, the path By appropriately setting the amount of the descending liquid component extracted to 46, the oxygen concentration can be in the range of 36 to 98%, and preferably in the range of 70 to 98%.

一方、所定圧力に圧縮され、精製された後、主熱交換器導入前に経路23から経路50に分流した第4原料空気は、タービンブロワ51で更に圧縮されて高圧原料空気となり、アフタークーラ51aで圧縮熱を除去された後、主熱交換器24で中間温度に冷却されてから膨張タービン52に導入される。高圧原料空気は、膨張タービン52で等エントロピ膨張(断熱膨張)することにより、装置の熱損失に対応した寒冷を発生させて低圧低温となり、経路53を通って第2蒸留塔12の中段下部に上昇ガスとして導入される。   On the other hand, the fourth raw material air that has been compressed to a predetermined pressure and purified and then diverted from the passage 23 to the passage 50 before the introduction of the main heat exchanger is further compressed by the turbine blower 51 to become high-pressure raw material air, and the aftercooler 51a Then, after the compression heat is removed, the main heat exchanger 24 cools the compression heat to an intermediate temperature and then introduces it into the expansion turbine 52. The high pressure raw material air is isentropically expanded (adiabatic expansion) in the expansion turbine 52 to generate cold corresponding to the heat loss of the apparatus to become low pressure and low temperature, and through the path 53 to the lower middle part of the second distillation column 12. Introduced as rising gas.

また、運転条件によっては、前記経路28を流れる液化窒素の一部を、経路54に抜き出して製品液化窒素として採取することもできる。さらに、経路40を流れる中圧の液化空気の全量又は一部は、減圧後に第2蒸留塔12に下降液として導入することもできる。   Depending on the operating conditions, a part of the liquefied nitrogen flowing through the path 28 can be extracted into the path 54 and collected as product liquefied nitrogen. Further, the whole or a part of the medium-pressure liquefied air flowing through the path 40 can be introduced as a descending liquid into the second distillation column 12 after the pressure reduction.

このように、本形態例に示す空気液化分離装置では、第3蒸留塔13の下部に配置した副凝縮器16において、高純度液化酸素である第3酸素富化液成分と経路39からの第3原料空気とを熱交換させるための流体間温度差を確保するため、第3原料空気の飽和温度が第3蒸留塔13の下部の第3酸素富化液成分の飽和温度よりも高くなければならない。第3蒸留塔下部の第3酸素富化液成分の飽和温度は、酸素濃度によって変わるため、該第3酸素富化液成分の酸素濃度によって第3原料空気の圧力が変わる。また、第3蒸留塔下部の第3酸素富化液成分は、液化酸素ポンプ17で昇圧後に第4蒸留塔14の上部に導入され、該第4蒸留塔14の上部から製品酸素ガスが採取されるので、第3蒸留塔13の下部の第3酸素富化液成分の酸素濃度は、製品酸素ガスに要求される酸素濃度に支配される。   Thus, in the air liquefaction separation apparatus shown in this embodiment, in the sub-condenser 16 disposed at the lower part of the third distillation column 13, the third oxygen-enriched liquid component that is high-purity liquefied oxygen and the first from the path 39 are used. In order to ensure the temperature difference between the fluids for heat exchange with the three raw material air, the saturation temperature of the third raw material air must be higher than the saturation temperature of the third oxygen-enriched liquid component at the bottom of the third distillation column 13. Don't be. Since the saturation temperature of the third oxygen-enriched liquid component in the lower part of the third distillation column varies depending on the oxygen concentration, the pressure of the third raw material air varies depending on the oxygen concentration of the third oxygen-enriched liquid component. The third oxygen-enriched liquid component at the lower part of the third distillation column is introduced into the upper part of the fourth distillation column 14 after being pressurized by the liquefied oxygen pump 17, and product oxygen gas is collected from the upper part of the fourth distillation column 14. Therefore, the oxygen concentration of the third oxygen-enriched liquid component at the bottom of the third distillation column 13 is governed by the oxygen concentration required for the product oxygen gas.

したがって、本形態例に示すような空気液化分離装置では、製品酸素ガスの圧力P[kPa]と、製品酸素ガスの酸素濃度Z[vol%O]との関係において、次式を満足する範囲で、より効果的な結果を得ることができる。
270≦P≦4×Z+125
Therefore, in the air liquefaction separation apparatus as shown in the present embodiment, the range satisfying the following expression in the relationship between the product oxygen gas pressure P [kPa] and the product oxygen gas oxygen concentration Z [vol% O 2 ]. Thus, more effective results can be obtained.
270 ≦ P ≦ 4 × Z + 125

ここで、本形態例に示す空気液化分離装置を使用して、流量が300Nm/H(Nmは0℃、1気圧の標準状態に換算した体積),酸素濃度が80vol%以上,圧力が360kPaの製品酸素ガスを採取する際の主な経路の流量、圧力及び酸素濃度を表1に示す。一つの中圧塔と、二つの低圧塔とを組み合わせた従来の3塔式のプロセスで、同じ条件で製品酸素ガスを採取した場合に比べて動力費を約5%低減することが可能である。 Here, using the air liquefaction separation apparatus shown in this embodiment, the flow rate is 300 Nm 3 / H (Nm 3 is a volume converted to a standard state of 0 ° C. and 1 atm), the oxygen concentration is 80 vol% or more, and the pressure is Table 1 shows the flow rate, pressure, and oxygen concentration of the main path when collecting the product oxygen gas of 360 kPa. It is possible to reduce the power cost by about 5% compared to the case where product oxygen gas is collected under the same conditions in the conventional three-column process combining one medium-pressure column and two low-pressure columns. .

Figure 0006431828
Figure 0006431828

なお、各成分の抜出位置や導入位置及び流量は、製品酸素ガスの酸素濃度及び圧力に応じて適宜最適な状態に設定することができる。   In addition, the extraction position, introduction position, and flow rate of each component can be appropriately set in an optimal state according to the oxygen concentration and pressure of the product oxygen gas.

11…第1蒸留塔、12…第2蒸留塔、13…第3蒸留塔、14…第4蒸留塔、15…主凝縮器、16…副凝縮器、17…液化酸素ポンプ、21…空気圧縮機、21a…アフタークーラ、22…精製器、23…経路、24…主熱交換器、25…経路、26…経路、27…経路、28…経路、29…第1過冷器、30…第1減圧弁、31…経路、32…第2減圧弁、33…経路、34…第3減圧弁、35…経路、36…経路、37…経路、38…経路、39…経路、40…経路、41…経路、42…第2過冷器、43…経路、44…経路、45…第4減圧弁、46…経路、47…第5減圧弁、48…経路、49…製品採取経路、50…経路、51…タービンブロワ、51a…アフタークーラ、52…膨張タービン、53…経路、54…経路 DESCRIPTION OF SYMBOLS 11 ... 1st distillation column, 12 ... 2nd distillation column, 13 ... 3rd distillation column, 14 ... 4th distillation column, 15 ... Main condenser, 16 ... Subcondenser, 17 ... Liquid oxygen pump, 21 ... Air compression Machine, 21a ... after cooler, 22 ... purifier, 23 ... path, 24 ... main heat exchanger, 25 ... path, 26 ... path, 27 ... path, 28 ... path, 29 ... first subcooler, 30 ... first 1 pressure reducing valve, 31 ... path, 32 ... second pressure reducing valve, 33 ... path, 34 ... third pressure reducing valve, 35 ... path, 36 ... path, 37 ... path, 38 ... path, 39 ... path, 40 ... path, 41 ... path, 42 ... second subcooler, 43 ... path, 44 ... path, 45 ... fourth pressure reducing valve, 46 ... path, 47 ... fifth pressure reducing valve, 48 ... path, 49 ... product collection path, 50 ... Route 51: Turbine blower 51a ... After cooler 52 ... Expansion turbine 53 ... Route 54 ... Route

Claims (10)

圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離方法において、圧縮,精製,冷却した第1原料空気を蒸留することによって第1窒素ガス成分と第1酸素富化液成分とに分離する第1蒸留工程と、該第1蒸留工程で分離した第1酸素富化液成分を減圧してから蒸留することによって第2窒素ガス成分と第2酸素富化液成分とに分離する第2蒸留工程と、該第2蒸留工程で分離した第2酸素富化液成分を蒸留することによって第1酸素ガス成分と第3酸素富化液成分とに分離する第3蒸留工程と、該第3蒸留工程で分離した第3酸素富化液成分を昇圧し、圧縮,精製,冷却した第2原料空気と蒸留することによって第2酸素ガス成分と第4酸素富化液成分とに分離する第4蒸留工程と、前記第1窒素ガス成分と前記第2酸素富化液成分とを間接熱交換させて第1窒素ガス成分を凝縮させると同時に第2酸素富化液成分を蒸発させる第1間接熱交換工程と、圧縮、精製、冷却した第3原料空気と前記第3酸素富化液成分とを間接熱交換させて第3原料空気を凝縮させると同時に第3酸素富化液成分を蒸発させる第2間接熱交換工程と、前記第4蒸留工程で分離した第2酸素ガス成分を各原料空気の冷却源として使用した後に製品酸素ガスとして採取する製品採取工程とを含むことを特徴とする空気液化分離方法。   In an air liquefaction separation method in which at least oxygen gas is collected as a product by distilling compressed, purified, and cooled raw material air, the first nitrogen gas component and the second component are obtained by distilling the compressed, purified, and cooled first raw material air. A first distillation step that separates into one oxygen-enriched liquid component, and a second nitrogen gas component and a second oxygen-enriched product by distilling after depressurizing the first oxygen-enriched liquid component separated in the first distillation step. A second distillation step that separates into the chemical liquid component and a second oxygen enriched liquid component separated in the second distillation step to separate the first oxygen gas component and the third oxygen enriched liquid component by distillation. The second oxygen gas component and the fourth oxygen enrichment are obtained by increasing the pressure of the third distillation step and the third oxygen-enriched liquid component separated in the third distillation step and distilling with the compressed, refined and cooled second raw material air. 4th distillation process separated into chemical liquid components A first indirect heat exchange step in which the first nitrogen gas component and the second oxygen-enriched liquid component are indirectly heat exchanged to condense the first nitrogen gas component and at the same time evaporate the second oxygen-enriched liquid component; The second indirect heat that condenses the third raw material air at the same time as the third raw material air is condensed by indirect heat exchange between the compressed, purified and cooled third raw material air and the third oxygen enriched liquid component. An air liquefaction separation method comprising: an exchange step; and a product collection step of collecting the second oxygen gas component separated in the fourth distillation step as product oxygen gas after using the second oxygen gas component as a cooling source for each raw material air. 前記製品酸素ガスは、酸素濃度が36〜98vol%であることを特徴とする請求項1記載の空気液化分離方法。   The air liquefaction separation method according to claim 1, wherein the product oxygen gas has an oxygen concentration of 36 to 98 vol%. 前記製品酸素ガスは、酸素濃度が70〜98vol%であることを特徴とする請求項1記載の空気液化分離方法。   The air liquefaction separation method according to claim 1, wherein the product oxygen gas has an oxygen concentration of 70 to 98 vol%. 前記製品酸素ガスは、圧力が270〜500kPaであることを特徴とする請求項1乃至3のいずれか1項記載の空気液化分離方法。   The air liquefaction separation method according to any one of claims 1 to 3, wherein the product oxygen gas has a pressure of 270 to 500 kPa. 前記製品酸素ガスは、酸素濃度Z[vol%]のときに圧力P[kPa]が、270≦P≦4×Z+125であることを特徴とする請求項1乃至3のいずれか1項記載の空気液化分離方法。   4. The air according to claim 1, wherein the product oxygen gas has a pressure P [kPa] of 270 ≦ P ≦ 4 × Z + 125 when the oxygen concentration is Z [vol%]. 5. Liquefaction separation method. 圧縮、精製、冷却した原料空気を蒸留することにより、少なくとも酸素ガスを製品として採取する空気液化分離装置において、圧縮,精製,冷却した第1原料空気を蒸留することによって第1窒素ガス成分と第1酸素富化液成分とに分離する第1蒸留塔と、該第1蒸留塔で分離した第1酸素富化液成分を減圧してから蒸留することによって第2窒素ガス成分と第2酸素富化液成分とに分離する第2蒸留塔と、該第2蒸留塔で分離した第2酸素富化液成分を蒸留することによって第1酸素ガス成分と第3酸素富化液成分とに分離する第3蒸留塔と、該第3蒸留工程で分離した第3酸素富化液成分を昇圧し、圧縮,精製,冷却した第2原料空気と蒸留することによって第2酸素ガス成分と第4酸素富化液成分とに分離する第4蒸留塔と、前記第1窒素ガス成分と前記第2酸素富化液成分とを間接熱交換させて第1窒素ガス成分を凝縮させると同時に第2酸素富化液成分を蒸発させる主凝縮器と、圧縮、精製、冷却した第3原料空気と前記第3酸素富化液成分とを間接熱交換させて第3原料空気を凝縮させると同時に第3酸素富化液成分を蒸発させる副凝縮器と、前記第4蒸留塔で分離した第2酸素ガス成分を各原料空気の冷却源として使用した後に製品酸素ガスとして採取する製品採取経路とを含むことを特徴とする空気液化分離装置。   In an air liquefaction separation apparatus that collects at least oxygen gas as a product by distilling compressed, refined, and cooled raw material air, the first nitrogen gas component and the first component are obtained by distilling the compressed, purified, and cooled first raw material air. A first distillation column that separates into one oxygen-enriched liquid component; and a second nitrogen gas component and a second oxygen-enriched product by distillation after depressurizing the first oxygen-enriched liquid component separated in the first distillation column. A second distillation column that is separated into a liquid component and a second oxygen-enriched liquid component that is separated in the second distillation column, thereby separating the first oxygen gas component and the third oxygen-enriched liquid component. The second oxygen gas component and the fourth oxygen enrichment are obtained by pressurizing the third distillation column and the third oxygen-enriched liquid component separated in the third distillation step, and distilling with the compressed, refined and cooled second raw material air. A fourth distillation column that separates into a chemical liquid component; A main condenser that condenses the first nitrogen gas component by indirect heat exchange between the elementary gas component and the second oxygen-enriched liquid component, and at the same time evaporates the second oxygen-enriched liquid component, and compression, purification, and cooling A sub-condenser that indirectly heat exchanges the third raw material air and the third oxygen-enriched liquid component to condense the third raw material air and simultaneously evaporate the third oxygen-enriched liquid component; and the fourth distillation column An air liquefaction separation apparatus comprising: a product collection path for collecting product oxygen gas after using the separated second oxygen gas component as a cooling source for each raw material air. 前記製品酸素ガスは、酸素濃度が36〜98vol%であることを特徴とする請求項6記載の空気液化分離装置。   The air liquefaction separation apparatus according to claim 6, wherein the product oxygen gas has an oxygen concentration of 36 to 98 vol%. 前記製品酸素ガスは、酸素濃度が70〜98vol%であることを特徴とする請求項6記載の空気液化分離装置。   The air liquefaction separation apparatus according to claim 6, wherein the product oxygen gas has an oxygen concentration of 70 to 98 vol%. 前記製品酸素ガスは、圧力が270〜500kPaであることを特徴とする請求項6乃至8のいずれか1項記載の空気液化分離装置。   The air liquefaction separation apparatus according to any one of claims 6 to 8, wherein the product oxygen gas has a pressure of 270 to 500 kPa. 前記製品酸素ガスは、酸素濃度Z[vol%]のときに圧力P[kPa]が、270≦P≦4×Z+125であることを特徴とする請求項6乃至8のいずれか1項記載の空気液化分離装置
9. The air according to claim 6, wherein the product oxygen gas has a pressure P [kPa] of 270 ≦ P ≦ 4 × Z + 125 when the oxygen concentration is Z [vol%]. Liquefaction separation device .
JP2015154839A 2015-08-05 2015-08-05 Air liquefaction separation method and apparatus Active JP6431828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154839A JP6431828B2 (en) 2015-08-05 2015-08-05 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154839A JP6431828B2 (en) 2015-08-05 2015-08-05 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2017032242A JP2017032242A (en) 2017-02-09
JP6431828B2 true JP6431828B2 (en) 2018-11-28

Family

ID=57987130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154839A Active JP6431828B2 (en) 2015-08-05 2015-08-05 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP6431828B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792329B2 (en) * 1987-11-04 1995-10-09 日本酸素株式会社 Air liquefaction separation method and apparatus
JP2966999B2 (en) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 Ultra high purity nitrogen / oxygen production equipment
GB9414939D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
JP5655104B2 (en) * 2013-02-26 2015-01-14 大陽日酸株式会社 Air separation method and air separation device

Also Published As

Publication number Publication date
JP2017032242A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US3214925A (en) System for gas separation by rectification at low temperatures
JP5425100B2 (en) Cryogenic air separation method and apparatus
CN110307695B (en) Method and device for manufacturing product nitrogen and product argon
JP5655104B2 (en) Air separation method and air separation device
JP2002327981A (en) Cryogenic air-separation method of three-tower type
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
TW201809563A (en) Method and apparatus for producing compressed nitrogen and liquid nitrogen by cryogenic separation of air
EP2634517A1 (en) Process and apparatus for the separation of air by cryogenic distillation
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP5417054B2 (en) Air separation method and apparatus
US20220074656A1 (en) Apparatus and method for separating air by cryogenic distillation
KR101947112B1 (en) Method and device for generating two purified partial air streams
JP4401999B2 (en) Air separation method and air separation device
JP4519010B2 (en) Air separation device
JP6431828B2 (en) Air liquefaction separation method and apparatus
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP4787796B2 (en) Air separation method and apparatus
JP4782077B2 (en) Air separation method and apparatus
JP2004205076A (en) Air liquefying and separating device and its method
JP5027173B2 (en) Argon production method and apparatus thereof
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP6159242B2 (en) Air separation method and apparatus
US20230038170A1 (en) Process and plant for low-temperature separation of air
JP2024134911A (en) Nitrogen production method and nitrogen production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6431828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250