JP4150107B2 - Nitrogen production method and apparatus - Google Patents

Nitrogen production method and apparatus Download PDF

Info

Publication number
JP4150107B2
JP4150107B2 JP17598598A JP17598598A JP4150107B2 JP 4150107 B2 JP4150107 B2 JP 4150107B2 JP 17598598 A JP17598598 A JP 17598598A JP 17598598 A JP17598598 A JP 17598598A JP 4150107 B2 JP4150107 B2 JP 4150107B2
Authority
JP
Japan
Prior art keywords
nitrogen
enriched
distillation column
oxygen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17598598A
Other languages
Japanese (ja)
Other versions
JP2000018813A (en
Inventor
康浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP17598598A priority Critical patent/JP4150107B2/en
Publication of JP2000018813A publication Critical patent/JP2000018813A/en
Application granted granted Critical
Publication of JP4150107B2 publication Critical patent/JP4150107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Description

【0001】
【発明の属する技術分野】
本発明は、窒素製造方法及び装置に関し、詳しくは、圧縮,精製,冷却した原料空気を主蒸留塔に導入して低温蒸留することにより窒素ガスを分離し、製品として採取する窒素製造方法及び装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
原料空気を低温蒸留して窒素ガスを採取する窒素製造装置において、設備の増加を抑えながら、窒素の製造原単位を低減することは、重要な技術的課題であり、従来から様々な方式が提案されている。この技術的課題を解決するための一つのプロセスとして、特開平3−137484公報に記載された窒素製造プロセスが知られている。図2は、該公報に記載された窒素製造プロセスの系統図を示すものである。以下、図2を参照しながら、前記プロセスにより窒素を製造する手順を説明する。
【0003】
経路11から導入された原料空気は、原料空気圧縮機1で10kg/cmabs.程度に圧縮された後、アフタークーラー1aで冷却される。この原料空気は、モレキュラシーブ等を充填した前処理設備2に導入され、二酸化炭素,水分等の不純物が吸着・除去されて精製される。精製後の原料空気は、経路12を通り、主熱交換器3で、後述する製品窒素ガス及び酸素富化空気と熱交換し、露点温度付近まで冷却された後、経路13を通って蒸留塔4の下部に導入される。
【0004】
蒸留塔4では、塔内を上昇するガスと頂部のリボイラー/コンデンサー5で凝縮・液化されて塔内を下降する液との気液接触により低温蒸留が行われ、頂部から窒素ガスが、底部から酸素富化液化空気がそれぞれ抜き出される。
【0005】
塔頂部から経路14に抜き出された窒素ガスの一部は、経路16,過冷器6、経路17,主熱交換器3を通って昇温され、経路18から製品窒素ガスGNとして回収される。残りの窒素ガスは、リボイラー/コンデンサー5で凝縮液化されて経路15を通り、還流液として蒸留塔4に戻される。
【0006】
また、蒸留塔4の底部から経路19に抜き出された酸素富化液化空気は、過冷器6で冷却された後、経路20を通って減圧弁20aで減圧された後、経路21を通ってリボイラー/コンデンサー5に導入され、前記窒素ガスとの熱交換により気化されて酸素富化空気となる。このときの気化圧力は、リボイラー/コンデンサー5における窒素ガスとの温度差が適当となるように前記減圧弁20aで調節される。リボイラー/コンデンサー5において生成した酸素富化空気は、経路22を通り、過冷器6で昇温された後、経路23を通って2つに分岐される。一方の経路24に分岐した酸素富化空気は、主熱交換器3で昇温された後、経路25を通って膨張タービン8に導入され、膨張して寒冷を発生し、経路26を通って主熱交換器3で寒冷が回収され、常温となって経路27から廃ガスWGとして抜き出される。この廃ガスの少なくとも一部は、経路28を通って前処理設備2の再生ガスとして使用される。
【0007】
前記経路23から経路29に分岐した酸素富化空気は、低温圧縮機9で圧縮され、経路30を通り、主熱交換器3で冷却された後、経路31を通って蒸留塔4の下部に塔内の上昇ガスとして循環導入される。
【0008】
このように、酸素富化空気の一部を膨張タービン8の動力の一部によって圧縮し、蒸留塔4に循環導入することにより、窒素の回収率を向上させるようにしている。また、膨張タービン8の動力の一部を動力回収装置10によって回収し、これをコールドボックス外に放出することによって寒冷を発生させている。
【0009】
このようなプロセスによれば、蒸留塔4の塔底から抜き出した酸素富化液化空気を気化させ、酸素富化空気として再び蒸留塔4の下部に循環導入させているため、この流体の酸素濃度は、原料空気中の酸素濃度よりも高くなっている。このような酸素富化液化空気をコンデンサー・リボイラー5で窒素ガスとの熱交換により気化させるためには、前述のように、温度差が適当になるような圧力まで減圧弁20aで減圧させなければならない。この気化圧力は、液中の酸素濃度に関係し、酸素濃度が高くなるのに伴って低い圧力となる。したがって、低温圧縮機9の吸入圧力が低下するので、酸素富化空気の循環量の減少につながり、窒素の製造原単位の低減効果を十分に達成しているとはいえない。
【0010】
また、窒素回収率を向上させて原単位を改善する他の方法として、米国特許第4848996号明細書に記載されている方法が知られている。この方法では、主蒸留塔の塔底から抜き出した酸素富化液化空気を補助蒸留塔の頂部に導入している。この補助蒸留塔の底部は、主蒸留塔の頂部とコンデンサー・リボイラーによって熱的にリンクしており、主蒸留塔の頂部窒素ガスと補助蒸留塔底部の酸素富化液とが熱交換する。これにより、窒素ガスは凝縮し、還流として主蒸留塔に供給されるとともに、酸素富化液は気化し、補助蒸留塔内を上昇して蒸留される。補助蒸留塔の頂部からは、大気圧より高い圧力の空気成分に近いガスが抜き出され、寒冷を回収した後、循環ガスとして原料空気圧縮機の中間段に導入され、外部から導入された原料空気と共に圧縮され、再び主蒸留塔に循環導入される。
【0011】
このように、大気圧よりも圧力が高く、空気に近い成分のガスを原料の一部とし、再圧縮して循環させることにより、空気分離に必要な原料空気の全てを大気圧から圧縮する場合と比較し、窒素の製造原単位を低減させるようにしている。しかし、主蒸留塔の底部から抜き出された酸素富化液化空気は、補助蒸留塔の底部のコンデンサー・リボイラーにおいて、より酸素濃度の高い酸素富化液と窒素ガスとの温度差が適当になるように減圧されて導入されるため、補助蒸留塔の頂部から抜き出す循環ガスの圧力も低くなり、原料空気圧縮機に循環させるガスの圧力が低下してしまうとともに、補助蒸留塔から抜き出した循環ガスを常温まで加熱した後に原料空気圧縮機に導入するため、熱交換器や配管による圧力損失が大きくなり、その分循環量が減少するから、窒素の製造原単位の低減効果は十分とはいえない。
【0012】
そこで本発明は、従来よりもプロセス全体の動力の増加を極力抑え、設備を極力追加しない条件において、窒素回収率を向上させて窒素の製造原単位を低減できる窒素製造方法及び装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明の窒素製造方法は、圧縮,精製,冷却した原料空気を主蒸留塔に導入して低温蒸留し、酸素富化液化空気と窒素ガスとに分離して分離した窒素ガスを製品として採取する窒素製造方法において、前記酸素富化液化空気の一部を減圧後に前記窒素ガスとドライタイプのコンデンサー・リボイラーで熱交換させて気化し、補助蒸留塔の下部に上昇ガスとして導入するとともに、前記酸素富化液化空気の残部を減圧して前記補助蒸留塔の頂部に還流液として導入し、該補助蒸留塔での蒸留により酸素富化液と窒素富化ガスとに分離し、前記酸素富化液を減圧後に前記窒素ガスとドライタイプのコンデンサー・リボイラーで熱交換させて気化することにより酸素富化ガスを生成し、生成した酸素富化ガスを膨張させるとともに、前記窒素富化ガスを圧縮して前記主蒸留塔に循環導入することを特徴としている。
【0014】
さらに、本発明の窒素製造方法は、前記圧縮した窒素富化ガスを、前記主蒸留塔に導入する原料空気の導入位置より少なくとも1理論段上から主蒸留塔に導入すること、あるいは、該窒素富化ガスを、前記主蒸留塔に導入する前の原料空気に混合することを特徴としている。また、窒素富化ガスを圧縮する前の温度が、前記主蒸留塔の蒸留温度から常温までの範囲であること、前記主蒸留塔から導出して減圧する前の酸素富化液化空気を、前記窒素ガス及び前記窒素富化ガス及び前記酸素富化ガスのいずれか少なくとも一つで冷却することを特徴としている。
【0015】
本発明の窒素製造装置は、原料空気を圧縮,精製、冷却して低温蒸留することにより窒素を採取する窒素製造装置において、圧縮,精製した原料空気を冷却する主熱交換器と、冷却した原料空気を低温蒸留して窒素ガスと酸素富化液化空気とに分離する主蒸留塔と、前記酸素富化液化空気を低温蒸留して酸素富化液と窒素富化ガスとに分離する補助蒸留塔と、記酸素富化液化空気の一部を減圧・気化した後に前記補助蒸留塔の下部に上昇ガスとして導入する経路と、前記酸素富化液化空気の残部を減圧して前記補助蒸留塔の頂部に還流液として導入する経路と、前記窒素ガスと前記酸素富化液化空気及び前記酸素富化液とを熱交換させ、窒素ガスを液化して前記主蒸留塔の還流液を生成するとともに、酸素富化液化空気及び酸素富化液を気化するドライタイプのコンデンサー・リボイラーと、該コンデンサー・リボイラーで酸素富化液を気化して生成した酸素富化ガスを膨張させて寒冷を発生する寒冷タービン及び動力を発生する駆動タービンと、前記窒素富化ガスを圧縮する循環圧縮機とを備えたことを特徴としている。
【0016】
さらに、本発明の窒素製造装置は、前記主蒸留塔及び前記補助蒸留塔の少なくとも一つが充填式蒸留塔であること、前記コンデンサー・リボイラーが、前記酸素富化液化空気を気化させるものと、前記酸素富化液を気化させるものとに分割して別々に構成されていることを特徴としている。また、前記循環圧縮機が低温仕様のものであり、前記寒冷タービン又は駆動タービンと同軸上に連結して構成されていることを特徴としている。
【0017】
加えて、本発明の窒素製造装置は、圧縮,精製した原料空気を前記主熱交換器を経て前記主蒸留塔に導く原料空気導入経路と、前記主蒸留塔の下部から減圧弁及び前記コンデンサー・リボイラーを経て前記補助蒸留塔の下部に接続された上昇ガス生成経路と、前記主蒸留塔の下部から減圧弁を経て前記補助蒸留塔の上部に接続された還流液導入経路と、前記補助蒸留塔の下部から減圧弁を経て前記コンデンサー・リボイラーを通り、前記主熱交換器を経て前記寒冷タービン及び前記駆動タービンに接続された酸素富化ガス導出経路と、前記寒冷タービン及び前記駆動タービンから熱交換器を経て導出する寒冷回収経路と、前記補助蒸留塔の上部から前記循環圧縮機を通り、前記主熱交換器を経て前記主蒸留塔の下部に接続された窒素富化ガス循環導入経路とを備えていることを特徴とし、前記窒素富化ガス循環導入経路が前記原料空気導入経路に合流して前記主蒸留塔の下部に接続されていることを特徴としている。
【0018】
【発明の実施の形態】
図1は本発明の一形態例を示す系統図である。以下、この窒素製造装置により窒素を製造するプロセスに基づいて本発明をさらに詳細に説明する。
【0019】
まず、5692Nm/hの原料空気は、経路61を通り、原料空気圧縮機51で7.7kg/cmabs.に圧縮され、アフタークーラー51aで40℃に冷却された後、前処理設備52で二酸化炭素及び水分等の不純物が吸着・除去されて精製される。この精製原料空気は、経路62を通り、主熱交換器53で露点温度付近まで冷却された後、原料空気導入経路を構成する経路63を通って主蒸留塔54の下部に導入される。
【0020】
主蒸留塔54では、塔内を上昇するガスと頂部のリボイラー/コンデンサー55で凝縮して塔内を下降する液との気液接触によって蒸留が行われ、頂部から窒素ガス、底部から酸素濃度36%の酸素富化液化空気が抜き出される。
【0021】
塔頂部の経路64に抜き出された窒素ガスのうち、3000Nm/hが経路66に分岐し、過冷器56,経路67,主熱交換器53を通って昇温される。この窒素ガスは、経路68を通り,7.3kg/cmabs.、36℃で抜き出され、酸素濃度0.1ppb以下の製品窒素ガスGNとして回収される。
【0022】
経路64の残りの窒素ガスは、リボイラー/コンデンサー55に導入され、主蒸留塔54から抜き出された酸素富化液化空気及び後述の補助蒸留塔57から抜き出された酸素富化液と熱交換することによって凝縮液化し、経路65から主蒸留塔54の頂部に還流液として戻される。
【0023】
主蒸留塔54の底部から抜き出された3844Nm/hの酸素富化液化空気は、経路69を通って過冷器56で冷却された後、経路70から2つの経路に分岐する。上昇ガス生成経路を構成する経路71に分岐した915Nm/hの酸素富化液化空気は、リボイラー/コンデンサー55を通る窒素ガスと適当な温度差が得られるような圧力(3.6kg/cmabs.)に減圧弁71aで減圧された後、経路72を通ってリボイラー/コンデンサー55に導入されて気化する。このガスは、上昇ガス生成経路を構成する経路73を通り、補助蒸留塔57の下部に上昇ガスとして導入される。一方、前記過冷器56を導出後に還流液導入経路を構成する経路74に分岐した2929Nm/hの酸素富化液化空気は、減圧弁74aで補助蒸留塔57の圧力に減圧され、経路75から補助蒸留塔57の塔頂部に還流液として供給される。
【0024】
補助蒸留塔57では、上記上昇ガス及び還流液による蒸留が行われ、塔頂部からは、1152Nm/hの空気に近い組成の窒素富化ガスが窒素富化ガス循環導入経路を構成する経路76に循環流体として抜き出され、塔底からは酸素を44%含む酸素富化液が抜き出される。補助蒸留塔57の塔底から抜き出された2692Nm/hの酸素富化液は、経路80を通り、リボイラー/コンデンサー55を通る窒素ガスと適当な温度差が得られる圧力(3.3kg/cmabs.)に減圧弁80aで減圧された後、経路81を通ってリボイラー/コンデンサー55に導入され、気化して酸素富化ガスとなる。
【0025】
この酸素富化ガスは、酸素富化ガス導出経路を構成する経路82を通り、過冷器56で昇温した後、経路83を通って主熱交換器53で−143℃に昇温した時点で経路84に流出し、ここで2つの経路に分岐する。一方の経路85を通る1008Nm3/hの酸素富化ガスは、プロセスに寒冷を供給するため、寒冷タービン58で1.3kg/cm2abs.に減圧されて経路86に導出される。一方、経路87に分岐した残部の酸素富化ガスは、後述する循環圧縮機60と連結した駆動タービン59で1.3kg/cm2abs.に減圧され、動力を発生して経路88に導出される。経路86及び経路88の酸素富化ガスは、寒冷回収経路を構成する経路89に合流し、主熱交換器53で原料空気と熱交換することにより寒冷が回収されて36℃に昇温し、経路90を通って廃ガスWGとして抜き出され、その一部が前処理設備52の再生に利用される。
【0026】
前記寒冷タービン58及び駆動タービン59の導入側の酸素富化ガス導出経路を構成する経路83と、寒冷タービン58及び駆動タービン59の導出側の寒冷回収経路を構成する経路89とを接続する経路91及び弁91aは、両タービン58,59に導入する酸素富化ガスの全部又は一部を両タービン58,59をバイパスして流すもので、両タービン58,59の少なくとも1つが停止したときや,必要により両タービン58,59の少なくとも1つの流量を調節するときに使用される。
【0027】
補助蒸留塔57の頂部から窒素富化ガス循環導入経路を構成する経路76に抜き出された循環流体としての窒素富化ガスは、過冷器56で昇温して経路77を通り、循環圧縮機60で圧縮される。圧縮された窒素富化ガスは、窒素富化ガス循環導入経路を構成する経路78を通り、主熱交換器53で冷却された後、経路79を通って主蒸留塔54の下部に循環導入される。
【0028】
低温圧縮機60は、前述した駆動タービン59と同軸上に接続されており、駆動タービン59によって発生した動力を利用して駆動されている。
【0029】
このように、本形態例によれば、前記図2に示した従来プロセスに比べて酸素含有量の少ない窒素富化ガスを主蒸留塔54に循環導入するから、主蒸留塔54から経路69に抜き出す酸素富化液化空気中の酸素含有量も少なくなる。したがって、リボイラー/コンデンサー55で酸素富化液化空気を気化させるとき、酸素含有量が少ない分、気化圧力を約0.3kg/cm高くすることができる。これにより、酸素富化ガス導出経路を構成する経路82を通る酸素富化ガスの圧力よりも循環流体の圧力を高くすることができ、低温圧縮機60に導入する窒素富化ガスの吸入圧力も高くできるため、循環圧縮機60の圧縮比が小さくとれ、主蒸留塔54に循環導入する循環流体の流量を増加させることができ、窒素の製造原単位を低減することができる。
【0030】
すなわち、循環圧縮機60の入口圧力は、これに導入する流体のリボイラー/コンデンサー55における気化圧力に依存する。この圧力は、リボイラー/コンデンサー55を通る窒素ガスとの温度差が適当になるように決定され、この流体の組成に依存する。つまり、主蒸留塔54の底部から抜き出した酸素富化液化空気は、補助蒸留塔57の底部から抜き出した酸素富化液と比較して酸素濃度が低いため、リボイラー/コンデンサー55で気化させる際の圧力を高くすることができる。さらに、この気化ガスは、補助蒸留塔57に導入されるため、補助蒸留塔57の頂部から抜き出す循環流体の圧力を高くすることができる。しかも、循環圧縮機60は、駆動タービン59によって駆動されているので、入口圧力が高くなれば吸入量が増加する。これは、循環量の増加につながり、主蒸留塔54における上昇ガス量及び下降液量が増加し、結果として製品窒素の回収率が増加し、窒素の製造原単位を低減することができる。
【0031】
本形態例におけるコンデンサー・リボイラー55には、液浸漬型ではなく、ドライタイプを使用している。本形態例のように、冷流体が2流体ある場合に浸漬型のコンデンサー・リボイラーを使用すると、冷流体の液中にコンデンサー・リボイラーを浸す必要があるため、2つのコンデンサー・リボイラーを設置することが必須となる。しかし、ドライタイプの場合には、液中に浸す必要がないため、冷流体の流路を2流路に構成することによって、容易に一体化ができる。但し、コンデンサー・リボイラー55は、主蒸留塔54からの酸素富化液化空気を気化させるものと、補助蒸留塔57からの酸素富化液を気化させるものと、別々に構成してもよい。さらに、液浸漬型の場合は、気化側の液体が液ヘッドにより過冷却となり、この分、気化圧力を低くしなければならないが、ドライタイプの場合は、このようなことがないので、気化圧力を高めることができる。さらにまた、液浸漬型に比べて保有液量が少ないので、装置の起動時間を短縮する効果もある。
【0032】
また、本形態例では、補助蒸留塔57における蒸留により、その塔頂から抜き出す窒素富化ガス中の窒素濃度を空気中の窒素濃度より高くできるため、これを圧縮して主蒸留塔54に循環導入するに際し、この循環流体と同じ組成の塔内上昇ガスの精留段の位置、すなわち、原料空気の供給段より少なくとも1平衡段上に、好ましくは4平衡段上に供給することが望ましいが、循環圧縮機60から経路78に導出する循環流体を、主熱交換器53の原料空気導入通路の原料空気と合流させるようにしてもよい。これにより、循環流体の流路や主熱交換器53の流路を減らすことができるため、設備費を削減することができる。
【0033】
また、主蒸留塔54から抜き出す酸素富化液化空気を減圧する前に、過冷器56において、主蒸留塔54からの窒素ガス,補助蒸留塔57からの窒素富化ガス及びコンデンサー・リボイラー55からの酸素富化ガスで過冷却することにより、コンデンサー・リボイラー55での冷却源としての温度を低めることができるとともに、経路75から補助蒸留塔57に導入する還流液の減圧によるフラッシュロスを低減でき、補助蒸留塔57における精留効率を高めることができる。
【0034】
さらに、循環圧縮機60での循環ガスの圧縮は、本形態例で示したように、低温蒸留温度で行ってもよいし、主熱交換器53で適当な温度まで昇温した後に圧縮することもでき、設計条件により、蒸留低温レベルから常温までの間の温度を任意に選択することができる。
【0035】
また、主蒸留塔54と補助蒸留塔57の少なくとも1つに充填物を使用することにより、蒸留塔の圧力損失を少なくすることができるので、さらに窒素製造原単位を低下させることができる。
【0036】
本形態例によれば、窒素回収率を約53%、窒素動力原単位(製品窒素流量に対する全動力の比)を0.247kWh/Nmにできる。同条件で計算を行った前記図2の従来プロセスと比較し、動力原単位を0.02kWh/Nm減少することが可能となる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、補助蒸留塔での蒸留によって循環ガスの窒素濃度を上げることができるとともに、各気液の組成の改善によって主蒸留塔に循環させるガスを増量できるので、動力の増加を極力抑えながら窒素回収率を向上させて窒素の製造原単位を低減することができる。
【図面の簡単な説明】
【図1】 本発明の一形態例を示す窒素製造装置の系統図である。
【図2】 従来プロセスの一例を示す系統図である。
【符号の説明】
51…原料空気圧縮機、52…前処理設備、53…主熱交換器、54…主蒸留塔、55…リボイラー/コンデンサー、56…過冷器、57…補助蒸留塔、58…寒冷タービン、59…駆動タービン、60…循環圧縮機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing nitrogen, and more particularly, a method and apparatus for producing nitrogen that separates nitrogen gas by introducing compressed, purified, and cooled raw material air into a main distillation column and performs low-temperature distillation to collect the product as a product. About.
[0002]
[Prior art and problems to be solved by the invention]
In a nitrogen production system that collects nitrogen gas by low-temperature distillation of raw material air, it is an important technical issue to reduce the production unit of nitrogen while suppressing an increase in equipment, and various methods have been proposed in the past. Has been. As one process for solving this technical problem, a nitrogen production process described in JP-A-3-137484 is known. FIG. 2 shows a system diagram of the nitrogen production process described in the publication. Hereinafter, the procedure for producing nitrogen by the above process will be described with reference to FIG.
[0003]
Feed air introduced from the path 11, the raw material air compressor 1 10kg / cm 2 abs. After being compressed to the extent, it is cooled by the aftercooler 1a. This raw material air is introduced into a pretreatment facility 2 filled with molecular sieves and the like, and impurities such as carbon dioxide and moisture are adsorbed and removed for purification. The refined raw material air passes through the path 12 and is exchanged with the product nitrogen gas and oxygen-enriched air, which will be described later, in the main heat exchanger 3 and cooled to near the dew point temperature. 4 is introduced at the bottom.
[0004]
In the distillation tower 4, low temperature distillation is performed by gas-liquid contact between the gas rising in the tower and the liquid condensed and liquefied by the reboiler / condenser 5 at the top and descending in the tower, and nitrogen gas is sent from the top to the bottom. Each oxygen enriched liquefied air is withdrawn.
[0005]
A part of the nitrogen gas extracted from the top of the tower to the path 14 is heated through the path 16, the supercooler 6, the path 17, and the main heat exchanger 3, and recovered from the path 18 as product nitrogen gas GN. The The remaining nitrogen gas is condensed and liquefied by the reboiler / condenser 5, passes through the path 15, and returned to the distillation column 4 as a reflux liquid.
[0006]
The oxygen-enriched liquefied air extracted from the bottom of the distillation column 4 to the path 19 is cooled by the supercooler 6, then depressurized by the pressure reducing valve 20 a through the path 20, and then passed through the path 21. Then, it is introduced into the reboiler / condenser 5 and vaporized by heat exchange with the nitrogen gas to become oxygen-enriched air. The vaporization pressure at this time is adjusted by the pressure reducing valve 20a so that the temperature difference with the nitrogen gas in the reboiler / condenser 5 is appropriate. The oxygen-enriched air generated in the reboiler / condenser 5 passes through the path 22, is heated by the supercooler 6, and then is branched into two through the path 23. The oxygen-enriched air branched into one path 24 is heated in the main heat exchanger 3 and then introduced into the expansion turbine 8 through the path 25 to expand and generate cold. Cold is recovered by the main heat exchanger 3, becomes room temperature, and is extracted from the path 27 as waste gas WG. At least a part of the waste gas is used as a regeneration gas for the pretreatment facility 2 through the path 28.
[0007]
The oxygen-enriched air branched from the path 23 to the path 29 is compressed by the low-temperature compressor 9, passes through the path 30, is cooled by the main heat exchanger 3, and then passes through the path 31 to the lower part of the distillation column 4. It is circulated and introduced as rising gas in the tower.
[0008]
In this way, a part of the oxygen-enriched air is compressed by a part of the power of the expansion turbine 8 and circulated into the distillation column 4 to improve the nitrogen recovery rate. Further, a part of the power of the expansion turbine 8 is recovered by the power recovery device 10 and is discharged outside the cold box to generate cold.
[0009]
According to such a process, the oxygen-enriched liquefied air extracted from the bottom of the distillation column 4 is vaporized and recirculated and introduced into the lower portion of the distillation column 4 as oxygen-enriched air. Is higher than the oxygen concentration in the raw air. In order to vaporize such oxygen-enriched liquefied air by heat exchange with nitrogen gas by the condenser / reboiler 5, as described above, the pressure must be reduced by the pressure reducing valve 20a to a pressure at which the temperature difference becomes appropriate. Don't be. This vaporization pressure is related to the oxygen concentration in the liquid, and becomes a lower pressure as the oxygen concentration increases. Therefore, since the suction pressure of the low-temperature compressor 9 is lowered, the circulation amount of the oxygen-enriched air is reduced, and it cannot be said that the effect of reducing the nitrogen production basic unit is sufficiently achieved.
[0010]
As another method for improving the basic unit by improving the nitrogen recovery rate, a method described in US Pat. No. 4,848,996 is known. In this method, oxygen-enriched liquefied air extracted from the bottom of the main distillation column is introduced into the top of the auxiliary distillation column. The bottom of the auxiliary distillation column is thermally linked to the top of the main distillation column by a condenser reboiler, and heat exchange occurs between the nitrogen gas at the top of the main distillation column and the oxygen-enriched liquid at the bottom of the auxiliary distillation column. As a result, the nitrogen gas is condensed and supplied to the main distillation column as reflux, and the oxygen-enriched liquid is vaporized and rises in the auxiliary distillation column to be distilled. From the top of the auxiliary distillation column, a gas close to the air component at a pressure higher than the atmospheric pressure is extracted, and after collecting the cold, it is introduced into the intermediate stage of the raw material air compressor as a circulating gas, and the raw material introduced from the outside It is compressed with air and recirculated into the main distillation column.
[0011]
In this way, when all the source air necessary for air separation is compressed from the atmospheric pressure by recompressing and circulating a part of the raw material that has a higher pressure than atmospheric pressure and a component close to air Compared to the above, the production unit of nitrogen is reduced. However, the oxygen-enriched liquefied air extracted from the bottom of the main distillation column has an appropriate temperature difference between the oxygen-enriched liquid having a higher oxygen concentration and nitrogen gas in the condenser / reboiler at the bottom of the auxiliary distillation column. Thus, the pressure of the circulating gas extracted from the top of the auxiliary distillation column is reduced, the pressure of the gas to be circulated to the raw air compressor is reduced, and the circulating gas extracted from the auxiliary distillation column is reduced. Is heated to room temperature and then introduced into the raw air compressor, the pressure loss due to heat exchangers and piping increases, and the amount of circulation decreases accordingly, so the reduction in nitrogen production intensity is not sufficient. .
[0012]
Therefore, the present invention provides a nitrogen production method and apparatus that can suppress the increase in power of the entire process as much as possible and improve the nitrogen recovery rate and reduce the production unit of nitrogen under the condition that equipment is not added as much as possible. It is an object.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the nitrogen production method of the present invention introduces compressed, refined, and cooled raw material air into the main distillation column, performs low-temperature distillation, and separates it into oxygen-enriched liquefied air and nitrogen gas. In the nitrogen production method for collecting nitrogen gas as a product, a part of the oxygen-enriched liquefied air is vaporized by depressurizing and then exchanging heat with the nitrogen gas with a dry-type condenser / reboiler, and rising gas at the bottom of the auxiliary distillation column And the remainder of the oxygen-enriched liquefied air is decompressed and introduced into the top of the auxiliary distillation column as a reflux liquid , and separated into an oxygen-enriched liquid and a nitrogen-enriched gas by distillation in the auxiliary distillation tower. and, wherein the oxygen-enriched liquid to the product oxygen-enriched gas by vaporizing by heat exchange with condenser reboiler of the nitrogen gas and the dry type after decompression, inflating the resulting oxygen-enriched gas Both are characterized by circulating introduced into the main distillation column and compressing the nitrogen-enriched gas.
[0014]
Further, in the nitrogen production method of the present invention, the compressed nitrogen-enriched gas is introduced into the main distillation column from at least one theoretical plate above the introduction position of the raw air introduced into the main distillation column, or the nitrogen The enriched gas is mixed with the raw air before being introduced into the main distillation column. The temperature prior to compressing the nitrogen-enriched gas is in the range of up to the distillation temperature or et ambient temperature of the main distillation column, the oxygen-enriched liquefied air before reducing the pressure derives from the main distillation column And cooling with at least one of the nitrogen gas, the nitrogen-enriched gas, and the oxygen-enriched gas.
[0015]
Nitrogen producing apparatus of the present invention, compressed feed air, purified, the nitrogen producing apparatus for collecting nitrogen by cooling to a low temperature distillation, compression, and the main heat exchanger purified feed air to cooling and cooled A main distillation tower that separates raw material air into nitrogen gas and oxygen- enriched liquefied air by low-temperature distillation, and auxiliary distillation that separates the oxygen-enriched liquefied air into low-temperature distilled and oxygen-enriched liquid and nitrogen-enriched gas a path for introducing the tower, a part of the pre-hexane Mototomi of liquefied air as ascending vapor in the lower part of the auxiliary distillation column pressure was reduced and vaporized, the auxiliary distillation under reduced pressure the remaining portion of the oxygen-enriched liquefied air A path to be introduced as a reflux liquid at the top of the column, the nitrogen gas, the oxygen-enriched liquefied air, and the oxygen-enriched liquid are subjected to heat exchange, and the nitrogen gas is liquefied to produce a reflux liquid of the main distillation column. And oxygen-enriched liquefied air and oxygen-enriched liquid And condenser reboiler dry type for a driving turbine expanding the oxygen-enriched gas produced by vaporizing the oxygen-enriched liquid in the condenser reboiler to generate cold turbine and power generating cold and the nitrogen rich And a circulating compressor for compressing the chemical gas.
[0016]
In addition, the nitrogen producing apparatus of the present invention, the this at least one of said main distillation column and the auxiliary distillation column is packed distillation column, the previous SL condenser reboiler, as vaporizing said oxygen-enriched liquefied air, The oxygen-enriched liquid is divided into components that vaporize and is configured separately. Further, the circulating compressor is of a low temperature specification, and is configured to be coaxially connected to the cold turbine or the drive turbine.
[0017]
In addition, the nitrogen production apparatus of the present invention includes a raw material air introduction path for introducing compressed and purified raw material air to the main distillation column through the main heat exchanger, a pressure reducing valve and the condenser An ascending gas generation path connected to the lower part of the auxiliary distillation column via a reboiler, a reflux liquid introduction path connected to the upper part of the auxiliary distillation column from the lower part of the main distillation column via a pressure reducing valve, and the auxiliary distillation column An oxygen-enriched gas lead-out path connected to the cold turbine and the driving turbine through the main heat exchanger, the heat exchanger from the cold turbine and the driving turbine A nitrogen recovery gas that is led out through a reactor, and a nitrogen-enriched gas that passes through the circulating compressor from the upper part of the auxiliary distillation column and is connected to the lower part of the main distillation column through the main heat exchanger Characterized by comprising a ring introduction path, and wherein the nitrogen-enriched gas circulation introduction path is connected to a lower portion of said main distillation column joined to the feed air introduction path.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an embodiment of the present invention. Hereinafter, the present invention will be described in more detail based on a process for producing nitrogen by the nitrogen production apparatus.
[0019]
First, the raw material air of 5692 Nm 3 / h passes through the path 61 and is 7.7 kg / cm 2 abs. After being compressed to 40 ° C. by the aftercooler 51a, impurities such as carbon dioxide and moisture are adsorbed and removed by the pretreatment facility 52 and purified. The purified raw material air passes through the path 62, is cooled to near the dew point temperature by the main heat exchanger 53, and is then introduced into the lower portion of the main distillation column 54 through the path 63 constituting the raw material air introduction path.
[0020]
In the main distillation column 54, distillation is performed by gas-liquid contact between the gas rising in the column and the liquid condensed in the reboiler / condenser 55 at the top and descending in the column. The nitrogen concentration is from the top and the oxygen concentration is 36 from the bottom. % Oxygen enriched liquefied air is withdrawn.
[0021]
Of the nitrogen gas extracted into the channel 64 at the top of the column, 3000 Nm 3 / h branches to the channel 66 and is heated through the subcooler 56, the channel 67 and the main heat exchanger 53. This nitrogen gas passes through path 68 and is 7.3 kg / cm 2 abs. , Extracted at 36 ° C. and recovered as product nitrogen gas GN having an oxygen concentration of 0.1 ppb or less.
[0022]
The remaining nitrogen gas in the path 64 is introduced into the reboiler / condenser 55 and exchanges heat with oxygen-enriched liquefied air extracted from the main distillation column 54 and oxygen-enriched solution extracted from the auxiliary distillation column 57 described later. As a result, the liquid is condensed and returned to the top of the main distillation column 54 from the path 65 as a reflux liquid.
[0023]
The 3844 Nm 3 / h oxygen-enriched liquefied air extracted from the bottom of the main distillation column 54 is cooled by the supercooler 56 through the path 69 and then branches from the path 70 into two paths. The 915 Nm 3 / h oxygen-enriched liquefied air branched into the path 71 constituting the ascending gas generation path is at a pressure (3.6 kg / cm 2) at which an appropriate temperature difference is obtained from the nitrogen gas passing through the reboiler / condenser 55. abs.) is reduced by the pressure reducing valve 71a, and then introduced into the reboiler / condenser 55 through the path 72 and vaporized. This gas passes through the path 73 constituting the rising gas generation path, and is introduced as a rising gas to the lower part of the auxiliary distillation column 57. On the other hand, the oxygen-enriched liquefied air of 2929 Nm 3 / h branched to the path 74 constituting the reflux liquid introduction path after being led out of the supercooler 56 is depressurized to the pressure of the auxiliary distillation column 57 by the pressure reducing valve 74a, and the path 75 To the top of the auxiliary distillation column 57 as a reflux liquid.
[0024]
In the auxiliary distillation column 57, distillation with the rising gas and the reflux liquid is performed, and from the top of the column, a nitrogen-rich gas having a composition close to air of 1152 Nm 3 / h constitutes a route 76 constituting a nitrogen-rich gas circulation introduction route. The oxygen-enriched liquid containing 44% oxygen is extracted from the bottom of the column. The 2692 Nm 3 / h oxygen-enriched liquid extracted from the bottom of the auxiliary distillation column 57 passes through the path 80 and has a pressure (3.3 kg / cm 2 abs.), the pressure is reduced by the pressure reducing valve 80a, and then introduced into the reboiler / condenser 55 through the path 81 and vaporized to become an oxygen-enriched gas.
[0025]
This oxygen-enriched gas passes through the path 82 constituting the oxygen-enriched gas lead-out path, is heated by the supercooler 56, and then is heated to -143 ° C by the main heat exchanger 53 through the path 83 To flow out to path 84, where it branches into two paths. The 1008 Nm 3 / h oxygen-enriched gas passing through one path 85 is 1.3 kg / cm 2 abs. The pressure is reduced to a path 86. On the other hand, the remaining oxygen-enriched gas branched into the path 87 is 1.3 kg / cm 2 abs. In the drive turbine 59 connected to the circulating compressor 60 described later. The pressure is then reduced to generate power and lead to the path 88. The oxygen-enriched gas in the path 86 and the path 88 merges into the path 89 constituting the cold recovery path, and the cold is recovered by exchanging heat with the raw air in the main heat exchanger 53, and the temperature is raised to 36 ° C. through the path 90 is withdrawn as waste gas WG, part of it is utilized for the reproduction of pre-treatment facility 52.
[0026]
A path 91 connecting the path 83 constituting the oxygen-enriched gas lead-out path on the introduction side of the cold turbine 58 and the drive turbine 59 and the path 89 constituting the cold recovery path on the lead-out side of the cold turbine 58 and the drive turbine 59. And the valve 91a allows all or part of the oxygen-enriched gas introduced into the turbines 58 and 59 to flow by bypassing the turbines 58 and 59, and when at least one of the turbines 58 and 59 stops, Used when adjusting the flow rate of at least one of the turbines 58 and 59 as required.
[0027]
The nitrogen-enriched gas as the circulating fluid extracted from the top of the auxiliary distillation column 57 to the path 76 constituting the nitrogen-enriched gas circulation introduction path is heated by the supercooler 56 and passes through the path 77 to be circulated and compressed. Compressed by machine 60. The compressed nitrogen-enriched gas passes through a path 78 constituting a nitrogen-enriched gas circulation introduction path, is cooled by the main heat exchanger 53, and then is circulated and introduced into the lower part of the main distillation column 54 through the path 79. The
[0028]
The low-temperature compressor 60 is coaxially connected to the drive turbine 59 described above, and is driven using the power generated by the drive turbine 59.
[0029]
As described above, according to the present embodiment, the nitrogen-enriched gas having a lower oxygen content than the conventional process shown in FIG. 2 is circulated and introduced into the main distillation column 54. The oxygen content in the oxygen-enriched liquefied air extracted is also reduced. Accordingly, when the oxygen-enriched liquefied air is vaporized by the reboiler / condenser 55, the vaporization pressure can be increased by about 0.3 kg / cm 2 because the oxygen content is small. As a result, the pressure of the circulating fluid can be made higher than the pressure of the oxygen-enriched gas passing through the path 82 constituting the oxygen-enriched gas lead-out path, and the suction pressure of the nitrogen-enriched gas introduced into the low-temperature compressor 60 is also increased. Since it can be increased, the compression ratio of the circulating compressor 60 can be reduced, the flow rate of the circulating fluid circulated and introduced into the main distillation column 54 can be increased, and the production unit of nitrogen can be reduced.
[0030]
That is, the inlet pressure of the circulating compressor 60 depends on the vaporization pressure in the reboiler / condenser 55 of the fluid introduced therein. This pressure is determined so that the temperature difference from the nitrogen gas through the reboiler / condenser 55 is appropriate and depends on the composition of the fluid. That is, the oxygen-enriched liquefied air extracted from the bottom of the main distillation column 54 has a lower oxygen concentration than that of the oxygen-enriched liquid extracted from the bottom of the auxiliary distillation column 57, and therefore is used when vaporizing with the reboiler / condenser 55. The pressure can be increased. Further, since this vaporized gas is introduced into the auxiliary distillation column 57, the pressure of the circulating fluid extracted from the top of the auxiliary distillation column 57 can be increased. Moreover, since the circulating compressor 60 is driven by the drive turbine 59, the intake amount increases as the inlet pressure increases. This leads to an increase in the circulation rate, and the amount of ascending gas and the amount of descending liquid in the main distillation column 54 is increased. As a result, the product nitrogen recovery rate is increased, and the production unit of nitrogen can be reduced.
[0031]
The condenser reboiler 55 in this embodiment is not a liquid immersion type but a dry type. As in this example, if there are two cold fluids and an immersion condenser reboiler is used, it is necessary to immerse the condenser reboiler in the liquid of the cold fluid, so two condenser reboilers must be installed. Is essential. However, in the case of the dry type, since it is not necessary to immerse in the liquid, it is possible to easily integrate by configuring the flow path of the cold fluid into two flow paths. However, the condenser reboiler 55 may be configured separately from one that vaporizes the oxygen-enriched liquefied air from the main distillation column 54 and one that vaporizes the oxygen-enriched liquid from the auxiliary distillation column 57. Furthermore, in the case of the liquid immersion type, the liquid on the vaporization side is supercooled by the liquid head, and the vaporization pressure must be lowered accordingly, but in the case of the dry type, this is not the case. Can be increased. Furthermore, since the amount of liquid retained is smaller than that of the liquid immersion type, there is an effect of shortening the startup time of the apparatus.
[0032]
In this embodiment, since the nitrogen concentration in the nitrogen-enriched gas extracted from the top of the auxiliary distillation column 57 can be made higher than the nitrogen concentration in the air by the distillation in the auxiliary distillation column 57, this is compressed and circulated to the main distillation column 54. At the time of introduction, it is desirable to supply the rectifying stage of the rising gas in the column having the same composition as the circulating fluid, that is, to supply at least one equilibrium stage, preferably four equilibrium stages, from the feed stage of the feed air. The circulating fluid led out from the circulating compressor 60 to the path 78 may be merged with the raw air in the raw air introduction passage of the main heat exchanger 53. Thereby, since the flow path of the circulating fluid and the flow path of the main heat exchanger 53 can be reduced, the equipment cost can be reduced.
[0033]
In addition, before reducing the pressure of the oxygen-enriched liquefied air extracted from the main distillation column 54, in the supercooler 56, the nitrogen gas from the main distillation column 54, the nitrogen-enriched gas from the auxiliary distillation column 57, and the condenser reboiler 55 are used. By subcooling with the oxygen-enriched gas, the temperature as the cooling source in the condenser reboiler 55 can be lowered, and the flash loss due to the reduced pressure of the reflux liquid introduced into the auxiliary distillation column 57 from the path 75 can be reduced. The rectification efficiency in the auxiliary distillation column 57 can be increased.
[0034]
Further, the compression of the circulating gas in the circulating compressor 60 may be performed at a low temperature distillation temperature as shown in the present embodiment, or the temperature is increased to an appropriate temperature by the main heat exchanger 53 and then compressed. The temperature between the distillation low temperature level and room temperature can be arbitrarily selected according to the design conditions.
[0035]
Further, by using a packing material in at least one of the main distillation column 54 and the auxiliary distillation column 57, the pressure loss of the distillation column can be reduced, so that the nitrogen production unit can be further reduced.
[0036]
According to this embodiment, the nitrogen recovery rate can be about 53%, and the nitrogen power basic unit (the ratio of the total power to the product nitrogen flow rate) can be 0.247 kWh / Nm 3 . Compared with the conventional process of FIG. 2 where the calculation is performed under the same conditions, the power consumption can be reduced by 0.02 kWh / Nm 3 .
[0037]
【The invention's effect】
As described above, according to the present invention, the nitrogen concentration of the circulating gas can be increased by distillation in the auxiliary distillation column, and the amount of gas circulated to the main distillation column can be increased by improving the composition of each gas-liquid. Further, it is possible to improve the nitrogen recovery rate while suppressing the increase in power as much as possible, and to reduce the production unit of nitrogen.
[Brief description of the drawings]
FIG. 1 is a system diagram of a nitrogen production apparatus showing an embodiment of the present invention.
FIG. 2 is a system diagram showing an example of a conventional process.
[Explanation of symbols]
51 ... Raw air compressor, 52 ... Pretreatment equipment, 53 ... Main heat exchanger, 54 ... Main distillation tower, 55 ... Reboiler / condenser, 56 ... Supercooler, 57 ... Auxiliary distillation tower, 58 ... Cold turbine, 59 ... Drive turbine, 60 ... Circulating compressor

Claims (12)

圧縮,精製,冷却した原料空気を主蒸留塔に導入して低温蒸留し、酸素富化液化空気と窒素ガスとに分離して分離した窒素ガスを製品として採取する窒素製造方法において、前記酸素富化液化空気の一部を減圧後に前記窒素ガスとドライタイプのコンデンサー・リボイラーで熱交換させて気化し、補助蒸留塔の下部に上昇ガスとして導入するとともに、前記酸素富化液化空気の残部を減圧して前記補助蒸留塔の頂部に還流液として導入し、該補助蒸留塔での蒸留により酸素富化液と窒素富化ガスとに分離し、前記酸素富化液を減圧後に前記窒素ガスとドライタイプのコンデンサー・リボイラーで熱交換させて気化することにより酸素富化ガスを生成し、生成した酸素富化ガスを膨張させるとともに、前記窒素富化ガスを圧縮して前記主蒸留塔に循環導入することを特徴とする窒素製造方法。In the nitrogen production method in which the compressed, purified and cooled raw material air is introduced into the main distillation column and subjected to low-temperature distillation, and separated into oxygen-enriched liquefied air and nitrogen gas, and separated nitrogen gas is collected as a product. A part of the liquefied air is decompressed and heat-exchanged with the nitrogen gas and dry type condenser / reboiler to be vaporized and introduced into the lower part of the auxiliary distillation column as a rising gas, and the remaining oxygen-enriched liquefied air is decompressed. And introduced into the top of the auxiliary distillation column as a reflux liquid , and separated into an oxygen-enriched liquid and a nitrogen-enriched gas by distillation in the auxiliary distillation tower, and the oxygen-enriched liquid is dried with the nitrogen gas after drying. the oxygen-enriched gas generated by vaporizing by heat exchange type condenser-reboiler, with inflating the resulting oxygen-enriched gas, said main distillation column by compressing the nitrogen-enriched gas Nitrogen producing method characterized by circulating introduced. 前記圧縮した窒素富化ガスを、前記主蒸留塔に導入する原料空気の導入位置より少なくとも1理論段上から主蒸留塔に導入することを特徴とする請求項1記載の窒素製造方法。  2. The method for producing nitrogen according to claim 1, wherein the compressed nitrogen-enriched gas is introduced into the main distillation column from at least one theoretical stage from the introduction position of the raw air introduced into the main distillation column. 前記圧縮した窒素富化ガスを、前記主蒸留塔に導入する前の原料空気に混合することを特徴とする請求項1記載の窒素製造方法。  The nitrogen production method according to claim 1, wherein the compressed nitrogen-enriched gas is mixed with raw air before being introduced into the main distillation column. 前記窒素富化ガスを圧縮する前の温度が、前記主蒸留塔の蒸留温度から常温までの範囲であることを特徴とする請求項1記載の窒素製造方法。The temperature prior to compressing the nitrogen-rich gas, nitrogen method according to claim 1, wherein the range up to the distillation temperature or et ambient temperature of the main distillation column. 前記主蒸留塔から導出して減圧する前の酸素富化液化空気を、前記窒素ガス及び前記窒素富化ガス及び前記酸素富化ガスのいずれか少なくとも一つで冷却することを特徴とする請求項1記載の窒素製造方法。  The oxygen-enriched liquefied air that has been led out from the main distillation column and before being depressurized is cooled with at least one of the nitrogen gas, the nitrogen-enriched gas, and the oxygen-enriched gas. The method for producing nitrogen according to 1. 原料空気を圧縮,精製、冷却して低温蒸留することにより窒素を採取する窒素製造装置において、圧縮,精製した原料空気を冷却する主熱交換器と、冷却した原料空気を低温蒸留して窒素ガスと酸素富化液化空気とに分離する主蒸留塔と、前記酸素富化液化空気を低温蒸留して酸素富化液と窒素富化ガスとに分離する補助蒸留塔と、記酸素富化液化空気の一部を減圧・気化した後に前記補助蒸留塔の下部に上昇ガスとして導入する経路と、前記酸素富化液化空気の残部を減圧して前記補助蒸留塔の頂部に還流液として導入する経路と、前記窒素ガスと前記酸素富化液化空気及び前記酸素富化液とを熱交換させ、窒素ガスを液化して前記主蒸留塔の還流液を生成するとともに、酸素富化液化空気及び酸素富化液を気化するドライタイプのコンデンサー・リボイラーと、該コンデンサー・リボイラーで酸素富化液を気化して生成した酸素富化ガスを膨張させて寒冷を発生する寒冷タービン及び動力を発生する駆動タービンと、前記窒素富化ガスを圧縮する循環圧縮機とを備えたことを特徴とする窒素製造装置。Compressed feed air, purified, the nitrogen producing apparatus for collecting nitrogen by cooling to a low temperature distillation, compression, purified feed air and a main heat exchanger for cooling, the cooled feed air to cryogenic distillation nitrogen a main distillation column is separated into a gas and the oxygen-enriched liquefied air, and an auxiliary distillation column for separating the oxygen-enriched liquid and nitrogen-enriched gas the oxygen-enriched liquefied air by cryogenic distillation, prior hexane Mototomi A part of the liquefied liquefied air is decompressed and vaporized and then introduced into the lower part of the auxiliary distillation column as a rising gas, and the remainder of the oxygen-enriched liquefied air is decompressed and introduced to the top of the auxiliary distillation tower as a reflux liquid. Heat exchange between the nitrogen gas, the oxygen-enriched liquefied air and the oxygen-enriched liquid, and liquefying the nitrogen gas to produce a reflux liquid of the main distillation tower, and oxygen-enriched liquefied air and dry-type configuration vaporizing oxygen-enriched liquid Sensor reboiler, a cold turbine that generates cold by expanding the oxygen-enriched gas generated by vaporizing the oxygen-enriched liquid in the condenser reboiler, and a drive turbine that generates power, and compressing the nitrogen-enriched gas A nitrogen production apparatus comprising a circulating compressor. 前記主蒸留塔及び前記補助蒸留塔の少なくとも一つが充填式蒸留塔であることを特徴とする請求項6記載の窒素製造装置。  The nitrogen production apparatus according to claim 6, wherein at least one of the main distillation column and the auxiliary distillation column is a packed distillation column. 前記コンデンサー・リボイラーが、前記酸素富化液化空気を気化させるものと、前記酸素富化液を気化させるものとに分割して別々に構成されていることを特徴とする請求項6記載の窒素製造装置。  The nitrogen production according to claim 6, wherein the condenser reboiler is configured to be separately divided into one that vaporizes the oxygen-enriched liquefied air and one that evaporates the oxygen-enriched liquid. apparatus. 前記循環圧縮機が、低温仕様のものであることを特徴とする請求項6記載の窒素製造装置。  7. The nitrogen production apparatus according to claim 6, wherein the circulating compressor is of a low temperature specification. 前記循環圧縮機が、前記寒冷タービン又は駆動タービンと同軸上に連結して構成されていることを特徴とする請求項6記載の窒素製造装置。  The nitrogen production apparatus according to claim 6, wherein the circulating compressor is configured to be coaxially connected to the cold turbine or the driving turbine. 圧縮,精製した原料空気を前記主熱交換器を経て前記主蒸留塔に導く原料空気導入経路と、前記主蒸留塔の下部から減圧弁及び前記コンデンサー・リボイラーを経て前記補助蒸留塔の下部に接続された上昇ガス生成経路と、前記主蒸留塔の下部から減圧弁を経て前記補助蒸留塔の上部に接続された還流液導入経路と、前記補助蒸留塔の下部から減圧弁を経て前記コンデンサー・リボイラーを通り、前記主熱交換器を経て前記寒冷タービン及び前記駆動タービンに接続された酸素富化ガス導出経路と、前記寒冷タービン及び前記駆動タービンから熱交換器を経て導出する寒冷回収経路と、前記補助蒸留塔の上部から前記循環圧縮機を通り、前記主熱交換器を経て前記主蒸留塔の下部に接続された窒素富化ガス循環導入経路とを備えていることを特徴とする請求項6記載の窒素製造装置。  Connected to the lower part of the auxiliary distillation column via the pressure reducing valve and the condenser reboiler from the lower part of the main distillation column, the raw material air introduction path for leading the compressed and purified raw material air to the main distillation column through the main heat exchanger The ascending gas generation path, a reflux liquid introduction path connected to the upper part of the auxiliary distillation column from the lower part of the main distillation column via the pressure reducing valve, and the condenser reboiler from the lower part of the auxiliary distillation column via the pressure reducing valve Passing through the main heat exchanger, the oxygen-enriched gas lead-out path connected to the cold turbine and the drive turbine, the cold recovery path led out from the cold turbine and the drive turbine via a heat exchanger, A nitrogen-enriched gas circulation introduction path that is connected to the lower part of the main distillation column through the main compressor and from the upper part of the auxiliary distillation column. Nitrogen producing apparatus according to claim 6, symptoms. 前記窒素富化ガス循環導入経路が、前記原料空気導入経路に合流して前記主蒸留塔の下部に接続されていることを特徴とする請求項11記載の窒素製造装置。  The nitrogen production apparatus according to claim 11, wherein the nitrogen-enriched gas circulation introduction path joins the raw material air introduction path and is connected to a lower portion of the main distillation column.
JP17598598A 1998-06-23 1998-06-23 Nitrogen production method and apparatus Expired - Fee Related JP4150107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17598598A JP4150107B2 (en) 1998-06-23 1998-06-23 Nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17598598A JP4150107B2 (en) 1998-06-23 1998-06-23 Nitrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2000018813A JP2000018813A (en) 2000-01-18
JP4150107B2 true JP4150107B2 (en) 2008-09-17

Family

ID=16005693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17598598A Expired - Fee Related JP4150107B2 (en) 1998-06-23 1998-06-23 Nitrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4150107B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216511A1 (en) * 2007-03-09 2008-09-11 Henry Edward Howard Nitrogen production method and apparatus
CN105222525B (en) * 2015-10-29 2018-03-27 杭州特盈能源技术发展有限公司 The preparation facilities and method of oxygen-enriched air product
WO2020083525A1 (en) * 2018-10-23 2020-04-30 Linde Aktiengesellschaft Method and unit for low-temperature air separation
CN115451610B (en) * 2022-09-07 2024-02-27 安徽正刚新能源科技有限公司 Heat recovery water medium multistage compression ultra-high temperature heat pump system

Also Published As

Publication number Publication date
JP2000018813A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP2989516B2 (en) Cryogenic rectification method and apparatus for producing pressurized nitrogen
KR102258570B1 (en) Systems and methods for improved recovery of argon and oxygen from nitrogen generating cryogenic air separation units
KR102258573B1 (en) Systems and methods for improved recovery of argon and oxygen from nitrogen generating cryogenic air separation units
JPH0719727A (en) Separation of air
JPH087019B2 (en) High-pressure low-temperature distillation method for air
JPH07174461A (en) Manufacture of gaseous oxygen product at supply pressure by separating air
KR20200130478A (en) Systems and methods for high recovery of nitrogen and argon from medium pressure cryogenic air separation units
JPH0794953B2 (en) Process and equipment for producing nitrogen from air
JPH0447234B2 (en)
US5170630A (en) Process and apparatus for producing nitrogen of ultra-high purity
KR20200138388A (en) Systems and methods for improved recovery of argon and oxygen from nitrogen generating cryogenic air separation units
EP0384688A2 (en) Air separation
JPH06257939A (en) Distilling method at low temperature of air
TW554160B (en) Nitrogen generation
US6499312B1 (en) Cryogenic rectification system for producing high purity nitrogen
US6305191B1 (en) Separation of air
JP4401999B2 (en) Air separation method and air separation device
JP4150107B2 (en) Nitrogen production method and apparatus
JP4230213B2 (en) Air liquefaction separation apparatus and method
US5809802A (en) Air seperation
JP4520667B2 (en) Air separation method and apparatus
US6546748B1 (en) Cryogenic rectification system for producing ultra high purity clean dry air
JP4230094B2 (en) Nitrogen production method and apparatus
JP4520668B2 (en) Air separation method and apparatus
US6170291B1 (en) Separation of air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees