JPS61243273A - Air liquefying separating method - Google Patents

Air liquefying separating method

Info

Publication number
JPS61243273A
JPS61243273A JP60084150A JP8415085A JPS61243273A JP S61243273 A JPS61243273 A JP S61243273A JP 60084150 A JP60084150 A JP 60084150A JP 8415085 A JP8415085 A JP 8415085A JP S61243273 A JPS61243273 A JP S61243273A
Authority
JP
Japan
Prior art keywords
gas
column
air
separation method
expansion turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60084150A
Other languages
Japanese (ja)
Other versions
JPH0563718B2 (en
Inventor
秀幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP60084150A priority Critical patent/JPS61243273A/en
Publication of JPS61243273A publication Critical patent/JPS61243273A/en
Publication of JPH0563718B2 publication Critical patent/JPH0563718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離方法、特にアルゴンを同時に採
取するに好適な空気液化分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air liquefaction separation method, particularly an air liquefaction separation method suitable for simultaneously collecting argon.

〔従来の技術〕 −・般にアルゴンの製造は、複精留塔の上部塔からアル
ゴン含量の多い酸素を原料ガスとして抜き出し、これを
粗アルゴン塔に送り、粗アルゴン塔で精留して粗アルゴ
ンとし、この粗アルゴン中の酸素を除去したのち、高純
アルゴン塔で精留し、高純アルゴンを得る方法によって
行なわれている。
[Prior art] - Generally, argon production involves extracting oxygen with a high argon content from the upper column of a double rectification column as a raw material gas, sending it to a crude argon column, and rectifying it in the crude argon column to produce a crude product. This is done by using argon, removing oxygen from the crude argon, and then rectifying it in a high-purity argon column to obtain high-purity argon.

このようなアルゴン製造を伴う空気液化分離方法として
は、例えば、第5図に示す如く、圧縮機(図示せず)で
約5klll/dに圧縮された原料空気は、管1からリ
バーシリング熱交換器2に導入され、ここで冷却されて
原料空気中の水、炭酸ガスが除去され、はぼ5ko/c
+/の空気の飽和温度となって管3を通り、上部塔4a
、凝縮器4b、下部塔4Cよりなる複精留塔4の下部塔
4Cの下部に送られる。
As an air liquefaction separation method involving argon production, for example, as shown in FIG. It is introduced into the container 2, where it is cooled to remove water and carbon dioxide from the raw air.
The air reaches the saturation temperature of +/ and passes through the pipe 3 to the upper column 4a.
, a condenser 4b, and a lower column 4C of the double rectification column 4.

下部塔4Gでは、空気の予備精留が行なわれ、下部塔4
C頂部からは不純液化窒素が抜き出され管5を経て上部
塔4aの頂部に導かれ、また下部塔4C底部からは液化
空気が管6を経て抜き出されて上部塔4aの中間段に導
入されそれぞれ還流液として上部塔4a内を流下し、凝
縮器4bにて上部塔4aの還流液の気化と、下部塔4C
の上昇ガスの液化が行なわれ、これによって上部塔4a
In the lower column 4G, preliminary rectification of air is performed.
Impure liquefied nitrogen is extracted from the top of C and guided to the top of the upper column 4a via pipe 5, and liquefied air is extracted from the bottom of the lower column 4C via pipe 6 and introduced into the intermediate stage of the upper column 4a. The reflux liquid flows down in the upper column 4a as a reflux liquid, and the reflux liquid in the upper column 4a is vaporized in the condenser 4b, and the reflux liquid in the lower column 4C is
Liquefaction of the rising gas of
.

下部塔4Gでの精留が進む。Rectification progresses in the lower column 4G.

そして、上部塔4aの頂部から管7に不純窒素ガスが、
また上部塔4aの下部から管8に酸素ガスがそれぞれ抜
き出され、リバーシング熱交換器2に送られ、ここで原
料空気と熱交換して加湿され、常温のガスとして取り出
される。
Then, impure nitrogen gas flows from the top of the upper column 4a to the pipe 7.
Further, oxygen gas is extracted from the lower part of the upper column 4a into the tubes 8 and sent to the reversing heat exchanger 2, where it is humidified by heat exchange with the raw material air and extracted as a gas at room temperature.

また、上部塔4aの中間段から管11を経て、粗アルゴ
ン凝縮器9が設けられた粗アルゴン塔10に、アルゴン
5〜15%、窒素1%以下、残部酸素よりなるアルゴン
原料ガスが導入される。
Further, an argon raw material gas consisting of 5 to 15% argon, 1% or less nitrogen, and the balance oxygen is introduced from an intermediate stage of the upper column 4a through a pipe 11 to a crude argon column 10 provided with a crude argon condenser 9. Ru.

粗アルゴン凝縮器9には、下部塔4c底部から扱き出さ
れた液化空気の一部が管6から分岐されて、管12を経
て導入され、ここで粗アルゴン塔10の上昇ガスが凝縮
され、還流液として粗アルゴン塔10内を流下し精留が
行なわれる。
A part of the liquefied air discharged from the bottom of the lower column 4c is branched from the pipe 6 and introduced into the crude argon condenser 9 through the pipe 12, where the rising gas from the crude argon column 10 is condensed. The reflux liquid flows down through the crude argon column 10 and is subjected to rectification.

これによって粗アルゴン塔10の頂部から、アルゴン9
5〜98%、酸素1〜3%、窒素1〜3%程度の粗アル
ゴンが管13に導出され、以下図示しない公知のアルゴ
ン精製工程に送られ、高純アルゴンが採取される。粗ア
ルゴン凝縮器9に導入された液化空気は、気化して管1
4を経て上部塔4aの中間段に送り込まれる。
As a result, from the top of the crude argon column 10, argon 9
Crude argon containing approximately 5 to 98% oxygen, 1 to 3% oxygen, and 1 to 3% nitrogen is led out to a pipe 13, and is sent to a known argon purification process (not shown) to collect high purity argon. The liquefied air introduced into the crude argon condenser 9 is vaporized into the pipe 1.
4 to the intermediate stage of the upper column 4a.

そして、装置の運転に必要な寒冷を補うために管3から
圧縮空気の一部が管15に分岐され、リバーシング熱交
換器2にて再熱され、さらに膨張タービン16で断熱膨
張されたのち管17から上部塔4aの中間段に送り込ま
れる。
In order to supplement the cold necessary for operating the device, a part of the compressed air is branched from the pipe 3 to the pipe 15, reheated in the reversing heat exchanger 2, and further adiabatically expanded in the expansion turbine 16. It is sent from the pipe 17 to the intermediate stage of the upper column 4a.

(発明が解決しようとする問題点) ところで、以上のようにアルゴン採取を伴う空気液化分
離方法においては、膨張タービン16で断熱膨張した低
温低圧空気や粗アルゴン凝縮器9で気化した低温低圧空
気は、ガス状で上部塔4aに吹き込まれるので、主に酸
素を目的とする分離方法としては低コストで酸素ガスを
生産できる特長があるものの、完全分離に近い厳しい条
件を必要とする比較的高価なアルゴンの併産を目的とし
た精留の場合には、上部塔4aへのガス吹込みは非常に
好ましくない操作である。
(Problems to be Solved by the Invention) As described above, in the air liquefaction separation method involving argon extraction, the low-temperature low-pressure air adiabatically expanded in the expansion turbine 16 and the low-temperature low-pressure air vaporized in the crude argon condenser 9 are Since it is blown into the upper column 4a in gaseous form, it has the advantage of being able to produce oxygen gas at low cost as a separation method mainly aimed at oxygen, but it is a relatively expensive method that requires strict conditions close to complete separation. In the case of rectification aimed at the co-production of argon, blowing gas into the upper column 4a is a highly undesirable operation.

そこで、従来の装置では第5図に示す管18より膨張タ
ービン16で断熱膨張した低温低圧空気を管7の不純窒
素ラインへ導入し、そのまま大気に放散する運転方法に
よって上部塔4aの精留条件を良くし、アルゴンの増産
を図っている例が多くなってきている。
Therefore, in the conventional apparatus, the rectification conditions of the upper column 4a are changed by introducing the low-temperature, low-pressure air that has been adiabatically expanded in the expansion turbine 16 through the pipe 18 shown in FIG. There are many examples of efforts being made to improve argon production and increase argon production.

この場合、管18を通る低圧空気中に含まれる酸素・ア
ルゴンは、精留に関与せずそのまま放散されてしまうと
いう問題があった。
In this case, there was a problem in that oxygen and argon contained in the low-pressure air passing through the pipe 18 were not involved in the rectification and were simply dissipated.

そこで、上部塔へのガスフィードを減少させる方法とし
て特公昭57−42832号公報に示される方法がある
が、この方法では微妙な運転の要求され粗アルゴン塔凝
縮器に循環圧縮機の発・作詩の圧力変動を与え、安定し
た運転切換が難しい。
Therefore, there is a method shown in Japanese Patent Publication No. 57-42832 as a method for reducing the gas feed to the upper column, but this method requires delicate operation and a circulation compressor is used in the crude argon column condenser. This causes pressure fluctuations, making stable operation switching difficult.

また、粗アルゴン塔凝縮器で液体空気を完全気化させる
ので閉ループであってもアセチレンや炭化水素が析出す
ることになり危険を伴う。
Furthermore, since the liquid air is completely vaporized in the crude argon column condenser, acetylene and hydrocarbons will precipitate even in a closed loop, which is dangerous.

本発明は上記の点に鑑みなされたもので、アルゴンの増
産が可能となり、しかも酸素の収率あるいは純度の向上
が図られるアルゴン採取を伴う空気液化分離方法を提供
することを目的としている。
The present invention was made in view of the above points, and an object of the present invention is to provide an air liquefaction separation method that involves argon extraction, which makes it possible to increase the production of argon and improve the yield or purity of oxygen.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、第1発明では、原
料空気を5乃至10ko/cdGに加圧し冷却すると共
にCO2、H2Oを除去して精製し、複精留塔に導入し
てして液化精留を行ない、酸素、窒素を採取すると同時
に上部塔中間段よりアルゴン原料ガスを抜き出して粗ア
ルゴン塔に送り、精留分離してアルゴンを採取する空気
液化分離方法において、膨張タービンにより断熱膨張し
た低温低圧のガスを後記する圧縮機よりの吐出ガスと熱
交換して昇温後、圧縮機により再圧縮し、前記膨張ター
ビンの吐出ガスと熱交換して降温後、複精留塔下部塔に
導入することを特徴とし、また、第2発明では、膨張タ
ービンにより断熱膨張した低温低圧のガスを後記する圧
縮機よりの吐出ガスと熱交換して昇温後、圧縮機により
再圧縮し、前記膨張タービンの吐出ガスと熱交換して降
温後、主凝縮器の液体酸素と熱交換して液化し膨張弁に
て膨張後視精留塔上部塔に導入することを特徴としてい
る。
In order to achieve the above object, in the first invention, raw air is pressurized to 5 to 10 ko/cdG, cooled, purified by removing CO2 and H2O, and introduced into a double rectification column. In the air liquefaction separation method, in which liquefaction rectification is performed to collect oxygen and nitrogen, argon raw material gas is extracted from the intermediate stage of the upper column, sent to the crude argon column, and rectified and separated to collect argon. The low-temperature, low-pressure gas is heated by exchanging heat with the gas discharged from the compressor (described later), then recompressed by the compressor, cooled by exchanging heat with the discharge gas of the expansion turbine, and then transferred to the lower column of the double rectification column. In the second invention, the low-temperature, low-pressure gas adiabatically expanded by the expansion turbine is heated by exchanging heat with discharged gas from the compressor, which will be described later, and then recompressed by the compressor, The gas is cooled by exchanging heat with the discharge gas of the expansion turbine, and then liquefied by exchanging heat with liquid oxygen in the main condenser, and after being expanded by an expansion valve, it is introduced into the upper column of the vision rectification column.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

なお、第5図と同一部材については同符号を付して説明
は省略する。
Note that the same members as in FIG. 5 are designated by the same reference numerals and their explanations will be omitted.

第1図は本発明の第1実施例を示すもので、管3から分
岐した管15を経てリバーシング熱交換器2にて再熱さ
れ、さらに膨張タービン16で膨張された低温低圧空気
は、管19を経て熱交換器20に導入され、常温となっ
て管21を経て圧縮l1lJ22に吸入され、ここで下
部塔より少し高い圧に圧縮され、管23を経て再び熱交
換器20に導入されて前記膨張タービン16で膨張され
た低温低圧空気と熱交換して冷却され、低温の圧縮空気
となった後、下部塔4Cの底部へ導入される。
FIG. 1 shows a first embodiment of the present invention, in which low-temperature, low-pressure air is reheated in a reversing heat exchanger 2 through a pipe 15 branched from a pipe 3, and further expanded in an expansion turbine 16. It is introduced into the heat exchanger 20 through the pipe 19, and when it reaches room temperature, it is sucked into the compression l1lJ22 through the pipe 21, where it is compressed to a slightly higher pressure than the lower column, and is introduced into the heat exchanger 20 again through the pipe 23. The air is cooled by exchanging heat with the low-temperature, low-pressure air expanded in the expansion turbine 16 to become low-temperature compressed air, and then introduced into the bottom of the lower column 4C.

第2図は膨張タービン16の処理ガスとして下部塔4C
より導出したガス例えば窒素ガスを使用した実施例を示
すもので、下部塔4Cより管25で抜き出された窒素ガ
スは、リバーシング熱交換器2にて再熱されたのち、膨
張タービン16で断熱膨張され、管19.熱交換器20
.管21を経て圧縮機22に吸入され、下部塔圧より少
し高い圧に圧縮され、管23.熱交換器20を経て下部
塔4Cの上部に導入される。
FIG. 2 shows the lower tower 4C as the processing gas for the expansion turbine 16.
This example shows an example in which a gas derived from a gas, for example, nitrogen gas, is used. The nitrogen gas extracted from the lower column 4C through the pipe 25 is reheated in the reversing heat exchanger 2, and then heated in the expansion turbine 16. Adiabatically expanded, tube 19. heat exchanger 20
.. It is sucked into a compressor 22 through a pipe 21, compressed to a pressure slightly higher than the lower column pressure, and then passed through a pipe 23. It is introduced into the upper part of the lower column 4C via the heat exchanger 20.

第3図は第3実施例を示すもので、管3から分岐し管1
5を経て膨張タービン16で断熱膨張された低温低圧空
気は、管19.熱交換器20.管21を経て圧縮機22
に吸入され、ここで下部塔圧力よりも低い約4.2kO
/cdGに圧縮され、管23、熱交換器20.管24を
経て熱交換器26で複精留塔4の凝縮器4bよりの液体
酸素と熱交換して、酸素を気化するとともに空気は液化
され、膨張弁24aで膨張機上部塔4aの中間段へ導入
される。
FIG. 3 shows a third embodiment, in which pipe 1 is branched from pipe 3.
The low-temperature, low-pressure air that has been adiabatically expanded in the expansion turbine 16 via the tube 19. Heat exchanger 20. Compressor 22 via pipe 21
about 4.2 kO, which is lower than the lower column pressure.
/cdG, tube 23, heat exchanger 20. The air is exchanged with liquid oxygen from the condenser 4b of the double rectification column 4 through the pipe 24 in the heat exchanger 26 to vaporize the oxygen and liquefy the air. will be introduced to

第4図は上記第3実施例における膨張タービン16の処
理ガスとして下部塔4Cより導出したガス例えば窒素ガ
スを使用した実施例を示すものである。前記第2実施例
と同様に、下部塔4Cより管25で抜き出された窒素ガ
スは膨張タービン16で断熱膨張され、管19.熱交換
器20.管21を経て圧縮機22に吸入され、約5kg
/cnQに圧縮され、管23.熱交換器20.管24を
経て熱交換器26で複精留塔4の凝縮器4bよりの液体
酸素と熱交換して、酸素を気化するとともに窒素は液化
され、膨張弁24aで膨張機上部塔4aの上部に導入さ
れる。
FIG. 4 shows an embodiment in which a gas, for example, nitrogen gas, led out from the lower column 4C is used as the processing gas for the expansion turbine 16 in the third embodiment. As in the second embodiment, the nitrogen gas extracted from the lower column 4C through the pipe 25 is adiabatically expanded in the expansion turbine 16, and then passed through the pipe 19. Heat exchanger 20. Approximately 5 kg is sucked into the compressor 22 through the pipe 21.
/cnQ, tube 23. Heat exchanger 20. Through the pipe 24, the heat exchanger 26 exchanges heat with the liquid oxygen from the condenser 4b of the double rectification column 4, vaporizing the oxygen and liquefying the nitrogen. be introduced.

以上のようにすることにより、装置の運転に必要な寒冷
を補うために上部塔4aに吹き込まれていたガスを下部
塔への低温の圧縮ガスあるいは上部塔への液化ガスとす
ることができるので、精留効果が向上し、酸素、アルゴ
ンの増産が図れる。
By doing the above, the gas that was blown into the upper column 4a to compensate for the refrigeration necessary for operating the device can be turned into low-temperature compressed gas to the lower column or liquefied gas to the upper column. , the rectification effect is improved, and the production of oxygen and argon can be increased.

上記上部塔へ液化ガスとして導入する場合は圧縮機22
の吐出圧力は原料空気圧力に比して低くてよく、単純に
原料空気の増量により酸素、アルゴンを増産する場合に
比べ経済的である。また下部塔に低温ガスとして導入す
る場合はCO2、H2Oを除去するりパージング熱交換
器を大容量にしないですみ、既設装置の改造の場合に好
適である。また、圧縮機22の発・停において弁17a
または弁18aを開けておくことにより精留部への影響
を少なくでき、スムースな運転変更ができる。さらに、
圧縮R22の吐出より吸入に戻るバイパス弁を設けて吐
出圧力による圧力調節弁としておけば、運転変更はさら
に容易となり主に弁24aを操作する程度でよい。また
さらに故障等により圧縮機22を止めてもプロセスは成
立し、従って減量運転も可能である。さらに、既設の装
置に熱交換器、圧縮機を追加して設けることにより容易
に改造が可能で、これにより簡単に既設装置の能力アッ
プが図れる。
When introducing the liquefied gas into the upper column, the compressor 22
The discharge pressure may be lower than the raw material air pressure, and it is more economical than increasing the production of oxygen and argon by simply increasing the amount of raw material air. In addition, when it is introduced into the lower column as a low-temperature gas, it is not necessary to remove CO2 and H2O or to increase the capacity of the purging heat exchanger, which is suitable for remodeling existing equipment. Also, when the compressor 22 starts and stops, the valve 17a
Alternatively, by keeping the valve 18a open, the influence on the rectifying section can be reduced, allowing smooth operation changes. moreover,
If a bypass valve is provided to return the compressed R22 from the discharge to the suction, and the pressure is adjusted based on the discharge pressure, operation changes can be made even easier, and only need to mainly operate the valve 24a. Further, even if the compressor 22 is stopped due to a failure or the like, the process can be carried out, and therefore a reduced-volume operation is also possible. Furthermore, the existing equipment can be easily modified by adding a heat exchanger and a compressor, thereby easily increasing the capacity of the existing equipment.

尚、上記各実施例では熱交換器2としてC02゜H2O
の除去を兼ねるリパーシング熱交換器で説明したが、他
のタイプのものであってもよく、また再熱でなく、熱交
換器2の途中から空気を抜き出してもよい。
In each of the above embodiments, the heat exchanger 2 is C02°H2O.
Although the description has been made using a reparsing heat exchanger that also serves to remove heat, other types of heat exchangers may be used, and air may be extracted from the middle of the heat exchanger 2 instead of reheating.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように、従来装置に必要な寒冷を発生さ
せるため低温空気を膨張タービンで膨張させた後複精留
塔の上部塔に吹き込んでいたちのを、第1発明では膨張
タービンで膨張した低圧空気を熱交換器で加熱したのち
圧縮機で昇圧し、再び熱交換器で冷却して低温圧縮空気
として下部塔に導入させ、第2発明では熱交換器で冷却
された低温圧縮空気を複精留塔の凝縮器に溜る液体酸素
と熱交換して液化して膨張弁にて膨張後上部塔に導入す
るので、上部塔の精留条件が向上し、アルゴンおよび酸
素の増産を図ることができる。また、上記空気の代りに
下部塔からの窒素ガスを用いた場合には、上部塔の精留
効果はさらに向上し、酸素、アルゴンをさらに増産する
ことができる。また運転条件の変更等運転操作も容易で
あり、アセチレン等炭化水素の蓄積に心配も無く安全性
が高い。
As described above, in order to generate the refrigeration necessary for the conventional equipment, low-temperature air is expanded with an expansion turbine and then blown into the upper column of the double rectification column. The low-pressure air is heated in a heat exchanger, then boosted in pressure by a compressor, cooled again by a heat exchanger, and introduced into the lower tower as low-temperature compressed air.In the second invention, the low-temperature compressed air cooled by the heat exchanger is It exchanges heat with the liquid oxygen accumulated in the condenser of the double rectification column, liquefies it, expands it with an expansion valve, and introduces it into the upper column, improving the rectification conditions in the upper column and increasing the production of argon and oxygen. I can do it. Moreover, when nitrogen gas from the lower column is used instead of the above-mentioned air, the rectification effect of the upper column is further improved, and the production of oxygen and argon can be further increased. In addition, operation operations such as changing operating conditions are easy, and there is no worry about accumulation of hydrocarbons such as acetylene, making it highly safe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の第1実施例を示す系統図、第2図
は第2実施例を示す系統図、第3図は第3実施例を示す
系統図、第4図は第4実施例を示す系統図、第5図は従
来の空気液化分離方法の系統図である。 4・・・複精留塔  4a・・・上部塔  4b・・・
凝縮器  4C・・・下部塔  9・・・粗アルゴン凝
縮器10・・・粗アルゴン塔  16・・・膨張タービ
ン20・・・熱交換器  22・・・圧縮機  26・
・・熱交換器
Fig. 1 is a system diagram showing the first embodiment of the method of the present invention, Fig. 2 is a system diagram showing the second embodiment, Fig. 3 is a system diagram showing the third embodiment, and Fig. 4 is a system diagram showing the fourth embodiment. A system diagram showing an example, FIG. 5 is a system diagram of a conventional air liquefaction separation method. 4...Double rectification column 4a...Upper column 4b...
Condenser 4C... Lower column 9... Crude argon condenser 10... Crude argon column 16... Expansion turbine 20... Heat exchanger 22... Compressor 26.
··Heat exchanger

Claims (1)

【特許請求の範囲】 1、原料空気を5乃至10kg/cm^2Gに加圧し冷
却すると共にCO_2、H_2Oを除去して精製し、複
精留塔に導入してして液化精留を行ない、酸素、窒素を
採取すると同時に上部塔中間段よりアルゴン原料ガスを
抜き出して粗アルゴン塔に送り、精留分離してアルゴン
を採取する空気液化分離方法において、膨張タービンに
より断熱膨張した低温低圧のガスを後記する圧縮機より
の吐出ガスと熱交換して昇温後、圧縮機により再圧縮し
、前記膨張タービンの吐出ガスと熱交換して降温後、複
精留塔に導入することを特徴とする空気液化分離方法。 2、前記膨張タービンにより断熱膨張するガスが、前記
精製原料空気を分岐した一部であり、圧縮機により再圧
縮し熱交換して降温後、複精留塔下部塔に導入すること
を特徴とする特許請求の範囲第1項記載の空気液化分離
方法。 3、前記膨張タービンにより断熱膨張するガスが、複精
留塔下部塔より導出したガスであり、圧縮機により再圧
縮し熱交換して降温後、複精留塔下部塔に導入すること
を特徴とする特許請求の範囲第1項記載の空気液化分離
方法。 4、前記膨張タービンにより断熱膨張するガスが、複製
精留塔下部塔より導出した窒素であることを特徴とする
特許請求の範囲第3項記載の空気液化分離方法。 5、原料空気を5乃至10kg/cm^2Gに加圧し冷
却すると共にCO_2、H_2Oを除去して精製し、複
精留塔に導入して液化精留を行ない、酸素、窒素を採取
すると同時に上部塔中間段よりアルゴン原料ガスを抜き
出して粗アルゴン塔に送り、精留分離してアルゴンを採
取する空気液化分離方法において、膨張タービンにより
断熱膨張した低温低圧のガスを後記する圧縮機よりの吐
出ガスと熱交換して昇温後、圧縮機により再圧縮し、前
記膨張タービンの吐出ガスと熱交換して降温後、主凝縮
器の液体酸素と熱交換して液化し膨張弁にて膨張後接精
留塔上部塔に導入することを特徴とする空気液化分離方
法。 6、前記膨張タービンにより断熱膨張するガスが、前記
精製原料空気を分岐した一部であることを特徴とする特
許請求の範囲第5項記載の空気液化分離方法。 7、前記膨張タービンにより断熱膨張するガスが、複精
留塔下部塔より導出したガスであることを特徴とする特
許請求の範囲第5項記載の空気液化分離方法。 8、前記膨張タービンにより断熱膨張するガスが、複精
留塔下部塔より導出した窒素であることを特徴とする特
許請求の範囲第7項記載の空気液化分離方法。
[Claims] 1. Pressurize raw air to 5 to 10 kg/cm^2G, cool it, remove CO_2 and H_2O, purify it, and introduce it into a double rectification column to perform liquefaction rectification, In the air liquefaction separation method, in which oxygen and nitrogen are extracted, argon raw material gas is simultaneously extracted from the intermediate stage of the upper column, sent to the crude argon column, and then subjected to rectification separation to extract argon. It is characterized by being heated by exchanging heat with the gas discharged from the compressor to be described later to raise the temperature, then being recompressed by the compressor, cooling the gas by exchanging heat with the discharge gas of the expansion turbine, and then introduced into the double rectification column. Air liquefaction separation method. 2. The gas adiabatically expanded by the expansion turbine is a branched part of the purified feed air, and is recompressed by a compressor and cooled by heat exchange, and then introduced into the lower column of the double rectification column. An air liquefaction separation method according to claim 1. 3. The gas that is adiabatically expanded by the expansion turbine is a gas derived from the lower column of the double rectification column, and is recompressed by a compressor and cooled by heat exchange, and then introduced into the lower column of the double rectification column. An air liquefaction separation method according to claim 1. 4. The air liquefaction separation method according to claim 3, wherein the gas adiabatically expanded by the expansion turbine is nitrogen derived from the lower column of the replica rectification column. 5. The raw air is pressurized to 5 to 10 kg/cm^2G, cooled, and purified by removing CO_2 and H_2O, and then introduced into a double rectification column to perform liquefaction rectification. Oxygen and nitrogen are collected, and at the same time the upper In an air liquefaction separation method in which argon raw material gas is extracted from an intermediate stage of the tower, sent to a crude argon tower, and subjected to rectification separation to collect argon, the low-temperature, low-pressure gas that has been adiabatically expanded by an expansion turbine is discharged from a compressor as described below. After heating up by exchanging heat with the gas, it is recompressed by the compressor, cooled by exchanging heat with the discharge gas of the expansion turbine, and then liquefied by exchanging heat with liquid oxygen in the main condenser, expanded by the expansion valve, and then connected. An air liquefaction separation method characterized by introducing air into an upper column of a rectification column. 6. The air liquefaction separation method according to claim 5, wherein the gas adiabatically expanded by the expansion turbine is a branched part of the purified raw material air. 7. The air liquefaction separation method according to claim 5, wherein the gas adiabatically expanded by the expansion turbine is gas derived from a lower column of a double rectification column. 8. The air liquefaction separation method according to claim 7, wherein the gas adiabatically expanded by the expansion turbine is nitrogen derived from a lower column of a double rectification column.
JP60084150A 1985-04-19 1985-04-19 Air liquefying separating method Granted JPS61243273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084150A JPS61243273A (en) 1985-04-19 1985-04-19 Air liquefying separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084150A JPS61243273A (en) 1985-04-19 1985-04-19 Air liquefying separating method

Publications (2)

Publication Number Publication Date
JPS61243273A true JPS61243273A (en) 1986-10-29
JPH0563718B2 JPH0563718B2 (en) 1993-09-13

Family

ID=13822474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084150A Granted JPS61243273A (en) 1985-04-19 1985-04-19 Air liquefying separating method

Country Status (1)

Country Link
JP (1) JPS61243273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413084A (en) * 1990-05-07 1992-01-17 Hitachi Ltd Method and device for separation of air
WO2021230912A1 (en) * 2020-05-11 2021-11-18 Praxair Technology, Inc. System and method for recovery of nitrogen, argon, and oxygen in moderate pressure cryogenic air separation unit
US11629913B2 (en) 2020-05-15 2023-04-18 Praxair Technology, Inc. Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413084A (en) * 1990-05-07 1992-01-17 Hitachi Ltd Method and device for separation of air
WO2021230912A1 (en) * 2020-05-11 2021-11-18 Praxair Technology, Inc. System and method for recovery of nitrogen, argon, and oxygen in moderate pressure cryogenic air separation unit
US11933538B2 (en) 2020-05-11 2024-03-19 Praxair Technology, Inc. System and method for recovery of nitrogen, argon, and oxygen in moderate pressure cryogenic air separation unit
US11629913B2 (en) 2020-05-15 2023-04-18 Praxair Technology, Inc. Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit

Also Published As

Publication number Publication date
JPH0563718B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
US5509271A (en) Process and installation for the separation of a gaseous mixture
JPS61110872A (en) Manufacture of nitrogen
JPH028235B2 (en)
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP2006329615A (en) Method and device for separating air by low temperature distillation
JP3299069B2 (en) Air low-temperature separation apparatus and separation method
JPS61243273A (en) Air liquefying separating method
JP2004205076A (en) Air liquefying and separating device and its method
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3737612B2 (en) Method and apparatus for producing low purity oxygen
JP2001336876A (en) Method and system for producing nitrogen
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP3082092B2 (en) Oxygen purification method and apparatus
JPH0440627B2 (en)
JPH03160294A (en) Supercooling method of liquefied nitrogen in air liquefier/separator
JPH0563716B2 (en)
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JP2000258054A (en) Method and apparatus for manufacturing low purity oxygen
JPH0195280A (en) Chilling separating method and device for carbon monoxide
JP2000018813A (en) Method and device for producing nitrogen
JPS62194178A (en) Method of liquefying and separating air
JPH05133682A (en) Method and device for liquefying separation of air
JPS62141485A (en) Manufacture of nitrogen having high purity
KR880000075B1 (en) The method for separating air
JPH0131117B2 (en)